Get Fogoros' electrophysiologic testing 7th edition richard n. fogoros free all chapters

Page 1


Fogoros' Electrophysiologic Testing 7th Edition Richard N. Fogoros

Visit to download the full and correct content document: https://ebookmass.com/product/fogoros-electrophysiologic-testing-7th-edition-richardn-fogoros/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Mathematical Excursions 4th Edition Richard N. Aufmann

https://ebookmass.com/product/mathematical-excursions-4thedition-richard-n-aufmann/

Pediatric Secrets 7th Edition

Richard A. Polin

https://ebookmass.com/product/pediatric-secrets-7th-editionrichard-a-polin/

Between Peace And War: 40th Anniversary Revised Edition

Richard N. Lebow

https://ebookmass.com/product/between-peace-and-war-40thanniversary-revised-edition-richard-n-lebow/ the Leadership experience. 7th Edition Richard L. Daft

https://ebookmass.com/product/the-leadership-experience-7thedition-richard-l-daft/

Intercultural Communication in Contexts 7th Edition

Judith N. Martin

https://ebookmass.com/product/intercultural-communication-incontexts-7th-edition-judith-n-martin/

Experiencing Intercultural Communication: An Introduction 7th Edition Judith N. Martin

https://ebookmass.com/product/experiencing-interculturalcommunication-an-introduction-7th-edition-judith-n-martin/

The Earth and Its Peoples: A Global History (7th Ed.)

7th Edition Richard Bulliet

https://ebookmass.com/product/the-earth-and-its-peoples-a-globalhistory-7th-ed-7th-edition-richard-bulliet/

The Earth and Its Peoples: A Global History (7th Ed.)

7th Edition Richard Bulliet

https://ebookmass.com/product/the-earth-and-its-peoples-a-globalhistory-7th-ed-7th-edition-richard-bulliet-2/

Instructor's Solutions Manual to Quantum Chemistry 7th Edition Ira N. Levine

https://ebookmass.com/product/instructors-solutions-manual-toquantum-chemistry-7th-edition-ira-n-levine/

Fogoros’ElectrophysiologicTesting

Fogoros’ElectrophysiologicTesting

SeventhEdition

RichardN.Fogoros,MD

Danville PA,USA

JohnM.Mandrola,MD

Louisville KY,USA

Thiseditionfirstpublished2023

©2023JohnWiley&SonsLtd

EditionHistory

JohnWiley&SonsLtd(6e,2018)

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfrom thistitleisavailableathttp://www.wiley.com/go/permissions.

TherightofRichardN.FogorosandJohnM.Mandrolatobeidentifiedastheauthorsofthiswork hasbeenassertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley& Sons,Inc.and/oritsaffiliatesintheUnitedStatesandothercountriesandmaynotbeusedwithout writtenpermission.Allothertrademarksarethepropertyoftheirrespectiveowners.JohnWiley& Sons,Inc.isnotassociatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty

Thecontentsofthisworkareintendedtofurthergeneralscientificresearch,understanding,and discussiononlyandarenotintendedandshouldnotberelieduponasrecommendingor promotingscientificmethod,diagnosis,ortreatmentbyphysiciansforanyparticularpatient.In viewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andthe constantflowofinformationrelatingtotheuseofmedicines,equipment,anddevices,thereaderis urgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsfor eachmedicine,equipment,ordevicefor,amongotherthings,anychangesintheinstructionsor indicationofusageandforaddedwarningsandprecautions.Whilethepublisherandauthorshave usedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswith respecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimall warranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessfora particularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensales materialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,or productisreferredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoes notmeanthatthepublisherandauthorsendorsetheinformationorservicestheorganization, website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwiththe understandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceand strategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwitha specialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmay havechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthe publishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages, includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationDataappliedfor ISBN:9781119855675(hardback)

CoverDesign:Wiley

CoverImages:©ArtemRudik/Shutterstock;©AlexLMX/Shutterstock

Setin10/12ptWarnockProbyStraive,Chennai,India

Contents

PrefacetotheSeventhEdition vii

PartIDisordersoftheHeartRhythm:Basic Principles 1

1TheCardiacElectricalSystem 3

2AbnormalHeartRhythms 13

3TreatmentofArrhythmias 23

PartIITheElectrophysiologyStudyintheEvaluation andTherapyofCardiacArrhythmias 35

4PrinciplesoftheElectrophysiologyStudy 37

5TheElectrophysiologyStudyintheEvaluationof Bradycardia:TheSANode,AVNode,andHis–Purkinje System 62

6TheElectrophysiologyStudyintheEvaluationof SupraventricularTachyarrhythmias 102

7TheElectrophysiologyStudyintheEvaluationand TreatmentofVentricularArrhythmias 160

8TranscatheterAblation:TherapeuticElectrophysiology 211

9AblationofSupraventricularTachycardias 221

10AblationofPVCsandVentricularTachycardia 243

11AblationofAtrialFibrillation 268

12AblationofAtrialFlutter 289

13ConductionSystemPacing 310

14CardiacResynchronization:PacingTherapyforHeart Failure 318

15TheEvaluationofSyncope 330

16ElectrophysiologicTestinginPerspective:TheEvaluation andTreatmentofCardiacArrhythmias 344 Index 353

PrefacetotheSeventhEdition

Ourgoalinproducingthisseventheditionof Electrophysiologic Testing isthesameasithasbeenfromthebeginning–todemystify thefieldofcardiacelectrophysiologyforthenonelectrophysiologist. Thisbookismeantforstudents,residents,cardiologyfellows(or evencardiologists!),primarycarephysicians,physicianassistants, nurses,technicians,andanyoneelsewhoneedsabasicandrelatively quickunderstandingofelectrophysiologyandcardiacarrhythmias. Asalways,wehaveaimedtoexplain,asclearlyandsimplyaspossible, thekeyconceptsofthemechanisms,evaluation,andtreatment ofcardiacarrhythmias,aselucidatedintheelectrophysiology laboratory.

Inthisedition,wehavestriventoupdatewhatneededtobe updatedwithoutlosingsightofthatoriginal,motivatinggoal.Tokeep thingsassimpleaspossible,inthiseditionwehavedeemphasized (oreliminated)aspectsofelectrophysiologictestingthatwereonce importanttoelectrophysiologists,buttodayareofmainlyhistorical interest.Throughoutthebook,wehavefocusedonthebasicaspects ofcardiacelectrophysiologythatarecriticaltounderstandingand treatingcardiacarrhythmias.Wehavemostextensivelyupdatedthe chaptersonablationtherapy,themostrapidlyevolvingaspectof clinicalelectrophysiology.Additionally,wehaveaddedanewchapter onconductionsystempacing,whichwebelievewillbecomevery importanttocliniciansinthenearfuture.

viii PrefacetotheSeventhEdition

Wesincerelyhopeandtrustthatthisseventheditionof ElectrophysiologyTesting willremainashelpfultoanewgenerationofreaders as,wearetold,pasteditionshavebeentopreviousgenerations.

RichardN.Fogoros,MD

Danville,PA

JohnM.Mandrola,MD Louisville,KY

PartI

DisordersoftheHeartRhythm:BasicPrinciples

TheCardiacElectricalSystem

Theheartspontaneouslygenerateselectricalimpulses,andthese electricalimpulsesarevitaltoallcardiacfunctions.Onabasiclevel,by controllingthefluxofcalciumionsacrossthecardiaccellmembrane, theseelectricalimpulsestriggercardiacmusclecontraction.Ona higherlevel,theheart’selectricalimpulsesorganizethesequenceof musclecontractionsduringeachheartbeat,importantforoptimizing thecardiacstrokevolume.Finally,thepatternandtimingofthese impulsesdeterminetheheartrhythm.Derangementsinthisrhythm oftenimpairtheheart’sabilitytopumpenoughbloodtomeetthe body’sdemands.

Theheart’selectricalsystemisfundamentaltocardiacfunction.The studyoftheelectricalsystemoftheheartiscalledcardiacelectrophysiology,andthemainconcernofthefieldofelectrophysiologyisthe mechanismsandtherapyofcardiacarrhythmias.Theelectrophysiologystudy(EPstudy)isthemostdefinitivemethodofevaluatingthe cardiacelectricalsystem.Itisthesubjectofthisbook.

AsanintroductiontothefieldofelectrophysiologyandtotheEP study,thischapterreviewstheanatomyofthecardiacelectricalsystem anddescribeshowtheelectricalimpulseisgeneratedandpropagated.

Theanatomyoftheheart’selectricalsystem

Theheart’selectricalimpulseoriginatesinthesinoatrial(SA)node, locatedhighintherightatriumnearthesuperiorvenacava.The impulseleavestheSAnodeandspreadsradiallyacrossbothatria. Whentheimpulsereachestheatrioventricular(AV)groove,it encountersthe“skeletonoftheheart,”thefibrousstructuretowhich

Fogoros’ElectrophysiologicTesting,SeventhEdition.RichardN.FogorosandJohnM.Mandrola. ©2023JohnWiley&SonsLtd.Published2023byJohnWiley&SonsLtd.

thevalveringsareattached,andwhichseparatestheatriafrom theventricles.Thisfibrousstructureiselectricallyinertandacts asaninsulator–theelectricalimpulsecannotcrossthisstructure. Theelectricalimpulsewouldbepreventedfromcrossingoverto theventricularsideoftheAVgrooveifnotforthespecializedAV conductingtissues:theAVnodeandthebundleofHis(Figure1.1).

AstheelectricalimpulseenterstheAVnode,itsconductionis slowedbecauseoftheelectrophysiologicpropertiesoftheAVnodal tissue.ThisslowingisreflectedinthePRintervalonthesurface electrocardiogram(ECG).LeavingtheAVnode,theelectricalimpulse enterstheHisbundle,themostproximalpartoftherapidlyconductingHis–Purkinjesystem.TheHisbundlepenetratesthefibrous skeletonanddeliverstheimpulsetotheventricularsideoftheAV groove.

Onceontheventricularside,theelectricalimpulsefollowstheHis bundleasitbranchesintotherightandleftbundlebranches.BranchingofthePurkinjefiberscontinuesdistallytothefurthermostreaches

SA node
His bundle Purkinje fibers
Fibrous skeleton of the heart

oftheventricularmyocardium.Theelectricalimpulseisthusrapidly distributedthroughouttheventricles.

The“job”oftheheart’selectricalsystemistoorganizethesequence ofmyocardialcontractionwitheachheartbeat.First,astheelectricalimpulsespreadsovertheatriatowardtheAVgroove,theatria contract.ThedelayprovidedbytheAVnodeallowsforcompleteatrial emptyingbeforetheelectricalimpulsereachestheventricles.Once theimpulseleavestheAVnode,itisdistributedrapidlythroughout theventricularmusclebythePurkinjefibers,providingforbriskand orderlyventricularcontraction.

Wenextconsiderthecharacteroftheelectricalimpulse,its generation,anditspropagation.

Thecardiacactionpotential

Thecardiacactionpotentialisoneofthemostmisunderstoodtopics incardiology.Thefactthatelectrophysiologistsclaimtounderstandit isalsoaleadingcauseofthemystiquethatsurroundsthemandtheir favoritetest,theEPstudy.Sincethepurposeofthisbookistodebunk themysteryofelectrophysiologystudies,wemustgainabasicunderstandingofthecardiacactionpotential.Fortunately,it’seasierthan legendwouldhaveit.

Althoughmostofuswouldliketothinkofcardiacarrhythmiasasan irritationor“itch”oftheheart(andofantiarrhythmicdrugsasabalm orasalvethatsoothestheitch),thisnotionofarrhythmiasiswrong andcanleadtothefaultymanagementofpatientswitharrhythmias. Infact,thebehavioroftheheart’selectricalimpulseandofthecardiac rhythmislargelydeterminedbytheshapeoftheactionpotential;the effectofantiarrhythmicdrugsisdeterminedbyhowtheychangethat shape.

Theinsideofthecardiaccell,likealllivingcells,hasanegative electricalchargecomparedtotheoutsideofthecell.Theresulting voltagedifferenceacrossthecellmembraneiscalledthe transmembranepotential .Therestingtransmembranepotential(whichis 80 to 90mVincardiacmuscle)istheresultofanaccumulationof negativelychargedmolecules(calledions)withinthecell.Mostofthe body’scellsarehappywiththisarrangementandliveouttheirlives withoutconsideringanyotherpossibilities.

Figure1.2 Thecardiacactionpotential.

Cardiaccells,however,aredifferent–theyareexcitablecells.When excitablecellsarestimulatedappropriately,tinyporesorchannels inthecellmembraneopenandclosesequentiallyinastereotyped fashion.Theopeningofthesechannelsallowsionstotravelback andforthacrossthecellmembrane(againinastereotypedfashion), leadingtopatternedchangesinthetransmembranepotential.When thesestereotypicvoltagechangesaregraphedagainsttime,theresult isthecardiacactionpotential(Figure1.2).Theactionpotential reflectstheelectricalactivityofasinglecardiaccell.

Figure1.2showsthefivephasesoftheactionpotential,which encompassthreegeneralperiods:depolarization,repolarization,and therestingphase.

Depolarization

Thedepolarizationphase(phase0)iswherethe“action”oftheaction potentialis.Depolarizationoccurswhentherapidsodiumchannelsin thecellmembranearestimulatedtoopen.Whenthishappens,positivelychargedsodiumionsrushintothecell,causingarapid,positively directedchangeinthetransmembranepotential.Theresultantvoltage

spikeiscalled depolarization.Whenwespeakoftheheart’selectrical impulse,wearespeakingofthisdepolarization.

Depolarizationofonecelltendstocauseadjacentcardiaccellsto depolarize,becausethevoltagespikeofacell’sdepolarizationcauses thesodiumchannelsinthenearbycellstoopen.Thus,onceacardiac cellisstimulatedtodepolarize,thewaveofdepolarization(theelectricalimpulse)ispropagatedacrosstheheart,cellbycell.

Thespeedofdepolarizationofacell(reflectedbytheslopeofphase 0oftheactionpotential)determineshowsoonthenextcellwilldepolarize,andthusdeterminesthespeedatwhichtheelectricalimpulseis propagatedacrosstheheart.Ifwedosomethingtochangethespeedat whichsodiumionsenterthecell(andthuschangetheslopeofphase0), wethereforechangethespeedofconduction(theconductionvelocity) ofcardiactissue.

Repolarization

Onceacellisdepolarized,itcannotbedepolarizedagainuntiltheionic fluxesthatoccurduringdepolarizationarereversed.Theprocessof gettingtheionsbacktowheretheystartediscalled repolarization. Therepolarizationofthecardiaccellroughlycorrespondstophases 1through3(i.e.,thewidth)oftheactionpotential.Becauseasecond depolarizationcannottakeplaceuntilrepolarizationoccurs,thetime fromtheendofphase0tolateinphase3iscalledthe refractoryperiod ofcardiactissue.

Repolarizationofthecardiaccellsiscomplexandincompletely understood.Themainideasbehindrepolarization,however,are simple.

• Repolarizationreturnsthecardiacactionpotentialtotheresting transmembranepotential.

• Ittakestimetodothis.

• Thetimethatittakestodothis,roughlycorrespondingtothewidth oftheactionpotential,istherefractoryperiodofcardiactissue.

Thereisanadditionalpointofinterestregardingrepolarization ofthecardiacactionpotential.Phase2oftheactionpotential,the so-calledplateauphase,canbeviewedasinterruptingandprolonging therepolarizationthatbeginsinphase1.Thisplateauphase,which isuniquetocardiaccells(e.g.,itisnotseeninnervecells),gives durationtothecardiacpotential.Itismostlymediatedbytheslow

calciumchannels,whichallowpositivelychargedcalciumionsto slowlyenterthecell,thusinterruptingrepolarizationandprolonging therefractoryperiod.Thecalciumchannelshaveotherimportant effectsinelectrophysiology,aswewillsee.

Therestingphase

Formostcardiaccells,therestingphase(theperiodoftimebetween actionpotentials,correspondingtophase4)isquiescent,andthereis nonetmovementofionsacrossthecellmembrane.

Forsomecells,however,theso-calledrestingphaseisnotquiescent. Inthesecells,thereisleakageofionsbackandforthacrossthecell membraneduringphase4,insuchawayastocauseagradualincrease intransmembranepotential(Figure1.3).Whenthetransmembrane potentialishighenough(i.e.,whenitreachesthethresholdvoltage), theappropriatechannelsareactivatedtocausethecelltodepolarize. Becausethisdepolarization,likeanydepolarization,canstimulate nearbycellstodepolarizeinturn,thespontaneouslygeneratedelectricalimpulsecanbepropagatedacrosstheheart.Thisphase4activity, whichleadstospontaneousdepolarization,iscalled automaticity. Automaticityisthemechanismbywhichthenormalheartrhythm isgenerated.CellsintheSAnode(thepacemakeroftheheart) normallyhavethefastestphase4activitywithintheheart.The spontaneouslyoccurringactionpotentialsintheSAnodearepropagatedasdescribedearlier,resultinginnormalsinusrhythm.If,for anyreason,theautomaticityofthesinusnodeshouldfail,thereare

Figure1.3 Automaticity.Insomecardiaccells,thereisaleakageofionsacross thecellmembraneduringphase4,insuchawayastocauseagradual,positively directedchangeintransmembranevoltage.Whenthetransmembranevoltage becomessufficientlypositive,theappropriatechannelsareactivatedto automaticallygenerateanotheractionpotential.Thisspontaneousgenerationof actionpotentialsduetophase4activityiscalledautomaticity.

usuallysecondarypacemakercells(oftenlocatedintheAVjunction) totakeoverthepacemakerfunctionoftheheart,butataslowerrate. Thus,theshapeoftheactionpotentialdeterminestheconduction velocity,refractoryperiod,andautomaticityofcardiactissue.Later, wewillseehowthesethreeelectrophysiologiccharacteristicsdirectly affectthemechanismsofcardiacrhythms,bothnormalandabnormal.Toalargeextent,thepurposeoftheEPstudyistoassessthe conductionvelocities,refractoryperiods,andautomaticityofvarious portionsoftheheart’selectricalsystem.

Localizedvariationsintheheart’selectrical system

Inunderstandingcardiacarrhythmias,itisimportanttoconsider twoissuesinvolvinglocalizeddifferencesintheheart’selectrical system:variationsintheactionpotentialandvariationsinautonomic innervation.

Localizeddifferencesintheactionpotential

Differentcardiaccellshavedifferentlyshapedactionpotentials.The actionpotentialwehavebeenusingasamodel(seeFigure1.2)isa

Figure1.4 Localizeddifferencesinthecardiacactionpotential.Cardiacaction potentialsfromdifferentlocationswithinthehearthavedifferentshapes.These differencesaccountforthedifferencesseenintheelectrophysiologicproperties ofvarioustissueswithintheheart.

SA node
AV nodePurkinje fiberVentricular muscle
Atrial muscle

typicalPurkinjefiberactionpotential.Figure1.4showsrepresentative actionpotentialsfromseveralkeylocationsoftheheart–notethe differencesinshape.

TheactionpotentialsthatdiffermostradicallyfromthePurkinje fibermodelarefoundintheSAandAVnodes.Notethattheaction potentialsfromthesetissueshaveslowinsteadofrapiddepolarization phases(phase0).ThisslowdepolarizationoccursbecauseSAand AVnodaltissueslacktherapidsodiumchannelsresponsibleforthe rapiddepolarizationphase(phase0)seeninothercardiactissues.In fact,theSAandAVnodesarethoughttobeentirelydependenton theslowcalciumchannelfordepolarization.Becausethespeedof depolarizationdeterminesconductionvelocity,theSAandAVnodes

Figure1.5 Relationshipbetweentheventricularactionpotential(top)andthe surfaceECG(bottom).Therapiddepolarizationphase(phase0)oftheaction potentialisreflectedintheQRScomplexonthesurfaceECG.Becausephase0is almostinstantaneous,theQRScomplexyieldsdirectionalinformationon ventriculardepolarization.Incontrast,therepolarizationportionoftheaction potentialhassignificantduration(phases2and3).Consequently,theportionof thesurfaceECGthatreflectsrepolarization(theSTsegmentandTwave)yields littledirectionalinformation.PRinterval,beginningofPtobeginningofQRS;ST segment,endofQRStobeginningofT;QTinterval,beginningofQRStoendofT.

conductelectricalimpulsesslowly.TheslowconductionintheAV nodeisreflectedinthePRintervalonthesurfaceECG(Figure1.5).

Localizeddifferencesinautonomicinnervation

Ingeneral,anincreaseinsympathetictone,forexampleduring exercise,causesenhancedautomaticity(pacemakercellsfiremore rapidly),increasedconductionvelocity(electricalimpulsesarepropagatedmorerapidly),anddecreasedactionpotentialdurationand thusdecreasedrefractoryperiods(cellsbecomereadyforrepeated depolarizationsmorequickly).Parasympathetictonehastheopposite effect(i.e.,depressedautomaticity,decreasedconductionvelocity, andincreasedrefractoryperiods).

Sympatheticandparasympatheticfibersrichlyinnervateboththe SAandtheAVnode.Intheremainderoftheheart’selectricalsystem, whilesympatheticinnervationisabundant,parasympatheticinnervationisrelativelysparse.Thus,changesinparasympathetictonehavea relativelygreatereffectontheSAandAVnodaltissuesthanonother tissuesoftheheart.Thisfacthasimplicationsforthediagnosisand treatmentofsomeheartrhythmdisturbances.

Relationshipbetweenactionpotential andsurfaceECG

Thecardiacactionpotentialrepresentstheelectricalactivityofasinglecardiaccell.ButthesurfaceECGreflectstheelectricalactivityof theentireheart–essentially,thesumofalltheactionpotentialsofall cardiaccells.Consequently,theinformationonecangleanfromthe surfaceECGderivesfromthecharacteristicsoftheactionpotential (seeFigure1.5).

Formostcardiaccells,thedepolarizationphaseoftheaction potentialisessentiallyinstantaneous(occurringin1–3ms)and occurssequentially,fromcelltocell.Thus,theinstantaneouswave ofdepolarizationcanbefollowedacrosstheheartbystudyingthe ECG.ThePwaverepresentsthedepolarizationfrontasittraverses theatria,andtheQRScomplextracksthewaveofdepolarizationas itspreadsacrosstheventricles.Changesinthespreadoftheelectricalimpulse,suchasoccurinbundlebranchblockortransmural

myocardialinfarction,canbereadilydiagnosedbyinspectingthe ECG.Becausethedepolarizationphaseoftheactionpotentialis relativelyinstantaneous,thePwaveandtheQRScomplexcanyield specificdirectionalinformation(i.e.,informationonthesequenceof depolarizationofcardiacmuscle).

Incontrast,therepolarizationphaseoftheactionpotentialisnot instantaneous–indeed,repolarizationhassignificantduration.While depolarizationoccursfromcelltocellsequentially,repolarization occursinmanycardiaccellssimultaneously.Forthisreason,theST segmentandTwave(theportionsofthesurfaceECGthatreflect ventricularrepolarization)givelittledirectionalinformation,and abnormalitiesintheSTsegmentsandTwavesaremostoften(and quiteproperly)interpretedasbeingnonspecific.TheQTinterval representsthetimeofrepolarizationoftheventricularmyocardium andreflectstheaverageactionpotentialdurationofventricular muscle.

AbnormalHeartRhythms

Abnormalitiesintheelectricalsystemoftheheartresultintwogeneral typesofcardiacarrhythmia:heartrhythmsthataretooslow(bradyarrhythmias)andheartrhythmsthataretoofast(tachyarrhythmias).

Bradyarrhythmias

Therearetwobroadcategoriesofabnormallyslowheartrhythms–the failureofpacemakercellstogenerateappropriateelectricalimpulses (disordersofautomaticity)andthefailuretopropagateelectrical impulsesappropriately(heartblock).

Failureofimpulsegeneration

Failureofsinoatrial(SA)nodalautomaticity,resultinginaninsufficientnumberofelectricalimpulsesemanatingfromtheSAnode (i.e.,sinusbradycardia[Figure2.1]),isthemostcommoncauseof bradyarrhythmias.Iftheslowedheartrateisinsufficienttomeetthe body’sdemands,symptomsresult.Symptomaticsinusbradycardia iscalled sicksinussyndrome.Ifsinusslowingisprofound,subsidiary pacemakerslocatedneartheatrioventricular(AV)junctioncantake overthepacemakerfunctionoftheheart.Theelectrophysiologystudy (EPstudy),aswewillseeinChapter5,canbeusefulinassessingSA nodalautomaticity.

Fogoros’ElectrophysiologicTesting,SeventhEdition.RichardN.FogorosandJohnM.Mandrola. ©2023JohnWiley&SonsLtd.Published2023byJohnWiley&SonsLtd.

Figure2.1 Sinusbradycardia.

Failureofimpulsepropagation

Thesecondmajorcauseofbradyarrhythmiasisthefailureofthe electricalimpulsestoconductnormally.Whileconductionblock canoccuranywhereintheheart,themostcommonareaistheAV junction.Thiscondition,knownas heartblock or AVblock ,implies anabnormalityofconductionvelocityand/orrefractorinessinthe conductingsystem.Becauseconductionoftheelectricalimpulseto theventriclesdependsonthefunctionoftheAVnodeandthe His–Purkinjesystem,heartblockisvirtuallyalwaysduetoAVnodal orHis–Purkinjedisease.

Heartblockisclassifiedintothreecategoriesbasedonseverity (Figure2.2).First-degreeAVblockmeansthat,whileallatrialimpulses aretransmittedtotheventricles,intraatrialconduction,conduction throughtheAVnode,and/orconductionthroughtheHisbundle isslow(manifestedontheelectrocardiogram,ECG,byaprolonged PRinterval).Second-degreeAVblockmeansthatconductionto

1st degree

2nd degree

3rd degree

Figure2.2 Threecategoriesofheartblock.Infirst-degreeblock(toptracing),all atrialimpulsesareconductedtotheventriclesbutconductionisslow(thePR intervalisprolonged).Insecond-degreeblock(middletracing),someatrial impulsesareconductedandsomearenot.Inthird-degreeblock(bottomtracing), noneoftheatrialimpulsesareconductedtotheventricles.

Figure2.3 Examplesofescapepacemakers.WhenblockislocalizedtotheAV node(toptracing),junctionalescapepacemakers(JE)areusuallystableenough topreventhemodynamiccollapse.Whenblockislocatedinthedistalconducting tissues(bottomtracing),escapepacemakersareusuallylocatedintheventricles (VE)andareslowerandmuchlessstable.

theventriclesisintermittent;thatis,someimpulsesareconducted andsomeareblocked.Third-degreeAVblockmeansthatblockis completeandnoatrialimpulsesareconductedtotheventricles.

Ifthird-degreeAVblockispresent,thensustaininglifedepends onthefunctionofsubsidiarypacemakersdistaltothesiteofblock. Thecompetenceofthesesubsidiarypacemakers,andthereforethe patient’sprognosis,dependslargelyonthesiteofblock(Figure2.3). WhenblockiswithintheAVnode,subsidiarypacemakersatthe AVjunctionusuallytakeoverthepacemakerfunctionoftheheart, resultinginarelativelystable,nonlife-threateningheartrhythm,with aratethatcanexceed50beats/min.Ontheotherhand,ifblockis distaltotheAVnode,thesubsidiarypacemakerstendtoproducea profoundlyslow(usuallylessthan40beats/min)andunstableheart rhythm.

Ifheartblockislessthancomplete(i.e.,firstorseconddegree),it isstillimportanttopinpointthesiteofblocktoeithertheAVnode ortheHis–Purkinjesystem.First-orsecond-degreeblockintheAV nodeisbenignandtendseithernottoprogressortoprogressslowly. Permanentpacingisrarelyrequired.First-andespeciallyseconddegreeblockdistaltotheAVnode,ontheotherhand,tendtoprogress toahigherdegreeofblockandprophylacticpacingcanbeindicated iftherearesymptoms.

DifferentiatingthesiteofheartblockcanusuallybedonenoninvasivelybystudyingthesurfaceECGandtakingadvantageofthefactthat

theAVnodehasrichautonomicinnervationandtheHis–Purkinje systemdoesnot.Sometimes,however,theEPstudyisusefulin locatingthesiteofblock.Chapter5considersheartblockindetail.

Tachyarrhythmias

Cardiactachyarrhythmiascancausesignificantmortalityandmorbidity.ItistheabilityoftheEPstudytoaddresstheevaluationand treatmentoftachyarrhythmiasthathasbroughtthisprocedureinto widespreaduse.Wewilldiscussthreemechanismsfortachyarrhythmias:automaticity,reentry,andtriggeredactivity.

Automaticity

Automaticityaccountsfornormalpacemakerfunctionoftheheart. Butwhenabnormalaccelerationofphase4activityoccursinsome locationoftheheart,anautomatictachyarrhythmiaissaidtooccur (Figure2.4).Suchanabnormalautomaticfocuscanoccuranywhere intheheart.

Automaticityaccountsforlessthan10%ofallabnormaltachyarrhythmias.Automatictachyarrhythmiasareusuallyrecognizable bytheircharacteristicsandthesettingsinwhichtheyoccur.

Tounderstandautomatictachyarrhythmias,ithelpstoconsider thecharacteristicsofsinustachycardia,whichisa normal automatic tachycardia.Sinustachycardiausuallyoccursasaresultofappropriatelyincreasedsympathetictone(forinstance,inresponseto increasedmetabolicneedsduringexercise).Whensinustachycardia develops,theheartrategraduallyincreasesfromthebasic(resting)

Figure2.4 Abnormalautomaticitycausestherapidgenerationofaction potentialsandthusinappropriatetachycardia.

sinusrate;whensinustachycardiasubsides,theratelikewisedecreases gradually.

Similarly,automatictachyarrhythmiasoftendisplayawarm-upand warm-downinratewhenthearrhythmiabeginsandends.Analogous tosinustachycardia,automatictachyarrhythmiascanhavemetabolic causes,suchasacutecardiacischemia,hypoxemia,hypokalemia, hypomagnesemia,acid–basedisorders,highsympathetictone,and theuseofsympathomimeticagents.Therefore,automaticarrhythmias areoftenseeninacutelyillpatients.Forexample,acutepulmonary diseasecanleadtomultifocalatrialtachycardia,themostcommon typeofautomaticatrialtachycardia.Inductionof,andrecovery from,generalanesthesiacancausesurgesinsympathetictone,and automaticarrhythmias(bothatrialandventricular)canresult.In addition,acutemyocardialinfarctionisoftenaccompaniedbyearly ventriculararrhythmiasthatarelikelyautomaticinmechanism.

Ofallthetachyarrhythmias,automaticarrhythmiasmostclosely resemblean“itchoftheheart,”anditistemptingtoapplythesalveof antiarrhythmicdrugs.Antiarrhythmicdrugscansometimesdecrease automaticity.However,automaticarrhythmiasshouldmostoftenbe treatedbyidentifyingandreversingtheunderlyingmetaboliccause. Automatictachyarrhythmiascannotbeinducedbyprogrammed pacingtechniques,sothesearrhythmiasaregenerallynotamenable toprovocativestudyintheelectrophysiologylaboratory.

Reentry

Reentryisthemostcommonmechanismfortachyarrhythmias; itisalsothemostimportant,becausereentrantarrhythmias causethedeathsofhundredsofthousandsofpeopleeveryyear. Fortunately,reentrantarrhythmiaslendthemselvestostudyinthe electrophysiologylaboratory.Infact,itwastherecognitionthat mosttachyarrhythmiasarereentrantinmechanismandthattheEP studycanhelpinassessingreentrantarrhythmiasthatsparkedthe widespreadproliferationofelectrophysiologylaboratoriesintheearly 1980s.

Unfortunately,themechanismofreentryisnotsimpletoexplainor tounderstand,andtheprerequisitesforreentryseemonthesurface tobeunlikelyatbest.Thefailuretounderstand(andpossiblyto believein)reentryhashelpedtheEPstudytoremainanenigmato mostpeopleinthemedicalprofession.Thefollowingexplanation

DisordersoftheHeartRhythm:BasicPrinciples

ofreentrythereforeerrsonthesideofsimplicityandmightoffend someelectrophysiologists.Ifthereadercankeepanopenmindand acceptthisexplanationfornow,wehopetoshowlater(inChapters 6and7)thatreentryisacompellingexplanationformostcardiac tachyarrhythmias.

Reentryrequiresthatthefollowingcriteriaaremet(Figure2.5). First,tworoughlyparallelconductingpathways(shownaspathways AandB)mustbeconnectedproximallyanddistallybyconducting tissue,thusformingapotentialelectricalcircuit.Second,oneofthe pathways(pathwayBinourexample)musthavearefractoryperiod thatissubstantiallylongerthanthatoftheotherpathway.Third,the pathwaywiththeshorterrefractoryperiod(pathwayA)mustconduct electricalimpulsesmoreslowlythantheotherpathway.

Ifalltheseprerequisitesaremet,reentrycanbeinitiatedwhenan appropriatelytimedprematureimpulseisintroducedtothecircuit (Figure2.6).Theprematureimpulsemustenterthecircuitatatime whenpathwayB(theonewiththelongrefractoryperiod)isstill refractoryfromthepreviousdepolarizationandatatimewhen pathwayA(theonewiththeshorterrefractoryperiod)hasalready

Figure2.5 Prerequisitesforreentry.Ananatomiccircuitmustbepresentinwhich twoportionsofthecircuit(pathwaysAandBinthefigure)have electrophysiologicpropertiesthatdifferfromoneanotherinacriticalway.Inthis example,pathwayAconductselectricalimpulsesmoreslowlythanpathwayB, whilepathwayBhasalongerrefractoryperiodthanpathwayA.

Figure2.6 Initiationofreentry.IftheprerequisitesinFigure2.5arepresent,an appropriatelytimedprematureimpulsecanblockinpathwayB(whichhasa relativelylongrefractoryperiod)whileconductingdownpathwayA.Because conductiondownpathwayAisslow,pathwayBhastimetorecover,allowingthe impulsetoconductretrogradelyuppathwayB.Theimpulsecanthenreenter pathwayA.Acontinuouslycirculatingimpulseisthusestablished. recoveredandisabletoaccepttheprematureimpulse.Whilepathway Aslowlyconductstheprematureimpulse,pathwayBhasachanceto recover.BythetimetheimpulsereachespathwayBfromtheopposite direction,pathwayBisnolongerrefractoryandisabletoconduct thebeatintheretrogradedirection(upwardinthefigure).Ifthis retrogradeimpulsereenterspathwayAandisconductedantegradely (asitislikelytobe,giventheshortrefractoryperiodofpathwayA),a continuouslycirculatingimpulseisestablished,spinningaroundand aroundthereentrantloop.Allthatremainsinorderforthisreentrant impulsetousurptherhythmoftheheartisfortheimpulsetoexit fromthecircuitatsomepointduringeachlapandtherebydepolarize themyocardiumoutsidetheloop.

Justasreentrycanbeinitiatedbyprematurebeats,itcanbe terminatedbyprematurebeats(Figure2.7).Anappropriatelytimed impulsecanenterthecircuitduringreentryandcollidewiththe reentrantimpulse,thusabolishingthereentrantarrhythmia.

Becausereentrydependsoncriticaldifferencesinconductionvelocitiesandrefractoryperiodsinthevariouspathwaysofthereentrant circuit,andbecauseconductionvelocityandrefractoryperiodsare

Figure2.7 Terminationofreentry.Anappropriatelytimedprematureimpulse canenterthecircuitduringareentranttachycardia,collidewiththereentrant impulseasshown,andterminatereentry.

determinedbytheshapeoftheactionpotential,itshouldbeobvious thattheactionpotentialsinpathwayAandpathwayBaredifferent fromoneanother.Thismeansthatdrugsthatchangetheshapeof theactionpotentialmightbeusefulinthetreatmentofreentrant arrhythmias.

Reentrantcircuitsarecommon.Somearepresentatbirth,especially thosecausingsupraventriculartachycardias(e.g.,reentryassociated withAVbypasstractsorwithdualSAandAVnodaltracts).More malignantformsofreentrantcircuit,however,areusuallynotcongenitalbutareacquiredascardiacdiseasedevelopsduringlife.In reentrantventriculartachyarrhythmias,thereentrantcircuitsarisein areaswherenormalcardiactissueisinterspersedwithpatchesofscar tissue,formingmanypotentialanatomiccircuits.Thus,ventricular reentrantcircuitsusuallyoccuronlywhenscartissuedevelops intheventricles(suchasduringamyocardialinfarctionorwith cardiomyopathicdiseases,suchasmyocarditis.).

Theoretically,ifalltheanatomicandelectrophysiologiccriteriafor reentryarepresent,anyimpulsethatentersthecircuitattheappropriatetimewillinduceareentranttachycardia.Thetimefromtheendof therefractoryperiodofpathwayAtotheendoftherefractoryperiod ofpathwayB,duringwhichreentrycanbeinduced,iscalledthe

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Get Fogoros' electrophysiologic testing 7th edition richard n. fogoros free all chapters by Education Libraries - Issuu