ENZYMES
THIRDEDITION
RobertA.Copeland
Thisthirdeditionfirstpublished2023 ©2023JohnWiley&Sons,Inc.
EditionHistory
JohnWiley&Sons,Inc.(1e,1996);JohnWiley&Sons,Inc.(2e,2000)
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorby anymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowtoobtain permissiontoreusematerialfromthistitleisavailableat http://www.wiley.com/go/permissions
TherightofauthorRobertA.Copelandtobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewithlaw.
RegisteredOffice
JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA
Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com
Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsinstandard printversionsofthisbookmaynotbeavailableinotherformats.
Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons,Inc.and/oritsaffiliatesin theUnitedStatesandothercountriesandmaynotbeusedwithoutwrittenpermission.Allothertrademarksarethepropertyof theirrespectiveowners.JohnWiley&Sons,Inc.isnotassociatedwithanyproductorvendormentionedinthisbook.
LimitofLiability/DisclaimerofWarranty
Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowofinformation relatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatetheinformation providedinthepackageinsertorinstructionsforeachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings, anychangesintheinstructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisherandauthors haveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisworkandspecificallydisclaimallwarranties,includingwithoutlimitationanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives, writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductisreferredtoin thisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe informationorservicestheorganization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissold withtheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbe awarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread. Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimited tospecial,incidental,consequential,orotherdamages.
LibraryofCongressCataloging-in-PublicationData Names:Copeland,RobertAllen,author.
Title:Enzymes:apracticalintroductiontostructure,mechanism,anddata analysis/RobertA.Copeland.
Description:Thirdedition.|Hoboken,NJ:Wiley,2023.|Revisededition of:Enzymes/RobertA.Copeland.2nded.c2000.|Includes bibliographicalreferencesandindex.
Identifiers:LCCN2022048916(print)|LCCN2022048917(ebook)|ISBN 9781119793250(cloth)|ISBN9781119793281(adobepdf)|ISBN 9781119793298(epub)
Subjects:LCSH:Enzymes.|Enzymology.
Classification:LCCQP601.C7532023(print)|LCCQP601(ebook)|DDC 572/.7–dc23/eng/20221128
LCrecordavailableathttps://lccn.loc.gov/2022048916
LCebookrecordavailableathttps://lccn.loc.gov/2022048917
CoverDesign:Wiley
CoverImage:CourtesyofRobertA.Copeland
Setin11/13ptTimesLTStdbyStraive,Chennai,India
ToClydeWorthenforteachingmealltheimportant lessons: arigatosensei.
AndtoTheodore(Doc)Jannerforstokingthefire.
PrefacetotheThirdEditionxvii
PrefacetotheSecondEditionxix
PrefacetotheFirstEditionxxi
Acknowledgmentsxxiii
1ABriefHistoryofEnzymology1
KeyLearningPoints / 1
1.1EnzymesinAntiquity / 2
1.2EarlyEnzymology / 3
1.3TheDevelopmentofMechanisticEnzymology / 4
1.4StudiesofEnzymeStructure / 5
1.5EnzymologyToday / 7
1.6Summary / 9 ReferencesandFurtherReading / 9
2ChemicalBondsandReactionsinBiochemistry11
KeyLearningPoints / 11
2.1AtomicandMolecularOrbitals / 12
2.1.1AtomicOrbitals / 12
2.1.2MolecularOrbitals / 15
2.1.3HybridOrbitals / 16
2.1.4ResonanceandAromaticity / 18
2.1.5DifferentElectronicConfigurationsHaveDifferentPotential Energies / 20
2.2ThermodynamicsofChemicalReactions / 22
2.2.1TheTransitionStateofChemicalReactions / 24
2.3Acid–baseChemistry / 27
2.4NoncovalentInteractionsinReversibleBinding / 29
2.4.1ElectrostaticInteractions / 30
2.4.2HydrogenBonding / 30
2.4.3HydrophobicInteractions / 31
2.4.4VanderWaalsForces / 31
2.5RatesofChemicalReactions / 33
2.5.1ReactionOrder / 35
2.5.2ReversibleChemicalReactions / 36
2.5.3MeasurementofInitialVelocity / 37
2.6Summary / 38
ReferencesandFurtherReading / 38
3StructuralComponentsofEnzymes39
KeyLearningPoints / 39
3.1TheAminoAcids / 40
3.1.1PropertiesofAmino-AcidSideChains / 42
3.1.1.1Hydrophobicity / 42
3.1.1.2HydrogenBonding / 42
3.1.1.3Salt-BridgeFormation / 43
3.1.2AminoAcidsasAcidsandBases / 44
3.1.3CationandMetalBinding / 45
3.1.4AnionandPolyanionBinding / 46
3.1.5CovalentBondFormation / 46
3.1.5.1DisulfideBonds / 46
3.1.5.2Phosphorylation / 46
3.1.5.3Glycosylation / 47
3.1.6StericBulk / 47
3.2ThePeptideBond / 48
3.3AminoAcidSequenceorPrimaryStructure / 51
3.4SecondaryStructure / 54
3.4.1TheRight-Handed �� Helix / 55
3.4.2The �� -PleatedSheet / 56
3.4.3 �� Turns / 58
3.4.4OtherSecondaryStructures / 58
3.4.5SupersecondaryStructures / 59
3.5TertiaryStructure / 60
3.5.1Domains / 62
3.6SubunitsandQuaternaryStructure / 64
3.7CofactorsinEnzymes / 67
3.8ConformationalDynamicsandEnzymeFunction / 70
3.9MethodsofProteinStructureDetermination / 75
3.9.1X-rayCrystallography / 76
3.9.2NMRSpectroscopy / 77
3.9.3Cryo-ElectronMicroscopy(Cryo-EM) / 78
3.10Summary / 79
ReferencesandFurtherReading / 80
4Protein–LigandBindingEquilibria83
KeyLearningsPoints / 83
4.1TheEquilibriumDissociationConstant, Kd / 84
4.2TheKineticApproachtoEquilibrium / 86
4.3BindingMeasurementsatEquilibrium / 88
4.3.1DerivationoftheLangmuirIsotherm / 88
4.3.2MultipleBindingSites / 91
4.3.2.1MultipleEquivalentBindingSites / 91
4.3.2.2MultipleNonequivalentBindingSites / 92
4.3.2.3CooperativeInteractionsAmongMultipleBinding Sites / 92
4.3.3CorrectionforNonspecificBinding / 93
4.4GraphicAnalysisofEquilibriumLigand-BindingData / 94
4.4.1DirectPlotsonSemilogScale / 94
4.4.2LinearTransformationsofBindingData:TheWolffPlots / 97
4.5EquilibriumBindingwithLigandDepletion(TightBinding Interactions) / 100
4.6CompetitionAmongLigandsforaCommonBindingSite / 101
4.7ProteinDynamicsinReceptor–LigandBinding / 102
4.8OrthostericandAllostericLigandBindingSites / 104
4.9ExperimentalMethodsforMeasuringLigandBinding / 105
4.9.1MethodsBasedonMassorMobilityDifferences / 105
4.9.1.1EquilibriumDialysis / 105
4.9.1.2MembraneFiltrationMethods / 107
4.9.1.3SizeExclusionChromatography / 109
4.9.1.4MicroscaleThermophoresis / 111
4.9.2SpectroscopicMethods / 113
4.9.2.1FluorescenceSpectroscopy / 113
4.9.2.2SurfacePlasmonResonance / 116
4.9.3Ligand-InducedProteinStabilization / 117
4.9.3.1ThermalDenaturationofProteins / 118
4.9.3.2ChemicalDenaturationofProteins / 120
4.10Summary / 122
ReferencesandFurtherReading / 122
5Steady-StateKineticsofSingle-SubstrateEnzymeReactions125
KeyLearningPoints / 125
5.1TheTimeCourseofEnzymaticReactions / 126
5.2EffectsofSubstrateConcentrationonVelocity / 127
5.3TheRapidEquilibriumModelofEnzymeKinetics / 129
5.4TheSteady-StateModelofEnzymeKinetics / 131
5.5TheSignificanceof kcat and Km / 134
5.5.1 Km / 135
5.5.2 kcat / 135
5.5.3 kcat /Km / 136
5.5.4Diffusion-ControlledReactionsandKineticPerfection / 138
5.6ExperimentalMeasurementof kcat and Km / 139
5.6.1GraphicalDeterminationsfromUntransformedData / 139
5.6.2Lineweaver–BurkPlotsofEnzymeKinetics / 142
5.7OtherLinearTransformationsofEnzymeKineticData / 147
5.7.1Eadie–HofsteePlots / 147
5.7.2Hanes–WolffPlots / 148
5.7.3Eisenthal–Cornish-BowdenDirectPlots / 148
5.8MeasurementsatLowSubstrateConcentrations / 149
5.9DeviationsFromHyperbolicKinetics / 150
5.10Summary / 153 ReferencesandFurtherReading / 153
6ChemicalMechanismsinEnzymeCatalysis155
KeyLearningPoints / 155
6.1Substrate–ActiveSiteComplementarity / 156
6.2RateEnhancementThroughTransitionStateStabilization / 159
6.3ChemicalMechanismsforTransitionStateStabilization / 162
6.3.1ApproximationofReactants / 163
6.3.2CovalentCatalysis / 166
6.3.2.1NucleophilicCatalysis / 167
6.3.2.2ElectrophilicCatalysis / 168
6.3.3GeneralAcid/BaseCatalysis / 170
6.3.4ConformationalDistortion / 175
6.3.5PreorganizedActiveSiteComplementaritytotheTransition State / 180
6.4TheSerineProteases:AnIllustrativeExample / 182
6.5EnzymaticReactionNomenclature / 187
6.6Summary / 191
ReferencesandFurtherReading / 191
7ExperimentalMeasuresofSteady-StateEnzymeActivity193
KeyLearningPoints / 193
7.1InitialVelocityMeasurements / 194
7.1.1Direct,Indirect,andCoupledAssays / 194
7.1.2AnalysisofProgressCurves:MeasuringTrueSteady-State Velocity / 200
7.1.3ContinuousVersusEndPointAssays / 203
7.1.4Initiating,Mixing,andStoppingReactions / 204
7.1.5TheImportanceofRunningControls / 206
7.2DetectionMethods / 208
7.2.1AssaysBasedonOpticalSpectroscopy / 208
7.2.2AbsorptionMeasurements / 208
7.2.3ChoosinganAnalyticalWavelength / 210
7.2.4OpticalCells / 210
7.2.5ErrorsinAbsorptionSpectroscopy / 212
7.2.6FluorescenceMeasurements / 213
7.2.7InternalFluorescenceQuenchingandEnergyTransfer / 215
7.2.8ErrorsinFluorescenceMeasurements / 217
7.2.9RadioisotopicMeasurements / 220
7.2.10ErrorsinRadioactivityMeasurements / 223
7.2.11OtherDetectionMethods / 223
7.3SeparationMethodsinEnzymeAssays / 224
7.3.1SeparationofProteinsfromLowMolecularWeightSolutes / 224
7.3.2ChromatographicSeparationMethods / 225
7.3.3ElectrophoreticMethodsinEnzymeAssays / 230
7.4FactorsAffectingtheVelocityofEnzymaticReactions / 236
7.4.1EnzymeConcentration / 237
7.4.2pHEffects / 239
7.4.3TemperatureEffects / 245
7.4.4ViscosityEffects / 247
7.4.5IsotopeEffectsinEnzymeKinetics / 249
7.5ReportingEnzymeActivityData / 252
7.6EnzymeStability / 253
7.6.1StabilizingEnzymesDuringStorage / 254
7.6.2EnzymeInactivationDuringActivityAssays / 255
7.7Summary / 258
ReferencesandFurtherReading / 258
8Transient-StateKinetics261
KeyLearningPoints / 261
8.1TimescaleofPre-Steady-StateTurnover / 262
8.2InstrumentationforTransientKineticMeasurements / 264
8.3EstimatingInitialConditionsforTransientKineticMeasurements / 266
8.4ExamplesofSomeCommonTransientKineticReactionMechanisms / 267
8.4.1OneStep,IrreversibleBinding / 267
8.4.2OneStep,ReversibleBinding / 268
8.4.3Consecutive,IrreversibleReaction / 268
8.4.4Consecutive,ReversibleReactionwithaFastFirstStep (Pre-equilibriumReaction) / 269
8.4.5Consecutive,ReversibleReactionwithaFastSecondStep(Enzyme Pre-isomerization) / 271
8.5ExamplesofTransientKineticStudiesfromtheLiterature / 272
8.5.1StudyofSubstrateandInhibitorInteractionswiththeAlzheimer’s Disease β-SiteAmyloidPrecursorProtein-CleavingEnzyme (BACE) / 272
8.5.2StudyoftheMechanismofTime-DependentInhibitionof Staphylococcusaureus PolypeptideDeformylase / 275
8.6Summary / 277
ReferencesandFurtherReading / 278
9EnzymeRegulation279
KeyLearningPoints / 279
9.1ActiveandInactiveConformationalStates / 280
9.2Post-TranslationalModifications / 281
9.2.1ProteolyticProcessing / 282
9.2.2CovalentModificationofAminoAcidSideChains / 288
9.3EnzymeRegulationThroughProtein–ProteinInteractions / 294
9.4Small-MoleculeAllostericLigands / 297
9.4.1HomotropicandHeterotropicAllostery / 298
9.4.2IntramolecularandIntermolecularAllostery / 298
9.5QuantitativeMeasurementsofEnzymeActivationandInhibition / 302
9.5.1ThermodynamicMeasurementofActivator–Enzyme Interactions / 303
9.5.2KineticMeasurementofEnzymeActivationbyPTM / 306
9.6RegulationofProteinKinases / 308
9.6.1KinaseActivationbyPTM / 308
9.6.2KinaseRegulationbyProteinAssociation / 311
9.6.3KinaseActivationbyOligomerization / 312
9.6.4KinaseRegulationbySmall-MoleculeBinding / 313
9.6.5Small-MoleculeMimicryofIntramolecularAllostery / 313
9.7Summary / 314
ReferencesandFurtherReading / 315
10ReversibleInhibitors317
KeyLearningPoints / 317
10.1EquilibriumTreatmentofReversibleInhibition / 319
10.2ThermodynamicModesofReversibleInhibition / 321
10.2.1PureCompetitiveInhibition,ExclusiveBindingtoFreeEnzyme(E): �� =∞ / 321
10.2.2MixedorNoncompetitiveInhibition / 322
10.2.2.1MixedInhibitorsThatBindPreferentiallytotheFree Enzyme(E): ��> 1 / 322
10.2.2.2MixedInhibitorsThatBindEquipotentlytoEandES: �� = 1 / 322
10.2.2.3MixedInhibitorsThatBindPreferentiallytothe Enzyme–SubstrateComplex(ES): ��< 1 / 322
10.2.3PureUncompetitiveInhibitors,ExclusiveBindingtothe Enzyme-SubstrateComplex(ES): ��≪ 1 / 323
10.2.4PartialInhibitors / 323
10.3EffectsofInhibitorsonSteady-StateParameters / 324
10.3.1CompetitiveInhibitors / 325
10.3.2NoncompetitiveInhibitors / 329
10.3.3UncompetitiveInhibitors / 330
10.3.4FittingofUntransformedData / 332
10.4Concentration-ResponsePlotsofEnzymeInhibition / 333
10.4.1Concentration-ResponsePlotsforPartialInhibition / 336
10.5EffectsofSubstrateConcentrationonInhibitorConcentration–Response Curves / 337
10.6MutuallyExclusiveBindingofTwoInhibitors / 340
10.7Structure–ActivityRelationshipsandInhibitorDesign / 343
10.7.1SARintheAbsenceofEnzymeStructuralInformation / 343
10.7.2InhibitorDesignBasedonEnzymeStructure / 350
10.8Summary / 353
ReferencesandFurtherReading / 354
11Tight-BindingInhibitors357
KeyLearningPoints / 357
11.1IdentifyingTight-BindingInhibition / 358
11.2DistinguishingInhibitorTypeforTight-BindingInhibitors / 359
11.3Determining Ki forTight-BindingInhibitors / 362
11.4UseofTight-BindingInhibitorstoDetermineActiveEnzymeConcentration / 365
11.5Summary / 368
ReferencesandFurtherReading / 368
12Time-DependentInhibition371
KeyLearningPoints / 371
12.1ProgressCurvesforSlow-BindingInhibitors / 375
12.2DistinguishingBetweenSlow-BindingSchemes / 378
12.2.1SchemeB / 379
12.2.2SchemeC / 379
12.2.3SchemeD / 380
12.3DistinguishingBetweenModesofInhibitorInteractionwithEnzyme / 382
12.4DeterminingReversibility / 384
12.4.1Enzyme-InhibitorResidenceTime / 385
12.5ExamplesofSlow-BindingEnzymeInhibitors / 386
12.5.1SerineProteases / 386
12.5.2ProstaglandinG/HSynthase / 387
12.5.3ChemicalModificationasProbesofEnzymeStructureand Mechanism / 391
12.5.3.1AminoAcidSelectiveChemicalModification / 392
12.5.3.2SubstrateProtectionExperiments / 394
12.5.3.3AffinityLabels / 396
12.6Summary / 398
ReferencesandFurtherReading / 398
13EnzymeReactionswithMultipleSubstrates401
KeyLearningPoints / 401
13.1ReactionNomenclature / 402
13.2Bi–BiReactionMechanisms / 403
13.2.1RandomOrderedBi–BiReactions / 403
13.2.2Compulsory-OrderedBi–BiReactions / 404
13.2.3DoubleDisplacementorPing–PongBi–BiReactions / 406
13.3DistinguishingBetweenRandomandCompulsory-OrderedMechanismsby InhibitionPattern / 407
13.4IsotopeExchangeStudiesforDistinguishingReactionMechanisms / 409
13.5UsingtheKing–AltmanMethodtoDetermineVelocityEquations / 411
13.6Cleland’sNetRateConstantMethodforDetermining Vmax and Vmax /Km / 414
13.7Summary / 416
ReferencesandFurtherReading / 417
14Enzyme–MacromoleculeInteractions419
KeyLearningPoints / 419
14.1MutlitproteinEnzymeComplexes / 420
14.2EnzymeReactionsonMacromolecularSubstrates / 422
14.2.1DifferencesBetweenSmallMoleculeandProteinSubstrateBinding toEnzymes / 422
14.2.2FactorsAffectingProtein–ProteinInteractions / 425
14.2.3SeparationofBindingandCatalyticRecognitionElements / 427
14.2.4NoncompetitiveInhibitionbyActiveSiteBindingMoleculesfor ExositeUtilizingEnzymes / 429
14.2.5ProcessiveandDistributiveMechanismsofCatalysis / 430
14.2.6EffectofSubstrateConformationonEnzymeKinetics / 434
14.2.7InhibitorBindingtoSubstrates / 434
14.3Summary / 436
ReferencesandFurtherReading / 436
15CooperativityinEnzymeCatalysis439
KeyLearningPoints / 439
15.1HistoricExamplesofCooperativityandAllosteryinProteins / 441
15.2ModelsofAllostericBehavior / 445
15.3EffectsofCooperativityonVelocityCurves / 449
15.4SigmoidalKineticsforNonallostericEnzymes / 452
15.5Summary / 453
ReferencesandFurtherReading / 453
16EvolutionofEnzymes455
KeyLearningPoints / 455
16.1EarlyEarthConditions / 456
16.2NaturalSelection / 456
16.3GeneticAlterations / 459
16.3.1SingleNucleotidePolymorphisms(SNPs) / 459
16.3.2GeneDuplication / 460
16.3.3DeletionsandInsertions / 461
16.3.4TranslocationsandInversions / 461
16.4EnzymeFamiliesandSuperfamilies / 463
16.5EnzymePromiscuityasaSpringboardofEvolution / 467
16.5.1EvolutionofEnzymeSteadyStateParameters / 471
16.6ProteinDynamicsandConformationalSelectioninEvolutionof Neofunctionality / 474
16.7AncestralEnzymeReconstruction / 475
16.7.1MechanismofDrugSelectivityforGleevec / 477
16.7.2OvercomingEpistasistoDefinetheMechanismofSubstrate Specificity / 478
16.7.3RevealingGeneralisttoSpecialistEvolution / 479
16.7.4AncestralSequenceReconstructionasaPracticalTool / 480
16.8ContemporaryEnzymeEvolution / 480
16.9Summary / 483
ReferencesandFurtherReading / 483
17EnzymesinHumanHealth487
KeyLearningPoints / 487
17.1EnzymesasTherapeuticAgents / 487
17.2EnzymeInhibitorsasTherapeuticAgents / 488
17.2.1PropertiesofSmall-MoleculeDrugs / 489
17.2.2EnzymesasDrugTargets / 489
17.3EnzymeEssentialityinDisease / 492
17.3.1ParalogueswithDistinctPhysiologicalRoles / 492
17.3.2DistinctOrthologuesinInfectiousDiseases / 494
17.3.3DiseasesofLifestyle,Environmental,andAging / 497
17.3.4PathogenicAlterationstoEnzymeFunction / 501
17.3.4.1RelatingGeneticAlterationstoDiseaseEssentiality / 502
17.3.4.2EnzymeOverexpression / 505
17.3.4.3ActivatingMutations / 506
17.3.4.4ChromosomalTranslocations / 515
17.3.4.5SyntheticLethality / 518
17.3.5Pro-DrugActivationbyEnzymes / 522
17.4Enzyme-MediatedTargetProteinDegradation / 524
17.5TheRoleofEnzymologyinDrugDiscoveryandDevelopment / 527
17.5.1EnzymeSelectivityAssessment / 529
17.5.2CorrelatingEnzymeInhibitionwithCellularPhenotype / 530
17.5.3HepaticMetabolismofXenobiotics / 533
17.5.4Mutation-BasedDrugResistance / 535
17.6Summary / 537
ReferencesandFurtherReading / 537