Biogas plants: waste management, energy production and carbon footprint reduction wojciech czekala d

Page 1


Biogas Plants: Waste Management, Energy Production and Carbon Footprint Reduction Wojciech Czekala

Visit to download the full and correct content document: https://ebookmass.com/product/biogas-plants-waste-management-energy-productionand-carbon-footprint-reduction-wojciech-czekala/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Biomass-Derived Carbon Materials: Production and Applications Alagarsamy Pandikumar

https://ebookmass.com/product/biomass-derived-carbon-materialsproduction-and-applications-alagarsamy-pandikumar/

Circular Economy: From Waste Reduction to Value Creation Karen Delchet-Cochet

https://ebookmass.com/product/circular-economy-from-wastereduction-to-value-creation-karen-delchet-cochet/

Sustainable food waste-to-energy systems Babbitt

https://ebookmass.com/product/sustainable-food-waste-to-energysystems-babbitt/

Sustainable Utilization of Carbon Dioxide in Waste Management: Moving toward reducing environmental impact Abdel-Mohsen O. Mohamed

https://ebookmass.com/product/sustainable-utilization-of-carbondioxide-in-waste-management-moving-toward-reducing-environmentalimpact-abdel-mohsen-o-mohamed/

Saving Food : Production, Supply Chain, Food Waste, and Food Consumption Galanakis

https://ebookmass.com/product/saving-food-production-supplychain-food-waste-and-food-consumption-galanakis/

Innovative Energy Conversion from Biomass Waste Arif Darmawan

https://ebookmass.com/product/innovative-energy-conversion-frombiomass-waste-arif-darmawan/

Basic Environmental TechnologyWater Supply, Waste Management, and Pollution Control: Water Supply, Waste Management and Pollution Control 6th Edition, (Ebook PDF)

https://ebookmass.com/product/basic-environmentaltechnologywater-supply-waste-management-and-pollution-controlwater-supply-waste-management-and-pollution-control-6th-editionebook-pdf/

Waste-to-Resource System Design for Low-Carbon Circular Economy Siming You

https://ebookmass.com/product/waste-to-resource-system-designfor-low-carbon-circular-economy-siming-you/

Carbon Capture Technologies for Gas-Turbine-Based Power Plants Hamidreza Gohari Darabkhani

https://ebookmass.com/product/carbon-capture-technologies-forgas-turbine-based-power-plants-hamidreza-gohari-darabkhani/

BiogasPlants

SeriesEditor:

ChristianV.Stevens, FacultyofBioscienceEngineering,GhentUniversity,Belgium

TitlesintheSeries:

WoodModification:Chemical,ThermalandOtherProcesses

CallumA.S.Hill

Renewables-BasedTechnology:SustainabilityAssessment

JoDewulf,HermanVanLangenhove Biofuels

WimSoetaert,ErikVandamme

HandbookofNaturalColorants

ThomasBechtold,RitaMussak

SurfactantsfromRenewableResources

MikaelKjellin,IngegärdJohansson

IndustrialApplicationsofNaturalFibres:Structure,PropertiesandTechnicalApplications JörgMüssig

ThermochemicalProcessingofBiomass:ConversionintoFuels,ChemicalsandPower

RobertC.Brown

BiorefineryCo-Products:Phytochemicals,PrimaryMetabolitesandValue-AddedBiomassProcessing ChantalBergeron,DanielleJulieCarrier,ShriRamaswamy AqueousPretreatmentofPlantBiomassforBiologicalandChemicalConversiontoFuelsandChemicals

CharlesE.Wyman

Bio-BasedPlastics:MaterialsandApplications

StephanKabasci

IntroductiontoWoodandNaturalFiberComposites

DouglasD.Stokke,QinglinWu,GuangpingHan CellulosicEnergyCroppingSystems

DouglasL.Karlen

IntroductiontoChemicalsfromBiomass,2ndEdition

JamesH.Clark,FabienDeswarte

LigninandLignansasRenewableRawMaterials:Chemistry,TechnologyandApplications FranciscoG.Calvo-Flores,JoseA.Dobado,JoaquínIsac-García,FranciscoJ.Martín-Martínez

SustainabilityAssessmentofRenewables-BasedProducts:MethodsandCaseStudies

JoDewulf,StevenDeMeester,RodrigoA.F.Alvarenga

CelluloseNanocrystals:Properties,ProductionandApplications WadoodHamad

Fuels,ChemicalsandMaterialsfromtheOceansandAquaticSources FrancescaM.Kerton,NingYan

Bio-BasedSolvents

FrançoisJérômeandRafaelLuque

NanoporousCatalystsforBiomassConversion Feng-ShouXiaoandLiangWang

ThermochemicalProcessingofBiomass:ConversionintoFuels,ChemicalsandPower,2ndEdition RobertBrown

ChitinandChitosan:PropertiesandApplications LambertusA.M.vandenBroekandCarmenG.Boeriu

TheChemicalBiologyofPlantBiostimulants DannyGeelen,LinXu BiorefineryofInorganics:RecoveringMineralNutrientsfromBiomassandOrganicWaste ErikMeers,EviMichels,RenéRietra,GerardVelthof ProcessSystemsEngineeringforBiofuelsDevelopment AdriánBonilla-Petriciolet,GadeP.Rangaiah WasteValorisation:WasteStreamsinaCircularEconomy CarolSzeKiLin,ChongLi,GuneetKaur,XiaofengYang High-PerformanceMaterialsfromBio-basedFeedstocks AndrewJ.Hunt,NontipaSupanchaiyamat,KaewtaJetsrisuparb,JesperT.Knijnenburg HandbookofNaturalColorants,2ndEdition ThomasBechtold,AvinashP.ManianandTungPham BiogasPlants:WasteManagement,EnergyProductionandCarbonFootprintReduction WojciechCzekała

WOJCIECHCZEKAŁA

Pozna ´ nUniversityofLifeSciences,Poland

Thiseditionfirstpublished2024 ©2024byJohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,in anyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedby law.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableat http://www.wiley.com/go/permissions.

TherightofWojciechCzekałatobeidentifiedastheauthoroftheeditorialmaterialinthisworkhasbeen assertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitus atwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons,Inc. and/oritsaffiliatesintheUnitedStatesandothercountriesandmaynotbeusedwithoutwrittenpermission.All othertrademarksarethepropertyoftheirrespectiveowners.JohnWiley&Sons,Inc.isnotassociatedwithany productorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentations orwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaim allwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticular purpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsor promotionalstatementsforthiswork.Thisworkissoldwiththeunderstandingthatthepublisherisnotengaged inrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyour situation.Youshouldconsultwithaspecialistwhereappropriate.Thefactthatanorganization,website,or productisreferredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthat thepublisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmayprovide orrecommendationsitmaymake.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhave changedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernor authorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Czekała,Wojciech,editor.|Stevens,ChristianV.,editor.

Title:Biogasplants:wastemanagement,energyproductionandcarbon footprintreduction/editedbyWojciechCzekała,ChristianVStevens.

Description:Hoboken,NJ:Wiley,2024.|Series:Wileyseriesinrenewable resources|Includesindex.

Identifiers:LCCN2023046450(print)|LCCN2023046451(ebook)|ISBN 9781119863786(hardback)|ISBN9781119863779(adobepdf)|ISBN 9781119863922(epub)|ISBN9781119863946(oBook)

Subjects:LCSH:Biogas.|Renewableenergysources.

Classification:LCCTP359.B48B5372024(print)|LCCTP359.B48(ebook)| DDC665.7/76–dc23/eng/20231107

LCrecordavailableathttps://lccn.loc.gov/2023046450

LCebookrecordavailableathttps://lccn.loc.gov/2023046451

CoverDesign:Wiley

CoverImage:©Lulub/Shutterstock

Setin10/12ptTimesLTStdbyStraive,Chennai,India

Tomymotherandfather,whoneverstoppedbelievinginme. Tomywifeforunderstandingmebetterthaneveryone. Tomysons,whofillmyheartwithjoyeachandeveryday.

ListofContributorsxvii

SeriesPrefacexxi

1AnaerobicDigestionProcessandBiogasProduction1 LiangliangWei,WeixinZhao,LikuiFeng,JianjuLi,XinhuiXia,HangYu, andYuLiu

1.1Introduction1

1.2BasicKnowledgesofADProcessesandOperations2

1.2.1FundamentalMechanismsandTypicalProcessesofAD2

1.2.2FactorsAffectingtheADProcessofBiogasProduction4

1.2.2.1Temperature4

1.2.2.2pH5

1.2.2.3OrganicLoadingRate(OLR)5

1.2.2.4Carbon–NitrogenRatio5

1.2.2.5Inoculum-to-SubstrateRatio(ISR)6

1.2.2.6SolidsConcentration6

1.2.2.7HydraulicRetentionTime(HRT)6

1.3CurrentChallengesofADProcessandBiogasProduction7

1.3.1AmmoniaInhibition7

1.3.2VolatileFattyAcidInhibition10

1.3.3PsychrophilicTemperatureInhibition12

1.4ProposedStrategiesforEnhancedBiogasProduction14

1.4.1PromotingDirectInterspeciesElectronTransfervia ConductiveMaterialsAdditive14

1.4.2Co-digestionofDifferentSubstrates16

1.4.3Bioaugmentation19

1.4.4BioelectrochemicalSystem-AssistedAD20

1.5Techno-EconomicandEnvironmentalAssessmentofAnaerobic DigestionforBiogasProduction22

1.5.1Techno-EconomicAnalysis22

1.5.2EnvironmentalFeasibilityandBenefitAssessment24 References26

2PretreatmentofLignocellulosicMaterialstoEnhanceBiogasRecovery37 JonathanT.E.Lee,NalokDutta,To-HungTsui,EeY.Lim,YanjunDai,and YenW.Tong

2.1Introduction37

2.1.1LignocellulosicWasteMaterialProduction38

2.1.2StructuralInsightofLignocellulosicMaterials39

2.1.3BiogasProductionfromLignocellulosicMaterialsandthe NeedforPretreatment40

2.2AvailablePretreatmentTechnologiesforLignocellulosicMaterials andtheCorrespondingBiogasRecoveryAssociated41

2.2.1PhysicalPretreatment41

2.2.1.1Comminution43

2.2.1.2MicrowaveThermalPretreatment43

2.2.1.3Extrusion44

2.2.1.4Ultrasonication45

2.2.2ChemicalPretreatment45

2.2.2.1AcidHydrolysisPretreatment45

2.2.2.2AlkaliHydrolysisPretreatment47

2.2.2.3IonicLiquidsPretreatment48

2.2.2.4DeepEutecticSolventsPretreatment48

2.2.2.5OrganosolventsPretreatment49

2.2.3BiologicalPretreatment49

2.2.3.1EnzymaticPretreatment50

2.2.3.2Whole-cellMicrobialPretreatment51

2.2.3.3FungalPretreatment52

2.2.3.4Ensiling52

2.2.3.5SummaryofIndividualPretreatmentEfficiencies53

2.2.4PhysiochemicalPretreatmentofLignocellulosicBiomassin theProductionofBiogas54

2.2.4.1HybridStateofArtLignocellulosicPretreatments54

2.3PertinentPerspectives58

2.3.1IntegratedBiorefineryWhileTreatingVariousWastes58

2.3.1.1MunicipalSolidWaste(MSW)58

2.3.1.2ForestryWaste59

2.3.1.3CropStraw59

2.3.2BiogasProductionfromLignocellulosicWasteandIts EconomicViability59

2.4Conclusions60 Acknowledgments61 References61

3BiogasTechnologyandtheApplicationforAgriculturalandFoodWaste Treatment73

WeiQiao,SimonM.Wandera,MengmengJiang,YapengSong,and RenjieDong

3.1DevelopmentofBiogasPlants73

3.1.1AgriculturalWaste74

3.1.1.1LivestockandPoultryManure74

3.1.1.2CropStraw74

3.1.2MunicipalSolidWaste75

3.1.2.1MunicipalSolidWaste75

3.1.2.2SewageSludge75

3.2AnaerobicDigestionProcess76

3.3BiogasProductionfromLivestockandPoultryManure77

3.3.1SuccessfulADofCattleandSwineManure77

3.3.1.1Industrial-scaleADofCattleManure77

3.3.1.2Industrial-scaleADofSwineManure77

3.3.2SuccessfulAnaerobicDigestionofChickenManureina LargePlant77

3.3.3StrategiesforMitigatingAmmoniaInhibitioninChicken ManureAD78

3.3.3.1SupplementationwithTraceElements78

3.3.3.2In-situAmmoniaStrippingforChickenManure Digesters79

3.4FoodWasteAnaerobicDigestion79

3.4.1ChallengesofFoodWasteADandtheSolutions79

3.4.1.1VFAsAccumulationinThermophilicADofFood Waste79

3.4.1.2ADTechnologiesforFoodWaste80

3.4.1.3AnaerobicMembraneBioreactorTechnologyfor FoodWaste81 References81

4BiogasProductionfromHigh-solidAnaerobicDigestionofFoodWaste andItsCo-digestionwithOtherOrganicWastes85 LeZhang,To-HungTsui,Kai-CheeLoh,YanjunDai,JingxinZhang,and YenWahTong

4.1Introduction85

4.2ReactorSystemsforHSAD86

4.2.1High-solidAnaerobicMembraneBioreactor86

4.2.2Two-stageHSADReactorSystem87

4.2.3High-solidPlug-flowBioreactor88

4.3IntensificationStrategiesforHSAD89

4.3.1High-solidAnaerobicCo-digestion(HS-AcD)89

4.3.2SupplementationofAdditives90

4.3.3BioaugmentationStrategiesforHSAD91

4.3.4OptimizationofProcessParameters91

4.4MicrobialCommunitiesforHSAD93

4.5DigestateManagementforHSAD94

4.6ConclusionsandPerspectives94 Acknowledgments95 References95

5Biomethane–ProductionandManagement101 WojciechCzekała,AleksandraŁukomska,andMartynaKuli ´ nska

5.1Introduction101

5.2PurificationandUsageofBiogas103

5.2.1BiologicalDesulfurizationWithintheDigester104

5.2.2DesulfurizationbyAdsorptiononIronHydroxide104

5.2.3DesulfurizationbyAdsorptiononActivatedCarbon104

5.3OpportunitiesforBiogasUpgrading105

5.3.1CO2 SeparationThroughMembranes105

5.3.2CO2 SeparationbyWaterScrubbing106

5.3.3ChemicalSeparationofCO2 /ChemicalScrubbing108

5.3.4PressureSeparationofCO2 (PressureSwingAdsorption)109

5.3.5CryogenicCO2 Separation109

5.4PossibilitiesofUsingBiomethane110

5.4.1ProductionofbioCNGandbioLNGFuels111

5.4.2ProductionofBiohydrogen111

5.5ProfitabilityofBiomethaneProductionandRecommendedSupport Systems112

5.6Conclusion113 References114

6TheBiogasUse117 MuhammadU.Khan,AbidSarwar,NalokDutta,andMuhammadArslan

6.1Introduction117

6.2BiogasUtilizationTechnologies118

6.3UseofBiogasasTrigeneration119

6.4BiogasasaTransportationFuels120

6.5UseofBiogasinReciprocatingEngine121

6.6SparkIgnitionGasEngine123

6.7UseofBiogasinGenerator124

6.8UseofBiogasinGasTurbines125

6.9UsageofBiogasinFuelCell125

6.10HydrogenProductionfromBiogas125

6.11BiogasCleaningforitsUtilization125

6.11.1CarbonDioxide125

6.11.2Water126

6.11.3HydrogenSulfide126

6.11.4OxygenandNitrogen126

6.11.5Ammonia127

6.11.6VolatileOrganicCompounds127

6.11.7Particles127

6.11.8FoamsandSolidParticles127

6.12DifferentApproachesforH2 SRemoval128

6.12.1IronSponge128

6.12.2ProprietaryScrubberSystems129

6.12.3FerricChlorideInjection129

6.12.4BiologicalMethod130

6.13DifferentApproachesforMoistureReduction130

6.13.1CompressionorCondensation130

6.13.2Adsorption130

6.13.3Absorption130

6.14SiloxaneRemoval131

6.14.1GasDrying131

6.15CO2 Separation132

6.15.1CryogenicTechnique132

6.15.2WaterScrubber133

6.15.3Adsorption133

6.15.4MembraneSeparation134

6.16Conclusion135 References136

7DigestatefromAgriculturalBiogasPlant–PropertiesandManagement141 WojciechCzekała

7.1Introduction141

7.2DigestatefromAgriculturalBiogasPlant–Production,Properties, andProcessing142

7.2.1Production142

7.2.2Properties142

7.2.3Processing144

7.3DigestatefromAgriculturalBiogasPlant–Management145

7.3.1RawDigestateFertilization145

7.3.2LiquidFractionManagement146

7.3.3SolidFractionManagement147

7.3.4EnergyManagementoftheSolidFraction149

7.4Conclusion150 References150

8EnvironmentalAspectsofBiogasProduction155 YelizavetaChernysh,ViktoriiaChubur,andHynekRoubík

8.1Introduction155

8.2ImpactofFarmsandLivestockComplexesontheEnvironment157

8.3TheEnvironmentalBenefitsofBiogasProduction158

8.4EnvironmentalSafetyoftheIntegratedModelofBioprocessesof HydrogenProductionandMethaneGenerationintheStagesof AnaerobicFermentationofWaste162

8.5LifeCycleAssessmentforBiogasProduction165

8.6EnvironmentalIssueofBiogasMarketinUkraine–CaseStudy167

8.7Conclusion172 References172

9HybridEnvironmentalandEconomicAssessmentofBiogasPlantsin

IntegratedOrganicWasteManagementStrategies179 AmalElfeky,KaziFattah,andMohamedAbdallah

9.1Introduction179

9.2Methodology180

9.2.1Overview180

9.2.2WasteManagementScenarios181

9.2.3LifeCycleAssessment182

9.2.3.1GoalandScopeDefinition182

9.2.3.2InventoryAnalysis183

9.2.3.3ImpactAssessment183

9.2.3.4Interpretation184

9.2.4LifeCycleCosting184

9.2.5Eco-EfficiencyAnalysis185

9.2.6CaseStudy:TheUAE185

9.3ResultsandDiscussion185

9.3.1MaterialandEnergyRecovery186

9.3.2LifeCycleAssessment188

9.3.2.1OverallImpactAssessment188

9.3.3LifeCycleCosting190

9.3.3.1CostandRevenueStreams190

9.3.3.2NetPresentValue191

9.3.4Eco-EfficiencyAnalysis192

9.4Conclusion193 References193

10ReductionoftheCarbonFootprintinTermsofAgriculturalBiogas Plants195 AgnieszkaWawrzyniak Acronyms195 10.1Introduction196

10.1.1ManureManagementandBiomethanePotentialinPoland andEUCountries196

10.1.2SubstratesUsedforBiogasPlantsinPoland196

10.1.3GHGEmissionsfromAgricultureandBiogasPlantsasTool foritsReduction198

10.2MethodologyofCF201

10.2.1GHGFluxesfromAgricultureandToolsforits Calculations202

10.2.2SystemBoundariesforBiogasPlantandDataCollection203

10.3LifeCycleCO2 FootprintsofVariousBiogasProjects–Comparison withLiteratureResults204

10.4Conclusions207 References207

11FinancialSustainabilityandStakeholderPartnershipsofBiogasPlants211 To-HungTsui,LeZhang,JonathanT.E.Lee,YanjunDai,andYenWahTong 11.1Introduction211

11.2BasicTechnologicalFactors212 11.3EconomicEvaluationandFailures214

11.3.1InvestmentRisksforFixedAssets214

11.3.2FailuresandIntervention215

11.4StakeholdersPartnershipandCo-governance216

11.4.1Government216

11.4.2ConsultantandConstructor216

11.4.3SourceofWasteStreams217 11.4.4CustomersforEnergyandResource217 11.5SummaryandOutlooks217 Acknowledgments218 References218

12MeasuringtheResilienceofSupplyCriticalSystems:TheCaseofthe BiogasValueChain221

RaulCarlssonandTatianaNevzorova 12.1Introduction221 12.2Background222 12.3Methodology223

12.4MeasurementScheme224

12.4.1IntroductiontotheMeasurementConcept224

12.4.2MeasuringManagementSystemResilience227

12.4.3MeasuringtheResilienceofPhysicalResourcesandAssets229

12.4.4TotalSystemResilience230

12.4.5ApplyingtheSystemResilienceModeltotheBiogasValue Chain231

12.4.5.1AnalysisofTwoSupplyChainsWithout Disruptions231

12.4.5.2DisruptingScenarioswithParametrizedResilience Functions233

12.4.5.3AnalysisofTwoSupplyChainswithDisruptions234 12.5ConclusionandRecommendations239 References240

13TheoryandPracticeinStrategicNichePlanning:ThePolish BiogasCase243 SteliosRozakis,KaterinaTroullaki,andPiotrJurga 13.1Introduction243

13.1.1ThePromisingPotentialofBiogasTransitioninCentral EasternEuropeanCountries243

13.1.2State-of-the-ArtResearchforNavigatingSustainability Transitions245

13.1.3ChapterOrganization246

13.2MainConceptualFrameworksforStudyingSustainability Transitions246

13.2.1StrategicNicheManagement(SNM)246

13.2.2Multi-LevelPerspective(MLP)247

13.2.3TransitionManagement(TM)248

13.2.4TechnologicalInnovationSystems(TIS)248

13.3StudyingBiogasfromaSustainabilityTransitionsPerspective249

13.3.1Landscape,Regime,andNicheDynamics249

13.3.2PolicyCoherenceforNicheDevelopment250

13.3.3TransitionPathways252

13.3.4SocialNetworkAnalysis252

13.4StrategicNichePlanningforSustainableTransitions255

13.4.1MethodologicalSteps255

13.4.2CaseStudy:BiogasSectorinPoland259

13.5StrategicPropositionsandConcludingComments261

13.5.1ResearchandDevelopment261

13.5.2EducationActivity–EnhanceBrokerage271

13.5.3Networking-Clusters271

13.5.4ResourceMobilization271

13.5.5ElaborateLegislation272

13.5.6Legitimation272

13.5.7IncentivesforMarketPenetration272

13.5.8DemandPullActionsandRuralDevelopment273

13.6Conclusion273 References274

14SocialAspectsofAgriculturalBiogasPlants279 WojciechCzekała 14.1Introduction279

14.2TheBenefitsofAgriculturalBiogasPlantsforSociety280

14.2.1BiogasPlantasaRenewableEnergyProductionFacility280

14.2.2ReducingtheNegativeImpactofWasteontheEnvironment280

14.2.3CreateMarketsforSubstratesUsedinBiogasProduction281

14.2.4IntegrationwithAgro-IndustrialPlants281

14.2.5ProductionandUseofElectricity282

14.2.6ProductionandUseofHeat282

14.2.7PossibilityofBiomethaneProduction283

14.2.8LocalFuelinDevelopingCountries283

14.2.9ProductionofValuableFertilizer284

14.2.10CreatingNewJobsfortheLocalCommunity284

14.2.11DevelopmentofNearbyInfrastructureandCompanies285

14.2.12TaxRevenuestotheBudgetofLocalGovernmentUnits285

14.3SocialAcceptabilityofAgriculturalBiogasPlants285

14.3.1FearofSomethingNew286

14.3.2ConcernsAboutUnpleasantOdors286

14.3.3ConcernsAboutContaminationofSoilsandGroundwater WhenUsingDigestateasFertilizer286

14.3.4ConcernsAboutDecliningPropertyValuesAroundBiogas Plants287

14.3.5ConcernsAbouttheDestructionofAccessRoads287 14.4Conclusion287 References288

15PracticesinBiogasPlantOperation:ACaseStudyfromPoland291 TomaszJasi ´ nski,JanJasi ´ nski,andWojciechCzekała 15.1Introduction291

15.2LegalAspectsRelatedtoRunningaBusinessintheFieldofBiogas ProductionandWasteManagement292

15.2.1IntegratedPermitorWasteProcessingPermit293

15.2.2ApprovalofthePlantbyVeterinaryServicesfortheDisposal ofWasteofAnimalOrigin294

15.2.3PermittoPlaceDigestateontheMarket295

15.2.4PermittoIntroducetotheElectricityDistributionNetwork296

15.3BiogasPlantComponents:ACaseStudyfromPoland297

15.3.1HallforReceivingandProcessingSlaughterhouseWaste297

15.3.2SubstrateStorageYard297

15.3.3SolidSubstrateDispenser297

15.3.4ReceivingBufferTankforLiquidSubstrates298

15.3.5SolidSubstrateBufferTank298

15.3.6MixingBufferTank298

15.3.7BufferandMixingTank298

15.3.8TechnologicalSteamGenerator298

15.3.9MainPumpingStation299

15.3.10First-stageFermentationTanks299

15.3.11Second-stageFermentationTank(3900m3 )withBiogas Tank(1800m3 )300

15.3.12CondensingCircuit301

15.3.13BiogasRefiningSystem301

15.3.14CogenerationModules301

15.3.15DigestateStorageReservoirs301

15.3.16BiogasTorch302

15.3.17Biofilter302

15.4FunctioningofaBiogasPlantProcessingProblematicWaste:ACase StudyfromPoland302

15.4.1SearchingandObtainingSubstrates303

15.4.2Receiving,Storage,andProcessingoftheSubstrate,Feeding ofRawMaterials304

15.4.3EnergyProductionandBiogasManagement305

15.4.4DigestateManagement306

15.4.5ManagementofanAgriculturalBiogasPlant307

15.5Summary308

ListofContributors

MohamedAbdallah DepartmentofCivilandEnvironmentalEngineering,Universityof Sharjah,Sharjah,UnitedArabEmirates

MuhammadArslan DepartmentofEnergySystemsEngineering,Universityof Agriculture,Faisalabad,Pakistan

RaulCarlsson CertificationDevelopmentUnit,RISEResearchInstitutesofSweden, Jönköping,Sweden

YelizavetaChernysh FacultyofTropicalAgriSciences,DepartmentofSustainable Technologies,CzechUniversityofLifeSciencesPrague,Suchdol,Czechia DepartmentofEcologyandEnvironmentalProtectionTechnologies,FacultyofTechnical SystemsandEnergyEfficientTechnologies,SumyStateUniversity,Sumy,Ukraine

ViktoriiaChubur FacultyofTropicalAgriSciences,DepartmentofSustainable Technologies,CzechUniversityofLifeSciencesPrague,Suchdol,Czechia DepartmentofEcologyandEnvironmentalProtectionTechnologies,FacultyofTechnical SystemsandEnergyEfficientTechnologies,SumyStateUniversity,Sumy,Ukraine

WojciechCzekała DepartmentofBiosystemsEngineering,Pozna ´ nUniversityofLife Sciences,Pozna ´ n,Poland

YanjunDai EnergyandEnvironmentalSustainabilityforMegacities(E2S2)PhaseII, CampusforResearchExcellenceandTechnologicalEnterprise(CREATE),Singapore SchoolofMechanicalEngineering,ShanghaiJiaoTongUniversity,Shanghai,China

RenjieDong CollegeofEngineering,ChinaAgriculturalUniversity,Beijing,China

NalokDutta DepartmentofBiochemicalEngineering,UniversityCollegeLondon, London,UK

BioproductsSciencesandEngineeringLaboratory,WashingtonStateUniversity,USA

AmalElfeky DepartmentofCivilandEnvironmentalEngineering,UniversityofSharjah, Sharjah,UnitedArabEmirates

KaziFattah DepartmentofCivil,Environmental,andArchitecturalEngineering, UniversityofKansas,Kansas,UnitedStatesofAmerica

LikuiFeng StateKeyLaboratoryofUrbanWaterResourcesandEnvironment (SKLUWRE),SchoolofEnvironment,HarbinInstituteofTechnology,Harbin,China

JanJasi ´ nski DepartmentofBiosystemsEngineering,Pozna ´ nUniversityofLife Sciences,Pozna ´ n,Poland

TomaszJasi ´ nski TomaszJasi ´ nskiBiogasConsulting,Nowe,Poland

MengmengJiang CollegeofEngineering,ChinaAgriculturalUniversity,Beijing,China

PiotrJurga DepartmentofBioeconomyandSystemsAnalysis,InstituteofSoilScience andPlantCultivation,Pulawy,Poland

MuhammadU.Khan DepartmentofEnergySystemsEngineering,Universityof Agriculture,Faisalabad,Pakistan

MartynaKuli ´ nska DepartmentofBiosystemsEngineering,Pozna ´ nUniversityofLife Sciences,Pozna ´ n,Poland

JonathanT.E.Lee NUSEnvironmentalResearchInstitute,NationalUniversityof Singapore,Singapore

EnergyandEnvironmentalSustainabilityforMegacities(E2S2)PhaseII,Campusfor ResearchExcellenceandTechnologicalEnterprise(CREATE),Singapore

JianjuLi StateKeyLaboratoryofUrbanWaterResourcesandEnvironment (SKLUWRE),SchoolofEnvironment,HarbinInstituteofTechnology,Harbin,China

EeY.Lim DepartmentofChemicalandBiomolecularEngineering,NationalUniversity ofSingapore,Singapore

YuLiu StateKeyLaboratoryofUrbanWaterResourcesandEnvironment(SKLUWRE), SchoolofEnvironment,HarbinInstituteofTechnology,Harbin,China

Kai-CheeLoh EnergyandEnvironmentalSustainabilityforMegacities(E2S2)PhaseII, CampusforResearchExcellenceandTechnologicalEnterprise(CREATE),Singapore DepartmentofChemicalandBiomolecularEngineering,NationalUniversityofSingapore, Singapore

AleksandraŁukomska DepartmentofBiosystemsEngineering,Pozna ´ nUniversityof LifeSciences,Pozna ´ n,Poland

TatianaNevzorova CertificationDevelopmentUnit,RISEResearchInstitutesof Sweden,Stockholm,Sweden

WeiQiao CollegeofEngineering,ChinaAgriculturalUniversity,Beijing,China

HynekRoubík FacultyofTropicalAgriSciences,DepartmentofSustainable Technologies,CzechUniversityofLifeSciencesPrague,Suchdol,Czechia

SteliosRozakis BiBELab,DepartmentofChemicalandEnvironmentalEngineering, TechnicalUniversityofCrete,Chania,Greece

AbidSarwar DepartmentofIrrigationandDrainage,UniversityofAgriculture, Faisalabad,Pakistan

YapengSong CollegeofEngineering,ChinaAgriculturalUniversity,Beijing,China

YenWahTong NUSEnvironmentalResearchInstitute,NationalUniversityof Singapore,Singapore

EnergyandEnvironmentalSustainabilityforMegacities(E2S2)PhaseII,Campusfor ResearchExcellenceandTechnologicalEnterprise(CREATE),Singapore DepartmentofChemicalandBiomolecularEngineering,NationalUniversityofSingapore, Singapore

KaterinaTroullaki BiBELab,DepartmentofChemicalandEnvironmentalEngineering, TechnicalUniversityofCrete,Chania,Greece

To-HungTsui NUSEnvironmentalResearchInstitute,NationalUniversityofSingapore, Singapore

EnergyandEnvironmentalSustainabilityforMegacities(E2S2)PhaseII,Campusfor ResearchExcellenceandTechnologicalEnterprise(CREATE),Singapore DepartmentofEngineeringScience,UniversityofOxford,Oxford,UK

SimonM.Wandera DepartmentofCivil,Construction&EnvironmentalEngineering, JomoKenyattaUniversityofAgriculture&Technology,Nairobi,Kenya

AgnieszkaWawrzyniak DepartmentofBiosystemsEngineering,Pozna ´ nUniversityof LifeSciences,Pozna ´ n,Poland

LiangliangWei StateKeyLaboratoryofUrbanWaterResourcesandEnvironment (SKLUWRE),SchoolofEnvironment,HarbinInstituteofTechnology,Harbin,China

XinhuiXia StateKeyLaboratoryofUrbanWaterResourcesandEnvironment (SKLUWRE),SchoolofEnvironment,HarbinInstituteofTechnology,Harbin,China

HangYu StateKeyLaboratoryofUrbanWaterResourcesandEnvironment (SKLUWRE),SchoolofEnvironment,HarbinInstituteofTechnology,Harbin,China

JingxinZhang EnergyandEnvironmentalSustainabilityforMegacities(E2S2) PhaseII,CampusforResearchExcellenceandTechnologicalEnterprise(CREATE), Singapore

China-UKLowCarbonCollege,ShanghaiJiaoTongUniversity,Shanghai,China

LeZhang NUSEnvironmentalResearchInstitute,NationalUniversityofSingapore, Singapore

EnergyandEnvironmentalSustainabilityforMegacities(E2S2)PhaseII,Campusfor ResearchExcellenceandTechnologicalEnterprise(CREATE),Singapore DepartmentofResourcesandEnvironment,SchoolofAgricultureandBiology,Shanghai JiaoTongUniversity,Shanghai,China

WeixinZhao StateKeyLaboratoryofUrbanWaterResourcesandEnvironment (SKLUWRE),SchoolofEnvironment,HarbinInstituteofTechnology,Harbin,China

SeriesPreface

Renewableresources,theiruseandmodification,areinvolvedinamultitudeofimportant processeswithamajorinfluenceonoureverydaylives.Applicationscanbefoundinthe energysector,paintsandcoatings,andthechemical,pharmaceutical,andtextileindustries, tonamebutafew.

Theareainterconnectsseveralscientificdisciplines(agriculture,biochemistry,chemistry,technology,environmentalsciences,forestry,etc.),whichmakesitverydifficultto haveanexpertviewonthecomplicatedinteractions.Therefore,theideatocreateaseries ofscientificbooks,focusingonspecifictopicsconcerningrenewableresources,hasbeen veryopportuneandcanhelptoclarifysomeoftheunderlyingconnectionsinthisarea.

Inaveryfast-changingworld,trendsarenotonlycharacteristicoffashionandpoliticalstandpoints;sciencetooisnotfreefromhypesandbuzzwords.Theuseofrenewable resourcesisagainmoreimportantnowadays;however,itisnotpartofahypeorafashion. Asthelivelydiscussionsamongscientistscontinueabouthowmanyyearswewillstillbe abletousefossilfuels–opinionsrangingfrom50to500years–theydoagreethatthe reserveislimitedandthatitisessentialnotonlytosearchfornewenergycarriersbutalso fornewmaterialsources.

Inthisrespect,thefieldofrenewableresourcesisacrucialareainthesearchforalternativesforfossil-basedrawmaterialsandenergy.Inthefieldofenergysupply,biomass-and renewables-basedresourceswillbepartofthesolutionalongsideotheralternativessuchas solarenergy,windenergy,hydraulicpower,hydrogentechnology,andnuclearenergy.Inthe fieldofmaterialsciences,theimpactofrenewableresourceswillprobablybeevenbigger. Integralutilizationofcropsandtheuseofwastestreamsincertainindustrieswillgrowin importance,leadingtoamoresustainablewayofproducingmaterials.Althoughoursocietywasmuchmore(almostexclusively)basedonrenewableresourcescenturiesago,this disappearedintheWesternworldinthenineteenthcentury.Nowitistimetofocusagain onthisfieldofresearch.However,itshouldnotmeana“retouràlanature”,butshouldbe amultidisciplinaryeffortonahighlytechnologicalleveltoperformresearchtowardsnew opportunities,andtodevelopnewcropsandproductsfromrenewableresources.Thiswill beessentialtoguaranteeanacceptablelevelofcomfortforthegrowingnumberofpeople livingonourplanet.Itis“the”challengeforthecominggenerationsofscientiststodevelop moresustainablewaystocreateprosperityandtofightpovertyandhungerintheworld. Aglobalapproachiscertainlyfavored.

Thischallengecanonlybedealtwithifscientistsareattractedtothisareaandarerecognizedfortheireffortsinthisinterdisciplinaryfield.Itis,therefore,alsoessentialthat consumersrecognizethefateofrenewableresourcesinanumberofproducts.Furthermore,scientistsdoneedtocommunicateanddiscusstherelevanceoftheirwork.Theuse andmodificationofrenewableresourcesmaynotfollowthepathofthegeneticengineering conceptinviewofconsumeracceptanceinEurope.Relatedtothisaspect,theserieswill certainlyhelptoincreasethevisibilityoftheimportanceofrenewableresources.Being convincedofthevalueoftherenewablesapproachfortheindustrialworld,aswellasfor developingcountries,Iwasmyselfdelightedtocollaborateonthisseriesofbooksfocusing onthedifferentaspectsofrenewableresources.Ihopethatreadersbecomeawareofthe complexity,theinteraction,andinterconnections,andthechallengesofthisfield,andthat theywillhelptocommunicateontheimportanceofrenewableresources.

IcertainlywanttothankthepeopleofWiley’sChichesteroffice,especiallyDavid Hughes,JennyCossham,andLynRoberts,inseeingtheneedforsuchaseriesofbookson renewableresources,forinitiatingandsupportingit,andforhelpingtocarrytheprojectto theend.

Last,butnotleast,Iwanttothankmyfamily,especiallymywifeHildeandchildren PaulienandPieter-Jan,fortheirpatience,andforgivingmethetimetoworkontheseries whenotheractivitiesseemedtobemoreinviting.

ChristianV.Stevens FacultyofBioscienceEngineering,GhentUniversity,Belgium SeriesEditor,“RenewableResources” June2005

1 AnaerobicDigestionProcess andBiogasProduction

LiangliangWei,WeixinZhao,LikuiFeng,JianjuLi,XinhuiXia, HangYu,andYuLiu

StateKeyLaboratoryofUrbanWaterResourcesandEnvironment(SKLUWRE),SchoolofEnvironment, HarbinInstituteofTechnology,Harbin,China

1.1Introduction

Theincreasingamountoforganicwastesworldwidehasbecomeproblematicformost countriesduetothecontinuousdeteriorationoflandandwaterconditions,whichposes seriousriskstothesafetyofourcommunity[1].Moreover,theimpropertreatmentofthese organicwastesmightleadtotheundesiredreleaseofhugegreenhousegases(GHGs)into theatmosphere[2,3].ItwasestimatedbytheIntergovernmentalPanelonClimateChange (IPCC)andUSEnvironmentalProtectionAgency(USEPA)thattheglobalanthropogenic methaneemissionfrommunicipalsolidwastes(MSWs)reached1077millionmetricton ofCO2 equivalentin2020andisexpectedtoincreaseby17%intheyear2030.Mitigation practiceshaveforcedglobalactiontoadoptatechnologythatcanaddressanthropogenic methaneemissions[4].Numerousavailablemitigationopportunitiescurrentlyincludethe treatmentoftheorganicportionofMSWinacontrolledfacilityandrecoveringmethaneas afuelforon-siteoroff-siteelectricitygeneration[5].

EnergygenerationfromtheMSWandtheotheralternativesourceswillbenefitclimate changemitigationandminimizethealarmsposedtotheenvironment[6].Therehas beenahighuptakeofrenewableenergytechnologies(RETs)worldwidetodealwith thedetrimentaleffectspausedbyfossil-relatedenergygenerationtechnologies.Fora purposeofincreasingtheenergyaccessibilitywhilesimultaneouslyrestrictingthe

BiogasPlants:WasteManagement,EnergyProductionandCarbonFootprintReduction, FirstEdition.EditedbyWojciechCzekała ©2024JohnWiley&SonsLtd.Published2024byJohnWiley&SonsLtd.

worldwidetemperatureincreasedwithin2 ∘ Cbefore2050,adoptionofRETsshouldbe highlyencouragedandraisedsignificantly.Thisgrowingimpetusforalternativeavenues forrenewableenergydemandstheconsiderationofdifferentfeedstocks,exploringofnovel techniques,andimprovementsofexistingtechnologies.

Bioenergyhasbeenregardedasthemostsubstantialrenewableenergysourceduetoits cost-effectiveadvantagesandgreatpotentialforsubstitutingnonrenewablefuels.Bioenergy derivedfrombiomassmaterials,suchasbiologicalorganicmatterobtainedfromplants oranimals,isrenewableandgreen.Generally,thosebiomassenergysourcesincludebut arenotlimitedtoterrestrialplants,aquaticplants,timberprocessingresidues,MSWs, animaldung,sewagesludge,agriculturalcropresidues,andforestryresidues.Undoubtedly, bioenergyisoneofthemostversatilerenewableenergiesbecauseitcanbemadeavailableinsolid,liquid,and/orgaseousforms.Differentavenuescanbeexploredtoharvest energyfrombiomassmaterials.Biomethanehasahighheatingvaluerangingbetween50 and55MJm 3 andalowheatingvaluerangingbetween30and35MJm 3 [7].

Anaerobicdigestion(AD)ispracticedextensivelyforthetreatmentofbiodegradable wasteforbiomethanegeneration[8].Thistechnologyhasthecapabilityofmanagingthe typicalorganicwastessuchasfoodwaste,lignocellulosicbiomassandresidues,energy crops,andtheorganicfractionofmunicipalsolidwaste(OFMSW)[9],anditsenvironmentallysoundfeaturesattractedworldwideattentionforbiogasproduction.ADisamicrobedriven,multiphase,andcomplexbiochemicalprocess,andfourtypicalbiochemicalphases suchashydrolysis,acidogenesis,acetogenesis,andmethanogenesisareinvolvedinits wholeprocess.Organicmattercouldbeefficientlymetabolizedbybacteriaandarchaea andfinallyconvertedintomethaneandcarbondioxide[10,11].However,ADprocesses arealwayslimitedbythreemainfactors:(i)hydrolysisofsubstratesistherate-limiting factorforthebioconversionphase;(ii)inefficientutilizationofkeyintermediatessuchas propionicandbutyricacid;(iii)slowgrowthofanaerobesofmethanogenesis[12],and finallyleadtoalowbiomethanerecoveryrateduringtheirpracticaloperation[13].Thus, theadvancementsintheADprocessarelargelyaimedtowardonegoal:improvingbiogas productionandrecovery.

ThereiscurrentlyconsiderablepotentialforbiogastechnologytobedevelopedasaRET thataddressesenergyandenvironmentalissues.Biogasisacriticaltechnologythatprovidesrenewableenergyfromprocessingavarietyofdigestiblebiomasstypes.Substrates suchasstraw,forestryresidues,animalandpoultrymanure,andotherorganicwastescan betreatedwithinADsystems.Thepurifiedbiomethanecanbeintegratedintoconventional fossilenergysupplysystemsandguaranteetheADtechnologyinenergytransformation andecologicalcivilizationconstruction.However,thebiogasindustryfacesmanychallenges,includinglowgasproductivity,shortbiogastanklife,highdeteriorationratesof digesters,difficultyindigestionresidueutilization,andlimitedeconomicbenefits[14,15]. Toimprovethebiogasandhighlightitsroleinenergyandenvironmentalproblem-solving, itisnecessarytodevelopnewapproachesforthepurposeofextendingtheindustrialchain andfurtherexploringnewmodelsthatcanpromotethecommercialization.

1.2BasicKnowledgesofADProcessesandOperations

1.2.1FundamentalMechanismsandTypicalProcessesofAD AD,fullmicrobiologicaldegradationprocessunderanaerobicconditions,representsone ofthemostpromisingprocessestoconvertdiverseorganicsubstrates(animalmanure,

Carbohydrates, proteins, fats, and other complex organic substrates Sugars, amino acids, and fatty acids

Figure1.1 Generalbiochemicalprocessinvolvedinanaerobicdigestion.Source:D’Silvaetal.[17]/with permissionofElsevier.

foodwaste,MSW,andlignocellulosicbiomassasagriculturalwaste)intoenergycarriers (producedbiogasmainly55–75%CH4 and25–45%CO2 )[16].

Microbialecologyinanaerobicdigestersisquitecomplex,anddifferentbacterialand archaealcommunitiesareinvolvedinthedigestionprocess.TheADprocessiscomposed offourmainsteps,namelyhydrolysis,acidogenesis,acetogenesis,andmethanogenesis (Figure1.1).Thehydrolysisprocessistheprimarystep(stageI)inADwhereorganicpolymers(i.e.cellulose,lipids,carbohydrates,polysaccharides,proteins,andnucleicacids)are hydrolyzedintomonomers,simplesugars,saccharides,peptides,glycerol,aminoacids,and otherhigherfattyacids,whichcouldbesummarizedinEq.(1.1):

Hydrolyticbacteria,alsoknownasprimaryfermentingbacteria,arefacultativeanaerobesthathydrolyzethesubstratewithextracellularenzymes.Awiderangeofenzymes,i.e. cellulases,hemicellulases,proteases,amylases,andlipases,weregeneratedinthisstage andplayedagreatroleinthesubstratedegradation[18].Undoubtedly,thegenerationofthe aforementionedenzymesenhancedthewholehydrolysis.Bycontrast,thelackofthesuitableenzymeswouldnegativelyaffectthebiogasgeneration,forinstance,thehydrolyzation oflignocellulosicsubstratesbecomestherate-limitingstepoftheADprocess[18].During acidogenesis(stageII),primaryfermentativebacteriaconverthydrolysisproductsinto volatilefattyacids(VFAs),includingacetate,propionate,butyrate,valerate,andotheracids (i.e.lactate,succinate,andalcohols).Acidogenicbacteriaareabletometabolizeorganic

compoundsataverylowpHaround4.Methanogenicmicroorganismscannotdirectly useallproductsfromtheacidogenicstep.Exceptforacetate,H2 andCO2 andsomeother micromolecularorganicacidswereabundantlygeneratedduringtheso-calledacetogenic phase(stageIII)bysecondaryfermentingbacteria,alsocalledobligatehydrogen-producing bacteria(OHPB).However,thethermodynamicsofthesereactionsareunfavorable,and thesemicroorganismscanonlyliveinsyntrophywithend-productusers,i.e.methanogens. Themethanogenicstep(stageIV)correspondstothefinalconversionofacetate,carbondioxide(CO2 ),andhydrogen(H2 )intobiogas,andtheobligateanaerobicarchaeaof hydrogenotrophicandacetoclasticmethanogensabundantlyexistinthedigestersandcould transformthemixtureofCO2 /H2 andacetateintomethane.Specifically,hydrogenotrophic microorganismsconvertH2 andCO2 ,producedbyfermentativebacteria,intoCH4 andkeep thereactorunderalowhydrogenpartialpressureandthusenhancedthegrowthofacetogenicbacteria.Therelativeabundanceofhydrogenotrophicandacetotrophicisvariable accordingtoenvironmentalfactors(i.e.acetate,ammonia,hydrogen,andhydrogensulfide concentrations),andoperationalconditions(i.e.hydraulicretentiontime[HRT],pH,type ofsubstrate,andsourceofinoculum),aswellassolidcontents[19].Ithasbeenreported thatthehydrogenotrophicmethanogens(i.e. Methanoculleus and Methanobacterium)are predominatedduringthestart-upofanaerobicdigestersandleadtoasubsequentdeclineof theH2 concentration;Then,ashiftofthemethanogensintotheacetoclasticmethanogens (i.e. Methanosarcina and Methanosaeta)wereobservedafterthestabilizationofthereactor[20].Inaddition,ahighconcentrationofammoniaoftheanaerobicdigesterbenefited forthegrowthofhydrogenotrophicmethanogensinmesophilicanaerobicdigestors[21], andapproximately65–70%ofthemethanegenerationwascloselyrelatedtothedegradationofacetate;otherwise,theoxidationofacetatetoH2 andCO2 isthemainpathwayin theabsenceofacetoclasticmethanogens(suchas Methanosaeta sp.)[22].

1.2.2FactorsAffectingtheADProcessofBiogasProduction

1.2.2.1Temperature

Threedifferenttemperatureregimes,namelypsychrophilic,mesophilic,andthermophilic conditions,withvariedoptimumtemperaturerangesforthedominationofdifferent strainsofmethane-formingbacteria,weretraditionallyusedinanaerobicdigesters[23]. Specifically,psychrophilicdigestersusuallyoperateatabout25 ∘ C,whereasmesophilic onesoperateataround35 ∘ Candthermophiliconesataround55 ∘ C.Generally,the metabolicactivityandbioconversionrateofmicroorganismsathighertemperatureare usuallyhigherthanthatatlowertemperature.However,themuchmoreenergyisrequired formaintainingahightemperatureinthefermenter,whichincreasescostinpractical operation[23].Forinstance,amuchhigherdegradationrateoffattyacidswasobservedfor thedigesteroperatedunder55 ∘ Cwitha11HRTthanthatoperatedunder38 ∘ Ccondition witha27dayHRT[23].Similarly,anincreaseof54–61%inCH4 yieldfromalgal remnantswasobservedwhenthetemperatureincreasedfrom25to35 ∘ C[24].Inaddition, someoftherecentworksalsorevealedthatreportedthatthevariationofoperational temperature,evenunderaverysmallrange,woulddeclinethebiogasproductionrateofthe digesters[25],andthefluctuationofthetemperatureeven1 ∘ Cperdaywoulddeteriorate theoperation[26].

1.2.2.2pH

OperationalpHmightbeanothermainfactorthatwouldsignificantlyaffecttheperformanceofthedigesters,andthemostfavorablerangeofpHtoachievemaximalbiogasyield inADis6.8to7.2[23].Specifically,themethanogenicbacteriaareextremelysensitiveto pHfluctuations,andtheirpreferredpHwasaround7.0,andthegrowthrateofmethanogens wasseriouslyinhibitedoncethepHdeclinedto <6.6[27].Acid-formingbacteriaareless pH-sensitive,andtheoptimalpHforhydrolysisandacidogenesisisbetween5.5and6.5, despitetheirtoleratedpHrangedfrom4.0to8.5[26,27].Therefore,somedesignersprefertheisolationofthehydrolysis/acidificationandacetogenesis/methanogenesisprocesses intotwoseparatestages[27].Atthebeginningofthefermentation,thesignificantaccumulationofacidsandCO2 ,asaconsequenceofthegrowthofacidogensandacetogens, leadstoasignificantdeclineinthepH.Afterward,theconsumptionoftheseacidsby themethane-producingbacteriawouldmaintainthedigesterunderastablecondition[23] Excessivefattyacids,hydrogensulfide,andammoniaaretoxiconlyintheirnonionized forms(FAandH2 S–pHbelow7,NH3 –pHabove7);thus,theproportionaldistributionof ionizedandnonionizedformsofinhibitorsofmethanogenesiswasessentialforthestable operationofthedigesters.

1.2.2.3OrganicLoadingRate(OLR)

Organicloadingrate(OLR),generallydefinedaskilogramsofVSloadedpervolumeof digesterperday,ishenceconsideredasoneofthemainparametersforstableoperationof ADsystems[28].Theproductionofbiogasandmethaneincontinuoussystemsishighly dependentontheOLRvalue(relatedtotheTSinthedigesterandthecompositionof feedstock),andthevariationoftheOLRwouldleadtosignificantvariationofthemethane yieldsandsystemstability.TherecentworkofNizamiandMurphy(2010)[29]stated thattheoptimumOLRoftheanaerobicdigestersrangedfrom12to15kgVSm 3 d 1 forcornsilage,while8.5kgVSm 3 d 1 forothersubstrates[30]clearlydemonstrated thattheOLRvaluesarehighlydependentonthefeedstockcompositions.Practically,the accumulationofinhibitorycompounds,suchasVFAorammonia,negativelyaffected theincreasingoperationalOLRvaluesofthedigesters[31].Manyauthorshighlightthe needforunderstanding.Thus,OLRneedstobecarefullyselectedbysimultaneouslyconsideringthefeedstockcharacteristics,inhibitorycompoundexistences,andco-digestion opportunities,tomaximizewastetreatmentcapacityandenhancetherenewableenergy productivity.

1.2.2.4Carbon–NitrogenRatio

Feedstocktotalorganiccarbon(TOC),totalnitrogen(TN)andtheirratioarealsocritical forthestableoperationoftheADsystems.Theadditionofco-substrates,forthepurpose ofelementbalance,hasbeenregardedasoneofthemostcommonpracticesforapurpose ofachievingstableco-digestion[32],andtheoptimalC:Nratioofdigesterswasalways rangedfrom20to30[33].ThenitrogenintheADreactorismainlyderivedfromproteins, anditplaysakeyroleinmicrobialgrowth.However,alowC:Nratiointhedigesterssystem (highamountofnitrogen)canproduceanammoniaaccumulation,subsequentlyaffecting thebiogasandmethaneyieldsandeventuallycausingthesystemtodeteriorate[34].Thus,

theadditivepaperwasteoragriculturalwastehasbeentraditionallyappliedtoincreasethe feedstock’scarboncontent[35].

1.2.2.5Inoculum-to-SubstrateRatio(ISR)

Inoculum-to-substrateratio(ISR),whichdeterminestheinitialratiobetweenmicrobial populations,isanimportantparameterforstartingupofanaerobicdigesters[36].Themore theinoculum,thehigherthenumberofmethanogensintheanaerobicdigestersandthebetterthebufferingcapacity.Raposoetal.usedsunfloweroilcakeasthesubstratetoexplore theeffectofdifferentinoculationratesonAD[37],andtheyfoundthatthevolatileacids werenotaccumulatedundertheoperationalconditionsofISR1.0–3.0,whereassignificant volatileacidaccumulationoccurswhentheinoculationrateislessthan1.0.Forinstance, theratiooftotalvolatileacidtototalalkalinitywasmuchhigherthanotherexperimental groupsoncetheinoculationratiodeclinedto0.5.

1.2.2.6SolidsConcentration

Thereducedwatercontentoftheorganicwasteswithinthedigestersisgenerallyregarded asthemainreasonforthedifficultyinthegasandliquiddiffusionandtheaccumulationof inhibitorsandinturnreducesthesubstrateavailabilityandaffectstheirmetabolism[38]. Anumberofstudiesreportedthatanincreaseinthewatercontentofsubstrateincreases themethaneyieldingandalsoleadstoanexcellenthomogenizationoftheADsystems, efficientelementdiffusion,andeffectiveinteractionbetweenmicroorganismsandnutrients. Inaddition,therecentworkofLeHyaricetal.(2012)[39]reportedthattherewasalinear increaseinthespecificmethanogenicactivitywiththeincreaseinwatercontent,ascribing totheimprovementofthehomogeneityofthedigestionreactors[40].

1.2.2.7HydraulicRetentionTime(HRT)

RetentiontimeofthedigestersreferstobothHRTandsolidretentiontime(SRT)andwas ananotherimportantparameterusedfordesigningandoptimizationofanaerobicdigesters (representedinEqs.(1.2)and(1.3))[41].Specifically,HRTrepresentstheretentiontime oftheliquidphase,whereasSRTdenotestheretentiontimeofthemicrobialcultureinthe digester.Assumingthatthefeedstockandmicrobialmixedculturesexistedinthesame phaseintheanaerobicdigester,theHRTvalueofthedigestionsystemequalstoSRT.For example,intheADsystems,usingfoodwaste,kitchenwaste,andMSWasthesubstrates, theHRTofthesystemisessentiallySRT.Incontrast,theinteractionbetweensolidsand microbialculturesisbiphasicforthedigestersusingwaste-activatedsludgeandprimary sludgeassubstratesandleadstoquitedifferentdistributionofHRTandSRT:

where V referstotheindividualreactorvolume(m3 ), Q istheinfluentflowrate(m3 d 1 ), X presentsthemixedliquidsuspendedsolidsinanindividualreactor(mgL 1 ), Qx denotes

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.