The physical chemist's toolbox, 2nd ed. 2nd edition robert m. metzger download pdf

Page 1


The

Physical Chemist's Toolbox, 2nd Ed. 2nd Edition Robert M. Metzger

Visit to download the full and correct content document: https://ebookmass.com/product/the-physical-chemists-toolbox-2nd-ed-2nd-edition-rob ert-m-metzger/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

The Physical Chemist’s Toolbox 2nd Edition Robert M. Metzger

https://ebookmass.com/product/the-physical-chemists-toolbox-2ndedition-robert-m-metzger/

Thinking Like a Physical Organic Chemist Bachrach S.M.

https://ebookmass.com/product/thinking-like-a-physical-organicchemist-bachrach-s-m/

Nelson Pediatric Symptom-Based Diagnosis 2nd Edition Robert M. Kliegman

https://ebookmass.com/product/nelson-pediatric-symptom-baseddiagnosis-2nd-edition-robert-m-kliegman/

Orthopaedics for the Physical Therapist Assistant 2nd Edition

https://ebookmass.com/product/orthopaedics-for-the-physicaltherapist-assistant-2nd-edition/

Global Physical Climatology 2nd Edition Hartmann

https://ebookmass.com/product/global-physical-climatology-2ndedition-hartmann/

Exploring physical geography 2nd Edition Reynolds

https://ebookmass.com/product/exploring-physical-geography-2ndedition-reynolds/

Project

Management ToolBox: Tools and Techniques for the Practicing Project Manager 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/project-management-toolbox-toolsand-techniques-for-the-practicing-project-manager-2nd-editionebook-pdf/

(eBook PDF) Visualizing Physical Geography, 2nd Edition

https://ebookmass.com/product/ebook-pdf-visualizing-physicalgeography-2nd-edition/

Fundamentals of Physical Geography 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/fundamentals-of-physicalgeography-2nd-edition-ebook-pdf/

ThePhysicalChemist’sToolbox

SecondEdition

RobertM.Metzger

DepartmentofChemistryandBiochemistry

TheUniversityofAlabama TuscaloosaandBirmingham,Alabama,USA

Thissecondeditionfirstpublished2023 ©2023JohnWiley&Sons,Inc.

EditionHistory

JohnWiley&Sons(1e,2012)

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerial fromthistitleisavailableathttp://www.wiley.com/go/permissions.

TherightofRobertM.Metzgertobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsinstandardprintversionsofthis bookmaynotbeavailableinotherformats.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons,Inc.and/oritsaffiliatesintheUnitedStates andothercountriesandmaynotbeusedwithoutwrittenpermission.Allothertrademarksarethepropertyoftheirrespectiveowners.JohnWiley& Sons,Inc.isnotassociatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowofinformationrelatingtothe useofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertor instructionsforeachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusage andforaddedwarningsandprecautions.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties, includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextended bysalesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductis referredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe informationorservicestheorganization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwiththe understandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmay havechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanyloss ofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationDataAppliedfor: ISBN:9781119755777(paperback)

CoverDesign:Wiley

CoverImages:©abstractbackground©Govindanmarudhai/GettyImages,figuresCourtesyofRobertMetzger, Constructionequipment©skodonnell/GettyImages

Setin9.5/12.5ptSTIXTwoTextbyStraive,Pondicherry,India

Contents

Foreword xvii

PrefaceandPhilosophy xix

AbouttheCompanionWebsite xxiii

1FundamentalParticles,FundamentalForces,andMathematicalTools 1

1.0Introduction 1

1.1FundamentalForces,ElementaryParticles,Nuclei,andAtoms 2

1.2ForceOne:Gravitation 16

1.3ForceThree:WeakForce 17

1.4ForceFour:StrongForce 17

1.5ReviewofMathematicalConcepts 24

1.5.1MathematicsandStatistics 24

1.5.2Functions,Equations,andFunctionals 24

1.5.3Quadratic,Cubic,andQuarticEquations 24

1.5.4PartialDerivatives 27

1.5.5Jacobians 30

1.5.6Lineintegral 30

1.5.7TheGauss–Green–StokesTheorem 30

1.5.8Techniquesofintegration 31

1.5.9DifferentialForms 33

1.5.10InfiniteSeries 33

1.5.11SumandIntegralKillers:TheKroneckerDeltaandtheDiracDeltaFunction 34

1.5.12OrdinaryDifferentialEquations(ODEs) 35

1.5.13TheLagrangeMethodofUndeterminedMultipliers 37

1.5.14PartialDifferentialEquations(PDEs) 38

1.6Mechanics,Vectors,Tensors,andDeterminants 39

1.6.1ForcesandLinearMomentum 39

1.6.2DimensionalAnalysis 39

1.6.3UnitSystems 39

1.6.4Vectors 41

1.6.5Determinants 42

1.6.6Matrices 44

1.6.7Tensors 45

1.6.8SimilarityTransformations 45

1.6.9Eigenvalue-EigenvectorProblem 46

1.6.10PlanarRotations 47

1.6.11EulerianRotations 48

1.6.12CovariantandContravariantVectorsandTensors 49

1.6.13Covariant 49

1.6.14MomentofInertiaandAngularMomentum 50

1.6.15DerivativeOperators: “SkiSlopes,”“Hernias,” and “Curls” 51

1.6.16Gradient 52

1.6.17Divergence 52

1.6.18Curl 52

1.6.19Gauss–Green–StokesTheorem 53

1.6.20Combinatorics 54

1.7Hooke’sLaw,One-dimensionalChain,DispersionRelations,andStress–StrainTensors 55

1.7.1LongitudinalMechanicalWavesSubjectedtoHooke’sLaw 57

1.7.2LongitudinalElasticWavesina1DArrayofEqualMassesandSprings 57

1.7.3One-dimensionalChainwithTwoKindsofAtoms:ABandGapAppears 59

1.7.4StressandStrainTensors 61

1.8Lagrange’sFunctionandHamilton’sFunction 62

1.9ForceTwo:Electromagnetism 63

1.9.1Coulomb’sLawandAmpère’sLaw 63

1.9.2MaterialMediaandTheirReactiontoExternalFields 65

1.9.3Maxwell’sEquations 66

1.9.4ScalarandVectorPotentials 70

1.9.5PolarizationofElectromagneticWaves 71

1.9.6Multipoles 72

1.9.7ElectricDipoleMoments 73

1.9.8ElectricMultipoleMoments,PolarizabilitiesandHyperpolarizabilities 73

1.10TheSizeofFundamentalParticlesandthePhysicalMeaningofQuantumNumbers 74

1.11SpecialRelativity 75

1.12FeynmanDiagrams 79

1.13GeneralRelativity,GravityasaCurvatureofSpace-TimeandtheSizeoftheUniverse 80

1.14ElementsofOptics 83

1.14.1JonesVector 88

1.14.2AnisotropicIndicesofRefraction 88

1.14.3Mirrors 89

1.14.4PrismsandGratings 92

1.15Transforms 94

1.15.1ConvolutionTheorem 97

1.15.2LaplaceTransforms 98

1.15.3WaveletTransform 100

1.16ContourIntegrationandKramers–KronigRelations 100

1.17ErrorAnalysis 102

1.17.1Errors 102

1.17.2PropagationofErrors 102

1.17.3GaussianNormalErrorProbabilityFunction 103

1.17.4BinomialDistribution 104

1.17.5PoissonDistribution 104

1.17.6LeastSquaresorLinearRegressionAnalysis 104

1.18Statistics 105

1.19GeneralReferences 107 References 137 End-of-ChapterProblems 138

2QuantumMechanics 147

2.0Introduction 147

2.1QuantumPostulates 147

2.1.1Bras,Kets,andHermitianOperators 151

2.2QuantumMechanicsoftheFreeElectron 154

2.3TheParticleinaBox 155

2.3.1TunnelingorBarrierPenetrationorScatteringinOneDimension 157

2.3.2RadioactiveDecay 160

2.3.3GamowCalculation 161

2.4TheHarmonicOscillator 162

2.5TheHamiltonianfortheOne-electronAtominaCentralField 165

2.6TheRigidRotor 173

2.7TheHamiltonianandEigenfunctionsfortheN-electronAtomorMolecule 174

2.8SpaceQuantization:theAllowedOrientationsofOrbitalandSpinAngularMomenta 175

2.9AufbauforAtoms 176

2.10LewisOctets 177

2.11PromotionandHybridizationofAtomicOrbitals 177

2.12BondinginHydrogenMolecule:ValenceBondvs MolecularOrbitalandVariationalApproaches 178

2.13AufbauforMolecules: σ and π Bonding 179

2.14PerturbationTheory 182

2.15TheHartree–FockMethod 184

2.16TheRoothaan–HallMatrixFormulationoftheHartree–FockProblem 185

2.17ImplementationoftheHartree–FockMethod 189

2.18ConfigurationInteraction 190

2.19DensityFunctionalTheory(DFT) 191

2.20MolecularMechanics 194

2.21TheHückelProblem,or “Simple” HückelMolecularOrbitalTheory(SHMO) 194

2.22ExtendedHückelTheory 199

2.23Pariser–Parr–PopleTheory 199

2.24NeglectofDifferentialOverlap(NDO)Methods 200

2.25MagneticMoments,Landé g-factor,LarmorPrecession,Spin–OrbitCoupling,andThomasPrecession 204

2.25.1LarmorPrecession 206

2.25.2The g =2Puzzle,Stated 208

2.25.3Spin–OrbitInteraction 208

2.25.4The g =2PuzzleSolved:ThomasPrecession 209

2.26MoreTermsoftheHamiltonianOperatorforaMany-ElectronAtomorMolecule 211

2.27 “VanderWaals” InteractionsinMolecules 214

2.28AtomicStructure: LS (Russell–Saunders)vs. jj Coupling 216

2.29MolecularSpectroscopy 219

2.30Einstein A and B Coefficients 223

2.31AbsorptionofLight:Beer–Bouguer–LambertLaw,orBeer’sLaw 225

2.32Time-DependentPerturbationTheory:TheRabiFormula 227

2.33Fermi’sGoldenRule 229

2.34Photon–MoleculeInteraction – TheHamiltonian 232

2.35TransitionMomentsandEinsteinCoefficients 235

2.35.1OscillatorStrength 236

2.36QuantumElectrodynamics 236

2.37GeneralRadiativeTransitions 237

2.38Staticvs.ResonantDetection 239

2.39StaticElectric–DipoleSelectionRulesfortheOne-ElectronAtom 239

2.40StaticElectric-DipoleSelectionRulesfortheHarmonicOscillator 240

2.41LifetimesfromResonanceLineshapes 241

2.42LightScattering 241 References 271 End-of-ChapterProblems 273

3Thermodynamics 277

3.0ReviewofThermodynamics 277

3.1TheThree(PlusOne)LawsofThermodynamics 277

3.1.1ZerothLawofThermodynamics(Transitivity) 277

3.1.2FirstLawofThermodynamics(ConservationofEnergy –“YouCan’tWin”) 277

3.1.3SecondLawofThermodynamics(“YouCannotEvenBreakEven”) 278

3.1.4ThirdLawofThermodynamics 278

3.2UsefulAuxiliaryFunctions:Enthalpy,HelmholtzFreeEnergy,andGibbsFreeEnergy 279

3.3PerfectDifferentials(Two-Forms) 279

3.4UsefulMeasurables:ThermalExpansivity,HeatCapacity,Joule–ThomsonandIsothermalThompson Coefficients,andtheChemicalPotential 281

3.5GibbsPhaseRule 283

3.6CrystallineandAmorphousSolids 284

3.7Liquids 284

3.8PerfectGasLaw,the PVT Surface,thevanderWaalsEquationandVirialEquations 285

3.9ArrheniusAssumption 290

3.10MoreAboutGases:Maxwell–BoltzmannDistribution,CollisionFrequency,MeanFreePath,andGaseous Effusion 291

3.11MoreAboutLiquids 292

3.11.1Osmosis 293

3.11.2Superfluid 294

3.12MoreAboutSolids 294

3.12.1MagneticSolids 294

3.12.2Electrets 295

3.13LiquidCrystals 295

3.14Two-componentLiquid–VaporPhaseDiagrams 295

3.15Two-componentSolid–LiquidPhaseDiagramsforSolid–LiquidEquilibria 298

3.16TheChemicalPotential,IdealSolutions,andColligativeProperties 298

3.16.1Freezing-TemperatureDepression 299

3.17Two-DimensionalVersionofthePerfectGasLaw 300

3.17.1MicellesandLiposomes 304

3.18ContactAngleandSurfaceTensionMeasurements 306

3.19AdiabaticandDiathermalWallsandFixed-TemperatureBaths 308

3.20ThermodynamicEfficiency:TheCarnot,Otto,Diesel,andRankineCycles 308

3.21InternationalStandardsforTime,Mass,Length,Temperature,andBrightness 310

3.22StandardStatesandEnthalpiesandGibbsFreeEnergiesofFormation 311

3.23BondEnthalpies 313

3.24Electronegativity 318

3.25ReachingforHighandLowTemperatures 320

3.26AttainmentofHighandLowPressures 321

References 321

End-of-ChapterProblems 322

4StatisticalMechanics 327

4.0Introduction 327

4.1ReplicasandEnsembles,Fermions,Bosons,andBoltzons 328

4.1.1FermionPostulate 329

4.1.2BosonPostulate 329

4.1.3BoltzonPostulate 329

4.2CB,FD,andBEDistributions,andtheMicrocanonicalEnsemble 330

4.2.1MaximumProbability 331

4.3Canonical,GrandCanonical,Isothermal-Isobaric,andGeneralizedEnsembles 333

4.4LinksBetweenthePartitionFunctionsandSomeThermodynamicFunctions 338

4.5HeatCapacities 338

4.5.1Translation 339

4.5.2Rotation 339

4.5.3NuclearSpinEffectsonRotation 340

4.5.4Vibration 341

4.5.5ElectronicExcitation 341

4.5.6EinsteinandDebyeTheoriesoftheLow-temperatureHeatCapacityofSolids[4.2] 342

4.5.7DebyeTheoryoftheHeatCapacityofSolids 342

4.6Black-BoxRadiation,andtheBirthofQuantumMechanics 343

4.7ElectronicHeatCapacity:Drudevs.Fermi–Dirac 346

4.8MagneticSusceptibilities 349

4.8.1GeneralPhenomenology 349

4.8.2DiluteEnsembleofParamagneticIons 350

4.8.3Diamagnetism 352

4.8.4Ferromagnetism 355

4.9ElectricSusceptibilities 356

4.10UniversalTheoryofCriticalPhenomena 360 References 360 End-of-ChapterProblems 361

5Kinetics,Equilibria,andElectrochemistry 363

5.0Introduction 363

5.1Energetics,ReactionCoordinate,TransitionStates,Intermediates,andCatalysis 363

5.2ClassificationofReactionTypes 367

5.3First-OrderandUnimolecularReactions 368

5.3.1Carbon-14Dating 368

5.4Second-Order(Unmixed)andUnmixedBimolecularReactions 369

5.5Second-Order(Mixed)andMixedBimolecularReactions 369

5.6Third-Order(Unmixed)andUnmixedTermolecularReactions 370

5.7ReversibleReactions 370

5.8ConsecutiveReactions 371

5.9TheSteady-StateApproximationandtheRate-DeterminingStep 372

5.10ApproximationMethods:theMichaelis–MentenEquation 372

5.11ChainReactions.TheReactionofHydrogenandBromineatHighTemperature 375

5.12UsingLaplaceTransformstoSolveKineticsEquations 377

5.13ReactionRateTheoriesandEnergySurfaces 378

5.14MarcusTheoryofElectronTransfer 380

5.15EquilibriainAqueousSolution:pH 383

5.16EquilibriainNonaqueousSolvents 391

5.17LewisAcidsandLewisBases 392

5.18Electrochemistry:ElectrodePotentialsandtheNernstEquation 393

5.19Gouy–ChapmanDouble-LayerTheory 405

5.20Nernst–PlanckandCottrellEquations 406 FurtherReading 409 References 409 End-of-ChapterProblems 410

6Symmetry 411

6.0Symmetry 411

6.1SymmetryinCrystals 411

6.2SymmetryOperationsandPointGroups 412

6.3GroupTheoryandCharacterTables 418

6.4BravaisLattices 427

6.5The32CrystallographicPointGroups 432

6.6The17PlaneGroups 433

6.7The230CrystallographicSpaceGroups 434

6.8ListingofElements,SimpleCompounds,andTheirCrystalStructures 443

6.9TheWigner–SeitzCell 455

6.10ReciprocalLattice 456

6.11Symmetryof2DSurfaces 458

6.12DescentofSymmetry 459

6.13CovariantandContravariantTransformations 459

6.13.1Covariant 459

6.13.2Contravariant 460

6.13.3FourbyFour 461

6.13.4Generationof230SpaceGroupsUsing4by4Matrices 462

6.14ExampleofDescentofSymmetry:VO2 462

References 466

7SolidStatePhysics 469

7.0Introduction 469

7.1ElectricalResistance,HallEffect,DrudeModel,Tunneling,andtheLandauerFormula 469

7.2Fermi–DiracStatisticsforElectronGas:SommerfeldModel 479

7.3X-rayDiffraction 484

7.4QuantumNumbersinaMacroscopicSolid:BlochWaves 487

7.5BlochWavesinOneDimensionandDispersionRelations 488

7.6BandStructures 490

7.7TheoreticalMethodsforComputingWavefunctionsinSolids 495

7.7.1 TheTight-BindingMethod 495

7.7.2CellularMethod 497

7.7.3BandStructurefortheMuffin-tinPotential 498

7.7.4AugmentedPlaneWaves(APW) 498

7.7.5OrthogonalizedPlaneWaves(OPW) 498

7.7.6HubbardHamiltonian 498

7.8MixedValenceandOne-DimensionalInstabilities 498

7.9DefectsandMobileExcitationsinSolidsandMolecules 500

7.10Superconductivity 501

7.11LatticeEnergies:Madelung,Repulsion,Dispersion,Dipole–dipole,andOthers 505 References 515

8ElectricalCircuits,Amplifiers,andComputers 519

8.0Introduction 519

8.1ElectricalComponents 519

8.2SimpleCircuitswithNoRectificationorAmplification 521

8.2.1Resistors 522

8.2.2Capacitance 522

8.2.3Capacitors 522

8.2.4Inductance 523

8.2.5Inductors 523

8.2.6Kirchhoff ’sRulesforCircuits 523

8.2.7SeriesRLCCircuit 524

8.3VacuumTubeDiode 528

8.4VacuumTubeTriode 530

8.5ConductioninPureandDopedSiandGe 533

8.6RectificationinpnJunctionDiodesorRectifiers 536

8.7pnpandnpnTransistors 540

8.8Small-SignalTheoryforTransistors 546

8.9Large-SignalBehaviorofJunctionTransistors 549

8.10UnipolarorField-EffectTransistors(FET) 550

8.11JFETs 554

8.12OperationalAmplifiers 554

8.13HistoricalIntroductiontoComputers 557

8.14ElementaryDigitalConcepts 558

8.15ComputerArchitecture 560

8.16Compilers 561

8.17SimpleProgramming 562

8.18CommunicatingwithaComputerOperatingSystemCommands 562 References 574 End-of-ChapterProblems 575

9Sources,Sensors,andDetectionMethods 577

9.0Introduction 577

9.1CosmicRays 577

9.2Source:IsotopesandFissionEnergySources 578

9.3Source:SolarEnergy 583

9.4Source:Earth-BasedNuclearFusion 588

9.5Source:PhotovoltaicCells 589

9.6X-rays 592

9.7CherenkovandSynchrotronRadiation,Bremsstrahlung 597

9.8ConventionalLightSources 597

9.9MicrowaveSources 598

9.10MasersandLasers 599

9.11Lightning 606

9.12St.ElmoFire 606

9.13AuroraBorealis 607

9.14Fireflies 607

9.15ArcsandSparks 607

9.16Flames 607

9.17Light-EmittingDiodes:Inorganic,Organic,andPolymeric 608

9.18ChemicalExplosivesandHigh-EnergyCompounds 609

9.19StorageBatteriesandElectrochemicalCells 610

9.19.1PracticalCellsandBatteries 613

9.20GenerationofHighVoltages 615

9.21TimeSensors 615

9.22MassSensors 615

9.22.1Two-PanBalances 615

9.22.2MagneticallyDampedOne-PanBalances 616

9.22.3Load-CellBalances 616

9.22.4Force-CoilAnalyticalBalances 616

9.22.5ThermogravimetricAnalyzer(TGA) 616

9.22.6QuartzCrystalMicrobalance 617

9.23TemperatureSensors 617

9.23.1LiquidinGlassThermometers 617

9.23.2PlatinumResistanceThermometer 617

9.23.3Thermistors 618

9.23.4Bolometers 618

9.23.5QuartzCrystalThermometer 620

9.23.6Pyrometers 620

9.24PressureSensors 620

9.24.1MercuryManometer 621

9.25HeatCapacities 622

9.26PhotographicPlatesandFilms 623

9.27WilsonCloudChamberandGlaserH2 BubbleChamber 624

9.28ScintillationCounter 624

9.29Geiger–MüllerCounter 624

9.30ProportionalCounters 624

9.31SparkChamber 624

9.32Photomultipliers 625

9.33X-rayAreaDetectors(ArrayDetectors) 625

9.34X-rayandInfraredFluoroscopyandImageIntensifiers 625

9.35DirectSemiconductorDetectors 625

9.36Charge-CoupledDevices 626

9.37PhotoelectricCells 626

9.38Interferometers 627

9.39SuperconductingQuantumInterferenceDeviceMagnetometers 628

9.40AbsorptionWavemeter 630

9.41Magnetometers 630

9.42VoltageSensors 631

9.43SlitsandBandwidth 632

9.44Noise 632

9.45Phase-SensitiveDetectionorLock-inAmplifiers 633

9.46HeterodyneDetection 633

9.47DerivativeDetection 634 References 634

10Instruments 635

10.0Introduction 635

10.1PhysicalSeparations:FractionalCrystallizationandDistillation 635

10.2Chromatography 637

10.3BiochemicalSynthesizersandPolymeraseChainReaction 639

10.4ElementalAnalysis 639

10.5MassSpectrometry 640

10.5.1Application(DevelopedbyC.Cassady):AnalysisofPeptidesbyMALDI/TOF-MS 643

10.5.2Application:IonizationandElectronAffinity 646

10.5.3CombinationInstruments 648

10.6OpticalandElectronMicroscopy 649

10.7ScannedProbeMicroscopies:STM,AFM,MFM,andLFM 651

10.8X-rayDiffractionofOrderedCrystals,Liquids,andDisorderedSolids 656

10.8.1X-rayScatteringandDiffractionIntensities 659

10.8.2TheElectronDensityFunctionandthe “PhaseProblem” 661

10.8.3DirectMethods 661

10.8.4PattersonandSymmetrySuperpositionMethods 662

10.8.5Least-SquaresRefinement 662

10.8.6ProteinCrystallography 663

10.8.7Liquids,Gases,andDisorderedSolids 664

10.8.8Small-AngleScattering 665

10.8.9DiffuseX-rayScattering 665

10.8.10NeutronDiffraction 666

10.8.11EXAFSandXANES 666

10.9Spectroscopy 667

10.10Visible–Ultraviolet(V–UV)Spectroscopy 667

10.10.1PolarizationofV–UVAbsorption 668

10.10.2Application:SpecularReflectionbyCrystalFaces 668

10.10.3OpticalConductivity 671

10.10.4VacuumUltravioletSpectroscopy 671

10.10.5Application:FirstExcitedStateofLinearPolyenes 671

10.10.6Application:Solvatochromism 671

10.11AtomicAbsorption,AtomicEmission,andAtomicFluorescenceSpectroscopies 672

10.12InfraredandNear-InfraredSpectroscopy 673

10.12.1FT-IRAdvantages 675

10.13RamanSpectroscopy 677

10.14InelasticElectronTunnelingSpectroscopy 679

10.15FluorescenceSpectroscopy 682

10.16MicrowaveSpectroscopy 683

10.17SurfacePlasmonResonance 684

10.18X-rayPhotoelectronSpectroscopy(XPS)andAugerElectronSpectroscopy(AES) 684

10.19MagneticMeasurements 687

10.20MagneticResonance 696

10.20.1TheFamilyofMagneticResonanceTechniques 696

10.20.2NuclearMagneticResonance(NMR) 699

10.20.3ElectronParamagneticResonance(EPR)Spectrometer 699

10.20.4TheBlochEquationsforMagneticResonance 701

10.20.5SlowPassageorEquilibriumorSteady-StateSolution 703

10.20.6SmallMagneticField:Measurementof T2 705

10.20.7Measurementof T2 705

10.20.8Measurementof T1 706

10.20.9RapidPassage 706

10.20.10FreeInductionDecay 707

10.20.11Spin-EchoNMR 708

10.20.12SelectiveSaturation 708

10.20.13NMRSpectrumofEthanol 709

10.20.14ChemicalShiftsinNMR 709

10.20.15MultipletsinNMR 710

10.20.16ParamagnetismKillstheNMRSpectrumbyBroadening 711

10.20.17MagnitudeofRelaxationTimes 711

10.20.18NMRinSolids 712

10.20.19Magic-AngleSpinning 712

10.20.20Multiple-PulseNarrowing 712

10.20.212DNMR 712

10.20.22DerivativeDetectionofEPRTransition 713

10.20.23StableFreeRadicals 714

10.20.24 g-Tensor 714

10.20.25Fine-StructureSplittingsinESRSpectraofTripletStates 716

10.20.26SpinLabeling 716

10.20.27NuclearResonanceinParamagneticSystems:KnightShift 717

10.20.28OverhauserEffect 717

10.20.29Electron–NucleusDoubleResonance(ENDOR)Spectroscopy 718

10.20.30OpticallyDetectedMagneticResonance(ODMR) 718

10.20.31NuclearQuadrupoleResonance(NQR) 719

10.21MössbauerSpectroscopy 723

10.22ElectrochemicalMethods 727

10.23ElectricSusceptibility 733

10.24NonlinearOpticalProperties 734

10.25Ellipsometry 737

10.26Calorimetry 739

10.26.1ReactionCalorimeters 741

10.26.2Constant-PressureReactionCalorimeters 741

10.26.3High-energyParticleCalorimeter 744

References 744

11InorganicChemistryandNanomaterials 749

11.0Introduction 749

11.1Periodicity,theDiscoveryandAbundanceoftheChemicalElements,andValences 750

11.2Nomenclature 757

11.3IonizationEnergies 757

11.4ExpansionofAcidandBaseConcepts 758

11.5HardandSoftAcidsandBases 761

11.6Eighteen-Electron “Rule” 761

11.7MeasuresofRadiiofAtomsandIons 762

11.8BondEnergies 770

11.9IonicRadiiasaFunctionofCoordinationNumber,andCrystalLattices 774

11.10StructureandBondingofTransitionMetals 778

11.11TheVirtuesofValence-BondTheory 778

11.12TheVirtuesofVSEPRTheory 780

11.13TheVirtuesofCrystalFieldTheory 780

11.14TheVirtuesofLigand-FieldTheory 785

11.15TheVirtuesofWalshDiagrams 790

11.16ElectronTransferTheoryandMixedValence 790

11.17MadRompThroughthePeriodicTable 791

11.17.1FromGroup1:Hydrogen 791

11.17.2FromGroup1:AlkaliMetals 793

11.17.2.1FlameTest 794

11.17.3FromGroup2:AlkalineEarths 794

11.17.4FromGroup2:Calcium 794

11.17.5FromGroup3:Lanthanoids(La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy)andActinoids(Ac,Th,Pa,U,Np,Pu,Am, Cm,Bk,Cf,Es,Fm,Md,No,andLr) 795

11.17.6FromGroup4:Titanium 796 11.17.7FromGroup6:Chromium 796 11.17.8FromGroup6:Manganese 796 11.17.9FromGroup8:Iron 797

11.17.10Ferromagnetism,Antiferromagnetism,andFerrimagnetism 799 11.17.10.1PresentFrontierofFlexibleMagneticMedia 799 11.17.11Single-moleculeMagnets(SMMs) 801 11.17.12FromGroup10:Platinum 801 11.17.13FromGroup12:MercuryandSuperconductivity 801 11.17.14FromGroup13:Boron 801 11.17.15FromGroup13:Aluminum 802 11.17.16FromGroup13:GalliumandIndium 802 11.17.17FromGroup14:CarbonAllotropes 802 11.17.18CyclicOxocarbonAnions 805 11.17.19Photosynthesis,OxidesofCarbon,andGlobalWarming 806 11.17.20FromGroup14:Silicon 808 11.17.21FromGroup14:Tin 808 11.17.22FromGroup14:Lead 808 11.17.23FromGroup15:Pnictogens(N,P,As,Sb,Bi,andMc) 809 11.17.24FromGroup15:Nitrogen 809 11.17.25FromGroup15:Phosphorus 810 11.17.26FromGroup15:Arsenic 812 11.17.27FromGroup16:Oxygen 813 11.17.28OzoneO3 813 11.17.28.1Smog 813 11.17.29FromGroup16:Sulfur 814 11.17.30FromGroup16:Polonium 814

11.17.31FromGroup17:Fluorine 814

11.17.32FromGroup17:Chlorine 815

11.17.33FromGroup18:Helium 816

11.17.34FromGroup18:Argon 816

11.17.35FromGroup18:Radon 816

11.17.36FromGroup18:HalidesofNobleGases 817

11.18ReactionsofInorganicComplexes 817

11.19Organometallics 819

11.20IndustrialInorganicChemistry 819

11.21ElementsEssentialtoHumanNutrition 821

11.22Nanomaterials 821

11.23NanoparticleSynthesis 822

11.24SizeDispersioninNanoparticles 824

11.25Excitons,Plasmons,andQuantumDotsinSemiconductingNanoparticles 824 References 827

End-of-ChapterProblems 830

12OrganicandPolymerChemistryandCatalysis 833

12.0Introduction 833

12.1StructureandBonding 835

12.2Nomenclature 836

12.3FunctionalGroups 838

12.4OpticalActivityandEnantiomers 843

12.5ReactivityofMolecules 847

12.6LewisAcidsandBases,StrongandWeak 851

12.7Resonance 851

12.8Electron-pairPushing 851

12.9WalshDiagrams 852

12.10ManyWaysofLookingatThermalorPhotochemicalCycloadditions 855

12.10.1TheDiels–AlderReaction 859

12.11PolarityofSolutesandSolvents 860

12.12TrendsinAcidDissociationConstantsExplained 860

12.13ReactionTypes 862

12.14CompendiumofReactionTypes 863

12.14.1SN1(Substitution,Nucleophilic,Unimolecular) 863

12.14.2SN2(Substitution,Nucleophilic,Bimolecular) 869

12.14.3 SN 1 (Substitution,Nucleophilic,Unimolecular,AllylicRearrangement) 870

12.14.4SN2 (Substitution,Nucleophilic,Bimolecular,AllylicRearrangement) 870

12.14.5SE1(Substitution,Electrophilic,Unimolecular) 870

12.14.6SE2(Substitution,Electrophilic,Bimolecular):EandFareelectrophiles 871

12.14.7SRN1(Substitution,Radical,Nucleophilic,Unimolecular) 871

12.14.8SH1(Substitution,Homolytic,Unimolecular) 872

12.14.9SH2(Substitution,Homolytic,Bimolecular) 872

12.14.10SN2Ar(alsoKnownasSNAr)(Substitution,Nucleophilic,Bimolecular,Aromatic) 873

12.14.11SE2Ar(Substitution,Electrophilic,Bimolecular,Aromatic) 873

12.14.12E1(Elimination,Unimolecular) 873

12.14.13E2(Elimination,Bimolecular) 874

12.14.14E1cB(Elimination,Unimolecular,ConjugateBase) 874

12.14.15Ei(Elimination,Intramolecular) 874

12.14.16AdE2(Addition,Electrophilic,Bimolecular) 875

12.14.17AdN2(Addition,Nucleophilic,Bimolecular) 875

12.14.18AdH2(Addition,Homolytic,Bimolecular) 876

12.14.19E-Ad(Elimination,Addition) 877

12.14.20BAc2(BasicConditions,AcylTransfer,Bimolecular) 877

12.14.21AAc2(AcidicConditions,AcylTransfer,Bimolecular) 877

12.15MolecularRearrangements 878

12.16OrganometallicCompounds 879

12.17Catalysis 880

12.17.1TurnoverNumber 882

12.18LinearFreeEnergyRelationships 889

12.19RetrosyntheticAnalysis 890

12.20StableFreeRadicals 891

12.21OrganicPolymers 893

12.22ProtectingGroups 897

12.23EnvironmentalConcerns 897

ListofNamedOrganicReactions 897

References 913

End-of-ChapterProblems 917

13Biochemistry 923

13.0Introduction 923

13.1CellsandCellWalls 924

13.2AminoAcidsandOligopeptides 928

13.3PeptidesandProteins 931

13.4Enzymes 936

13.5Chymotrypsin 938

13.6Lysozyme 939

13.7CarbohydratesandGlycoproteins 941

13.8TheImmuneSystem 944

13.9Nucleotides,NucleicAcids,DNA,andRNA 946

13.10GeneExpressionfromDNAtoRNAYieldsPolypeptideAssemblyonaRibosome 950

13.11DNAReplication 953

13.12DNAManifoldReplication,ClonesandtheGenome 955

13.13Bio-energeticsI:AMP,ADP,andATP 958

13.14Bio-energeticsII:AnaerobicGlycolysis 960

13.15Bio-energeticsIII:CitricAcid(orKrebs)Cycle 962

13.16Vitamins 964

13.17OxidativePhosphorylation 964

13.18PhotosynthesisandPhotophosphorylation 964

13.19Neurons,theNervousSystem,andtheHumanBrain 970

13.20PartingThoughts 975

References 976

End-of-Chapter-Problems 976

Index 979

Foreword

Thisbookisexceptional,likelyunique,forboththebreadthofitscoverageandthedepthofthepresentation.Itismuch morethanatextbookofphysicalchemistry.Itisacompendiumofphysicalscience,thatsomehowmanagestopresentall relevantsubjects,fromparticlephysicsandgeneralrelativitytolifescience,infullmathematicaldetail.Thebookassumes littleknowledge,evenofthemathematicaltools,forwhichitprovidescompleteinstructionandexamples.Itisamust-have book,notonlyforstudentsbutalsoforpracticingscientistsinawiderangeofdisciplines.

Thebookbelongstoagreattraditionofphysicalchemistry,whichoriginatedinstatisticalphysicsandquantummechanicsoverahundredyearsago,andwhichhasledtothe “toolbox” ofthebooktitle.Applicationofthese “tools” hasledto discoveriesinchemistry,lifescience,andmedicine.Thetrajectoryfromquantummechanicstomedicinewaspersonifiedby LinusPauling,atoweringfigureoftwentiethcenturychemistry.Paulingdefinedthepathfrom “thenatureofthechemical bond” toprinciplesofproteinstructuretomolecularmedicine.TheauthorofthisbookwasastudentofHardenMcConnell, anacolyteofPauling.ThebroadsweepofthebookfromquantumchemistrytobiochemistryandtherigorofthepresentationarelegaciesofPaulingandthegreatcenturyofphysicalscience.

Thebookwill,Ihope,helpsustaintheselegaciesagainstthecountervailingpressuresofthemodern,informationage.It wasoncepossibletobeageneralistandmaintainanactive,meaningfulinterestinallareasofscience.Paulingcouldaddress importantquestionsrangingfromatomicphysicstomedicine.Today,withtheproliferationofinformation,itisdifficultto keepabreastofdevelopmentsinevenonenarrowsliceofoneresearcharea.Thejoyofscience,thepossibilityofpondering andevenunderstandingallofnature,ismuchdiminished.

Asattentionbecomesfocusedoninformation,thereisatendencytowardsuperficiality.Thereislessinterestindiscoveringfundamentalprinciples.Thebookpushesbackagainstthisunfortunatetendency,byderivingmuchofchemistryfrom firstprinciples.Studentsandactivescientistsalikemaybeinfluencedtoseektheunderlyingbasisofthings.

Thisbookthereforegoesbeyondinstructioninphysicalchemistrytoakindofmanifestoofscience.Itnurturesabroad interestandadesiretounravelthemysteriesofnature.Despiteallthathasbeenlearned,thesemysteriesabound.I,forone, willcarrythisbookasacompanion,forbothsourceandstimulation.Ihopeagenerationofyoungphysicalchemistswilldo thesame.

PrefaceandPhilosophy

“Felixquipotuitrerumcognoscerecausas” =Happyishewhocouldknowthecausesofthings [PubliusVergiliusMaro,79BC–19BC, Georgics,Book2line490]

“Provandoeriprovando” (=testandtestagain)

MottooftheAccademiadelCimento(foundedinFlorence,Italy1657)

“Fram” (=Norwegianfor ”Forwards” =thenamegiventohisice-breakingshipbythe ArcticexplorerandhumanistFridjofNansen(1861–1930))

“Nevergivein.Nevergivein.Never,never,never,never,nevergivein.” [SirWinstonChurchill(1874–1965)atHarrowSchool,29October1941]

TenyearshaveelapsedsincetheFirstEditionofthisbookwaspublishedin2012.Itfaredreasonablywellasacompendium, orencyclopedicreviewoftheoriesandexperimentsinphysicsandchemistry,butitfailedmiserablyasatextbook:almostno classroomadoptions.ThisSecondEditionistryingtohelpfixshortcomings,andaddnewmaterial.

Asbefore,theintendedaudienceforthisToolboxremainsthebeginningresearcher,whooftenhasdifficultyinreconcilingrecentorpastclassroomknowledgeintheundergraduateorfirst-yeargraduatecurriculumwiththetopicsandresearch problemscurrentinresearchlaboratoriesinthetwenty-firstcentury.

Whileseveralexcellentandspecializedmonographsdoexistforallthetopicsdiscussedinthisbook,tomyknowledge thereisnosinglebook,thatcoversadequatelythedisparatetechniquesneededforscientificadvancesinthetwenty-first century.Inparticular,thereisaneedtofind “whatwillthisorthattechniquedoformyresearchproblem?” Theaimofthis Toolboxisthereforefourfold:

1) summarizecommonbasesofmathematics,physics,chemistry,andmaterialsscience, 2) explaintopicsandtechniquesthatunderpinscientificinstruments, 3) discusstheadvancedinstrumentationavailableinresearch, 4) reviewinorganicandorganicchemistry,andbiochemistry.

Thebookisinterspersedwithproblemstodo:sometrivial,somedifficult.Thiskeepsthevolumemorecompact,and shouldbeausefulpedagogicaltool.Thisbooktriestobeamathematicallydeep,yetbriefandusefulcompendiumofseveral topics,whichcanand should becoveredbymorespecializedbooks,courses,andreviewarticles.

Throughout,theaimistobringthestudentuptospeed.Theteachingofchemistryleanedratherheavilytowardmathematicalandphysicalrigorinthe1960s,butthisfervormayhavediminished,aschemical,physical,andbiochemicalcomplexityeludedsimplemathematicalprecision,andquiteoftenthetrueanswerswouldappearassmalldifferencesbetween largenumbers.

Lamentably,therecenteducationaltrendhasbeentotrainwhatcouldbecalledone-dimensionalscientists,verygoodin onesubfield,butblissfullyunawareoftherest.Itissadthatwenolongerproducethosebroadlytrainedscientistsofpast generations,whowerewillingtodelveintonewproblemsfarfromtheiroriginalinterest:IamthinkingofHansBethe,Peter Debye,EnricoFermi,LinusPauling,orEdwardTeller.ThisToolboxtriestoadheretothisolderandbroadertradition, redressthetemporarymalady,andhelprestoretheuniversalityofscientificinquiry.

Since1936,TheAmericanChemicalSocietyhashadaverysuccessfulCommitteeonProfessionalTraining,thatmonitors theclassroomandlaboratorypreparationofundergraduateswithadeclaredmajorin “ACS-certified” bachelor’sprogram.

Unfortunatelynosuchmonitoringexistsfordoctoralprogramsinchemistry,mainlybecausethethrustofthefacultydirectingdoctoraldissertationsistominimizetheacademiccourseload,andmaximizethetimeastudentwillworkontheir doctoralresearch.

AsProfessorMarshallOneillonoftheUniversityofWisconsinexplainedtome,theresearchproductivityofanystudent mightbeestimatedbyasimplemultiplicationfactor(MF).Ameredatatakerwouldbeforhis/herprofessororresearch advisorMF=1.0:theprofessorcouldhavecollectedthedatahimselforherself.Amorecreativeorbetter-preparedgraduate studentwouldbeanMF>1.0(noteasytoquantify).ResearchgroupswithacumulativeMFmuchgreaterthan1.0wouldbe atremendousresourcetotheresearchadvisor,whocouldundertakehigher-impactresearchprojects.Immodestly,Iwill claimthatanystudentmasteringthecontentsofthepresenttextbookwouldraisehis/herMF.

Totheinstructor:ThisToolboxcouldbetaughtinaone-yeargraduatecoursecoveringinfairdepththeconceptsand methodsofphysical,analytical,inorganic,andorganicchemistryandalsobiochemistry,pluselementsofmaterialsscience andsolid-statephysics.Thiscoursecouldbeteam-taught.Itshouldbetaughtwithmandatoryproblemsets(studentswill connectthedotsbydoingthesuggestedproblems),andwithrecoursetotraditionaltextsthatcovere.g.quantummechanics orstatisticalmechanicsinmuchgreaterdetail.Iamremindedoftheverysuccessfulone-yearteam-taughtcoursessuchas “WesternCivilization” atStanfordUniversityinthe1960s!IhavetaughtselectedchaptersoftheFirstEditionoftheToolbox severaltimesattheUniversityofAlabamaasaone-semestercourse.

Toguidethestudenttowardthemoreimportantequations,theseareenclosedinthinblackrectangles.Insomechapters, themorearcanetopicsarerelegatedtoSpecialTopics(ST)sections,whichareenclosedinlargerectangleswithpaleblue titles.Tohelpwiththeteaching,PowerPoint® lecturesthatmirrorthetextareprovidedintheSupplementaryMaterial.The problemsareshownwithagraybackground.AnswerstoallproblemsareintheSupplementaryMaterial.Relevantanecdotesandsomepersonalrecollectionsareinterspersedwiththetexttolightenthetoneandinterruptthemonotonyoftoo manyseriousconcepts.

ToChemistryandPhysicsdepartments:TheToolboxcouldbecomeavaluableresourceforallenteringgraduatestudents, somaybestudents,eveninareasfarfromphysicalchemistry,shouldbeencouragedtobuyitandworkatitontheirown.

Tothestudent:(i)Dotheproblems;(ii)readaroundinspecializedreferencetextsthatmaybesuggestedeitherinthis Toolboxorbyyourinstructor(s);(iii)discoverwhethertheToolboxcouldbedevelopedinnewdirections;(iv)myapologies toyouiflongTableswereplacedwithinthetextassoonastheywerementioned,insteadofrelegatingthemtoappendicesat theendofchapters:Ihopethatyoudonotfallasleep,butlearntoskipovertheseTables;(v)youcouldusemybookasa doorstop.

Tomyself:ToadaptTomLehrer’s(1928–)famousquip,IamembarrassedtorealizethatatmypresentageMozarthad beendeadfor36years.

AlanMacDiarmid(1927–2007)oncesaid “Chemistryisaboutpeople”:Inthisspirit,fullnamesandbirthanddeathdates aregiventoallthescientistsquotedinthisbook;suchbriefhistoricaldatamayhelpilluminatehowandwhensciencewas done.IhaveresistedmentioningwhowasaNobelprizewinner:toomanytolist,andsomeworthyscientists,e.g.Mendeleyeff,Eyring,Edison,Slater,andTesla,werenothonored.

Ioweadeepdebtofgratitudetomanypeoplewhohaveeducatedmeoverseveraldecades,asliveteachersandsilent authors.InparticularIamindebtedtoProf.WillardFrankLibby(1908–1980),whotaughtusundergraduatesatUCLA tolovecurrentresearchproblems,andledusintoquiteafewwild-goosechases;Prof.HardenMarsdenMcConnell (1927–),wholedusatCaltechandStanfordbyexampletoseewhataretheinterestingproblemsandwhatare “trivial” problems;Prof.LinusCarlPauling(1901–1994),whotaughtmeelectricalandmagneticsusceptibilitieswithhisincomparablephotographicrecallofdataanddates,andwithhisinsightandhumanityaboutcurrentevents;Dr.RichardEdward Marsh(1922–2017)andProf.PaulGravisSimpson(1937–1978),whotaughtmecrystallography;Prof.MichelBoudart (1925–2012),whointroducedmetoheterogeneouscatalysis;Mr.WilliamD.Good(1937–1978),whotaughtmecombustion calorimetry;Prof.SukantKishoreTripathy(1952–2000)whointroducedmetoLangmuir–Blodgettfilms,andfinally, Prof.RichardPhillipsFeynman(1918–1983),whotaughtmeabouttheSchwarzschildsingularityandeventhorizons, andwhowasasourceofdeepinspiration,pleasantconversations,andmischievousfun.Thanksarealsoduetotwopersons whohelpedmegreatlyinmyacademiccareer,andtaughtmeathingortwoaboutwhatgoodsciencereallymeans:Prof. AndrewPeterStefani(1927–2014)oftheUniversityofMississippiandProf.MichaelPatrickCava(1926–2010)oftheUniversityofAlabama.Prof.CarolynJ.Cassady(UniversityofAlabama)kindlyallowedmetouseanexperimentshehad devisedforstudentsofmassspectrometry.

Thefollowingbookshaveinspiredme:(i) PrinciplesofModernPhysics,byRobertB.Leighton,(ii) TheoreticalPhysics by GeorgJoos,(iii) TheFeynmanLecturesonPhysics byRichardP.Feynman,(iv) PrinciplesofInstrumentalAnalysis byDoug

Skoog,JamesHoller,andStanleyCrouch.Inthistwenty-firstcentury,muchhelpwasobtainedon-linefromWikipedia,but “caveatemptor”!

Writingisteachingbutalsolearning;withMarcusPorciusCato(234–149BC)whowasechoingSolon(630–560BC),Idare tosayagain: “senescodiscensplurima ”

Thanksareduetoseveralfriendsandcolleagues,whocorrectederrorsandoversights:Prof.MassimoCarbucicchio (UniversityofParma,Italy),Profs.MichaelBowman,DanGoebbert,ShanlinPan,andRichardTipping(Universityof Alabama),Prof.HarrisJ.Silverstone(JohnsHopkinsUniversity),ProfessorZoltánG.Soos(PrincetonUniversity), Dr.RalphH.Young(EastmanKodakCo.),AdamCsoeke-Peck(Brentwood,California),andProf.JoelPrimack(University ofCaliforniaSantaCruz).Prof.Silverstonealsohelpedmewithsomegraphics.AfellowgroupmemberoftheMcConnell labatStanford,Prof.RogerKornberg(StanfordUniversity)agreedtowriteaForeword.

Theerrorsthatremainareallmine; errarehumanumest,sedperseverarediabolicum [LuciusAnneusSeneca(c.4BC–66AD)]. Tothereaderwhofindserrors:myapologies:Iwilltrytocorrecttheerrorsforsomenextedition;echoingwhatAkira Kurosawa(1910–1998)saidin1989,whenhereceivedanhonoraryOscarforlifetimeachievementsincinematography: “Sosorry,[I]hopetodobetternexttime.” Andifaneweditionmustbedone,in10yearsIwillbe92yearsold!Itellpeople thatwithgoodluckyourbodypartsarewarrantedfor60years;betweentheagesof60and80youareonextendedwarranty; beyondtheageof80,goodluck!

COVID-19becameadeadlypandemicforthewholeworld;formeitcausedafrustratingdelay:althoughIhadsentthe finishedmanuscripttomypublisher,Wiley/VCHinJune2020,asIwasretiringatage80fromtheUniversityofAlabama, nothingwasdoneformorethanoneyear.Theproof-readingandtypesettingwasdoneinChennai,India,andIowean immensedebtofgratitudetoMrs.ViniprammiaPremkumarandMr.KavinShanmughasundaramfortheirhardwork, patience,thoroughness,loveofdetail,andinfinitecourtesy.Hopefullythebookshouldbereadyforshipmentandsale nextyear.

RobertM.Metzger DepartmentofChemistryandBiochemistry,TheUniversityofAlabama TuscaloosaandBirmingham,Alabama,USA 15November2022

Thistextbookissupportedbyawebsitewhichcontainsavarietyofsupplementaryresources:

www.wiley.com/go/metzger/physchemtoolbox2

Onlineyouwillfind:

1) Answerstoalmostalltheproblems

2) ChartoftheNuclides

3) Powerpointlecturesforallchapters

FundamentalParticles,FundamentalForces,andMathematicalTools

“ViribusUnitis” [withunitedforces]

EmperorFranzJoseftheFirst(andthelast)(1830–1916)

“Itisdifficulttomakepredictions,especiallyaboutthefuture”

LawrenceP. “Yogi” Berra(1925–2015)

1.0Introduction

Thischapterpresentsseveralprinciplesthatunderpinthechemicaledifice;itisdividedintofourparts(JuliusCaesar’sGaul wasdividedintoonly3parts).PartOne(Sections1.1–1.4)presentsthefundamentalphysicalforceswhoseinterplayunderlie Mendeleyeff’s1 periodictableofthechemicalelements.PartTwo(Sections1.5–1.8)reviewsessentialmathematicalmethods.PartThree(Section1.9)discusseselectricityandmagnetism.PartFour(Sections1.10–1.18)discussesthemeaningof quantumnumbers,specialrelativity,generalrelativity,Feynmandiagrams,physicaloptics,mathematicaltransforms,contourintegration,andstatistics.

ThechapterconcludeswithelevenSpecialTopics:1.NaturalLinewidths;2.NuclearShellModel;3.FactoringaPolynomial;4.OtherSolutionsoftheCubicEquation;5.SolvingaQuarticEquation;6.SphericalTrigonometry;7.UnitSystemsfor Electromagnetism;8.NonlinearOptics;9.ConicSections,Ellipses,andPlanetaryMotion;10.EllipsometryinDetail;11: StandardModel,TheEightfoldWay.

Withinatraditionaltextbook,theseconceptsandmethodswouldbepresentedasneeded,butitseemedexpedienttopull themtogetherhere:thisisadeliberateefforttolinkmathematics,physics,andchemistryintoaunifiedandcoherentwhole. Inthisbook,importantequationsareboxed.Tosavespaceatthecostofelegance,fractionsaremostlyreplacedbynegativeexponentsforthedenominator.Foremphasis,doubleparenthesesareusedforthoseequationsthathadbeenpresentedearlierinthetext.

Torelievethereaderfromtoomuchseriousness.Sidelinesoccasionallyinterruptthenarrative.

Sideline1.1 Thename “physics” derivesfromtheGreekword ϕυσις (=nature,essence):earlyphysicistslike Newton2 werecallednaturalphilosophers.Theword “chemistry,” throughitsArabicprecursor alchimya ,derives fromtheGreekword χημι (=blackEarth),atributetotheEgyptians’ embalmingarts.Mathematicscomesfrom theGreek μαθημα (=learning,study).AlgebracomesfromtheArabic al-jabr (=transposition[totheothersideof anequation]).Calculus(asin “infinitesimalcalculus”)istheLatinwordforasmallpebble.

1DmitriIvanovichMendeleyeff(1834–1907).

2SirIsaacNewton(1642–1727).

ThePhysicalChemist’sToolbox,SecondEdition.RobertM.Metzger. ©2023JohnWiley&Sons,Inc.Published2023byJohnWiley&Sons,Inc. Companionwebsite:www.wiley.com/go/metzger/physchemtoolbox2

2 1FundamentalParticles,FundamentalForces,andMathematicalTools

Sideline1.2 MichaelFaraday3 wasasked “Ofwhatuseiselectricity?” Hesupposedlyanswered “Whatistheuseofa new-bornbaby?” ThissameanswerwasactuallyfirstgivenbyFranklin4 whenwitnessingtheflightoftheMontgolfierballoonoverVersaillesin1785;thisanswerwasrepeatedbyFaradayin1816aproposeofthediscoverybySir HumphryDavy5 ofseveralnewchemicalelements.

PARTONE: FundamentalForces

1.1FundamentalForces,ElementaryParticles,Nuclei,andAtoms

InafreshmanchemistryclassattheUniversityofCalifornia,LosAngeles,in1959,theinstructor,Libby,6 definedchemistry as “thestudyofelectronsandwhattheydo.” However,hetookpainstoteachusthattheseelectronswouldhave “nothingto doifatomicnucleididnotexist.” So,itbehoovesustotalkbrieflyaboutnuclei,elementaryparticles,andthefundamental forcesinthecosmos:thiswillputchemistryinitsproperperspective.

Sideline1.3 WillardLibbytoldhisphysicalchemistryclassin1960 “ifyouwanttofindoutthesciencethatisten yearsold,readabook;ifyouwanttofindoutwhatisfiveyearsold,readareviewarticle;ifyouwanttofindoutwhat isoneyearold,readascientificarticle;ifyouwanttofindwhatiscurrenttoday,pickupthetelephone.”

Thefour fundamentalforces,theirgoverningequations,themediatingparticles,theirrelativemagnitudes,andtheir rangesarelistedinTable1.1.

Forsomechemistsandmaterialsscientists,onlytheelectricalforceisconsideredessential,somuchofTable1.1may seemesoteric.Butstableatomsexistonlyiftherelevantnucleicansurvive: chemistsignorenucleiattheirownperil. Forsomeelementaryparticleexperimentalists,mostofeverything “atlowerenergies” (below1GeV)isjocularlydescribed as “chemistry.” Astronomerstrytoobserveandexplainthewholeuniverse,sotheymustworryabouteverything,startingwith gravitationandendinginnuclearstructureandchemistry!TheknownelementaryparticlesarelistedinTables1.2and1.3. Wenowintroducethefourfundamentalforces.

Forceone:Thefirst(andweakest)forceisNewton’sforceofuniversalgravitation(1687)[1.1]:

whichdescribestheattractiveforce F12 betweentwobodiesofmasses m1 and M2 placedadistance r12 apart,where G isthe constantofgravitation.Thelargestvisibleobjectsintheuniverse(galaxies,stars,quasars,planets,satellites,comets)are Table1.1 Thefundamentalforces.

a Charles-AugustindeCoulomb(1736–1806).

b Fornucleon–nucleonstronginteractionswithinnuclei,pions(=two-quarkparticles;seebelow)maybethemediatingparticles:gluonsare probablynotinvolveddirectly,sincethenucleonshaveno “colorcharge.” Theinternucleonpotentialgoestozerobeyond1.7fm=1.7×10

Source: AdaptedfromSerway[1.3].

3MichaelFaraday(1791–1867).

4BenjaminFranklin(1706–1790).

5SirHumphryDavy(1778–1829).

6WillardFrankLibby(1908–1980).

Table1.2 Fundamental(quark,gluon,graviton,neutrino)andelementary(=fundamentalplustwo-quarkandthree-quarkcombinations)particles.

ParticlenameSymbol

Quarks(fundamental,withsix “flavors” u,d,s,c,b,andt,butnotobservedassingleparticles): Upquark u ∞?~4.62/31/2+11/2+1/2 1/30 000 Anti-upquark∗ u ∞?~4.6 2/31/2 11/2+1/2 1/30 000 Downquark d ∞?~16 1/31/2+11/2 1/2 1/30 000

Anticharmedq∗ c ∞?~2490 2/31/2 100 1/30

Antibottomq∗ b ∞?~84801/31/2 100 1/30 100

Topquark t ∞?>3.4E52/31/2+100 1/30 00+1

Antitopquark∗ t ∞?>3.4E5 2/31/2 100 1/30 00 1

Fundamentalinteractioncarriers(forgluons,combinationofcolor[r,y,b]andanticolor):

Photon ν ∞ 001 11,01,0 00 000

Vectorboson W+ 3E-251.6E511 11100000

Vectorboson Z0 3E-251.8E501 11000000

Vectorboson W 3E-251.6E5 11 11 100000

Gluon1 r g ?001 10000000

Gluon2 r b ?001 10000000

Gluon3 gb ?001 10000000

Gluon4 gr ?001 10000000

Gluon5 br ?001 10000000

Gluon6 bg ?001 10000000

Gluon7 r r gg 2 ?001 10000000

Gluon8 r r + gg 2 bb 6 001 100000000

Table1.2 (Continued) ParticlenameSymbol

Leptons(elementaryparticles):

HadronsorBaryons(combinationsofthreequarks): Proton p, 1p1 ∞ 1838+11/211/2+1/2

uud Anti-proton∗ p ???1838 11/211/2+1/2

Neutron n, 0n1 925183901/21+1/2 1/2

6E-20119201/2+110

Themasses m arerestmasses,quotedrelativetothemassoftheelectron, me =9.1093897×10 31 kg,whoserest-massenergyis0.51099906MeV c 2;thecharges Q arequotedrelativetotheabsolute valueofthechargeontheelectron, e =1.60217657×10 19 C;lifetimeisgivenastheknownhalf-life(s)intheabbreviatedformat2.34E-3,whichtranslatesas τ =2.34×10 3 s;thelifetimeisgivenasinfinite forthoseparticleswhichhaveinfinitelifetimes(exceptinparticle-antiparticlecollisions). “Quarkcomp.” givesthecompositionoftheelementaryparticleintermsofitspresumedquarkcomponents. Notallunstablehadronsormesonsarelisted.Antiparticlestootherlistedparticlesareindicatedbyasterisks(∗),butnotallantiparticlesarelisted.Thequantumnumbersareforrelativecharge(Q), spin(S),parity(P),isospin(T), z-componentofisospin(Tz),baryonnumber(Ba),strangeness(St),charm(Ch),beautyorbottomness(By),andtruthortopness(Tr). a Themuonswerefirstcalledmu-mesons,butarenowbetterknownasmuons,leavingthe π mesons,orpions,astheparticleswhichmayhelp “carry” theinter-nucleonstrongforce.

Source: DatafromSerway[1.3].

Table1.3 Standardmodelofelementaryparticles.

Three historical generations of fermions I II III bosons

m =2.2 MeVc–2

Q = 2/3

Spin=1/2

Quarks

Leptons

3 colors: R,B,G u up

m =4.7 MeVc–2

Q = –1/3

Spin=1/2

3 colors: R,B,G d down

m =0.51 MeVc–2

Q = –1

Spin=1/2 e electron

m < 2.2eV c–2

Q = 0 Spin = 1/2

νe

electron neutrino

m =1.28 MeVc–2

Q = 2/3

Spin=1/2

3 colors: R,B,G c charm

m =96 MeVc–2

Q = –1/3

Spin=1/2

3 colors: R,B,G s strange

m =105.66 MeVc–2

Q = –1

Spin=1/2 μ muon

m < 1..7MeV c–2

Q = 0

Spin = 1/2

νμ muon neutrino

Notethat “ gauge ” isamisnomerfor “phase.”

m =173 MeVc–2

Q = 2/3

Spin=1/2

m = 0

3 colors: R,B,G t top g

m =4.18 MeVc–2

Q = –1/3

Spin=1/2

3 colors: R,B,G b bottom

m =1.7768 GeVc–2

Q = –1

Spin=1/2 τ tau

m < 15.5MeV c–2

Q = 0

Spin = 1/2

ντ tau

neutrino

Q = 0 spin= 1 RB’, and 7 more m = 0

gluon

m =125 GeV c–2

Q = 0 spin = 0

Q = 0 Spin = 1 γ photon H Higgs

m =91.9 GeVc–2 Q = 0 Spin=1

Scalar boson Gauge bosons

m =80.39 GeV c–2

Q = ±1 Spin = 1 W W boson

heldtogetherbythisweakestforce,whichmaybetransmittedbyamediatingparticlecalledthe graviton (firstdetectedin 2016)[1.2].Itsrangeextendstothewholeuniverse.Massesarealwayspositive.

Forcetwo: itistheelectricalforce,whichobeysCoulomb’slaw(1785)[1.4]:

whichdescribestheattractive(orrepulsive)force F12 betweentwoelectricalcharges q1 and q2 (positiveornegative)placed r12 apart,where ε0 istheelectricalpermittivityofvacuum.Thefundamentalelectricalmonopole(electron)isprobablyinfinitelystable;themediatingparticlefortheelectricalforce(photon)isobservedandwellunderstood.Magnetismisusually duetomovingelectricalcharges,butitsmonopolehasneverbeenseen,somagnetismisnotreallyanindependentforce; atomshavemagneticproperties,andinwiresthegegenionsofelectricalcurrentsaredealtwithasiftheywere “stationary,” yettheoverallchargeiszero:hence, incredibledictu,magnetismisaspecialrelativisticeffect.AsexplainedinSection2.9, electricityandmagnetismarewelldescribedbyMaxwell’s7 fourfieldequations[1.5].

Forcethree: itisthe “weaknuclear” or “Fermi”8 force(1934)[1.6],whichexplainsthe “β decay” ofunstablenucleiinto stableonesandpositronemission.Thepositron(β+ ore+)isthe antiparticle oftheelectron(e ); Forcefour: itisthestrongestforceintheuniverse;itisthe “strongnuclearforce, ” whichbindstogetherthenuclei andtheconstituentsofatomicnuclei,buthasanextremelynarrowrange.Indirectexperimentalevidenceexistsfora mediatingparticle(gluon).Nucleons(neutrons,protons)andmaybealsoallnucleiconsistof “elementary” particles

7JamesClerkMaxwell(1831–1879). 8EnricoFermi(1901–1954).

Table1.4 Fundamentalconstants(gram-mole=molarmassingrams).

Gravitationalconstant

Restmassofelectron

Electricalchargeofelectron

Planck’sa constantofaction

Planck’sreducedconstantofaction

Freeelectron g-factor

Avogadro’sb number

a MaxPlanck(1858–1947).

1.1FundamentalForces,ElementaryParticles,Nuclei,andAtoms

11

2.99792458×108ms 1

b LorenzoRomanoAmedeoCarloBernadetteAvogadro,ContediQuaregnaeCerreto(1776–1856). Source: ModifiedfromMohretal.[1.7].

Table1.5 Otherconstants.

Sommerfelda fine-structureconstant

a ArnoldJohannesWilhelmSommerfeld(1868–1951).

b LudwigBoltzmann(1844–1906).

c KlausvonKlitzing(1940–).

d RolfWilliamLandauer(1927–1999).

Source: ModifiedfromMohretal.[1.7].

called quarks ,whichhaveneverbeenseenfree(proton–protonscatteringexperimentsdoshowthatprotonsconsistof “lumps”:thismayhavebeenthefirstexperimentalevidenceforquarks).

Sideline1.4 Thename “quark” comesfromasentenceinJoyce’s9 FinneganWake;afreequarkhasneverbeen isolated,butphysicistshavenotlookedinGermangrocerystores,whereQuarkisawell-knownsoftcheese!

SomeimportantconstantsaregiveninTables1.4and1.5. OtherconstantsandunitconversionsaregiveninTables1.6–1.12.TheknownnuclidesarelistedinTableX1(pleaserefer www.wiley/go/metzger/physchemtoolbox2).Wenextdiscussinmoredetailgravity,theweakforce,andthestrongforce. TheelectricalforceisdelayedtoPartThree(Section1.9)untilafteramathematicalinterludeisgiveninPartTwo(Sections 1.5–1.8).

9JamesAugustineAloysiusJoyce(1882–1941).

Table1.6 SIbaseunitsa . Name

Amountofsubstance

Luminousintensity candela

a Definitions:1m ≈ 1/40000000ofcircumferenceofEarth(1790definition)=1650763.73wavelengthsoftheorange-redlineof 86Krunderspecifiedconditions(1960definition);1s=1/86400thofameanEarthday;1kg ≈ massof1000cm3 ofH2Oat4 C and1atm(1790definition)=massofastandardPt–IralloycylinderinSèvres,France;1A=constantcurrentwhich,ifmaintained intwoinfinitelylongwiresofnegligiblecrosssectionandheldparallel1mapartinvacuum,wouldexertaforceof2×10 7 Nperm oflength.;1mol=Avogadro’snumberofmolecules=6.02214076×1023 molecules(gram-mole) 1 =numberofmoleculesper gram(NOTkilogram!);1cd=luminousintensityintheperpendiculardirectionofasurfaceof1/600000ofasquaremeterofa blackbodyat1773 Cand1atm(olderdefinition)=luminousintensityinagivendirectionofasourceofmonochromaticradiationof frequency5.40×1014 Hzandthathasaradiantintensityinthatdirectionof1/683Wsr 1 (1979definition).

Table1.7 Metricmultipliers:tera,peta,exacomefromtetra,penta,hexawithoneletterremoved;zetta,yottacomefrom zeta,iota,withoneletteradded;attocomesfromDanish “atten” for18;zeptocomesfromLatin “septem” orGreek “hepta” (1000 7);andyoctocomesfromGreek “octo” (1000 8)withoneprefixletteradded.

Table1.8 Atomicunits (usingSIvaluesfor e, me, h, c).

Newton’sconstantofuniversalgravitation

Table1.8 (Continued)

Quantity Description

Frequency (FromelectronmomentuminfirstBohrorbit)

Electricalpotential(FromelectronmomentuminfirstBohrorbit)

Electricalfield strength (FromelectronmomentuminfirstBohrorbit)

1.2FundamentalForces,ElementaryParticles,Nuclei,andAtoms

Symbol Size(inSIunits)

5.142×109 Vcm 1 h Planck’sconstant(ofaction) h 6.6260690×10 34 Js

ε0 Electronpermittivityofvacuum(artificial)107/4

2 8.853742338×10 12 Fm 1 (usethisnumberforSIunit conversions;otherwiseunits: s 2 m 2) μ0 Magneticpermeabilityofvacuum(artificial)4π10 7 1.2566370614×10 6 NA 2 (usethisforSIunitconversions; otherwise,purenumber;also: Hm 1)

Table1.9 Otherderivedconstants(usingSIvaluesfor e, me, h, c).

SymbolDefinition

1amu1atomicmassunit=10 3/NA ≡ (1/12)ofmassof 6C12 atom

ℏ ≡ h/2π

e ≡ Chargeonelectronincgs-esu=10ec

Numericalvalue

=1.6605402×10 23 kg

=1.054571635×10 34 Js

=4.803206799×10 10 sC

1eV=(NAe/R)=11604.45K=10 2 (e/hc)=8065.54cm 1 =8.06554kK

=(hc/e)

=1.239842447×10 6 m=12398.4Å=1239.84nm ={e}

1hartree ≡ e 2/a0 =27.211eV=4π10 14 mee 4 c 4h 2

1F ≡ NAe

μB =1bohrmagneton

=1.60217657×10 19 J

=4.3558×10 18 J

=96485.309Cmol 1

=9.2740154×10 24 JT 1 eℏ 2me = eh 4πme

G0 ≡ 2e 2h 1 =1quantumofelectricalconductance =1/vonKlitzing/Landauer’sconstant

Φ0 ≡ h/2e =1quantumofmagneticflux

4πε0 =107c 2

μ0ε0 ≡ c 2

(

μ0/ε0)1/2 = μ0c =4π10 7c = Z0 (characteristicimpedance ofvacuum)

α ≡ Sommerfeldfine-structureconstant

=9.2740154×10 21 ergG 1

=7.748091696×10 5 S

=2.067833636×10 15 Wb

=1.112650056×10 10 Fm 1 (usethisforSIunitconversions; otherwise:s2 m 2)

=1.112650056×10 17 s 2 m 2

=376.730313461 Ω (forSIunitconversions;otherwise:ms 1)

=7.297353080×10 3 (pure#)inesu ≡ e2/ℏc (usingesuvaluesfor e,ℏ, c) =1/137.0359895(pure#)inesu ≡ e2/4πε0cℏ (usingtheirSIvalues) =1/137.0359895(pure#)inSI

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.