Get R programming for actuarial science peter mcquire free all chapters

Page 1


R Programming for Actuarial Science

Peter Mcquire

Visit to download the full and correct content document: https://ebookmass.com/product/r-programming-for-actuarial-science-peter-mcquire/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Functional Programming in R 4: Advanced Statistical Programming for Data Science, Analysis, and Finance

Thomas Mailund

https://ebookmass.com/product/functional-programmingin-r-4-advanced-statistical-programming-for-data-scienceanalysis-and-finance-thomas-mailund/

Easy Statistics for Food Science with R Abdulraheem Alqaraghuli

https://ebookmass.com/product/easy-statistics-for-food-sciencewith-r-abdulraheem-alqaraghuli/

Identifying Future-Proof Science Peter Vickers

https://ebookmass.com/product/identifying-future-proof-sciencepeter-vickers/

An Introduction to Parallel Programming. Second Edition

Peter S. Pacheco

https://ebookmass.com/product/an-introduction-to-parallelprogramming-second-edition-peter-s-pacheco/

Asynchronous Programming with SwiftUI and Combine 1st Edition Peter Friese

https://ebookmass.com/product/asynchronous-programming-withswiftui-and-combine-1st-edition-peter-friese/

Speculation: Within and about Science Peter Achinstein

https://ebookmass.com/product/speculation-within-and-aboutscience-peter-achinstein/

Functional Programming in R 4 - Second Edition Thomas Mailund

https://ebookmass.com/product/functional-programmingin-r-4-second-edition-thomas-mailund/

Asynchronous Programming with SwiftUI and Combine: Functional Programming to Build UIs on Apple Platforms 1st Edition Peter Friese

https://ebookmass.com/product/asynchronous-programming-withswiftui-and-combine-functional-programming-to-build-uis-on-appleplatforms-1st-edition-peter-friese/

Applied Statistics for Environmental Science With R 1st Edition Abbas F. M. Alkarkhi

https://ebookmass.com/product/applied-statistics-forenvironmental-science-with-r-1st-edition-abbas-f-m-alkarkhi/

RProgrammingforActuarialScience

RProgrammingforActuarialScience

PeterMcQuire UniversityofKent

Canterbury UK

AlfredKume UniversityofKent

Canterbury UK

Thiseditionfirstpublished2024 © 2024JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,in anyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedby law.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableat http://www.wiley.com/ go/permissions

TherightofPeterMcQuireandAlfredKumetobeidentifiedastheauthorsofthisworkhasbeenassertedin accordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitus at www.wiley.com

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

Trademarks: WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons,Inc.and/or itsaffiliatesintheUnitedStatesandothercountriesandmaynotbeusedwithoutwrittenpermission.Allother trademarksarethepropertyoftheirrespectiveowners.JohnWiley&Sons,Inc.isnotassociatedwithany productorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityor fitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensales materialsorpromotionalstatementsforthiswork.Thisworkissoldwiththeunderstandingthatthepublisheris notengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaspecialistwhereappropriate.Thefactthatanorganization,website, orproductisreferredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmean thatthepublisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmay provideorrecommendationsitmaymake.Further,readersshouldbeawarethatwebsiteslistedinthisworkmay havechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernor authorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages.

AcataloguerecordforthisbookisavailablefromtheLibraryofCongress

HardbackISBN:9781119754978;ePubISBN:9781119754992;ePDFISBN:9781119754985; oBookISBN:9781119755005

CoverDesign:Wiley

CoverImage: © PeterMcQuire

Setin9.5/12.5ptSTIXTwoTextbyIntegraSoftwareServicesPvt.Ltd,Pondicherry,India

Tomywife,Jenny,anddaughter,Lauren,fortheirconstantsupportandencouragement. (PeterMcQuire)

TomywifeOrtenca,forhersupportthroughouttheprocess.(AlfredKume)

AbouttheCompanionWebsite xxi Introduction 1 1 MainObjectivesofThisBook 1 2 WhoIsThisBookFor? 2 3 HowtoUseThisBook 3 4 BookStructure 3 5 ChapterStyle 4 6 ExamplesandExercises 4

7 VerificationofCodeandCalculations–BestPractice 5 8 Website:www.wiley.com/go/rprogramming.com 6 9 RorMicrosoftExcel? 6 10 Caveats 8 11 Acknowledgements 8

1 R:WhatYouNeedtoKnowtoGetStarted 9

1.1Introduction 9

1.2GettingStarted:InstallationofRandRStudio 10

1.2.1InstallingR 10

1.2.2WhatIsRStudio? 10

1.2.3InputtingRCommands 13

1.3AssigningValues 14

1.4HelpinR 15

1.5DataObjectsinR 15

1.6Vectors 15

1.6.1NumericVectors 15

1.6.2LogicalVectors 18

1.6.3CharacterVectors 19

1.6.4FactorVectors 20

1.7Matrices 21

1.8Dataframes 22

1.9Lists 24

1.10SimplePlotsandHistograms 24

1.11Packages 26

1.12ScriptFiles 27

1.13Workspace,SavingObjects,andMiscellany 28

1.14SettingYourWorkingDirectory 29

1.15ImportingandExportingData 29

1.15.1ImportingData 29

1.15.2ExportingData 30

1.16CommonErrorsMadeinCoding 30

1.17NextSteps 31

1.18RecommendedReading 31

1.19Appendix:Coercion 31

2 FunctionsinR 33

2.1Introduction 33

2.1.1Objectives 33

2.1.2CoreandPackageFunctions 33

2.1.3User-DefinedFunctions 34

2.2AnIntroductiontoApplyingCoreandPackageFunctions 34

2.2.1ExamplesofSimple,CommonFunctions 34

2.3User-DefinedFunctions 38

2.3.1Whatdoesa“udf”consistof? 38

2.3.2NamingConventions 38

2.3.3ExamplesandExercises 39

2.4UsingLoopsinR-the“for”Function 41

2.5IntegralCalculusinR 42

2.5.1The“Integrate”Function 42

2.5.2NumericalIntegration 43

2.6RecommendedReading 44

3 FinancialMathematics(1):InterestRatesandValuingCashflows 45

3.1Introduction 45

3.2TheForceofInterest 46

3.3PresentValueofFutureCashflows 48

3.4InstantaneousForwardRatesandSpotRates 50

3.5Non-ConstantForceofInterest 51

3.5.1DiscreteCashflows 51

3.5.2CashflowsWhichAreContinuous 54

3.6EffectiveandNominalRatesofInterest 57

3.6.1EffectiveRatesofInterest 57

3.6.2WhyDoWeUseEffectiveRates? 60

3.6.3NominalInterestRates 60

3.7Appendix:ForceofInterest–AnAnalogywithMortalityRates 62

3.8RecommendedReading 62

4 FinancialMathematics(2):MiscellaneousExamples 63

4.1Introduction 63

4.2WritingAnnuityFunctions 64

4.2.1Writingafunctionforanannuitycertain 64

4.3The‘presentValue’Function 66

4.4AnnuityFunction 70

4.5Bonds–PricingandYieldCalculations 70

4.6BondPricing:Non-ConstantInterestRates 75

4.7TheEffectofFutureYieldChangesonBondPricesThroughouttheTermof theBond 77

4.8LoanSchedules 80

4.8.1Introduction 80

4.8.2Method1 81

4.8.3Method2 84

4.9RecommendedReading 85

5 FundamentalStatistics:ASelectionofKeyTopics–DrAKume 87

5.1Introduction 87

5.2BasicDistributionsinStatistics 87

5.3SomeUsefulFunctionsforDescriptiveStatistics 93

5.3.1Introduction 93

5.3.2BivariateorHigherOrderDataStructure 94

5.4StatisticalTests 95

5.4.1ExploringforNormalityorAnyOtherDistributionintheData 95

5.4.2Goodness-of-fitTestingforFittedDistributionstoData 98

5.4.2.1Continuousdistributions 98

5.4.2.2Discretedistributions 99

5.4.3T-tests 100

5.4.3.1Onesampletestforthemean 100

5.4.3.2Twosampletestsforthemean 101

5.4.4F-testforEqualVariances 102

5.5MainPrinciplesofMaximumLikelihoodEstimation 102

5.5.1Introduction 102

5.5.2MLEoftheExponentialDistribution 103

5.5.2.1ObtainingtheMLEnumericallyusingR 104

5.5.2.2ObtainingtheMLEanalytically 105

5.5.3LargeSample(Asymptotic)PropertiesofMLE 106

5.5.4FittingDistributionstoDatainRUsingMLE 108

5.5.5LikelihoodRatioTest,LRT 109

5.6Regression:BasicPrinciples 110

5.6.1SimpleLinearRegression 111

5.6.2QuantifyingUncertaintyon ̂ �� 113

5.6.3AnalysisofVarianceinRegression 114

5.6.3.1 R2 andadjusted R2 CoefficientofDetermination 115

x Contents

5.6.4SomeVisualDiagnosticsfortheProposedSimpleRegressionModel 115

5.7MultipleRegression 118

5.7.1Introduction 118

5.7.2RegressionandMLE 120

5.7.2.1MultivariateRegression 120

5.7.3Tests 122

5.7.3.1LikelihoodRatioTestinRegression 122

5.7.3.2AkaikeInformationCriterion:AIC 122

5.7.3.3AICandRegressionmodelselection 123

5.7.3.4BayesianInformationCriterion:BIC 123

5.7.4VariableSelection,FindingtheMostAppropriateSub-Model 123

5.7.5BackwardElimination 123

5.7.6ForwardSelection 125

5.7.7UsingAIC/BICCriteria 126

5.7.8LRTinModelSelection 128

5.7.9AutomaticSearchUsingR-squaredCriteria 129

5.7.10ConcludingRemarksonTestData 130

5.7.11ModellingBeyondLinearity 130

5.8Dummy/IndicatorVariableRegression 131

5.8.1IntroducingCategoricalVariables 131

5.8.2ContinuousandIndicatorVariablePredictors–IncludingLoadin theModel 134

5.9RecommendedReading 137

6 MultivariateDistributions,andSumsofRandomVariables 139

6.1MultivariateDistributions–ExamplesinFinance 139

6.2SimulatingMultivariateNormalVariables 140

6.3TheSummationofaNumberofRandomVariables 143

6.4Conclusion 146

6.5RecommendedReading 146

7 BenefitsofDiversification 147

7.1Introduction 147

7.2Background 147

7.3KeyMathematicalIdeas 148

7.4RunningSimulations 151

7.5RecommendedReading 153

8 ModernPortfolioTheory 155

8.1Introduction 155

8.22-AssetPortfolio 156

8.33-AssetPortfolio 159

8.4IntroductionofaRisk-freeAssettothePortfolio 163

8.4.1AddingaRisk-freeAsset 163

8.4.2CapitalMarketLineandtheSharpeRatio 164

8.4.3BorrowingtoObtainHigherReturns 165

8.5Appendix:LagrangeMultiplierMethod 166 8.6RecommendedReading 169

9 Duration–AMeasureofInterestRateSensitivity 171

9.1Introduction 171

9.2Duration–DefinitionsandInterpretation 171

9.3DurationFunctioninR 173

9.4PracticalApplicationsofDuration 174

9.5RecommendedReading 175

10 Asset-LiabilityMatching:AnIntroduction 177

10.1Introduction 177

10.2WhatInterestRatesDoInstitutionsUseToMeasure TheirLiabilities? 178

10.3VarianceoftheSolvencyPosition 178

10.4CharacteristicsofVariousAssetClassesandLiabilities 179

10.5OurScenarios 180

10.6Results 181

10.7Simulations 182

10.8ExerciseandDiscussion–anInsurerWithPredominatelyShort-Term Liabilities 183

10.9PotentialExercise 184

10.10Conclusions 185

10.11RecommendedReading 186

11 Hedging:ProtectingAgainstaFallinEquityMarkets 187

11.1Introduction 187

11.2OurExample 187

11.2.1FuturesContracts–ABriefExplanation 187

11.2.2OurTask 189

11.3AdoptingaBetterHedge 192

11.4AllowanceforContractandPortfolioSizes 193

11.5NegativeHedgeRatio 193

11.6ParameterandModelRisk 193

11.7AFinalReminderonHedging 193

11.8RecommendedReading 194

12 Immunisation–RedingtonandBeyond 195

12.1Introduction 195

12.2OutlineofRedingtonTheoryandAlternatives 196

12.3Redington’sTheoryofImmunisation 198

12.4ChangesintheShapeoftheYieldCurve 202

12.5AMoreRealisticExample 203

12.5.1DeterminingaSuitableBondAllocation 203

12.5.2ChangeinYieldCurveShape 206

12.5.3LiquidityRisk 207

12.6Conclusion 209

12.7RecommendedReading 210

13 Copulas 211

13.1Introduction 211

13.2CopulaTheory–TheBasics 212

13.3CommonlyUsedCopulas 213

13.3.1TheIndependentCopula 214

13.3.2TheGaussianCopula 214

13.3.3ArchimedianCopulas 217

13.3.4ClaytonCopula 217

13.3.5GumbelCopula 219

13.4CopulaDensityFunctions 220

13.5MappingfromCopulaSpacetoDataSpace 222

13.6Multi-dimensionalDataandCopulas 224

13.7FurtherInsightintotheGaussianCopula:ANon-rigorousView 225

13.8TheRealPowerofCopulas 226

13.9GeneralMethodofFittingDistributionsandSimulations–ACopula Approach 226

13.9.1FittingtheModel 226

13.9.2SimulatingDataUsingthe mvdc and rMvdc Functions 227

13.10HowNon-GaussianCopulasCanImproveModelling 227

13.11TailCorrelations 229

13.12Exercise(Challenging) 231

13.13Appendix1–CopulaProperties 232

13.14Appendix2–RankCorrelationandKendall’sTau, �� 233 13.15RecommendedReading 235

14 Copulas–AModellingExercise 237

14.1Introduction 237

14.2ModellingFutureClaims 237

14.2.1Data 237

14.2.2FittingAppropriateMarginalDistributions 238

14.2.3FittingTheCopula 239

14.2.4AssessingRiskFromtheAnalysisofSimulatedValues 241

14.2.5ComparisonwiththeGaussianCopulaModel 242

14.2.6ComparisonoftheModelswiththeData 243

14.3AnotherExample:BankingRegulator 244

14.4Conclusion 245

15 BondPortfolioValuation:ASimpleCreditRiskModel 247

15.1Introduction 247

15.2OurExampleBondPortfolio 249

15.2.1Description 249

15.2.2TheTransitionMatrix 251

15.2.3CorrelationMatrix 252

15.2.4SimulationsandResults 253

15.2.5IncorporatingInterestRateRisk–ASimpleAdjustment 255

15.2.6PortfolioConsistingofHighlyCorrelatedBonds 256

15.3FurtherDevelopmentofthisModel 256

15.4RecommendedReading 257

16 TheMarkov2-StateMortalityModel 259

16.1Introduction 259

16.2Markov2-StateModel 259

16.3SimpleApplicationsofthe2-StateModel 261

16.4EstimatingMortalityRatesfromData 264

16.5AnExample:CalculatingMortalityRatesforOneAgeBand 267

16.6UncertaintyinOurEstimates 268

16.7NextSteps? 269

16.8Appendices 269

16.8.1InformalDiscussionof �� 269

16.8.2Intuitivemeaningof ����(��) 270

16.9RecommendedReading 271

17 ApproachestoFittingMortalityModels:TheMarkov2-stateModelandan IntroductiontoSplines 273

17.1Introduction 273

17.2GraduationofMortalityRates 274

17.3FittingOurData 277

17.3.1Objective 277

17.3.2SummarisedData 277

17.4ModelFittingwithLeastSquares 281

17.5IndividualMemberData 283

17.6ComparingLifeTableswithaParametricFormula 286

17.7Splines:AnIntroduction 287

17.7.1Overview 287

17.7.2Data 289

17.7.3FittingtheModel:Splineregression 290

17.7.4AdjustedDataset 292

17.8Summary 293

17.9RecommendedReading 293

18 AssessingtheSuitabilityofMortalityModels:StatisticalTests 295

18.1Introduction 295

18.2Theory 296

18.3OurMortalityDataandVariousProposedMortalityRates 297

18.4TestingtheStandardTableRates–Table1, ��s1 x 298

18.4.1Dataandinitialplot 298

18.4.2 ��2 test 299

18.4.3SignsTest–forOverallBias 300

18.4.4SerialCorrelationsTest;TestingforBiasOverAgeRanges 301

18.4.5AnalysingtheDistributionofDeviances 302

18.4.6logL,AICCalculations 302

18.4.7Conclusionson ��s1 x 303

18.5GraduationofMortalityRatesbyAdjustingaStandardTable 303

18.5.1TestingTable2, ��s2 x 303

18.5.2AdjustingTable2 303

18.6TestingGraduatedRatesObtainedfromaParametricFormula, ��par x 305

18.7ComparingOurCandidateRates 306

18.8Over-fitting 307

18.9OtherThoughts 307

18.10Appendix–AlternativeCalculationsofLogL’s 308 18.11RecommendedReading 310

19 TheLee-CarterModel 311

19.1Introduction 311

19.2UsingtheL-CModeltoCreateDataandFittheModel 312

19.2.1IntroducingtheLee-CarterModel 312

19.2.2CalculatingtheParameterValues 313

19.2.3Interpretationof ����,����,and ���� 316

19.3UsingL-CtoModelActualMortalityDatafromHMD 316

19.4Usingthe lca Functioninthe Demography Package 318

19.5ConstructingYourOwn Demogdata Object 319

19.6ForecastingMortalityRates 319

19.7CaseStudy:TheImpactoftheHIVVirusonMortalityRates 324

19.8RecommendedReading 326

20 TheKaplan-MeierEstimator 329

20.1Introduction 329

20.2WhatIsCensoring? 330

20.2.1Non-InformativeCensoring 330

20.3DefiningtheRelevantEvent 331

20.4K-MTheory 332

20.5IntroductoryExample:MonitoringDelaysinMaking ClaimPayments 333

20.6LungCancerExample 335

20.6.1BasicResults 335

20.6.2ComparisonofMaleandFemaleRates 336

20.6.3DoctorAssessmentScores–ph.ecog 336

20.7IssueswiththeKaplan-MeierModel 337

20.8Recommendedreading 338

21 CoxProportionateHazardsRegressionModel 339

21.1Introduction 339

21.2CoxModelEquation 340

21.3Applications 341

21.3.1Smokers’Mortality:SmallDataSet 341

21.3.2Smokers’Mortality:LargerDataSet 344

21.3.3Multiplecovariatesandinteractions 345

21.4ComparisonofCoxandKaplanMeierAnalysesofLungCancerData 347

21.5RecommendedReading 349

22 MarkovMultipleStateModels:ApplicationstoLifeContingencies 351

22.1Introduction 351

22.2TheMarkovProperty 352

22.3MarkovChainsandJumpModels 352

22.3.1Examples 352

22.3.2DifferencesbetweenMarkovChainandMarkovJumpModels 353

22.4MarkovChains(DiscreteTime) 354

22.4.1ApplyingMarkovChainstoEstimateFutureProbabilities 355

22.4.2MarkovChainModel-NCD 359

22.4.3CodingExerciseforMarkovChains 360

22.5MarkovJumpModels 360

22.5.1Example-Simple3-StateModel(AllTransitionsPossible) 361

22.5.2Example–H-S-DModel 363

22.6Non-ConstantRates 371

22.7PremiumCalculations 373

22.8TransitionRateEstimation 376

22.9MultipleDecrementModels 376

22.9.1Introduction 376

22.9.2UsingaNumericalApproachfortheaboveFixedRateProblems 377

22.9.3AnExactApproach 378

22.9.4Age-DependentRates 380

22.10RecommendedReading 382

23 ContingenciesI 383

23.1Introduction 383

23.2WhatisMeantby“Contingencies”inanActuarialContext? 384

23.3TheLifeTable 384

23.4ExpectedPresentValuesoftheKeyContingencyFunctions 385

23.5WritingOurOwnCode–SomeIntroductoryExercises 387

23.6The Lifecontingencies Package 389

23.6.1TheLifetableandActuarialtableObjects 390

23.6.2ApplicationtoActualMortalityTables:AM92andAF92 391

23.6.3Annuities 392

23.6.4AnnuitiesPaidmoreFrequentlythanAnnually 393

23.6.5IncreasingAnnuities 394

23.6.6ReversionaryAnnuities 394

23.6.7Example:AnnuityCompanyValuation 396

23.6.8LifeAssurancefunctions 398

23.6.9AssurancePolicieswith immediate PaymentonDeath: Ax 398

23.7SimulationofFutureLifetimes 399

23.8RecommendedReading 402

24 ContingenciesII 403

24.1Introduction 403

24.2MortalityTables:AM92 404

24.3UncertaintyinPresentValues:Variance 405

24.4Simulations 409

24.4.1SinglePolicy 409

24.4.2Portfolioswith100Policies–PortfolioClaimDistributionfrom Simulations 411

24.5SimulationofAnnuities 414

24.6PremiumCalculations 416

24.7Profits–ProbabilityDistributionsofSinglePoliciesandPortfolios 417

24.8Progressionofexpectedprofitsthroughoutthelifetimeofapolicy:no reservesheld 423

24.9PolicyValues 425

24.9.1CalculatingPolicyValues 425

24.9.2RecursiveFormulae–DiscreteandContinuous(Thiele) 428

24.9.3RecursiveEquationwith3States–HSDModel 430

24.10ProfitsfromPolicieswhereReservesAreHeld 432

24.10.1CalculatingtheProfitVector 432

24.10.2MeasuresofProfitandProfitTesting 435

24.11ProfitUncertainty:InterestRateandMortalityRisk 438

24.12RiskCapitalandRisk-adjustedReturnMeasures 440

24.13Unit-linkedPolicies 440

24.13.1Introduction 440

24.13.2ExamplewithDeterministicandStochasticProjections 442

24.14AdditionalExercises 445

24.15Appendix:DependentandIndependentRates 445

24.16RecommendedReading 446

25 ActuarialRiskTheory–AnIntroduction:CollectiveandIndividual RiskModels 447

25.1Introduction 447

25.2CollectiveRiskModel 448

25.3PoissonCompoundCollectiveRiskModel 448

25.4ApplicationsoftheModel 451

25.4.1SettingAppropriateReservesandPremiumPricing 451

25.4.2IncreasingtheNumberofIndependentPolicies 452

25.4.3AdoptingaNormalDistributionApproximation 453

25.4.4ReturnonCapital 455

25.4.5SkewnessoftheCompoundPoissonModel 455

25.4.6SumofCompoundPoissonDistributions 456

25.5CompoundBinomialCollectiveRiskModel 460

25.6CompoundNegativeBinomialDistribution 461

25.7Panjer’sRecursionFormula 462

25.8ClosingThoughtsonCollectiveRisksModels 464

25.9IndividualRiskModel 464

25.9.1StandardIndividualRiskModel 464

25.9.2AlternativeModel–‘ThePoissonIndividualRiskModel’ 466

25.10IssueswithHeterogeneity 467

25.11PoliciesWhichAreNotIndependent 468

25.12IncorporatingParameterUncertaintyintheModels 470

25.13ClaimAmountDistributions:AlternativestotheGammaDistribution 472

25.14Conclusions 472

25.15RecommendedReading 472

26 CollectiveRiskModels:Exercise 473

26.1Introduction 473

26.2AnalysisofClaimsData 473

26.3RunningSimulations 476

26.4TailsoftheDistribution 478

26.5AllowingforParameterUncertainty 478

26.6Conclusions 479

26.7RecommendedReading 479

27 GeneralisedLinearModels:PoissonRegression 481

27.1Introduction 481

27.2Examples/Exercises/Data 481

27.3BriefRecaponMultipleLinearRegression 482

27.4GeneralisedLinearModels(“GLMs”) 482

27.5GoodnessofFitofGLMs 483

27.6PoissonRegression 484

27.6.1Introduction 484

27.6.2UsingPoissonRegressiontoModelClaimNumbers 484

27.7DatawithVaryingExposurePeriods 488

27.7.1ClaimRatesandthe Offset 488

27.7.2ApplicationtoAggregatedDatainSection27.1 489

27.8CategoricalandContinuousVariables 491

27.8.1ProblemwithContinuousVariables 491

27.8.2CategoricalVariables 492

27.9InteractionbetweenVariables 496

27.10Over-dispersion 498

27.11MiscellaneousExercises 498

27.12FurtherStudy/NextSteps 499

27.13RecommendedReading 499

28 ExtremeValueTheory 501

28.1Introduction 501

28.2WhyUseEVT? 502

28.3GeneralisedParetoDistribution–“GPD” 502

28.4EVTAnalysisofHistoricDailyEquityMarketReturns(S&P500) 507

28.4.1BasicEVTAnalysis 507

28.4.2WillaNormalDistribution(andOtherAlternatives)DoJustasWell? 509

28.5DataforFurtherEVTAnalysis 510

28.6RecommendedReading 511

29 IntroductiontoMachineLearning:k-NearestNeighbours(kNN) 513

29.1Introduction 513

29.2Example1–IdentifyingaFruitType 514

29.2.1Data 514

29.2.2OverviewoftheProcess 514

29.2.3HowdoesthekNNAlgorithmWork? 514

29.2.4NormalisingOurData 517

29.2.5Varying k 518

29.2.6UsingOurModel 518

29.3AnalysisofOurModel–theConfusionMatrix 519

29.4Example2–CancerDiagnoses 520

29.5Conclusion 522

29.6RecommendedReading 522

30 TimeSeriesModellinginR–DrAKume 523

30.1Introduction 523

30.2LinearRegressionVersusAutoregressiveModel 524

30.3ThreeComponentsforTimeSeriesModelling 525

30.4Stationarity 527

30.5MainToolsinRforARIMAModelling 532

30.5.1PACFasaDerivationofACFandTheirGeneralBehaviourforARMA(p,q) Models 532

30.5.2HowtoSimulateandObtaintheTheoreticalValuesofACFandPACFfor ARMAModels 534

30.6IdentifyingaSetPossibleModelstotheDataIncludingtheOrderof Differencing 536

30.6.1ModelFittingtoTimeSeriesData 537

30.6.2ParameterEstimationforPureAuto-RegressiveModels 540

30.6.3DiagnosticPlots 540

30.6.4Forecasting 543

30.7DealingwithRealDatafarfromStationary 545

30.7.1NonParametricApproaches 545

30.7.2AirlineDataModellingUsingMultiplicativeSeasonalModels 546

30.8RecommendedReading 550

31 VolatilityModels–GARCH 551

31.1Introduction 551

31.2WhyUseGARCHModels? 551

31.3OutlineoftheChapter 553

31.4KeyTheoreticalConceptswithGARCH 553

31.5SimulationofDataUsingaGARCHModel 555

31.6FittingaGARCHModeltoData,andAnalysis 556

31.6.1FittingaGARCHModel 556

31.6.2FurtherAnalysisoftheData;ComparisonwiththeNormalDistribution 558

31.6.3FurtherAnalysisoftheData;VolatilityClustering 560

31.7ANoteonCorrelationandDependency 562

31.8GARCHLong-TermVariance 563

31.9Exercise:ShockstoGlobalEquityMarkets–TheGlobalFinancialCrisis2008, andCOVID-19 565

31.10ExtensionstotheGARCHModel 567

31.11Appendix–AMixtureofNormalDistributions 568

31.12RecommendedReading 569

32 ModellingFutureStockPricesUsingGeometricBrownianMotion:An Introduction 571

32.1Introduction 571

32.1.1DiscreteGaussianRandomWalk 572

32.2GeometricBrownianMotion 576

32.3ApplicationsofGBM,andSimulatingPrices 577

32.4RecommendedReading 583

33 FinancialOptions:Pricing,Characteristics,andStrategies 585

33.1Introduction 585

33.2WhatisaFinancialOption? 585

33.3WhatareFinancialOptionsUsedfor? 586

33.4Black,ScholesandMertonDifferentialEquation 587

33.4.1AssumptionsUnderlyingB-S-MFormulation 587

33.4.2SolutiontoB-S-MEquationforEuropeanCallOptions 588

33.4.3CallOptionPriceFunction 588

33.5CalculatingtheOptionPriceUsingSimulations 589

33.6FactorsWhichAffectthePriceofaCallOption 590

33.6.1SharePrice 590

33.6.2TimetoExpiry 592

33.6.3CombinedEffectofSharePriceandTimetoExpiry 592

33.6.4OtherFactors 594

33.7Greeks 594

33.8VolatilityofCallOptionPositions 595

33.9PutOptions 597

33.10DeltaHedging 598

33.11SketchoftheB-S-MDerivation 601

33.12FurtherTasks 602

33.13Appendix 602

33.14RecommendedReading 603

Index 605

AbouttheCompanionWebsite

Thisbookisaccompaniedbyacompanionwebsite: www.wiley.com/go/rprogramming.com

Thewebsitecontainsmuchofthe R codeusedinthisbook,allowingcopyingofthe suggestedcode,thussavingthereadersignificanttime.

Thewebsitealsoincludesnumerousdatafiles,suchasinvestmentdataandmortalitydata. Thesedatafileswillbeanalyzedusing R codeinseveralchaptersofthebook.

Introduction

1MainObjectivesofThisBook

Theoverridingobjectiveofthisbookistohelpstudentsofactuarialmathematicsand relateddisciplinessuchasfinancialmathematics,developprogrammingskillswhichwill enhancetheirunderstandingofactuarial,financial,andstatisticalconcepts,enablingthem tosolvereal-worldproblemsencounteredinthesefields.Breakingthisdownfurther,the purposesofthebookistwo-fold:

1. Toprovideanintroductiontotheprogramminglanguage, R.Thisisachievedusing workedexamplesandundertakingexercisescommonlyseeninthefieldsofactuarial andfinancialmathematics.

2. Secondly,toimprovethereader’slevelofunderstandingofactuarialandfinancialtopicsbyusingtheseprogrammingskills.Webelievethatmoststudentscandevelopa deeperunderstandingofmathematicalmaterialbysolvingproblemsusingaprogramminglanguage.Fromourexperienceofteachingactuarialmathematicsandstatistics, studentsoftenconfirmthattheirunderstandingofatopichasvastlyimprovedfollowing thecompletionofacomputer-basedexerciseorproject.

Asimilareffectisnotedinstudentswhoopttotakeayearoutfromtheirstudiesto workinthefinancialindustry,oftenapplyingextensiveprogrammingskillstosolverealworldproblems.Suchstudentsinvariablynoticeasimilarlevelofimprovementintheir understandingofconcepts.Itishoped,tosomeextent,thatthislearningexperiencecan bemirroredthroughoutthisbook.

Theauthorshavesignificantteachingexperienceatbothundergraduateandpostgraduatelevels,enhancedwithexperienceinassessmentprocessesforuniversities andtheactuarialprofession.Thishasgiveninsightsintothetypicalissuesstudents experiencewithactuarialmathematics–problemsoftenarisefromafundamentalmisunderstandingofintroductorymaterial.Forexample,afinalyearundergraduatemay onlyfullyunderstandaconceptintroducedintheirfirstyearwhilstundertakingprogrammingcourseworkintheirfinalyearonaspecificapplicationofthematerialtaught inthefirstyear,experiencingthat“Eureka”moment.

Thereadershouldnotunderestimatetheextenttowhichlearningaprogramming language,suchas R,toalevelsuchthatmostexercisesinthisbookcanbecompleted,

RProgrammingforActuarialScience,FirstEdition.PeterMcQuireandAlfredKume. © 2024JohnWiley&SonsLtd.Published2024byJohnWiley&SonsLtd. CompanionWebsite: www.wiley.com/go/rprogramming.com

willhelpthereaderintheemploymentmarket.Havingagoodworkingknowledgeof R orsimilarlanguageshouldimprovethecareerprospectsofthegraduate.

Afurthermotivatingfactorforwritingthisbookoriginatesfromthedecisiontakenby theInstituteandFacultyofActuaries(IFoA)in2018tochoosethe R programminglanguageasanintegralpartofitssyllabus.Indeed,muchoftheIFoA’ssyllabiforsubjects CM1,CM2,CS1,and,inparticular,CS2arecoveredinthebook.

2WhoIsThisBookFor?

Thisbookisaimedattwomaingroups:

1. Ithasbeenwrittenprincipallyforuniversitylevelactuarialandfinancialmathsstudents,togetherwithgraduatesundertakingprofessionalactuarialexams(e.g.withthe IFoAandSOA),andmoregenerallytoanyoneaspiringtocareersinactuarialmathematicsandfinance.Thebookshouldbeusefultothestudentthroughouttheirstudies, whetherfirst-yearundergraduateorpostgraduate,spanningtopicsfromfundamentals offinancialmathematicsandBrownianmotion,toavarietyofmortalitymodelsand analysinginvestmentstrategiessuchasasset–liabilitymatchingandhedging.

2. Secondly,wehopethebookappealstomoreexperiencedprofessionalsinrelateddisciplineswishingtodevelopskillsinaprogramminglanguage,whomayhavehadlimited opportunitiestodosoearlierintheircareer.Byundertakingexamplesandexercises relatedtomaterialwithwhichtheyarealreadyfamiliar,thisbookprovidesanefficient journeytoacquiringsuchprogrammingskills.SuchusersofthisbookmaythereforewishtoreviewChapters3,4,23,and25,whichincludetraditionalmaterialmost actuarieswouldbefamiliarwith.

Inwritingthisbook,wehaveattemptedtocaterforawiderangeofexperiencesandabilities.Theoverallstyleofthebookaimstoensurethatthebasicsofeachtopicarecovered, withappropriatetext,examples,andexercises,whilstincludingseveralmoreadvanced tasks.Asnotedelsewhere,thereadershouldaimatexpandingonthetasksincludedin thisbook.

Itisassumedthatthereaderwillhaveaknowledgeofstatisticsandmathematics atalevelexpectedfromthatofafirstyearundergraduateinamaths-baseduniversity degree.

Thebookincludesthemajorityoftopicscoveredinatypicalundergraduatecourse inactuarialscience.Thereisalsoperhapsagreateremphasisplacedonanumberof actuarialconceptswhichmaynotdirectlybeassessedintraditionaluniversitycourses; indeed,severalexamplesinvolveaddressingpracticalproblemswhichthestudentwill seeintheworkplace.Forexample,weintroducemodelswhichmayhelpinimproving howcorrelationsaredealtwithbyinsurancecompanies,anddevelopanunderstanding offundamentalriskmanagementtechniquessuchashedging,asset-liabilitymatching, anddiversification.Ultimately,wehopethereaderdevelopsagoodunderstandingofthe problem-solvingapproachesusedintheworkplace.

3HowtoUseThisBook

Togetthemostfromthisbookitisanticipatedthatduringeachstudysessiontheuserwill simultaneously:

● studythematerialinthisbook,

● accessthebook’swebsite(codeanddata),and

● writeandruncodeontheircomputer.

Itwouldbeexpectedthattheuserproceedstowritetheirowncodeandduplicatethe results.Thesuggestedcodeforeachexample/exerciseisoneofmanypossiblesolutions; itmaybequitereasonable,dependingonthescenario,foryourcodetobequitedifferent tothatsetoutinthisbook.Itisimportantthattheuserpractiseswritingtheirown,independentcode,anddoesnottrytolearn,byrote,thecodeinthebook.AsnotedinChapter 1,thereadermaywishtosaveascriptfileinrespectofeachchapter.Indeedthereader maywishtowritefunctionsincorporatingandcombiningseveralsectionsofcodefrom thewebsite,improvingtheefficiencyoftheircode.

Wewouldexpectmostuserstohavehadsomepriorexposureto,andknowledgeof,the materialinachapterbeforeembarkingonit,eitherfollowinganinitialperiodofindependentstudy,orattendanceatrelateduniversitylecturesortutorials;itisanticipatedthat readerswillhaveaccesstoalternativestudymaterialforeachtopic.

Thewebsitecontainsthemajorityofthe R codeincludedinthebook,togetherwith suggestedcoderelatingtotheexercises.Itisintendedthatthereaderwilltreatthebook andwebsiteascompanions;itisnotexpectedthatmostusersusethebookandwebsite separately(forthemostpartatleast).Notethatasmallamountofcodeisnotincludedon thewebsite(themissingcodecansimplybecopiedfromthebook)–thisistoencourage moreactivelearningofthematerial.

Thevastmajorityofstudentswillgainmostbenefitfromfrequentpractiseofwriting code;occasionalengagementislikelytoendinlesssatisfactoryresults.Itishopedthatthe styleofthebookwilllenditselftoencouragingagreaterlevelofcreativityfromthestudent, developingtheirownexamplesandexercisesastheirskillsandknowledgeincrease.

4BookStructure

Westartbycoveringthefundamentalsof R inChapter1,“R:Whatyouneedtoknowtoget started”,andChapter2,“Functionsin R”.Ifyouarenewto R werecommendthatyoufirst readthesetwochapters,andrevisitthemwhenrequired.Chapter1explainsthekeyaspects of R,e.g.writingyourfirstcodein R,howobjectsareusedetc.Fromexperience,most studentsfinditbeneficialtoinitiallyreadthischapterrelativelyquickly,referringback toitfrequently.Readersnewto R shouldbenefitfromspendingsometimedigestingthe examplesinChapter2togetafeelforwritingbasic R codeandapplyingexistingfunctions.

ThetypicalactuarialandfinancialmathematicsstudentisthenlikelytocoverChapters 3and4–“FinancialMathematicsI”(and“II”);thematerialincludedinthesetwochapters isusuallycoveredinthefirstyearofactuarialmathematicsprogrammesatuniversity.

Asnotedabove,wethinkmostreaderswillbenefitfromonlyarelativelybriefstudyof Chapters1and2,andtomoveontothemainchaptersandstartpractising!Itisunlikely tobebeneficialtospenddaysmemorisingthematerialintheseintroductorychapters.

Mostchaptersarelargelyself-contained,withafewobviousexceptions,e.g.Financial MathematicsIandII,ContingenciesIandII,thechaptersoncopulas,andMarkovmortalitymodels.Thereisacertainamountofgroupingofchapterswherethematerialisstrongly related,anditislikelythatmostreaderswilltendtoreadagroupoftopicstogether.

Anumberofchapterslendthemselvesparticularlytoarelativelybriefinitialstudy,subsequentlyre-visitingthemwhenstudyingalaterchapterwhichusesthatmaterial.For example,applicationofthematerialinChapters5and6isusedinseverallaterchapters ofthebook.

5ChapterStyle

Mostchaptersbeginwithsettingkeyobjectivesandabroaddiscussionofthemainideas behindthetopicofthechapter.Thisisusuallyfollowedwithacertainamountoftheory, thelengthofwhichisbasedonourexperienceofhowwellstudentsgenerallytendtograsp theconcepts.Comparedtoothertexts,therewill,ingeneral,belesstheoryincludedinthis book.Manytopicscoveredinthisbookalreadyhaveawealthofexcellenttexts–repetition ofthesametheoryisnotwarrantedhere.Theimportanceofmathematicalrigourshould bestressedatthispoint;thestudentwillbenefitgreatlyoverthelong-termbydeveloping adeeperunderstandingofthematerialwhichcanbeadaptedtovariousscenarios(such comparisonsarehighlightedinseveralchaptersofthebook).Eachchapterendswitha RecommendedReadinglist.

AsnotedinSection 3,mostreaderswillrequireadditionalprincipalreadingmaterial oneachtopictosupplementthematerialinthisbook.Thisbookfocusesonsolvingactuarialproblemsbyusingthe R programminglanguage,andisnotintendedtobeusedasa student’ssolesourceoflearningforeachsubject.

Thereadermayalsofinditbeneficialtoownacopyofthe“FormulaeandTables”issued bytheInstituteandFacultyofActuaries(2002)(alsofreelyavailableonlineatthetimeof publishing).

6ExamplesandExercises

Thereareover400examplesandexercisesincludedinthisbookwhichreaderscanuseto developtheirprogrammingskillsandunderstandingofthemathematicalconcepts.The bookincludestwomaintypesoftasks:

1. Analysisofdatasets(suchasclaimsdata,investmentdata,mortalitydataetc.),fitting variousmodelstodata,andtestingtheresults.Youwillfindthesedatasetsonthebook’s website.

2. Othertasksdonotrequiredatasets.Codeisusedtodevelopabetterunderstandingof actuarialconcepts,oftenwiththeuseofsimulations.Thebookincludes,forthemost

part,theuseofrelativelysimplecode,aimedatcommunicatingthefundamentalideas ofthemathematicsinvolved–itistheintentionthatthereaderwilldeveloptheircoding skillsthroughself-study.

Itishopedthatreaderswillalsocombinecodefromvariouspartsofthebook,developing theirownmoreadvancedmodels.Forexample,bycombiningcodefromvariouschapters onassetmodelling,claimsmodels,andmortalitymodels,onecoulddevelopamodelfor aninsurancecompany.

Ultimately,actuariesareinvolvedinthemanagementofrisk–muchofthisbookrelates tomeasuringriskanduncertainty,andhowtomanagetherisksidentified.Indeed,inadequateriskmanagementhascontributedtomanycorporatefailures,bothonthemacro orgloballevel,andalsowithinfirmsandindustries.Manyoftheexamplesandexercises aimtodeveloptheseanalyticalskills.Wemainlydiscussriskinthecontextoffinancial risk(suchasinterestrateriskandmarketpricerisk),anddemographicrisk(suchasmortalityrisk),althoughmanyoftheprinciplescouldbeappliedtooperational-typerisks. Mostofthesediscussionswillrelatetothefieldsoffinanceandinsurance(bothlifeand non-life).

Awordofwarning–thematerialinthisbookmainlyrelatestothequantitativemanagementofrisk,thatis,analysingdataandproposingstatisticaldistributionsandmodelsto predictfinancialoutcomes.Itisimportantwhenanalysingreal-worldriskthataqualitative approachistakenalongsidesuchaquantitativeapproach–therelativeweightsassignedto thetwoapproachesdependingontheparticularscenario.Ariskinitselfisanover-reliance onquantitativefinancialmodels,attheexpenseofanyqualitativeanalysisandexerciseof judgement.

Thestudentislikelytobenefitfromareviewofcasestudymaterialwhichrelateto riskmanagementcases.Studyofsuchcaseswillprovideamoreroundededucationand knowledge-baseofriskmanagement,ratherthansolelyunderstandingthemathematical approachdiscussedinthisbook.Examplesofsuchcasestudiesinclude:RobertMaxwell andtheMirrorGroupnewspapers,BaringsBank,EquitableLifeAssuranceCompany, Long-TermCapitalManagement,GFC2008,NorthernRock,LehmannBrothers,UKpensionschemes/LDIcrisis2022,SiliconValleyBank;andrelevantregulations,suchas:Basel Accords,Solvency2,TheDodd-FrankAct,TheSarbanes-OxleyAct.

7VerificationofCodeandCalculations–BestPractice

Akeyskilloftheactuaryistoverifycomplexcalculationsefficiently.Forexample,actuarial valuationsofinsurancecompaniesandcompanypensionschemestypicallyinvolvemillionsofcalculations;clearlyitisnotsensibletocheckallofthem.Theactuarymustbeable tocheckcalculationsinanappropriate,cost-effectivemannersuchthatthey,andother stakeholders,havesufficientconfidenceinthemandcanrelyontheiraccuracy.Errorsin thesecalculationsmayresultinadvicewhichhasasignificantimpactoncompanybalance sheets,solvencylevels,profits,amountofadditionalfundingrequired,dividendpayouts, andevenfuturecareerprospects.Wewilloftenprovidemorethanonecodedsolutionto

aprobleme.g.byperforminganalternative,approximatecalculation.Thisisaskillthe authorsbelievemostundergraduateswouldbenefitfromimprovingpriortoenteringthe workplace.

8Website: www.wiley.com/go/rprogramming.com

Thebook’swebsiteincludescodefromeachchapterofthebook,togetherwithalldata filesused.Itwillalso,periodically,beupdatedwithextracodingexercisesandsolutions.Wewelcomefeedbackfromourreadersregardingareaswhichrequirefurther examples.

Asreferredtoearlier,thewebsiteisfundamentalinusingthisbookefficiently.Aswell asprovidingsolutionstoexercisesinthebook,itallowscopyingofthesuggested R code thussavingsignificanttime.

9RorMicrosoftExcel?

ItisexpectedthatmanyreaderswillhavesomelevelofexperienceinusingMicrosoftExcel. Excelisafantasticcalculationtool.AsignificantbenefitofExcelisitsintuitivenature, makingitrelativelystraightforwardtolearnthebasicsandquicklyreachareasonablelevel ofcompetency.IndeedmanyfinancialinstitutionsuseExcelasaprincipalpieceofsoftware.Programminglanguagessuchas R haveasignificantlysteeperlearningcurvethan Excel;mostnewusers,particularlythosewithnoprogramminglanguagebackground,will takeseveraldaystofamiliarisethemselveswiththebasicworkingsofthe R language.

Ingeneral,Excelislikelytobepreferredto R forsimplertasks,orformoreinvolved calculationswhichareunlikelytorequirenumerousre-runswithvariousadjustments; theextracostandtimeinvolvedinwriting R codemaynotbejustifiedinsuchcasesgiven therelativelysmallsavingsoverthelongterm.Inthesamewaythatthereareoccasions whenacalculatorisapreferabletooltoExcel,therearemanyoccasionswhenExcelwill bepreferableto R.

ItisimportantforthereaderwhohasexperiencewithExceltodevelopanunderstanding ofwhetheraprogramminglanguagesuchas R willbemoresuitedatsolvingaparticularproblem,orsetofproblems,thanExcel.Thisshouldbeachievedasthereadermakes progresswiththisbook.ThereaderisencouragedtotackleexercisesinExcel(wherepossible)andtocomparetheprocesswith R.AnobviousexampleisthatoftheLoanSchedule discussedinChapter4(wherethereaderisspecificallyencouragedtoreproducethecalculationsinExcel);itmaywellbethecaseherethatusing R codeisnotwarranted.Anumber ofcalculationschedulesinvolvingLifeContingencyexamples(Chapters23and24)may alsoprovemoreuser-friendlywithExcel.However,asthesemodelsbecomemorecomplex(e.g.incorporatingstochasticinterestratemodels)atsomepointitislikelythat R will becomemoreefficient.

Forexample,apensionscheme’svaluationcalculationsmaytakeseveralminutestorun inExcelcomparedtoafewsecondsin R;suchcalculationsmaybere-runhundredsof

timesthroughouttheanalysisandverificationprocessofthevaluation,thusbenefiting fromfasterrunningspeeds.Adecisionisoftenrequiredthereforeregardingprogramming andrunningtimesandrelatedcostswhencomparingExcelandaprogramminglanguage suchas R.

Forabasiclevelofstatisticalanalysis,Excelmaybethepreferredchoice;however R will bethepreferredrouteinvolvingtaskswhichrequireanythingmorethanbasicanalysis. Tounderstandthebenefitsofusingaprogramminglanguagesuchas R requiresacertain amountofpracticeandapplication;alltheaboveshouldbecomeclearerwithexperience.

Forthecasualdatauser,Excelisbetter,giventhesteeperlearningcurverequiredto learnmostprogramminglanguagessuchas R.Excelisindeedusedinseveralofouractuarialmathsclassestodemonstratesmall-scale,simplifiedcalculations;however,theseoften tendnottobeparticularlyrealistic,andultimatelyleadtoabetterlearningandteaching experiencewhencarriedoutin R.Indeed,withstudentsmigratingtowardslanguageslike R andPython,agreaterproportionofourassessmentsnowinvolve R programming.

Therearetaskswhichareparticularlyunsuitedto,orjustnotpossibleinExcel.For example,itisnotasimpletasktocalculateeigenvectorsinExcel,butthesecanbecalculatedalmostinstantlywithonelineof R code;similarly,runninglargenumbersof simulationsusingcomplexmodels,largematrixcalculations,complexregressionanalysisetc.areproblematic.Manystudentprojectsrequiretheuseof R (orsimilarlanguage), andaresimplynotpossibleusingExcel. R hasmanystatisticalfunctionswhichrunsignificantlyquicker,orareunavailableinExcel.Wewillseemanyexamplesoftasksinthisbook whereusingExcelisextremelyslowandimpractical,suchaswhenrunninglargetasks, anddoesnotdealparticularlywellwithhugedatasets–oftencausingittoslowdownand crash.Simpletasksin R suchasanalysingmillionsofrowsofdataacrossseveraldatabases canbeextremelytime-consuminginExcel,andpronetocalculationerrors.Several R script file(thefilewhichcontainsthecode)canbeusedtocombinevarioustasks;withExcelthe solutionissignificantlylesselegant,andmoredifficulttoverifyandaudit.

Alsowearefrequentlyrequiredtosolveproblemsnumericallye.g.anexactsolutionmay notbepossibleoreasytoobtain.Suchanumericalapproachisusuallymoresuitedto R thanExcel.

Theuseof R isalsolikelytoreducetheriskofdatacorruptionandothererrorsbeing made.Physicallymanipulatingdataandformulae(cutting,copying,deleting,pasting)in Excelisgenerallyquickandeasy,butnotparticularlyrobust.Humanerrorintroduces mouse-slips,movingtoincorrectcellsetc.Suchprocessesmayberequiredtobeperformed severaltimesonmanysimilardatasets–with R werunthesameprogramrequiringno manualinteractionwiththedata.Lessexperiencedusersmaysuggestapplyingcareis requiredwhenhandlingdata;eventually,however,errorswillbemade.Theexperienced Exceluserwillonlybetooawareofsuchproblemsandthepotentialforcalculationdisaster. Ultimately, R islikelytobemorerobust,andlesspronetomanualerrors.

Asimilarcomparisoncouldbemadewiththerequirementfordatabasesystems.For small-scaledatascenariosaspreadsheetmayperformtherequiredtasksadequately;similartothecomparisonwith R,Excelwilltendtobeinitiallymoreuser-friendlythan adatabaseprogramme.However,withaddedcomplexityarobust,dedicateddatabase systemisrequired.Readersmaywishtoreviewtherecenthigh-profilecaserelating

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Get R programming for actuarial science peter mcquire free all chapters by Education Libraries - Issuu