Sustainable aviation technology and operations: research and innovation perspectives roberto sabatin

Page 1


Sustainable Aviation Technology and Operations: Research and Innovation Perspectives Roberto Sabatini

Visit to download the full and correct content document: https://ebookmass.com/product/sustainable-aviation-technology-and-operations-rese arch-and-innovation-perspectives-roberto-sabatini/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Future Propulsion Systems and Energy Sources in Sustainable Aviation Farokhi

https://ebookmass.com/product/future-propulsion-systems-andenergy-sources-in-sustainable-aviation-farokhi/

Sustainable Alternatives for Aviation Fuels Abu Yousuf

https://ebookmass.com/product/sustainable-alternatives-foraviation-fuels-abu-yousuf/

Sugarcane biorefinery, technology and perspectives

Santos

https://ebookmass.com/product/sugarcane-biorefinery-technologyand-perspectives-santos/

Re-imagining Technology Enhanced Learning: Critical Perspectives on Disruptive Innovation 1st ed. Edition

Michael Flavin

https://ebookmass.com/product/re-imagining-technology-enhancedlearning-critical-perspectives-on-disruptive-innovation-1st-ededition-michael-flavin/

Physics and Technology of Sustainable Energy E. L. Wolf

https://ebookmass.com/product/physics-and-technology-ofsustainable-energy-e-l-wolf/

Resilient and Sustainable Cities: Research, Policy and Practice Zaheer Allam

https://ebookmass.com/product/resilient-and-sustainable-citiesresearch-policy-and-practice-zaheer-allam/

The Future of HRD, Volume I: Innovation and Technology Mark Loon

https://ebookmass.com/product/the-future-of-hrd-volume-iinnovation-and-technology-mark-loon/

Debating Innovation: Perspectives and Paradoxes of an Idealized Concept Alf Rehn

https://ebookmass.com/product/debating-innovation-perspectivesand-paradoxes-of-an-idealized-concept-alf-rehn/

The Valuation of Digital Intangibles: Technology, Marketing, and the Metaverse 2nd Edition Roberto MoroVisconti

https://ebookmass.com/product/the-valuation-of-digitalintangibles-technology-marketing-and-the-metaverse-2nd-editionroberto-moro-visconti/

SustainableAviationTechnologyandOperations

DavidAllerton PrinciplesofFlightSimulation

AllanSeabridge,MohammadRadaei AircraftSystemsClassifications:AHandbookofCharacteristicsand DesignGuidelines

DouglasM.Marshall ⋅ UASIntegrationintoCivilAirspace:Policy,RegulationsandStrategy

PaulG.Fahlstrom,ThomasJ.Gleason,MohammadH.Sadraey ⋅ IntroductiontoUAVSystems,5thEdition

JamesW.Gregory,TianshuLiu IntroductiontoFlightTesting

AshishTewari FoundationsofSpaceDynamics

EgbertTorenbeek ⋅ EssentialsofSupersonicCommercialAircraftConceptualDesign

MohammadH.Sadraey DesignofUnmannedAerialSystems

SaeedFarokhi FuturePropulsionSystemsandEnergySourcesinSustainableAviation

RamaK.Yedavalli ⋅ FlightDynamicsandControlofAeroandSpaceVehicles

AllanSeabridge,IanMoir DesignandDevelopmentofAircraftSystems,3rdEdition

GarethD.Padfield HelicopterFlightDynamics:IncludingaTreatmentofTiltrotorAircraft,3rdEdition

CraigA.Kluever ⋅ SpaceFlightDynamics,2ndEdition

TrevorM.Young ⋅ PerformanceoftheJetTransportAirplane:AnalysisMethods,FlightOperations,and Regulations

AndrewJ.Keane,AndrosSobester,JamesP.Scanlan ⋅ SmallUnmannedFixed-wingAircraftDesign: APracticalApproach

PascualMarques,AndreaDaRonch AdvancedUAVAerodynamics,FlightStabilityandControl: NovelConcepts,TheoryandApplications

FarhanA.Faruqi DifferentialGameTheorywithApplicationstoMissilesandAutonomousSystems Guidance

GrigoriosDimitriadis IntroductiontoNonlinearAeroelasticity

NancyJ.Cooke,LeahJ.Rowe,WinstonBennettJr.,DeForestQ.Joralmon RemotelyPilotedAircraft Systems:AHumanSystemsIntegrationPerspective

StephenCorda IntroductiontoAerospaceEngineeringwithaFlightTestPerspective

WayneDurham,KennethA.Bordignon,RogerBeck ⋅ AircraftControlAllocation

AshishTewari AdaptiveAeroservoelasticControl

AjoyKumarKundu,MarkA.Price,DavidRiordan TheoryandPracticeofAircraftPerformance

PeterBelobaba,AmedeoOdoni,CynthiaBarnhart,ChristosKassapoglou ⋅ TheGlobalAirlineIndustry, 2ndEdition

JanR.Wright,JonathanEdwardCooper ⋅ IntroductiontoAircraftAeroelasticityandLoads,2ndEdition

TapanK.Sengupta ⋅ TheoreticalandComputationalAerodynamics

AndrosSobester,AlexanderI.J.Forrester AircraftAerodynamicDesign:GeometryandOptimization

RoyLangton StabilityandControlofAircraftSystems:IntroductiontoClassicalFeedbackControl

T.W.Lee ⋅ AerospacePropulsion

IanMoir,AllanSeabridge,MalcolmJukes CivilAvionicsSystems,2ndEdition

WayneDurham AircraftFlightDynamicsandControl

KonstantinosZografos,GiovanniAndreatta,AmedeoOdoni ⋅ ModellingandManagingAirportPerformance EgbertTorenbeek AdvancedAircraftDesign:ConceptualDesign,AnalysisandOptimizationofSubsonic CivilAirplanes

ChristosKassapoglou DesignandAnalysisofCompositeStructures:WithApplicationstoAerospace Structures,2ndEdition

KeithA.Rigby AircraftSystemsIntegrationofAir-LaunchedWeapons

DougMcLean UnderstandingAerodynamics:ArguingfromtheRealPhysics

MohammadH.Sadraey ⋅ AircraftDesign:ASystemsEngineeringApproach

G.D.McBain TheoryofLift:IntroductoryComputationalAerodynamicsinMATLAB/Octave PlamenAngelov SenseandAvoidinUAS:ResearchandApplications

JohnValasek ⋅ MorphingAerospaceVehiclesandStructures

PeterFortescue,GrahamSwinerd,JohnStark ⋅ SpacecraftSystemsEngineering,4thEdition

RegAustin UnmannedAircraftSystems:UAVSDesign,DevelopmentandDeployment

RobertoSabatini,AlessandroGardi SustainableAviationTechnologyandOperations:Researchand InnovationPerspectives

Visitwww.wiley.comtoviewmoretitlesintheAerospaceSeries.

SustainableAviationTechnologyandOperations

ResearchandInnovationPerspectives

Editedby RobertoSabatini

Professor,DepartmentofAerospaceEngineering CollegeofEngineering

KhalifaUniversityofScienceandTechnology AbuDhabi,UAE

HonoraryProfessor,AerospaceEngineeringandAviation SchoolofEngineering,STEMCollege

RMITUniversity,Melbourne Victoria,Australia

AlessandroGardi

AssistantProfessor,DepartmentofAerospaceEngineering CollegeofEngineering

KhalifaUniversityofScienceandTechnology AbuDhabi,UAE

AssociateofRMITUniversity AerospaceEngineeringandAviation,SchoolofEngineering STEMCollege,Melbourne Victoria,Australia

Thiseditionfirstpublished2024 ©2024JohnWiley&SonsLtd.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions.

TherightofRobertoSabatiniandAlessandroGarditobeidentifiedastheeditorsofthisworkhasbeen assertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons,Inc. and/oritsaffiliatesintheUnitedStatesandothercountriesandmaynotbeusedwithoutwritten permission.Allothertrademarksarethepropertyoftheirrespectiveowners.JohnWiley&Sons,Inc.isnot associatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantability orfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,written salesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproduct isreferredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthat thepublisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmay provideorrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisheris notengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbe suitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshould beawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwas writtenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitorany othercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages.

LibraryofCongressCataloging-in-PublicationData

Names:Sabatini,Roberto,editor.|Gardi,Alessandro,editor.

Title:Sustainableaviationtechnologyandoperations:researchand innovationperspectives/RobertoSabatini,Professor,DepartmentofAerospace Engineering,KhalifaUniversityofScienceandTechnology,AbuDhabi, UAE;AlessandroGardi,AssistantProfessor,DepartmentofAerospace Engineering,KhalifaUniversityofScienceandTechnology,AbuDhabi,UAE

Description:Hoboken,NJ,USA:Wiley,2024.|Series:Aerospaceseries

Identifiers:LCCN2020025457(print)|LCCN2020025458(ebook)|ISBN 9781118932582(cloth)|ISBN9781118932612(adobepdf)|ISBN 9781118932605(epub)

Subjects:LCSH:Aeronautics–Technologicalinnovations.|Aerospace engineering.|Sustainabledevelopment.

Classification:LCCTL553.S232024(print)|LCCTL553(ebook)|DDC 629.13028/6–dc23

LCrecordavailableathttps://lccn.loc.gov/2020025457

LCebookrecordavailableathttps://lccn.loc.gov/2020025458

Coverimage:©ICHIRO/GettyImages

CoverdesignbyWiley

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Contents

ListofContributors vii

AbouttheEditors ix

AbouttheCompanionWebsite x

1SustainableAviation:AnIntroduction 1

RobertoSabatiniandAlessandroGardi

SectionIAviationSustainabilityFundamentals 29

2ClimateImpactsofAviation 31

YixiangLim,AlessandroGardi,andRobertoSabatini

3NoisePollutionandOtherEnvironmentalandHealthImpactsof Aviation 49

AlessandroGardi,RohanKapoor,YixiangLim,andRobertoSabatini

SectionIISystemsforSustainableAviation 79

4SystemsEngineeringEvolutions 81

AnthonyZanetti,ArunKumar,AlessandroGardi,andRobertoSabatini

5LifeCycleAssessmentforCarbonNeutrality 113 EndaCrossin,AlessandroGardi,andRobertoSabatini

6AirTrafficManagementandAvionicsSystemsEvolutions 145

AlessandroGardi,YixiangLim,NichakornPongsakornsathien,RobertoSabatini, andTrevorKistan

7OptimisationofFlightTrajectoriesandAirspace 165

AlessandroGardi,YixiangLim,andRobertoSabatini

SectionIIIAerostructuresandPropulsiveTechnologies 213

8AdvancedAerodynamicConfigurations 215

MatthewMarino,AlessandroGardi,RobertoSabatini,andYixiangLim

9LightweightStructuresandAdvancedMaterials 241 RajDasandJoelGalos

10Low-EmissionPropulsiveTechnologiesinTransportAircraft 263 KavinduRanasinghe,KaiGuan,AlessandroGardi,andRobertoSabatini

11ApprovedDrop-inBiofuelsandProspectsforAlternativeAviation Fuels 301

GrahamDorrington

SectionIVResearchCaseStudies 323

12OverallContributionofWingtipDevicestoImprovingAircraft Performance 325

NikolaGavrilovi´c,BoškoRašuo,VladimirParezanovi´c,GeorgeDulikravich,and Jean-MarcMoschetta

13IntegrationofNaturallyOccurringMaterialsinLightweight Aerostructures 343

JoseSilva,AlessandroGardi,andRobertoSabatini

14DistributedandHybridPropulsion:ATailoredDesign Methodology 355

MartinBurston,KavinduRanasinghe,AlessandroGardi,VladimirParezanovic, RaficAjaj,andRobertoSabatini

15IntegrationofHybrid-ElectricPropulsionSystemsinSmall UnmannedAircraft 393

JacobSliwinski,AlessandroGardi,MatthewMarino,andRobertoSabatini

16BenefitsandChallengesofLiquidHydrogenFuelsforCommercial TransportAircraft 417

StephenRondinelli,AlessandroGardi,andRobertoSabatini

17Multi-ObjectiveTrajectoryOptimisationAlgorithmsforAvionicsand ATMSystems 433

AlessandroGardi,RobertoSabatini,andTrevorKistan

18Energy-Optimal4DGuidanceandControlforTerminalDescent Operations 457

YixiangLim,AlessandroGardi,andRobertoSabatini

19ContrailModellingfor4DTrajectoryOptimisation 475

YixiangLim,AlessandroGardi,andRobertoSabatini

20TrajectoryOptimisationtoMinimisetheCombinedRadiativeForcing ImpactsofContrailsandCO2 499

YixiangLim,AlessandroGardi,RobertoSabatini,andTrevorKistan

21TheWLifeCycleModel–SanFranciscoAirportCaseStudy 509

AnthonyZanetti,AlessandroGardi,andRobertoSabatini

22ConclusionsandFutureResearch 517

RobertoSabatiniandAlessandroGardi

Index 523

ListofContributors

RaficAjaj DepartmentofAerospaceEngineering KhalifaUniversityofScienceand Technology,AbuDhabi,UAE

MartinBurston SchoolofEngineering,RMITUniversity Melbourne,Victoria,Australia

EndaCrossin UniversityofCanterbury Christchurch,NewZealand

RajDas SchoolofEngineering RMITUniversity Melbourne,Victoria,Australia

GrahamDorrington SchoolofEngineering RMITUniversity Bundoora,Victoria,Australia

GeorgeDulikravich FloridaInternationalUniversity Miami,Florida,USA

JoelGalos DepartmentofMaterialsEngineering CaliforniaPolytechnicStateUniversity SanLuisObispo,CA,USA

AlessandroGardi DepartmentofAerospaceEngineering KhalifaUniversityofScienceand Technology,AbuDhabi,UAE

NikolaGavrilovi´c ISAE-SUPAERO UniversityofToulouse Toulouse,France

KaiGuan RMITUniversity Bundoora,Victoria,Australia

RohanKapoor SchoolofEngineering RMITUniversity Bundoora,Victoria,Australia

viii ListofContributors

TrevorKistan ThalesAustralia Melbourne,Victoria,Australia

ArunKumar SchoolofEngineering RMITUniversity Bundoora,Victoria,Australia

YixiangLim AgencyforScience,Technologyand Research(ASTAR)

Singapore

MatthewMarino SchoolofEngineering RMITUniversity Bundoora,Victoria,Australia

Jean-MarcMoschetta Jean-MarcMoschettaAerodynamics EnergeticsandPropulsionDepartment ISAE-SUPAEROToulouse,France

VladimirParezanovi´c DepartmentofAerospaceEngineering KhalifaUniversityofScienceand Technology,AbuDhabi,UAE

NichakornPongsakornsathien SchoolofEngineering RMITUniversity Bundoora,Victoria,Australia

KavinduRanasinghe InsitecPtyLtd Melbourne,Victoria,Australia

BoškoRašuo FacultyofMechanicalEngineering UniversityofBelgrade Belgrade,Serbia

StephenRondinelli RMITUniversity Melbourne,Victoria,Australia

RobertoSabatini DepartmentofAerospaceEngineering KhalifaUniversityofScienceand Technology,AbuDhabi,UAE

JoseSilva SchoolofEngineering RMITUniversity Melbourne,Victoria,Australia

JacobSliwinski RMITUniversity Bundoora,Victoria,Australia

AnthonyZanetti RMITUniversity Melbourne,Victoria,Australia

AbouttheEditors

RobertoSabatini isaProfessorofAerospaceEngineeringatKhalifaUniversityofScience andTechnology(UAE)andanHonoraryProfessorofAerospaceEngineeringandAviation atRMITUniversity(Australia).Previously,Prof.SabatiniwasalsoaffiliatedwithCranfield University(UK),whereheledtheresearchteamcontributingtotheEuropeanUnion CleanSkyJointTechnologyInitiativeforAeronauticsandAirTransport–Systemsfor GreenOperationsIntegratedTechnologyDemonstrator.Prof.Sabatiniholdsvarious academicqualificationsinaerospaceandgeospatialengineering,includingaPhDfrom CranfieldUniversityandaPhDfromtheUniversityofNottingham.Additionally,he holdsthelicensesofprivatepilot,flighttestengineerandremotepilot.Throughouthis career,Prof.Sabatinilednumerousresearchprojectsfundedbynationalgovernments, internationalorganizationsandaerospace/defenceindustrypartners.Hehasauthored, co-authored,oreditedseveralbooks,andhashadmorethan300articlespublishedin refereedinternationaljournalsandconferenceproceedings.Since2019,hehasbeenlisted bytheStanfordUniversity’srankingamongthetop2%mostcitedscientistsgloballyin thefieldofaerospaceandaeronautics.Prof.SabatiniisaFellowoftheRoyalAeronautical Society(RAeS),theRoyalInstituteofNavigation(RIN),theInstitutionofEngineers Australia(IEAust),andtheInternationalEngineeringandTechnologyInstitute(IETI), aswellasaSeniorMemberoftheAmericanInstituteofAeronauticsandAstronautics (AIAA)andtheInstituteofElectricalandElectronicsEngineers(IEEE).Hewasconferred prestigiousnationalandinternationalawards,including:Best-in-fieldNationalScientist inAviationandAerospaceEngineering–TheAustralianAnnualResearchReport(2021); DistinguishedLeadershipAward–Aviation/AerospaceAustralia(2021);Scientistofthe Year–AustralianDefenceIndustryAwards(2019);ScienceAward–SustainableAviation ResearchSociety(2016);andArchT.ColwellMeritAward–SocietyofAutomotive Engineering(2015).Since2017,Prof.SabatinihasrepresentedtheAustralianGovernment inseveraloccasionsattheICAOCommitteeonAviationEnvironmentalProtection (CAEP)ImpactandScienceGroup(ISG).Morerecently,hehasalsocontributedtothe activitiesoftheJointAuthoritiesforRulemakinginUnmannedSystems(JARUS),the ICAODroneEnableinitiative,theFAANextGenTechTalkprogram,andtheNASAUAS TrafficManagement(UTM)andAdvancedAirMobility(AAM)workinggroups.Currently, heservesasDistinguishedLectureroftheIEEEAerospace&ElectronicSystemsSociety (AESS),ChairoftheAESSAvionicsSystemsPanel(ASP)andmember-at-largeofthe AESSBoardofGovernors.Additionally,heisafoundingEditoroftheIEEEPressSeries

onAeronauticsandAstronauticsSystems,EditorforProgressinAerospaceSciences, andAssociateEditorforAerospaceScienceandTechnology,Robotica,theJournalof Navigation,andtheIEEETransactionsonAerospaceandElectronicSystems.

AlessandroGardi isanAssistantProfessorinAerospaceEngineeringatKhalifa UniversityofScienceandTechnology(UAE),withmorethantenyearsofexperience inaerospacesystemsresearchandeducation.HereceivedhisBScandMScdegreesin AerospaceEngineeringfromPolitecnicodiMilano(Italy)andaPhDinthesamefield fromRMITUniversity(Australia).Hisworkfocussesonavionics,airtrafficmanagement, andsustainableaviationtechnologyforconventionalandautonomousaerospacevehicles. Inthisdomain,hespecializesinmultidisciplinaryandmulti-objectiveoptimizationwith emphasisonoptimalcontrolmethodsandArtificialIntelligence(AI)techniquesforair andspacevehicledesignandoperations.BeforejoiningKhalifaUniversity,DrGardiwas affiliatedwithCranfieldUniversity(UK)asamemberoftheSystemsforGreenOperations IntegratedTechnologyDemonstrator(SGO-ITD)oftheEuropeanUnionCleanSkyJoint TechnologyInitiativeforAeronauticsandAirTransport,oneofthelargestprograms addressingaviationsustainabilityglobally.Successively,hewasawardedamulti-year ThalesresearchfellowshipinAustralia,duringwhichhecontinuedandextendedhis researchworkonsustainableanddigitalaviationtechnologies.Morerecently,DrGardi hasworkedonadvancingsystemsandsoftwareengineeringmethodologiesforthedesign ofaerospaceanddefencehuman-machinesystems,utilizingneurophysiologicaland systemintegritymonitoring,InternetofThings(IoT)technologyandcyber-resilience functionalitiestooperateautonomouslyforextendedperiodsoftimeevenindegraded conditions.Thesecontributionsalsoresultedinhimbeingconferredthe2020Early CareerAwardbytheIEEEAerospaceElectronicsSystemsSociety(AESS),aswellasinhis appointmentasmemberoftheJointAuthoritiesforRulemakinginUnmannedSystems (JARUS)AutomationWorkingGroupandoftheAESSAvionicsSystemsPanel(ASP).To date,Dr.Gardihasbeenaseniorinvestigatorinmorethantenresearchprojectsfundedby industryandgovernmentpartners,andhasproducedmorethan150refereedpublications. InadditiontohisprimaryaffiliationatKhalifaUniversity,Dr.GardiisanAssociateof RMITUniversityandservesaseditorandreviewerforseveralhigh-impactjournals.

Thisbookisaccompaniedbythefollowingwebsite: www.wiley.com/go/sustainableaviation

Thiswebsiteincludescolorversionofselectedfigures.

SustainableAviation:AnIntroduction

DepartmentofAerospaceEngineering,KhalifaUniversityofScienceandTechnology,AbuDhabi,UAE SchoolofEngineering,RMITUniversity,Melbourne,Victoria,Australia

Theaviationindustryplaysanimportantroleintheglobaleconomy.Beforetherecentcrisis causedbytheCoronavirusDisease2019(COVID-19)pandemic,airtransportalonecontributedUS$2.7trilliontotheworldGDP(3.6%)andsupported65.5millionjobsglobally[1]. Forseveraldecades,thesectorhasbeenonanalmostuninterruptedexponentialgrowthtrajectory,whichdemonstratedaremarkableresiliencetoeconomicandgeo-politicalcrises. AccordingtoforecastspredatingtheCOVID-19pandemic,airtrafficwasexpectedtodouble approximatelyevery25years[2].Itwasalsoexpectedthatwithoutintervention,aviation wouldcontributeabout6-10%ofallhuman-inducedclimatechangeby2050[3],whilehalf ofallairtrafficwouldtakeoff,land,ortransitthroughtheAsia-Pacificregion.Intheperiod 2019–2020,theCOVID-19pandemichasledtoareductioninglobalpassengertrafficin theorderof60%(2,703millionpassengers)andtheairlinesexperiencedalossofapproximatelyUS$372billionofgrosspassengeroperatingrevenues[4,5].Thesituationgradually improvedin2021and2022,witharecoveryofabout11%and31%inthenumberofpassengers,reflectedbyrevenuelossesofaboutUS$324billionin2021andUS$175in2022 (comparedto2019).

Whilesendingthisbooktothepress,COVID-19travelrestrictionshavebeenremoved inmostregionsandthelatestreportsoftheInternationalCivilAviationOrganization (ICAO)showthatbothdomesticandinternationalairtravelareresumingpre-pandemic levels[5–7].Factorsthatcouldcontributetoacceleratefurthertheaviationmarketrecoveryandgrowthinclude:(1)anincreasingdemandforcommercialUnmannedAircraft Systems(UAS)andAdvancedAirMobility(AAM)services;(2)technologicaladvancesin eco-friendlydesignsolutions(i.e.,aerospacevehicles,propulsion,digitalflightsystems andground-basedinfrastructure);(3)uptakeofsustainableaviationtechnologiesand associatedevolutionsoflegalframeworks,design/certificationstandardsandoperational procedures.Inthelongerterm,theexpansionofcommercialaviationoperationsabove FlightLevel6-0-0(FL600)andtheintroductionofpoint-to-pointspacetransportcould alsocontributetoafurtherevolutionandexpansionoftheaviationsector[8,9].Factors thatcouldhinderthegrowthoftheaviationsectorincludeairlines’bankruptcy,order cancellations,increasedcyberthreats,insufficientinvestmentinaviationinfrastructure,

SustainableAviationTechnologyandOperations:ResearchandInnovationPerspectives,FirstEdition. EditedbyRobertoSabatiniandAlessandroGardi. ©2024JohnWiley&SonsLtd.Published2024byJohnWiley&SonsLtd. CompanionWebsite:www.wiley.com/go/sustainableaviation

increasinggeopoliticaltensions,escalationofconflicts,andglobalrecession,manyof whicharebeingobservedinthepostpandemicera.

Overtheyears,theconcomitanceofseveraleconomic,technologicalandenvironmental factorshasputthesectorunderintenseandgrowingpressure.Keyfactorsincludethe risingcostsofoperationsandfuels;aspikingglobalcompetitioninrelationtotherapid liberalisationofthemarketandtheproliferationofalternativeformsofhigh-speedtransport;increasedairtraffic;capacitybottlenecksatmajorairports;theneedtoreducethe environmentalimpactandachievegreatersustainabilityinairportandaircraftoperations; aswellasnewregulationsandprocessestocaterfornewgenerationaircraftthatare technologicallymorecomplexandhavenewmaintenancerequirements.

Toensuretheaviationsectorcontinuestoplayavitalroleinsupportingeconomicdevelopmentandemploymentworldwide,thefutureairtransportationsystemneedstobecome evenmorecustomer-orientated,timeandcost-efficient,secure,andenvironmentallysustainablethanitistoday.Oneofthemainprioritiesforthesectoristherapiduptakeofdigital technologyand,inparticular,Cyber-PhysicalSystems(CPS)thatcansupporttheintroductionofhigherlevelsofautomation,increasedairspacecapacity,andsignificantadvances inenvironmentalsustainabilityofbothpassengerandcargoairtransportoperations.From theenvironmentalsustainabilityperspective,overthepasttwodecades,variouscountries havesetunprecedentedperformancetargetsforfutureairtransport,suchasgreenhousegas emissionshavingtohalveby2020(relativeto2000)andbecompletelyoffsetby2050[10]. Addingtothesedemandsaretherisingfuelcosts,whichhaveincreasedfourfoldinthepast 20years,impedingtheprofitabilityofbothlargeairlinesandsmalleraviationcompanies.

1.1SustainabilityFundamentals

IntegratingEnvironmentalSusitainability(ES)intobusinessmodelsandassociated businessfunctionsisanopenchallengefacedbymanyindustrysectors,including aviation.ThereisnouniversallyaccepteddefinitionforESwhileathematicsearchof theexistingliterature1 showsaprevailingemphasisontheresponsibleinteractionwith theenvironmenttoavoiddepletionordegradationofnaturalresourcesandallowfor long-termenvironmentalqualitybothlocallyandglobally.Untilrecently,businesseshave notbeenheldaccountableforthecostofdamagesmadetotheenvironmentandsociety. Onepossibleapproachistoquantifytheenvironmentaldegradationcausedbyasector andtherequiredmeasuresforrestoringthepre-existingconditions.Thedamagesand restorationcostsincludevarioussector-specificcontributingfactors.However,inmost cases,suchcostsareassociatedair/land/seapollutionandnoise.Asproposedby[11], thefollowingequationcouldbeusedtoquantifythecostofenvironmentaldegradations causedbyeconomicdevelopmentactivities:

EDT = N × GN × EDG (1.1) where EDT isthetotalenvironmentaldegradation(indollars), N isthepopulation(total numberofpeople), GN istheGrossNationalProduct(GNP)percapita(indollars)and EDG istheenvironmentaldegradationperunitofGNP.

1Thematicsearchon“EnvironmentalSustainability”.Source: ScienceDirect (https://www.sciencedirect .com/topics/agricultural-and-biological-sciences/environmental-sustainability).

So,accordingtoEq.(1.1),anincreaseinpopulationwouldrequireaproportionalreductionoftheenvironmentaldegradationperunitofGNPinordertomaintaintheoverall environmentaldegradationatthesamelevel.Similarly,agrowthoftheGNPpercapita wouldrequireacommensuratereductionoftheenvironmentaldegradationperunitof GNP.However,inpractice,thisequationfindsalimitedapplicabilityasitdoesnotcapturetheneedforabalancebetweenenvironmentalimpactsandthesocialbenefitstobe obtainedbyeconomicdevelopment[12].EffortstoaddresstheselimitationsofearlyquantitativeapproacheshaveplacedemphasisontheconceptofSustainableDevelopment(SD). TheUnitedNation(UN)1987BruntlandReport2 [13]describesSDas: “Developmentthat meetstheneedsofthepresentwithoutcompromisingtheabilityoffuturegenerationstomeet theirownneeds.”

TheconceptsofsustainabilityandSDhavebeensubjectsforextensiveresearchandpoliticaldebateformmanyyears.Whatissustainablecanbeillustratedusingtheso-calledTriple BottomLine(TBL)orthe“ThreeSpheresofSustainability”conceptoriginallyintroduced by[14].AmodernreinterpretationofthisconceptisshowninFigure1.1.

OneoftheadvantagesoftheTBLapproachisthatitrecognisestheimportanceof deliveringsustainableeconomicvaluetoshareholdersbyfocusingonthebottomline profitthatisgenerated.Italsoconsidersthatifanenterpriseistobesustainable,italso needstoevaluateitsperformanceintermsofthecorrespondingenvironmentalandsocial bottomlines[15].SeveralvariantsoftheTBLmodelhavebeenproposedbutessentially thisremainsavalidhigh-levelreferencestillutilisedincurrentresearchworkaddressing thedevelopmentofSBMinthecorporateenvironment.Theconceptsofcorporatesocial

Socio‐Environmental Measures

• Environmental policy

• Environmental laws/regulations

• Natural resources stewardship

• Social awareness and action

Natural resources use

Pollution prevention

Recycling processes

Waste management

Noise reduction

Enviro‐Economic Measures

• Energy efficient design/operations

• Incentives for renewable energy

• New professions/job creation

• R&D investment

Health

Wellbeing

Security

Safety

Education

Community

Inclusion

Socio‐Economic Measures

• Business ethics and integrity

• Fair trade arrangements

• Communication/marketing strategy

• Workforce rights

Figure1.1 Thethreespheresofsustainability.Inspiredby[14].

2In1987,theWorldCommissiononEnvironmentandDevelopment(WCED),publishedareportentitled “Ourcommonfuture”.Thedocumentcametobeknownasthe“BrundtlandReport”afterthe Commission’schairwoman,GroHarlemBrundtland.Itdevelopedguidingprinciplesforsustainable developmentanditisstilladoptedtodayasakeyreferenceinthesector.

responsibilityandenvironmentalaccountabilityhavebeenwidelydiscussedintheliterature[16,17].ThemainfunctionoftheTBLapproachistomakecorporationsawareof theenvironmentalandsocialvaluestheyaddordestroyintheworld,inadditiontothe economicvaluetheyadd[18–20].

Overtheyears,TBLhasbecomeadominantapproachintermsofcorporatereporting [21,22]andcompaniesadoptingTBLreportinghaveintroducedsignificantchangesto thewaytheydo,oratleastthinkabout,business[23].Thethreemajorcriticismsofthe TBLapproachareinitsmeasurementapproach,itslackofintegrationacrossthethree dimensionsanditsmainfunctionasacompliancemechanismratherthanabasisforthe developmentofSBM[24].Totackletheselimitationsandthegrowingneedformorespecificapproachesapplicabletodifferentindustrysectors,researchershaveproposedvariousapproachestoSBM(orbusinessmodelsforsustainability).However,earlyattempts todevelopandintroduceSBMdesignmethodologieswherehinderedbyastrongfocuson compliance(withexistinglawsandregulations)andresponsiblemanagement(i.e.,achievingsomekindofperceivedormeasurableoptimalbalanceinthesocio-economicaldimension).Almostinvariablytheseearlyresearchersconcludedthatmoredetailedinvestigations wereneededtoassesswhetherSBMcouldhelpdevelopingintegrativeandcompetitive solutionsbyreducingnegativeand/orcreatingpositiveexternaleffectsforthenaturalenvironmentandsociety[25–28].

Theseapproacheslimitedtheimpactofthisbodyofresearchandlargelyoverlooked thehugetransformativepotentialofSBMthatintroducenewmechanismsforcommercial valuecreationandvaluecapturebothinternallyandexternallytoaparticularenterprise. Recentresearchhasaddressedtheselimitationsanddevelopedmoreholisticapproaches toSBMdevelopment.Geissdoerferetal.(2016)definesaSBMas: “Asimplifiedrepresentationoftheelements,theinterrelationshipbetweentheseelements,andtheinteractionswithits stakeholdersthatanorganisationalunitusestocreate,deliver,capture,andexchangesustainablevalue.” Themainideapursuedhereistoradicallymodifytheconventionalapproach tobusinessmodellingbyembeddingsustainabilityintothevaluechainsofanorganisation [29].ItisnowacommonviewthatthetransitiontowardsSBMrequiresthepractitionersto lookbeyondthespecificboundariesofanorganisation,anditrequiresinnovationactivities tocreatesustainablevaluesforthestakeholders[30].

SustainableDevelopment(SD)inaviationistypicallymappedtothefollowingfundamentalconcepts[31,32]:

● Theconsumptionofnaturalresourcesismanagedataratewhichallowsfuturegenerationstomeettheirneedsaswellaswedo–i.e.,usageratesofrenewable(e.g.,biofuels) shouldnotexceedtheratesoftheirregeneration,andtheusageratesofnon-renewable resources(e.g.,petroleumfuel)shouldnotexceedthedevelopmentrateoftheirsubstitutes(e.g.,biofuels).

● Thegrowthofaviationsupportsaliveableenvironmentforfuturegenerations–i.e., theratesofpollutingemissionsshouldnotexceedtheassimilativecapacityoftheenvironmentandtheaircraftnoiseexposure(perceivednoiselevelsbythepopulationand frequencyofnoisedisturbanceorawakeningevents)shouldnotleadtoadegradedhealth andqualityoflife.

AsillustratedinFigure1.2,thethreefundamentalcomponentsinsustainableaviation aretheaircraft,theairportandtheAirTrafficManagement(ATM)systems.

Figure1.2 Thethreepillarsofsustainableaviationresearchandinnovation.

Designing/upgradingtheaircrafttobemoreaerodynamicallyandoperationallyefficient entailsadvancesinthefollowingareas:

● Propulsionandpower: targetingimprovementsinfuelefficiency,atransitiontomore sustainableenergymanagementtechnologies,withassociatedreductionsingaseousand noiseemissions.

● Aerodynamics: targetingdragreductionandconsequentialimprovementofaerodynamicefficiencyinvariousflightconditions,aswellasreductionsinairframenoiseand waketurbulence.

● Navigationandguidance: leadingtooptimisedflightpathsforreductionsingaseous andnoiseemissions.

● Computing,informationandcommunication: leadingtomoreefficientmanagementofon-boardsystemsaswellasmorecollaborativeandhigherlevelsofdecision making,supportingmoreeffectiveflightplanningandoperations.

● Structuralmechanicsandmaterials: targetingweightreductionacrosstheaircraft, aswellaslowerimpactsfromthedisposalprocesses.

ATMplaysanimportantroleisdevelopingsystemsandprocedurestosupportefficient useofairspaceandnetworkingbetweenthevariousstakeholders.Thesesolutionsenhance theefficiencyandeffectivenessofflightoperationsbyincreasingthelevelofautomation, improvingthedecision-makingprocessandtargetingtheintroductionofsafety/security measures.Themostpromisingtechnologiesinclude[33]:

● Communication,NavigationandSurveillance (CNS)systemsenabling4DimensionalTrajectory(4DT)basedoperations.

● ATMsystemssupporting4DTPlanning,NegotiationandValidation (4-PNV)with theNextGenerationofFlightManagementSystems(NG-FMS)on-boardaircraft.

AirportsalsoplayafundamentalroleintheSDofaviation.Designing/upgradingtheairportinfrastructureandoperationstobemoreenvironmentallyfriendly,entailstheadoption ofvariousmeasures,suchas:digitaltechnologyandmultimodaltransformation;operationalproceduresandrestrictions[34];landplanningandmanagement;financialmeasures(e.g.,noiseandatmosphericpollutioncharges);measuringandcollectingdata(on noiseandpollutants);preventing/containingfuelandde-icingspillages;andmanagingthe impactonwildlife[35].

Despitetheexistenceofmultipleinterrelatedsocio-technicalfactors,theairtransport literaturediscussesthetopicofsustainabilityadoptingarelativelynarrowperspective andheavilyfocussingonreducingcompliancecostsorbetterutilisingtheexistingairline/airportinfrastructuretoincreaseefficiency/qualityofserviceandrevenues.Other importantsustainabilityfactors(atailoreduptakeofkeyaircraft/ATMtechnologies, airport“greening”andmultimodaltransformation,properdisposal/recyclingofaircraft partsandconsumables,etc.)havetypicallyreceivedlessattentionintheaviationpolitical debate,despitethesignificantbodyofresearchpublishedinthescientificandtechnical literature[12,31,33,34,36].Asaresultofthis,theregulatoryinitiativesledbyICAO andothernational/internationalaviationauthoritieshavebeenrelativelylimitedinthese sectors.Differentmodelsareusedtodescribetheprocessesoccurringintheatmosphere. Uncertaintiesinpredictionscanbeattributedto[37]:

● Theprocessesbeingmodelled(missingorincorrectprocesses).Sinceourunderstanding oftheatmosphericphysicsimprovesovertime,theseuncertaintiescanalsoreduce.

● Differentfactorsinfluencingclimatechange.Uncertaintiesinaviationdevelopmentsalso makeitdifficulttopredicttheimpactofaviationonclimatebeyond5to10years.

Factorsconsideredinpreviousresearchinclude:

● Costofairtravel(andhencenumberofaircraftinoperations);

● Economicactivityandnewmarketopportunities;

● Airtransportliberalizationandsubsides;

● Improvementsinaircraftfuelefficiency;

● Improvementsinengineefficiency.

Toreducetheimpactofaviationontheenvironment,itisclearlynecessary,firstand foremost,toreducetheaircraftemissions.Neweraircrafthaveimprovedfuelefficiency, leadingtoreducedemissions.However,duetothegrowthofairtrafficvolume(expectedto doubleevery20years),theseimprovementsarenotsufficienttobalancetheenvironmental impactofaviation.

1.2InternationalPolicyFramework

TheestablishmentofaninternationalpolicyframeworkwithintheUNallowstechnologicalimprovementsandoperationalchangestobeimplementedthroughpolicydocuments, technical/operationalstandards,recommendationsandeconomicmeasures,whichare typicallytranslatedintolegislation/regulationsbynationalgovernments.Thisprovidesan opportunityforpolicymakers,scientistsandindustrytocommunicateandbetterassess thecostsandbenefitsofimplementingdifferentmeasures.Additionally,theexistenceof

aninternationalframeworkprovidesassurancetoproducersandconsumersthatadopt newtechnologiesandoperationalmeasures,allowingforacoordinateduseofpolicy instrumentstoreduceenvironmentalimpactsandtoincreasethecost-effectivenessofthe variousmitigation/adaptationmeasures.Thecurrentpolicyframeworkincludes:

● UNFrameworkConventiononClimateChange(UNFCCC): aninternationaltreaty addressingclimatechange,originallysignedattheUNConferenceonEnvironmentand Development(UNCED)in1992.TheUNFCCCseeksforthestabilizationofGreenhouse Gasses(GHG)concentrationsintheatmosphereatalevelthatwouldpreventdangerous anthropogenichuman-inducedinterferencewiththeEarth’sclimatesystem.Suchalevel shouldbeachievedwithinatimeframesufficienttoensureecosystemstoadaptnaturally toclimatechange,toensurethatfoodproductionisnotthreatenedandtoalloweconomic developmenttoproceedinasustainablemanner.

● IntergovernmentalPanelonClimateChange(IPCC): ascientificandintergovernmentalbodyaddressinghuman-inducedclimatechange.TheIPCCwasoriginally establishedin1988bytheWorldMeteorologicalOrganisation(WMO)andtheUNEnvironmentalProgramme(UNEP)andwaslaterendorsedbytheUNGeneralAssembly. IPCCdoesnottypicallyconductitsownoriginalresearchbutinsteadperformsdetailed reviewsoftheexistingbodyofscientificknowledge,whicharepubliclydisseminatedin theformofcomprehensiveimpactassessmentreports.

● InternationalCivilAviationOrganization(ICAO): aspecializedagencyoftheUN responsibleforharmonizingtheinternationalpolicies,standardsandpracticesconcerningaviation.TheCommitteeonAviationEnvironmentalProtection(CAEP)isatechnical committeeofICAO,responsibleforassessingandformulatingspecificstandardsandrecommendationsrelatedtoaviationandtheenvironment.

Cost-BenefitAnalysis(CBA)hasbeenwidelyadoptedtoassesstheeffectsof(realor projected)environmentalmitigationmeasuresandcanbeausefultooltoguidepolicydecisions,butcanbelimitedbyuncertaintiesand/orincorrectassumptionsintroducedinthe analysis[12,34,37].Moreadvancedeconometricanalysistechniques/toolshavebeenintroducedbyCAEPandElasticityofDemand(EOD)hasbeenwidelyusedbyindustrytoassess theresponsivenessofconsumerstoairfareincreases(i.e.,howcostincreasesduetonew policiesarepassedtoconsumersandsubsequentlyaffectdemandforaviationservices).

Deregulationoftheairlineindustryhasbecomeapredominanttrendinvarious markets.Deregulationhasresultedincheaperflightsandmorecompetitioninthe industry.However,deregulationhasalsocontributedtoincreasesintrafficvolume,fuel use,airport/airspacecongestionandnoise[2,37,38].Fuelcostandconsumptionare importantdriversformitigationmeasures.Airlineshavetraditionallyinvestedtheir profitsintoacquiringnewtechnologiesandmoreefficientaircraftforreducingoperating coststhroughmoreefficientuseofaircraft,optimalfleetmixandgreaterengineefficiency.However,itisobservedthattherateofimprovementachievablewithpresently knownaerodynamicandpowerplanttechnologieswillnotallowoffsettingtheprojected airtrafficgrowthpost-COVID.So,thecurrentResearchandInnovation(R&I)trends andopportunitiesidentifydigitalaviationtechnologiesaswellasadvancesinenergy production(inparticularbio-fuels)asthemainpathwaystomitigatingtheenvironmental impactofaviation[12,33,39].

ICAOhasbeenthemainregulatorydriverinmodernisingCommunication,Navigation, Surveillance(CNS)forATMandavionicssystemsbutthefocus,sofar,hasbeenalmost exclusivelyonincreasingefficiency(andsafety)oftheairtransportationsystem.This, unfortunately,hasnotyettranslatedinsuccessfulworldwidecooperationefforts.Despite theambitionstargetssetbylarge-scaleregionalR&IprogramssuchasSESAR(Single EuropeanSkyATMResearch)andNextGen(NextGenerationAirTransportManagement), itappearsthattheimpactoftheseUSandEUinitiativeshasbeenhinderedbyanumber ofcontributingfactorsand,sofar,theyhavenotdeliveredtotheirpromises,[40].The situationisevenmorefragmentedintheAsia-Pacificregionthat,beforeCOVID-19,was thefastestgrowingaviationmarketintheworld[41].

Variouspotentialeconomicinstrumentshavebeenproposedovertheyearsandmanyof themhavebeenexperimentedorintroducedinvariousnations.Theseinstrumentsinclude:

● Fueltaxesandchargestopromotefuelefficiencyandreducedemand;

● Emissionschargesaimedatencouragingtheadoptionofloweremittingtechnology;

● Emissionstradingtoencourageemissionsreductionsthroughmarketforces;

● Leviesonemptyaircraftseatstopromoteimprovementinseatloadfactor;

● Leviesonexcessivetrafficperdestinationservedortypeofequipmentservinga destination;

● Leviesonroutelengthtoreducethenumberofflightsexceedingtheminimumdistance;

● Subsidiesorrebatestoactasanincentiveforpolluterstochangetheirbehaviour,suchas grants,softloans,taxallowancesordifferentiation,andinstrumentssimilartoeffluent, product,oradministrativecharges.

Otherinstrumentsidentifiedincludedvoluntarymeasures(e.g.,carbonoffsetting)and multi-modaltransport(e.g.,encouragingrailinplaceofairtransport).

1.3SustainabilityAgenda

Asdiscussedabove,CAEPisatechnicalcommitteeofICAOthatassiststhenationsinformulatingnewpolicesandadoptingnewStandardsandRecommendedPractices(SARPs) relatedtotechnologies/operationsthatreduceaircraftnoiseandGHG/noxiousemissions, andmoregenerallymitigateandkeepsundercontroltheaviationenvironmentalimpacts.

CAEPundertakesspecificstudiesasrequestedbyICAO.Itsscopeofactivitiesencompasses theassessmentofaircrafttechnology,operationalimprovement,market-basedmeasures andalternativefuels.CAEPhasthefollowinghigh-levelgoals:

● Tolimitorreducethenumberofpeopleaffectedbysignificantaircraftnoise;

● Tolimitorreducetheimpactofaviationgreenhousegasemissionsontheglobalclimate;

● Tolimitorreducetheimpactofaviationemissionsonairqualityandwater/land contamination.

CAEPiscomposedbyfourpermanentworkinggroupsandsixdedicatedtask/support groupsasillustratedinFigure1.3.CAEPWorkingGroup1(WG1)addressesaircraft noisetechnicalissues.ThemainaimofWG1istokeepinternationalaircraftnoise certificationstandards(Annex16,VolumeI)up-to-dateandeffective,whileensuringthat thecertificationproceduresareassimpleandinexpensiveaspossible.WG2addresses

Doc9889–Airport AirQualityManual

Doc.9184–Airport PlanningManual

ProcedureforNoise

Figure1.3 CAEPorganisationchart.Source:ICAO(https://www.icao.int/environmental-protection/pages/caep.aspx).

Annex16,Vol.II–AircraftEngine Emissions

Annex16,Vol.III–AeroplaneCO2 Emissions

Annex16,Vol.IV-Carbon OffsettingandReduction SchemeforInternational Aviation(CORSIA)

Annex 16, Vol IV - C Offsetting and Redu Scheme for Internat Aviation (CORSIA

aircraftnoiseandemissionsissueslinkedtoairportsandoperations.WG3dealswith aircraftperformanceandemissiontechnicalmatters,includingtheupdatingofAnnex 16–VolumeIIandthedevelopmentofthenewaircraftCO2 Standard,Annex16–Volume III.TheModellingandDatabasesGroup(MDG)carriesoutmodellingeffortstosupport theactivitiesoftheotherCAEPgroupsandmaintainsvariousdatabasessuchasthe movements,fleetandpopulationdatabases.TheForecastingandEconomicAnalysis SupportGroup(FESG)hastheimportantroleofdevelopingandmaintainingthemodels anddatabasesnecessarytoperformeconomicanalysisandforecastingfleetgrowth.It providessupporttotheotherworkinggroupswithinCAEPandworkswiththemondata issuesthatconcernmorethanoneworkinggroup.

TheAviationCarbonCalculatorSupportGroup(ACCS)hasthetaskofdevelopingand updatinganimpartial,transparentmethodologyforcomputingtheCO2 emissionsfrom passengerairtravel.TheImpactsandScienceGroup(ISG)iscomposedofacademics, scientistsandengineersresponsibleforinformingtheCAEPSecretariatonscientific findings(atmosphericpollutionandnoise)andthemeasuresthattheaviationindustry shouldimplementtolimittheincreaseinglobalaveragetemperaturetolessthan2∘ C abovepre-industriallevels.TheGlobalMarketBasedMeasureTechnicalTaskForce (GMTF)hasamandatetodeveloprecommendationsfortheMonitoring,Reportingand Verification(MRV)systemofinternationalaviationemissionsandforthequalityofoffset remitsforuseinaglobalmarket-basedmeasureforinternationalaviation.TheAlternative FuelsTaskForce(AFTF)assessesthepotentialemissionreductionsattainablefromthe useofalternativefuelsinaviation.

Towardstheendofthe1990’s,theUSandEUstartedaddressingaviationSDasan integralpartoftheirpolicyagendasandinitiatedlarge-scaleR&Iinitiatives.TheEU AdvisoryCouncilforAviationR&IinEurope(ACARE)initiallydevelopedVision2020 and,successivelyFlightPath2050,settingunprecedentedemissionreductiontargets(both forgaseouspollutantsandnoise).Inparallel,theCleanSky(EUFramework7)andClean Sky2(Horizon2020)programswerelaunchedtoaddressaircrafttechnologyevolutions, whiletheATMquotawasassignedtoSESAR.IntheUS,theNASAEnvironmentally ResponsibleAviation(ERA)programaddressedobjectivessimilartoCleanSky/CleanSly 2butwithamuchsmallerbudgetandwithoutprogressingtothehighTechnicalReadiness Level(TRL)requiredintheEUindustry-drivenprograms.TheERAprogramcompleted itsmandatein2016andwasfollowedbytheStrategicImplementationPlan(SIP),which isstillongoingandpursuessimilarobjectivestoEUFlightPath2050(Figure1.4). Someoftheopenquestionsthattheglobalaviationcommunityisfacingare:

● Largeuncertaintiesoverfuturetrendsintraffic,technology,andthereforeemissions, dependingonthescenarios/assumptionsselectedfortheprojections.Keycontributing factorsincludeuncertaintiesaboutthepaceofintroductionofgame-changingtechnologiesandtheimpactsofthecurrentinfrastructureconstraints(“bottlenecks”)inlimiting growthbothinairport/airspacecapacityanddemand.

● Themonetaryimpactofaviationemissionsontheenvironmentandthemonetary benefitsofmitigatingthoseimpacts.Asalreadymentioned,differentmodelsand differentscenarios/assumptionsproducedifferentresultsandthereisnoconsensuson theappropriatelevelatwhichanyenvironmentallevyshouldbeset.

● Astheenvironmentalbenefits(reductionofgaseousandnoiseemissions)achievable withconventionalaircraft/powerplantsconfigurationshavereachedaplateau,itis

A/C

ACARE – SRA and SRIA (vs. 2000) NASA – ERA (vs. 1998) and SIP (vs. 2005)

ACARE ‐ Advisory Council for Aviation R&I in Europe, SRA ‐ Strategic Research Agenda, SRIA ‐ Strategic Research and Innovation Agenda, ERA ‐ Environmentally Responsible Aviation, SIP ‐ Strategic Implementation Plan

A/C ‐ Aircraft, LTO ‐ Landing and Take/Off, CRZ ‐ Cruise, *Below CAEP6, **Below Chapter 4. All % reductions are in Passenger‐km

Figure1.4 Fuel,gaseousemissionsandnoisegoals.

MAPPING OUT THE INDUSTRY COMMITMENTS

Figure1.5

essentialtoinvestigatemoreradicalapproaches.Theseincludeadvancedroute/airspace optimisationtechniquesthroughtheadoptionofnetwork-centricATMandavionics technologies,innovativeaircraft/enginedesignapproachesandalternativeaviationfuel, includingbiofuels.ThisconceptisgraphicallyillustratedinFigure1.5.Althoughthe illustrationreferstoCO2 emissionreductiongoals,similarconclusionshavebeenfound forotherGHGandnoxiousemissions[42].

Additionally,thereislimitedpracticalexperiencewithemissiontaxesandtrading schemesatagloballevelandthereareuncertaintiesregardingtheapplicabilityofmany economicandtechnicalmeasurestocountriesnotincludedintheUNFCCC.

Currentstrategiesforensuringaviationsustainabilityincluderegulatingaircraft design/operationswithenvironmentally-friendlypolicies(carbontax/offsettingschemes, noiseemissioncharges,replacingorruling-outoldfleet,etc.).However,inthelongterm, digitaltransformationinitiativesareessentialandwillradicallytransformproductand servicelifecyclemanagementprocessesbothintheaerospaceandaviationindustries. Suchinitiativeswillinclude:

● AdoptingMultidisciplinaryDesignOptimisationandMulti-ObjectiveMissionOptimisation(MDO/MOMO)toolstodevelopnewCNS/ATMandAvionics(CNS+A)systems foreco-friendlyflightoperations(i.e.,managementofairspace,trajectoryandmission) [33,39,43].

● AdoptingMDOandotherdigitaltools(e.g.,artificialintelligence,roboticprocess automationanddigitaltwins)forDesign,Development,TestandEvaluation(DDT&E) andMaintenance,RepairandOverhaul(MRO)ofmoreenergyefficientand“cleaner” (i.e.,lesspolluting)propulsivesystems[39].

● AdoptingMDOandotherdigitaltoolsforDDT&E/MROoflighterandmoreaerodynamicallyefficientmanned/unmannedaircraft[39].

● Enablingthecost-effectiveintroductionofalternativeaviationfuels,especiallythirdgenerationbiofuels,bydeployingtherequiredCPSarchitectures(e.g.,distributedsensor networksandAI-basedhealth/qualitymonitoring)toimprovecropquality,maximise fuelyieldandminimiselandtake[44].

● DevelopingIntelligentTransportSystems(ITS)formultimodalairporttransformation. Thesewillincludeadvanceddigitalsolutions(e.g.,sensornetworks,user-apps,centralise/distributedtrafficmanagement,connectedautonomousvehicletechnologies) whichaimtoprovideinnovativeservicesrelatingtovariousinterconnectedmodesof transportandenableuserstobebetterinformedandmakesafer,morecoordinatedand “smarter”useofthetransportnetwork[12,45].

However,thereisaneedtoassesstheimpactsofvariouspossiblemeasuresforencouragingtheadoptionofdigital/sustainableaviationtechnologies,includingtheapplicability toaviationofmaturesolutionsand/orpromisingoperationalconceptsdevelopedinother sectors.

1.4EmissionTaxes,TradingandOffsetting

Oneoftheearliestpropositionsbroughtforwardattheonsetoftheglobalwarmingdebate wasataximposedoncompaniesbasedontheamountofemissionstheyproduce,specificallyonGHGssuchasCO2 andwascommonlyknownas“CarbonTax”(CT).CTissimply adirectpaymenttogovernment(collectionbody),basedonthecarboncontentofthefuel beingconsumed.Giventhattheprimaryobjectiveoftheabatementpolicyistolowercarbondioxideemissions,carbontaxesmakesenseeconomicallyandenvironmentallybecause theytaxtheexternality(carbon)directly.

UnderanEmissionTrading(ET)system,thequantityofemissionsisfixed(oftencalleda "cap")andtherighttoemitbecomesatradablecommodity.Thecap(say10,000tonsofcarbon)isdividedintotransferableunits(10,000permitsof1tonofcarboneach).Permitsare oftenreferredtoas"GHGunits,""quotas"or"allowances."Forcompliance,actorsparticipatinginthesystemmustholdanumberofpermitsgreaterorequaltotheiractualemissions level.Oncepermitsareallocated(byauction,saleorfreeallocation)totheactorsparticipatinginthesystem,theyarethentradable.Thisenablesemissionsreductionstotakeplace whereleastcostly.SomekeycharacteristicsofETschemesinclude:

● Theemissionlevelsarespecifiedupfront,allowingmorepredictableestimatesofemissions.Thisalsoallowsforcountriestoagreeuponspecificemissionsreductionlevels, makinginternationalenvironmentalagreementsmorenegotiable.

● Emissionstradingismoreappealingtoprivateindustry,asfirmscanprofitbysellingtheir excessgreenhousegasallowances.Creatingsuchamarketforpollutioncouldpotentially driveemissionsreductionsbelowtargets.

● EmissionstradingisbetterequippedthantaxestodealwithallsixGHGsincludedinthe KyotoProtocolandsinks(e.g.treeswhichabsorbandstorecarbon)inonecomprehensive strategy.Eachgashasa"greenhousegaspotential"(GWP,basedoncarbondioxide).Thus, firmsemittingmorethanoneGHGhavemoreflexibilityinmakingreductions.

● Permitsadjustautomaticallyforinflationandexternalpriceshocks,whiletaxesdonot. Forexample,theUShasalreadyexperiencedanextendedperiodofstablegreenhouse gasemissionslevelsfrom1972to1985becauseofhighoilprices.Taxeswouldneedtobe designedtoadjustforsuchexternalshocks.

ComparedtoET,CTofferabroaderscopeforemissionsreductions,extendingtoall carbon-basedfuelconsumption,includinggasoline,homeheatingoilandaviationfuels.

● Comparedtoemissionstrading,whichinvolvessignificanttransactioncosts,taxes involvelittletransactioncost,overallstagesoftheirlifetime.

● Taxesarenotsusceptibletospeculativeorhoardingbehaviourbyfirmsornongovernmentalorganizationswhichmayharmthemarketforces.

● Comparedtoemissionstrading,whichrelyonthesupplyanddemandofemission permitstocontrolemissions,carbontaxesprovideapermanentincentivetoreduce emissions.Improvementsintechnologyandoperationsmightleadtoreductionsinthe permitprice,loweringtheincentivetoreduceemissions.

● Emissionstradingproposalsarehighlycomplicatedandtechnical,unliketaxeswhichare familiarinstrumentstopolicymakers.Ongoingcostsarealsolowfortaxsystemsbecause ofthelackofmonitoringandenforcementrequirements.

● Emissionstradingmaypreventmeaningfuldomesticreductionsfromtakingplace,as somecountriesmightchoosetobuyemissionpermits.Thisrisessignificantequityissues amongdeveloped,developingandtransitionaleconomies.

● Carbontaxesearnrevenue,whichcanbe"recycled"backintotheeconomybyreducing taxesonincome,labourand/orcapitalinvestment.Permitsystemshavethepotentialto earnrevenue,butonlyifpermitsareauctioned.

Carbonoffsettingallowsindividualsandcompaniestoreducetheircarbonfootprintby investinginenvironmentalprojectselsewhere.Creditsareusuallypurchasedandusedby

individualsorcompaniestocanceloutor“offset”theemissionstheygenerateduringtheir day-to-daylifeornormalcourseofbusiness(e.g.,usingairtransport).Carbonoffsetscanbe usedtooffsetemissionsvoluntarilyortomeetregulatoryrequirements.Carbonoffsetting projectsmayinclude:

● Reducingthecostdifferentialofrenewableenergysuchaswind,solar,hydroelectric powerorbiofuel,therebyincreasingitscommercialviability;

● Combustionorcontainmentofmethanegeneratedbylandfills,industrialwasteorfarm animals–convertingmethanetoCO2 ;

● Increasingtheenergyefficiencyofbuildings,vehiclesorpowerplants;

● Reforestationinitiatives.

In2009,theAirportsCouncilInternationalEurope(ACIEurope)introducedacarbon managementinitiativeforairports,calledthe AirportCarbonAccreditation program,which allowsairportstoberecognised(throughaccreditation)fortheireffortsinmanagingand reducingtheircarbonemissions.Airportscanbeaccreditedtooneoffourlevelsinthe program[46]:

● Level1:Mapping,requiringcarbonfootprintmeasurement;

● Level2:Reduction,requiringacarbonmanagementplantobeinplace;

● Level3:Optimisation,requiringairportstoengagestakeholders(airlines,catering,air trafficcontrol,groundservices,rail,etc.)toreducetheairport’scarbonfootprint;

● Level3+:Neutrality,requiringairportstoneutraliseanyresidualemissionsthrough carbonoffsetting.

Theaccreditationrequiresairportstoverifytheiractivities(e.g.,carbonmonitoringand managementprocesses)byagroupofindependentverifiers.Thecarbonfootprintofan airportisverifiedinaccordancewiththeISO14064standard(GreenhouseGasAccounting), whichrequiresspecificsupportingevidence.

1.5ATMandAvionicsSystems

Inthelasttwodecades,anumberofmajorATMmodernisationinitiativessuchasthe SingleEuropeanSkyATMResearch(SESAR)andtheNextGenerationAirTransportation System(NextGen),werelaunchedaroundtheglobetocopewiththerapidgrowthof airtrafficandmitigatethegrowingcongestionandinefficiencyissues.Theseinitiatives supportanevolutionoftheATMsystemintoahighlyintegratednetworkwherecivil, military,andremotelypilotedaircraftwillcontinuouslyanddynamicallysharethe commonairspaceinahighlyautomatedandcollaborativedecision-makingenvironment. Tomeetthegoalsofenhancedflightsafety,environmentalperformance,andefficiency whilesimultaneouslyaccommodatingthepredictedtrafficgrowth,severalkeypolicy directionshavebeenidentifiedbyvariousgovernmentsinternationally[47]:robustand integratedplanning,adoptionofadvancedtechnology,internationalharmonisationof ATMsystems,enhancedregionalaviationsafety,andenvironmentalimpactmitigation. Inthiscontextonekeystrategicpriorityforcountriesistoplan,develop,andimplement

anewATMplatformthatmeetsthefutureneedsofbothcivilandmilitaryaviationwhile enhancingATMbusinesscompetitivenessbyaddressingservicecapability,continuity, andenvironmentalsustainability[48].Withairtrafficexpectedtogrowmoresubstantiallywithinthelifespanofthenewtransportaircraft,alongwiththeintroductionofnew conceptstoimproveairspaceorganisationandairportoperations,thesemajoraviationrenovationprogrammesaroundtheworldwillplayacriticalroleinthesuccessfultransition tonewtechnologiesandoperationalstandards.Researchisthereforeneededtodevelop anewATMregulatoryframeworkandnewsystemsfordynamicairspacemanagement (DAM),free-flightandintent-basedoperations.Thisalsoencompassesthedevelopment ofinnovativemethodsandalgorithmsforthedynamicallocationofcivil/militaryairspace resourcesandofCNS+Atechnologiesenablingtheunrestrictedaccessofremotelypiloted aerialsystems(RPASs)toallclassesofairspace.

Ground-basedautomaticdependentsurveillancebroadcast(ADS-B)currentlyprovides wideareasurveillancecoverage,includingthosevastregionsoftheplanetthatarenot underprimaryorsecondarysurveillanceradar(SSR)coverage.Areceiverautonomous integritymonitoring(RAIM)systemenablescontrollerstoanticipateandplanforareversiontoproceduralseparationifaGPSoutageispredicted.Forareasthatareunderradar surveillance(majoraircorridorsandterminalmanoeuvringareas)sensor-fusedradar andADS-Bdatahaveprovedtobesuperiortoradardataalone,particularlyfortracking manoeuvringaircraft.Space-basedADS-BpromisestoexpandthebenefitsofADS-Bto oceanicairspaceandaddressesthelowreportingrateofautomaticdependentsurveillance contract(ADS-C).OptimisedATMproceduressuchastailoredarrivals[49]andthe GreenRNPproject[50]havebeentrialledoralreadyimplemented.Agrowingnumberof airport/airlineslotmanagementandAirTrafficFlowManagement(ATFM)centresaround theworldhavecontributedtooptimisestheallocationofairportandairtrafficcontrol (ATC)slots,whiletrafficmanagementinitiatives,suchasgrounddelaysprogrammes, tacklecriticalcongestionsituations,therebysimultaneouslyreducingfuelconsumption, noiseandgaseousemissions.Collaborativedecisionmaking(CDM)proceduresimprove commonsituationalawarenessandpermitpre-tacticalslotswapping.Currentinitiatives includeuserpreferredroutes(UPRs)andtheextensionofnationalCDMandATFM operationstosupportlong-rangeATFMstrategiesforentireworldregions.Conducting ATFMacrossnationalborderswillimproveitseffectiveness,particularlyforcommercial airlinecompanies.Forexample,delaycanbeabsorbeden-routeorallocatedasground delayifcongestionisanticipatedatthedestinationairportseveralFIRsaway.Achieving thisintheAsia-Pacificregionwithoutasingleregulatoryauthority,likeEurocontrolor theFederalAviationAdministration(FAA),isoneoftheissuestobeaddressedbutthe benefitsareevident.EarlyregionalCDMtrialsbetweenBangkokandSingaporehave provedpromising[51],anditisclearthatinteroperabilityandharmonisationofstandards willbekeyfactorsinmovingforward.

InlinewiththeICAO’sASBUimplementationtimelines,newhigh-integrityand safety-criticalCNS+Asystemswillbedevelopedanddeployedforstrategic,tactical,and emergencyATMoperations,andinparticular:

● Civil/militarydual-useCNS+Atechnologies,includingasecureandreliablenetwork infrastructureandairbornedatalinkforinformationsharingandCDM,network-centric

ATMtechnologiesforstrategicandtacticalATFM,DAMandreal-timefour-dimensional trajectory(4DT)operability.

● CNS+AtechnologiesforRPAS,reliablymeetingtherequiredcommunication,navigation,andsurveillanceperformance(RCP,RNP,andRSP)standardsforunrestricted accessofRPAStoairspace(non-segregatedoperations).Inthisperspective,essential stepsaretheadoptionoffusedcooperative/non-cooperativesurveillancesystems, beyondline-of-sight(BLOS)communicationsystems,high-integritynavigationsystems andintegratedavionicsarchitectures.

● Satellite-basedCNSsystems,suchasmulti-constellationglobalnavigationsatellitesystems(GNSS)andspace-baseddatalinkandADS-B,forimprovedcoverageofremoteand oceanicairspace,precisionapproach,andauto-land.

● AirportATMsystems,mainlyconsistingofsafetynetsforgroundandairtrafficoperations,remotetowersystems(RTSs)andnewstandardisedairtrafficcontroloperator (ATCO)workpositions.Inparticular,theadvancedsurfacemovementguidanceandcontrolsystem(A-SMGCS)willalsoproviderunwayincursionandexcursiondetectionand alertingsimilartotheairportmovementareasafetysystem(AMASS)andrunwayawarenessandadvisorysystem(RAAS)developedinEuropeandtheUS.

Anetwork-centriccommunicationapproachisrequiredtoallowgreatersharingofATM information,suchasweather,airportoperationalstatus,flightdata,airspacestatusand restrictions.Keynetworkbuildingblocksincludehigh-integrity,high-throughputand secureavionicsdata-linksfordualcivil/militaryusageaswellasasystemwideinformation management(SWIM)system.Webservicetechnologiesformobile,internet-basedaccess willalsobeincludedtoflexiblyexpandthenumberofparticipantsintheCDMprocesses. BusinessintelligenceandbigdatawillalsobeimplementedaspartofSWIMforenhanced datamining.Theimplementationofenterprise-widedatawarehousesbyANSPswill enableATMtomovebeyondpost-eventreportingandtomineyearsofhistoricaldatato determineunderlyingtrafficflowpatternsandemissionlevelssoastoderiveenhanced modelstoaddressthem.Automatedairtrafficflowmanagement(A-ATFM)systemswill enhancethecontinuousbalancingofair-trafficdemandwithcapacitytoensurethesafe andefficientutilisationofairspaceresources.Automateddynamicairspacemanagement (ADAM)willenabletheseamlessoptimalallocationofairspaceresources.Real-time multi-objective4DToptimisationandnegotiation/validationalgorithms,implemented inthenextgenerationofground-basedandairborneCNS+Asystems,willpromotea continuousreductioninenvironmentalimpacts,whichwillbeparticularlysignificant inseverecongestionandweatherconditions.Toenhancetheoperationalefficiencyat bothregionalandgloballevels,itisessentialtoaddresstheinteroperabilityoftheATM regulatoryframeworkevolutionswithinandacrossregions,preferablytakingthemove fromtheEuropean/USframeworks(beingdefinedbySESARandNextGen).Thiswilllikely contributetotheglobalICAOinitiativesinthisdomain,suchastheAviationSystemBlock Upgrades(ASBUs).Fromatechnologicalperspective,interoperabilityisalsorequiredat variouslevels,includingsignal-in-space(SIS),systemlevelandhuman-machineinterface andinteraction(HMI2 ).

SESAR[10]hasdefinedthreephasesofATMsystemdevelopmentinanevolutionary roadmap,representedinFigure1.6.Thesephasesare:

Figure1.6 Evolutionaryroadmapfor ATMOperations.

Time-Based Operations

Trajectory-Based Operations

Performance-Based Operations

● Time-basedoperations,forwhichATMstrategicandtacticalactions(includingATFM) areaimedatoptimaltrafficsynchronisation.

● Trajectory-BasedOperations(TBO),focussingonafurther-evolvedpredictability,flexibility,andenvironmentsustainabilityofairtraffic,unleashingadditionalcapacity.

● Performance-basedoperations,forwhichalltheavailableCNSperformanceisexploited toestablishahigh-performance,network-centric,collaborative,integrated,andseamless ATMsystem,supportinghigh-densityoperations.

TBOarebasedontheadoptionof4DTdefiningtheaircraft’sflightpathinthree spatialdimensions(i.e.latitude,longitude,andaltitude),andintimefromoriginto destination[52]andoftheassociatedpreciseestimationandcorrectionofcurrentand predictedtrafficpositions.Eachaircraftfollowsa4DT,whichisdeterminedviaaCDM processinvolvingnovelsystems,suchasthenextgenerationflightmanagementsystem (NG-FMS),andevolvingtacticallyfromtheoriginalreferencebusinesstrajectory.Increased efficiencyandhigherthroughputareobtainedinaCNS+Acontextbyactivelymanaging 4DT.InthePBOcontext,thenextgenerationairtrafficmanagement(NG-ATM)services willbematchedtotheperformancecapabilityofaircraft.AirlinesdeployingPBO-capable equipmentwillbenefitfromhigherschedulingpriorityandeasieraccesstocongested areas.Theseregulationswillimposerequirementsintermsofsystemperformancerather thanintermsofspecifictechnologyorequipment.

1.6LightweightStructuresandMaterials

Thecontinuouspushtoreduceweightandenhancemechanicalpropertiesofaerostructureshasledtosignificantadvancesinaircraftdesignandlifecyclemanagementprocesses, asdemonstratedbycontemporaryairlinerssuchastheBoeing787“Dreamliner”andthe AirbusA350ExtraWide-Body(XWB)aircraft.Theseaircraftdeliversubstantialimprovementswhencomparedtopreviousgenerationairliners,largelythroughtheselectiveuse ofnewadvancedmaterialsinvariouspartsoftheairframeandpropulsivecomponents [53,54].Inparticular,theadoptionofcarbonfibrecompositesandotherhybridmaterialshasfacilitatedtheimplementationofmuchlighteraircraftdesignswhileimprovingthe overallmechanicalpropertiesofaerostructures[55].

Lighteraircrafttranslatesintoreducedthrustandfuelconsumption,withassociated enhancementsinpayloadcapacity,rangeandendurance.Additionally,thelowerthrust requirementsallowfortheintegrationofsmaller,lighterandquieterengines,thereby leadingtonoisereductionandfurtherfuelsavings.Openresearchchallengesandopportunitiesincludemethodsforfatiguelifeassessment,maintenanceandtestingofcomposite structures(e.g.,newcompositerepairtechnologiesusinghybridmaterialsystemsand

newnanotechnologiestoimproveadhesivebondingprocesses,thermalpropertiesand lightningprotection);sandwichstructureoptimisationtopreventbucklingandwrinkling ofthesoftcore;net-likeanisogridstructurestoincreasetorsionalrigidityandtherebyavoid flutter;usingnaturalfibresandbinders(e.g.,bamboo,cork,resinsandlatexes)toenhance certainmechanicalpropertiesandrecyclabilityofcompositematerials;andreducingthe production,assemblyandoperatingcostsofcomposites,whicharesignificantlyhigher thanaluminiumalloys.Theglobalcarbonfibremarketisprojectedtogrowfrom$2.33 billionin2021to$4.08billionin2028atacompoundannualgrowthrate(CAGR)of8.3% intheforecastperiod2021-2028[56].Theglobaldemandforcarbonfibreisverylarge andrapidlygrowing.Currently,theproductionandmaintenanceofmodernairliners(e.g., AirbusA380,AirbusA350,Boeing787andBoeing777),requiresapproximately15,000 tonsofcarbonfibreperannum.Thus,withthecurrentratesofproduction(significantly impactedbyCOVID-19),itisprojectedthattherewillbeashortageofsupplytomeet demandinthenearfuture.

1.7AdvancedAerodynamicConfigurations

Intermsofdesign,aircrafthavenowforquitealongtimebeenfollowingaconventional configurationwhichincludesacentralfuselageandamainwing,plushorizontaland verticaltailplanes.Thisconfigurationpresentsafewpracticaladvantagesbutisrather farfromthetheoreticalefficiencylimits,asitreliesonthefunctionalseparationbetween payload-carryingandlift-producingelements.Keylimitationsofthisapproachinclude:

● thefuselageproducingsubstantialdragbutinsignificantlift,whichweighsheavily againstaerodynamicefficiency(i.e.,theratiobetweenliftanddragoftheentireaircraft inrepresentativeoperationalconditions);

● theconcentrationofverysignificantshearstressesandbendingmomentsinsmall sectionsofthewingroot,whichthenhavetobereinforcedadequately,adding substantialstructuralweight;

● naturaltendencytodeveloplargetipvortexes,whichresultinanenergy-dissipatingand operationallyhazardousturbulentwake.

Advancedaircraftconfigurationsattempttoenhancetheaerodynamicefficiencyofthe aircraftinrepresentativeoperationalflightconditions,comparedtoconventionaldesigns. Varioussolutionshavebeenproposedthroughouttheyears,includinghybridwing-bodies (e.g.,blendedwing-body,flyingwing),box-wingaircraftandadvancedmorphingaircraft technologies.Someofthekeygainsinsuchtechnologiesincluderespectivelya30%increase inaerodynamicefficiencyora40%reductionininduceddrag.Despitetherelativelyhigh confidenceinthesetheoreticalefficiencygainsandsomesuccessfuloperationalexperience inthedefencesector,theactualadoptionoftheseadvancedconceptsintheciviltransport domainhasbeenencumberedbythelimitedmaturityofcertaintechnologiesandalukewarmattitudebymajoraircraftmanufacturers,whichadoptedamorerisk-averseapproach financially,resultinginfurtherevolutionsoftheconventionalconfiguration.Morerecently, thediminishingreturnsassociatedwithfurtherinvestmentsinconventionalaerodynamic technologiesiselicitingamorecourageousattitudeinembracingthenewconfigurations.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.