Download Advanced chemical process control 1st edition morten hovd ebook All Chapters PDF

Page 1


https://ebookmass.com/product/advanced-chemical-processcontrol-1st-edition-morten-hovd/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Chemical Engineering Process Simulation 1st Edition Nishanth G. Chemmangattuvalappil

https://ebookmass.com/product/chemical-engineering-processsimulation-1st-edition-nishanth-g-chemmangattuvalappil/

ebookmass.com

More incidents that define process safety First Edition

American Institute Of Chemical Engineers. Center For Chemical Process Safety

https://ebookmass.com/product/more-incidents-that-define-processsafety-first-edition-american-institute-of-chemical-engineers-centerfor-chemical-process-safety/ ebookmass.com

Process Control 4th Edition Sohrab Rohani (Ed.)

https://ebookmass.com/product/process-control-4th-edition-sohrabrohani-ed/

ebookmass.com

Classical Myth, Global Edition 8th Edition, (Ebook PDF)

https://ebookmass.com/product/classical-myth-global-edition-8thedition-ebook-pdf/

ebookmass.com

Research Design in Counseling 4th Edition, (Ebook PDF)

https://ebookmass.com/product/research-design-in-counseling-4thedition-ebook-pdf/

ebookmass.com

Pharmacologie des anti-infectieux Société Française De Pharmacologie Et De Thérapeutique (Sfpt)

https://ebookmass.com/product/pharmacologie-des-anti-infectieuxsociete-francaise-de-pharmacologie-et-de-therapeutique-sfpt/

ebookmass.com

Asset

Liability Management Optimisation: A Practitioner's Guide to Balance Sheet Management and Remodelling Beata Lubinska

https://ebookmass.com/product/asset-liability-management-optimisationa-practitioners-guide-to-balance-sheet-management-and-remodellingbeata-lubinska/

ebookmass.com

Significant Changes to the International Residential Code Anonymous

https://ebookmass.com/product/significant-changes-to-theinternational-residential-code-anonymous/

ebookmass.com

Big Data Management and Analytics Brij B Gupta & Mamta

https://ebookmass.com/product/big-data-management-and-analytics-brijb-gupta-mamta/

ebookmass.com

https://ebookmass.com/product/mcgraw-hill-act-elite-2024-steven-wdulan/

ebookmass.com

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

AdvancedChemicalProcessControl

PuttingTheoryintoPractice

MortenHovd

Author

Prof.MortenHovd NorwegianUniversityofScienceand Technology

7491Trondheim

Norway

CoverImage: ©Voranee/Shutterstock

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>

©2023WILEY-VCHGmbH,Boschstr.12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyothermeans–nortransmittedortranslatedintoamachine languagewithoutwrittenpermissionfromthe publishers.Registerednames,trademarks,etc. usedinthisbook,evenwhennotspecifically markedassuch,arenottobeconsidered unprotectedbylaw.

PrintISBN: 978-3-527-35223-4

ePDFISBN: 978-3-527-84247-6

ePubISBN: 978-3-527-84248-3

oBookISBN: 978-3-527-84249-0

Typesetting Straive,Chennai,India

ToEllen

Contents

Preface xvii

Acknowledgments xxi

Acronyms xxiii

Introduction xxv

1MathematicalandControlTheoryBackground 1

1.1Introduction 1

1.2ModelsforDynamicalSystems 1

1.2.1DynamicalSystemsinContinuousTime 1

1.2.2DynamicalSystemsinDiscreteTime 2

1.2.3LinearModelsandLinearization 3

1.2.3.1LinearizationataGivenPoint 3

1.2.3.2LinearizingAroundaTrajectory 6

1.2.4ConvertingBetweenContinuous-andDiscrete-TimeModels 6

1.2.4.1TimeDelayintheManipulatedVariables 7

1.2.4.2TimeDelayintheMeasurements 9

1.2.5LaplaceTransform 9

1.2.6The z Transform 10

1.2.7SimilarityTransformations 11

1.2.8MinimalRepresentation 11

1.2.9Scaling 14

1.3AnalyzingLinearDynamicalSystems 15

1.3.1TransferFunctionsofCompositeSystems 15

1.3.1.1SeriesInterconnection 15

1.3.1.2ParallelSystems 16

1.3.1.3FeedbackConnection 16

1.3.1.4CommonlyUsedClosed-LoopTransferFunctions 17

1.3.1.5ThePush-ThroughRule 17

1.4PolesandZerosofTransferFunctions 18

1.4.1PolesofMultivariableSystems 19

1.4.2PoleDirections 19

1.4.3ZerosofMultivariableSystems 20

1.4.4ZeroDirections 22

1.5Stability 23

1.5.1PolesandZerosofDiscrete-TimeTransferFunctions 23

1.5.2FrequencyAnalysis 24

1.5.2.1Steady-StatePhaseAdjustment 26

1.5.3BodeDiagrams 27

1.5.3.1BodeDiagramAsymptotes 27

1.5.3.2MinimumPhaseSystems 29

1.5.3.3FrequencyAnalysisforDiscrete-TimeSystems 30

1.5.4AssessingClosed-LoopStabilityUsingtheOpen-LoopFrequency Response 31

1.5.4.1ThePrincipleoftheArgumentandtheNyquistD-Contour 31

1.5.4.2TheMultivariableNyquistTheorem 32

1.5.4.3TheMonovariableNyquistTheorem 32

1.5.4.4TheBodeStabilityCriterion 32

1.5.4.5SomeRemarksonStabilityAnalysisUsingtheFrequencyResponse 35

1.5.4.6TheSmallGainTheorem 36

1.5.5Controllability 37

1.5.6Observability 38

1.5.7SomeCommentsonControllabilityandObservability 39

1.5.8Stabilizability 40

1.5.9Detectability 40

1.5.10HiddenModes 41

1.5.11InternalStability 41

1.5.12CoprimeFactorizations 43

1.5.12.1Inner–OuterFactorization 44

1.5.12.2NormalizedCoprimeFactorization 44

1.5.13ParametrizationofAllStabilizingControllers 44

1.5.13.1StablePlants 45

1.5.13.2UnstablePlants 45

1.5.14HankelNormandHankelSingularValues 46 Problems 47 References 49

2ControlConfigurationandControllerTuning 51

2.1CommonControlLoopStructuresfortheRegulatoryControlLayer 51

2.1.1SimpleFeedbackLoop 51

2.1.2FeedforwardControl 51

2.1.3RatioControl 54

2.1.4CascadeControl 54

2.1.5AuctioneeringControl 55

2.1.6SplitRangeControl 56

2.1.7InputResettingControl 57

2.1.8SelectiveControl 59

2.1.9CombiningBasicSingle-LoopControlStructures 60

2.1.10Decoupling 61

2.2InputandOutputSelection 62

2.2.1UsingPhysicalInsights 63

2.2.2Gramian-BasedInputandOutputSelection 64

2.2.3Input/OutputSelectionforStabilization 65

2.3ControlConfiguration 66

2.3.1TheRelativeGainArray 66

2.3.2TheRGAasaGeneralAnalysisTool 68

2.3.2.1TheRGAandZerosintheRightHalf-Plane 68

2.3.2.2TheRGAandtheOptimallyScaledConditionNumber 68

2.3.2.3TheRGAandIndividualElementUncertainty 69

2.3.2.4RGAandDiagonalInputUncertainty 69

2.3.2.5TheRGAasanInteractionMeasure 70

2.3.3TheRGAandStability 70

2.3.3.1TheRGAandPairingofControlledandManipulatedVariables 71

2.3.4SummaryofRGA-BasedInput–OutputPairing 72

2.3.5PartialRelativeGains 72

2.3.6TheNiederlinskiIndex 73

2.3.7TheRijnsdorpInteractionMeasure 73

2.3.8Gramian-BasedInput–OutputPairing 74

2.3.8.1TheParticipationMatrix 75

2.3.8.2TheHankelInteractionIndexArray 75

2.3.8.3AccountingfortheClosed-LoopBandwidth 76

2.4TuningofDecentralizedControllers 76

2.4.1Introduction 76

2.4.2LoopShapingBasics 77

2.4.3TuningofSingle-LoopControllers 79

2.4.3.1PIDControllerRealizationsandCommonModifications 79

2.4.3.2ControllerTuningUsingFrequencyAnalysis 81

2.4.3.3Ziegler–NicholsClosed-LoopTuningMethod 86

2.4.3.4SimpleFittingofaStepResponseModel 86

2.4.3.5Ziegler–NicholsOpen-LoopTuning 88

2.4.3.6IMC-PIDTuning 88

2.4.3.7SimpleIMCTuning 89

2.4.3.8TheSetpointOvershootMethod 91

2.4.3.9Autotuning 95

2.4.3.10WhenShouldDerivativeActionBeUsed? 95

2.4.3.11EffectsofInternalControllerScaling 96

2.4.3.12ReverseActingControllers 97

2.4.4GainScheduling 97

2.4.5SurgeAttenuatingControllers 98

2.4.6MultiloopControllerTuning 99

2.4.6.1IndependentDesign 100

2.4.6.2SequentialDesign 102

2.4.6.3SimultaneousDesign 103

2.4.7ToolsforMultivariableLoop-Shaping 103

x Contents

2.4.7.1ThePerformanceRelativeGainArray 103

2.4.7.2TheClosed-LoopDisturbanceGain 104

2.4.7.3IllustratingtheUseofCLDG’sforControllerTuning 104

2.4.7.4UnachievableLoopGainRequirements 107 Problems 108 References 112

3ControlStructureSelectionandPlantwideControl 115

3.1GeneralApproachandProblemDecomposition 115

3.1.1Top-DownAnalysis 115

3.1.1.1DefiningandExploringOptimalOperation 115

3.1.1.2DeterminingWheretoSettheThroughput 116

3.1.2Bottom-UpDesign 116

3.2RegulatoryControl 117

3.2.1Example:RegulatoryControlofLiquidLevelinaDeaerationTower 118

3.3DeterminingDegreesofFreedom 121

3.4SelectionofControlledVariables 122

3.4.1ProblemFormulation 123

3.4.2SelectingControlledVariablesbyDirectEvaluationofLoss 124

3.4.3ControlledVariableSelectionBasedonLocalAnalysis 125

3.4.3.1TheMinimumSingularValueRule 127

3.4.3.2DesirableCharacteristicsoftheControlledVariables 128

3.4.4AnExactLocalMethodforControlledVariableSelection 128

3.4.5MeasurementCombinationsasControlledVariables 130

3.4.5.1TheNullspaceMethodforSelectingControlledVariables 130

3.4.5.2ExtendingtheNullspaceMethodtoAccountforImplementation Error 130

3.4.6TheValidityoftheLocalAnalysisforControlledVariableSelection 131

3.5SelectionofManipulatedVariables 132

3.5.1VerifyingthattheProposedManipulatedVariablesMakeAcceptable ControlPossible 133

3.5.2ReviewingtheCharacteristicsoftheProposedManipulated Variables 134

3.6SelectionofMeasurements 135

3.7MassBalanceControlandThroughputManipulation 136

3.7.1ConsistencyofInventoryControl 138 Problems 140 References 141

4LimitationsonAchievablePerformance 143

4.1PerformanceMeasures 143

4.1.1Time-DomainPerformanceMeasures 143

4.1.2Frequency-DomainPerformanceMeasures 145

4.1.2.1BandwidthFrequency 145

4.1.2.2PeaksofClosed-LoopTransferFunctions 146

4.1.2.3BoundsonWeightedSystemNorms 146

4.1.2.4GainandPhaseMargin 147

4.2AlgebraicLimitations 148

4.2.1 S + T = I148

4.2.2InterpolationConstraints 148

4.2.2.1MonovariableSystems 148

4.2.2.2MultivariableSystems 149

4.3ControlPerformanceinDifferentFrequencyRanges 149

4.3.1SensitivityIntegralsandRightHalf-PlaneZeros 149

4.3.1.1MultivariableSystems 150

4.3.2SensitivityIntegralsandRightHalf-PlanePoles 150

4.3.3CombinedEffectsofRHPPolesandZeros 150

4.3.4ImplicationsoftheSensitivityIntegralResults 150

4.4BoundsonClosed-LoopTransferFunctions 151

4.4.1TheMaximumModulusPrinciple 152

4.4.1.1TheMaximumModulusPrinciple 152

4.4.2MinimumPhaseandStableVersionsofthePlant 152

4.4.3Boundson S and T153

4.4.3.1MonovariableSystems 153

4.4.3.2MultivariableSystems 153

4.4.4Boundson KS and KSGd 154

4.5ISEOptimalControl 156

4.6BandwidthandCrossoverFrequencyLimitations 156

4.6.1BoundsfromISEOptimalControl 156

4.6.2BandwidthBoundsfromWeightedSensitivityMinimization 157

4.6.3BoundfromNegativePhase 158

4.7BoundsontheStepResponse 158

4.8BoundsforDisturbanceRejection 160

4.8.1InputsforPerfectControl 161

4.8.2InputsforAcceptableControl 161

4.8.3DisturbancesandRHPZeros 161

4.8.4DisturbancesandStabilization 162

4.9LimitationsfromPlantUncertainty 164

4.9.1DescribingUncertainty 165

4.9.2FeedforwardControlandtheEffectsofUncertainty 166

4.9.3FeedbackandtheEffectsofUncertainty 167

4.9.4BandwidthLimitationsfromUncertainty 168 Problems 168 References 170

5Model-BasedPredictiveControl 173

5.1Introduction 173

5.2FormulationofaQPProblemforMPC 175

5.2.1FutureStatesasOptimizationVariables 179

5.2.2UsingtheModelEquationtoSubstituteforthePlantStates 180

5.2.3OptimizingDeviationsfromLinearStateFeedback 181

5.2.4ConstraintsBeyondtheEndofthePredictionHorizon 182

5.2.5FindingtheTerminalConstraintSet 183

5.2.6FeasibleRegionandPredictionHorizon 184

5.3Step-ResponseModels 185

5.4UpdatingtheProcessModel 186

5.4.1BiasUpdate 186

5.4.2KalmanFilterandExtendedKalmanFilters 187

5.4.2.1AugmentingaDisturbanceDescription 188

5.4.2.2TheExtendedKalmanFilter 189

5.4.2.3TheIteratedExtendedKalmanFilter 189

5.4.3UnscentedKalmanFilter 190

5.4.4RecedingHorizonEstimation 193

5.4.4.1TheArrivalCost 195

5.4.4.2TheFilteringFormulationofRHE 196

5.4.4.3TheSmoothingFormulationofRHE 196

5.4.5ConcludingCommentsonStateEstimation 198

5.5DisturbanceHandlingandOffset-FreeControl 199

5.5.1FeedforwardfromMeasuredDisturbances 199

5.5.2RequirementsforOffset-FreeControl 199

5.5.3DisturbanceEstimationandOffset-FreeControl 200

5.5.4AugmentingtheModelwithIntegratorsatthePlantInput 203

5.5.5AugmentingtheModelwithIntegratorsatthePlantOutput 205

5.5.6MPCandIntegratorResetting 208

5.6FeasibilityandConstraintHandling 210

5.7Closed-LoopStabilitywithMPCControllers 212

5.8TargetCalculation 213

5.9SpeedingupMPCCalculations 217

5.9.1Warm-StartingtheOptimization 218

5.9.2InputBlocking 219

5.9.3EnlargingtheTerminalRegion 220

5.10RobustnessofMPCControllers 222

5.11UsingRigorousProcessModelsinMPC 225

5.12Misconceptions,Clarifications,andChallenges 226

5.12.1Misconceptions 226

5.12.1.1MPCIsNotGoodforPerformance 226

5.12.1.2MPCRequiresVeryAccurateModels 227

5.12.1.3MPCCannotPrioritizeInputUsageorConstraintViolations 227

5.12.2Challenges 227

5.12.2.1ObtainingaPlantModel 228

5.12.2.2Maintenance 228

5.12.2.3CapturingtheDesiredBehaviorintheMPCDesign 228 Problems 228 References 231

6SomePracticalIssuesinControllerImplementation 233

6.1Discrete-TimeImplementation 233

6.1.1Aliasing 233

6.1.2SamplingInterval 233

6.1.3ExecutionOrder 235

6.2PureIntegratorsinParallel 235

6.3Anti-Windup 236

6.3.1SimplePIControlAnti-Windup 237

6.3.2VelocityFormofPIControllers 237

6.3.3Anti-WindupinCascadedControlSystems 238

6.3.4AGeneralAnti-WindupFormulation 239

6.3.5Hanus’Self-ConditionedForm 240

6.3.6Anti-WindupinObserver-BasedControllers 241

6.3.7DecouplingandInputConstraints 243

6.3.8Anti-Windupfor“NormallyClosed”Controllers 244

6.4BumplessTransfer 245

6.4.1SwitchingBetweenManualandAutomaticOperation 245

6.4.2ChangingControllerParameters 246 Problems 246 References 247

7ControllerPerformanceMonitoringandDiagnosis 249

7.1Introduction 249

7.2DetectionofOscillatingControlLoops 251

7.2.1TheAutocorrelationFunction 251

7.2.2ThePowerSpectrum 252

7.2.3TheMethodofMiaoandSeborg 252

7.2.4TheMethodofHägglund 253

7.2.5TheRegularityIndex 254

7.2.6TheMethodofForsmanandStattin 255

7.2.7PrefilteringData 255

7.3OscillationDiagnosis 256

7.3.1ManualOscillationDiagnosis 256

7.3.2DetectingandDiagnosingValveStiction 257

7.3.2.1UsingtheCross-CorrelationFunctiontoDetectValveStiction 257

7.3.2.2HistogramsforDetectingValveStiction 258

7.3.2.3StictionDetectionUsinganOP–PVPlot 260

7.3.3StictionCompensation 262

7.3.4DetectionofBacklash 263

7.3.5BacklashCompensation 264

7.3.6SimultaneousStictionandBacklashDetection 265

7.3.7DiscriminatingBetweenExternalandInternallyGenerated Oscillations 266

7.3.8DetectingandDiagnosingOtherNonlinearities 266

7.4PlantwideOscillations 269

7.4.1GroupingOscillatingVariables 269

7.4.1.1SpectralPrincipalComponentAnalysis 269

7.4.1.2VisualInspectionUsingHigh-DensityPlots 269

7.4.1.3PowerSpectralCorrelationMaps 270

7.4.1.4TheSpectralEnvelopeMethod 271

7.4.1.5MethodsBasedonAdaptiveDataAnalysis 272

7.4.2LocatingtheCauseforDistributedOscillations 273

7.4.2.1UsingNonlinearityforRootCauseLocation 273

7.4.2.2TheOscillationContributionIndex 273

7.4.2.3EstimatingthePropagationPathforDisturbances 274

7.5ControlLoopPerformanceMonitoring 278

7.5.1TheHarrisIndex 278

7.5.2ObtainingtheImpulseResponseModel 279

7.5.3CalculatingtheHarrisIndex 280

7.5.4EstimatingtheDeadtime 281

7.5.5ModificationstotheHarrisIndex 282

7.5.6AssessingFeedforwardControl 283

7.5.7CommentsontheUseoftheHarrisIndex 285

7.5.8PerformanceMonitoringforPIControllers 286

7.6MultivariableControlPerformanceMonitoring 287

7.6.1AssessingFeedforwardControlinMultivariableControl 287

7.6.2PerformanceMonitoringforMPCControllers 288

7.7SomeIssuesintheImplementationofControlPerformance Monitoring 290

7.8Discussion 290 Problems 291 References 291

8EconomicControlBenefitAssessment 297

8.1OptimalOperationandOperationalConstraints 297

8.2EconomicPerformanceFunctions 298

8.3ExpectedEconomicBenefit 299

8.4EstimatingAchievableVarianceReduction 300

8.5Worst-CaseBackoffCalculation 300 References 301

AFourier–MotzkinElimination 303

BRemovalofRedundantConstraints 307 Reference 308

CTheSingularValueDecomposition 309

DFactorizationofTransferFunctionsintoMinimumPhaseStableand All-PassParts 311

D.1InputFactorizationofRHPZeros 312

D.2OutputFactorizationofRHPZeros 312

D.3OutputFactorizationofRHPPoles 313

D.4InputFactorizationofRHPPoles 313

D.5SISOSystems 314

D.6FactoringOutBothRHPPolesandRHPZeros 314

Reference 314

EModelsUsedinExamples 315

E.1BinaryDistillationColumnModel 315

E.2FluidCatalyticCrackerModel 318

References 320

Index 321

Preface

Halfacenturyago,AlanFoss[1]wrotehisinfluentialpaperaboutthegapbetween chemicalprocesscontroltheoryandindustrialapplication.Fossclearlyputthe responsibilityonthechemicalprocesscontroltheoriststoclosethisgap.Sincethen, severaladvancesincontroltheory,someoriginatingwithinacademia,whileothers originatedinindustryandwaslateradoptedandfurtherdevelopedbyacademia, havecontributedtoaddressingtheshortcomingsofchemicalprocesscontroltheory, asaddressedbyFoss:

● Theextensionoftherelativegainarray(RGA)tononzerofrequenciesand Graminan-basedcontrolstructureselectiontoolshaveextendedthetoolkitfor designingcontrolstructures.1 Self-optimalcontrol[4]providesasystematic approachtoidentifyingcontrolledvariablesforachemicalplant.

● Modelpredictivecontrol(MPC)hasgreatindustrialsuccess[3].

● Robustnesstomodelerrorreceivedsignificantresearchfocusfromthe1980s onward.

● ControlPerformanceMonitoringhas,sincetheseminalpaperbyHarris[2], resultedintoolsbothformonitoringanddiagnosingtheperformanceof individualloopsaswellasforidentifyingthecauseofplantwidedisturbances.

Theaforementionedlistnotwithstanding,manywouldagreetotheclaimthat thereisstillawidegapbetweencontroltheoryandcommonindustrialpracticein thechemicalprocessindustries.Thisbookistheauthor’sattempttocontributingto thereductionofthatgap.Thisbookhastwoambitiousobjectives:

1.Tomakemoreadvancedcontrolaccessibletochemicalengineers,manyofwhom willonlyhavebackgroundfromasinglecourseincontrol.Whilethisbookis unlikelytoeffortlesslyturnaplantengineerintoacontrolexpert,itdoescontain toolsthatmanyplantengineersshouldfinduseful.Itisalsohopedthatitwillgive theplantengineermoreweightwhendiscussingwithcontrolconsultants–either fromwithinthecompanyorexternalconsultants.

1Thisauthorisawarethatmanycolleaguesinacademiaareoftheopinionthatthe frequency-dependentRGAisnot“rigorous.”Thisbookwillinsteadtakethestancethatthe dynamicRGAhasprovedusefulandthereforeshouldbedisseminated.Itisalsonotedthatthe “counterexamples”wherethesteady-stateRGAisclaimedtoproposeawrongcontrolstructureare themselvesflawed.

2.Toincreasetheunderstandingamongcontrolengineers(studentsorgraduates movingintothechemicalprocesscontrolarea)ofhowtoapplytheirtheoretical knowledgetopracticalproblemsinchemicalprocesses.

Thethirdapproachtoreducingthegap,i.e.todevelopandpresenttoolstosimplifytheapplicationofcontrol,isnotafocusofthisbook–althoughsomecolleagues wouldsurelyclaimthatthisiswhatproportionalintegralderivative(PI(D))tuning rulesaredoing.

Thereadershouldnotethatthisbookdoesnotstart“fromscratch,”andsome priorknowledgeofcontrolisexpected.TheintroductiontotheLaplacetransform isrudimentaryatbest,andmuchmoredetailcouldbeincludedinthepresentationoffrequencyanalysis.Someknowledgeoffinite-dimensionallinearalgebrais expected.Readerswhohaveneverseenalinearstate-spacemodelwillfaceahurdle.Still,thebookshouldbeaccessibletoreaderswithbackgroundfromacoursein processcontrol.

Readerswithamoreextensiveknowledgeofcontroltheorymayfindthebook lacksrigor.Frequently,resultsarepresentedanddiscussed,withoutpresenting formalproofs.Readersinterestedinmathematicalproofswillhavetoconsultthe references.Thisisinlinewiththisauthor’sintenttokeepthefocusonissuesof importanceforindustrialapplications(withoutclaimingto“knowitall”).

ThestructureoftheBook

Thisbookhasgrownoutofmorethanthreedecadesoflearning,teaching,anddiscussingthecontrolofchemicalprocesses.Whathasbecomeclearisthatprocess controlengineersarefacedwithawidevarietyoftasksandproblems.Thechapters ofthisbookthereforeaddressarangeofdifferenttopics–mostofwhichhavebeen thesubjectofentirebooks.Theselectionofmaterialtoincludeisthereforenottrivial norobvious.

● Chapter1 presentssomemathematicalandcontroltheorybackground.Readers withsomeknowledgeofcontrolmaychoosetoskipthischapterandonlyreturn toittolookupunfamiliar(orforgotten)conceptsthatappearintherestofthe book.Thischapterdefinitelyhasamoretheoreticalandlesspracticalflavorthat muchoftherestofthebook.

● Chapter2 addressescontrollertuningforPI(D)controllers,aswellascontrol configuration.Thetermcontrolconfigurationherecoversboththecontrolfunctionalityoftenencounteredintheregulatorycontrollayer(feedback,feedforward, ratiocontrol,...)anddeterminingwhichinputshouldbeusedtocontrolwhich outputinamulti-loopcontrolsystem.

● Chapter3 focusesondeterminingwhatvariablestouseforcontrol.Typically, therearemorevariablesthatcanbemeasuredthancanbemanipulated,sothe mostfocusisgiventothechoiceofvariablestocontrol.

● Chapter4 presentslimitationstoachievablecontrolperformance.Clearly,ifit isnotpossibletoachieveacceptableperformance,itmakeslittlesensetryingto designacontroller.Understandingthelimitationsofachievableperformanceis

Preface xix alsoveryusefulwhendesigningcontrollersusingloopshaping,aspresentedin Chapter2.

● Chapter5 isaboutMPC,whichisthemostpopularadvancedcontroltypein thechemicalprocessindustries.2 InadditiontopresentingMPCproblemformulations perse,importantissuessuchasmodelupdating,offset-freecontrol,and targetcalculationarealsodiscussed.

● Chapter6 presentssomepracticalissuesincontrollerimplementation.Thislist isfarfromcomplete,someoftheissuesincludedarewellknownandmaybe consideredtrivial–butallareimportant.

● Chapter7 addressescontrolperformancemonitoring(CPM).Thenumber ofcontrollersinevenamodestlysizedchemicalprocessistoolargeforplant personneltofrequentlymonitoreachofthem,andautomatedtoolsaretherefore neededforthemaintenanceofthecontrol.Thechapteralsoincludessometools forfindingtherootcauseofdistributedoscillations–oscillationsoriginatingat onelocationintheplantwilltendtopropagateanddisturbotherpartsofthe plant,andhenceitisoftennontrivialtofindwheretheoscillationoriginatesand whatremedialactiontotake.

● Chapter8 addressescontrolbenefitanalysis,i.e.toolsto apriori assesstheeconomicbenefitthatcanbeobtainedfromimprovedcontrol.Thisauthoradmits thatthechapterisdisappointinglyshort.Developinggenerictoolstoestimatesuch economicbenefitisindeeddifficult.Ontheotherhand,theinabilitytoestimate economicbenefitwithsomecertaintyisalsooneofthemajorobstaclestomore pervasiveapplicationofadvancedcontrolinthechemicalprocessindustries.

What’sNotintheBook

Selectingwhattocoverinatextbookinvariablyrequiresleavingoutinterestingtopics.Sometopicsthatarerelevantinamoregeneralsetting,butwhichthisbookdoes notmakeanyattempttocover,include

● Nonlinearcontrol.Real-lifesystemsarenonlinear.Nevertheless,thisbookalmost exclusivelyaddresseslinearcontrol–withthemainexceptionbeingthehandling ofconstraintsinMPC.3 Linearizationandlinearcontroldesignsufficesformost controlproblemsinthechemicalprocessindustries,andinothercasesstaticnonlineartransformsofinputsoroutputscanmakemorestronglynonlinearsystems closertolinear.ThebookalsodescribesbrieflyapproachestononlinearMPC (withnonlinearityinthemodel,notonlyfromconstraints).Suchcomplications areneededmainlyforcontrolofbatchprocesses(wherecontinuouschangesinthe operatingpointareunavoidable),orforprocessesfrequentlyswitchingbetween differentoperatingregimes(suchaswastewatertreatmentplantswithanaerobic andaerobicstages).Althoughlinearcontroloftensuffices,itisclearlyprudentto verifyacontroldesignwithnonlinearsimulationand/orinvestigatethecontrolat differentlinearizationpoints(ifanonlinearmodelisavailable).

2And,indeed,thechemicalprocessindustriesiswhereMPCwasfirstdeveloped.

3Constraintsrepresentastrongnonlinearity.

Preface

● Modelingandsystemidentification.Theavailabilityofgoodsystemmodelsare ofgreatimportancetocontroldesignandverification.Thisbookonlybriefly describeshowtofitaparticularlysimplemonovariablemodel–morecomplete coverageofthesetopicsisbeyondthescopeofthisbook.

● Adaptiveandlearningcontrol.Whileclassicaladaptivecontrolseemstohavebeen outoffavorinthechemicalprocessindustriesforseveraldecades,thereiscurrentlyalotofresearchonintegratingmachinelearningwithadvancedcontrol suchasMPC.Thisauthordefinitelyacceptstherelevanceofresearchonlearningcontrolbutisoftheopinionthatatthisstagearesearchmonographwouldbe moreappropriatethanatextbookforcoveringthesedevelopments.

Inleavingoutmanyofthemoretheoreticallycomplexareasofcontroltheory, readersfromacontrolengineeringbackgroundmayfindthebooktitlesomewhat puzzling–especiallytheword Advanced.Althoughsomeofthetopicscovered bythisbookarerelativelystandardalsowithinthedomainofchemicalprocess control,thisauthorwouldclaimthatmuchofthebookcoverstopicsthatare indeedadvancedcomparedtocommonapplicationpracticeinthechemicalprocess industries.The Introduction willhopefullyenlightenreadersfromoutsidechemical processcontrolabouttheuniquechallengesfacedbythisapplicationdomainand contributetoexplainingtheprevalenceoflinearcontroltechniques.

August,2022

M.Hovd Trondheim,Norway

References

1 Foss,A.S.(1973).Critiqueofchemicalprocesscontroltheory. AIChEJournal 19:209–214.

2 Harris,T.J.(1989).Assessmentofcontrolloopperformance. TheCanadianJournal ofChemicalEngineering 67:856–861.

3 Qin,S.J.andBadgwell,T.A.(2003).Asurveyofindustrialmodelpredictivecontroltechnology. ControlEngineeringPractice 11(7):733–764.

4 Skogestad,S.(2000).Plantwidecontrol:thesearchfortheself-optimizingcontrol structure. JournalofProcessControl 10:487–507.

Acknowledgments

Itisnotedintheprefacethatthisbookisaresultofmorethanthreedecadesof learning,teaching,discussing,andpracticingchemicalprocesscontrol.Therefore, alargenumberofpeoplehavedirectlyorindirectlyinfluencedthecontentsofthis book,anditisimpossibletomentionthemall.Thepersonwiththestrongestsuch influenceisProfessorSigurdSkogestadatNTNU,whomIhadthefortunetohave asmyPhDsupervisor.Atthattime,Ihadanextendedresearchstayinthegroup ofProfessorManfredMorari(thenatCaltech).DiscussionstheseoutstandingprofessorsaswellaswithmycontemporariesasaPhDstudent,bothinSkogestad’s groupandinMorari’sgroup,greatlyenhancedmyunderstandingofprocesscontrol.IwouldparticularlyliketomentionEllingW.Jacobsen,PetterLundström,John Morud,RichardD.Braatz,JayH.Lee,andFrankDoyle.

Inlateryears,Ihavebenefitedfromdiscussionswithanumberofpeople,includingKjetilHavre,VinayKariwala,IvarHalvorsen,KristerForsman,AlfIsaksson, TorA.Johansen,LarsImsland,andBjarneA.Foss.MyownPhDcandidatesand Postdocshavealsoenrichedmyunderstandingofthearea,inparticular,Kristin Hestetun,FrancescoScibilia,GiancarloMarafioti,FlorinStoican,Selvanathan Sivalingam,MuhammadFaisalAftab,andJonatanKlemets.

Specialthanksareduetomyhostsduringsabbaticals,whenIhavelearneda lot:BobBitmead(UCSD),JanMaciejowski(UniversityofCambridge),SorinOlaru (CentraleSupelec),andAndreasKugi(TUVienna).

M.H.

Acronyms

AKFaugmentedKalmanfilter

ARauto-regressive(model)

BLTbiggestlogmodulus(tuningrule)

CCMconvergentcrossmapping

CLDGclosed-loopdisturbancegain

CPMcontrolperformancemonitoring

DNLdegreeofnonlinearity

EKFextendedKalmanfilter

EnKFensembleKalmanfilter

FCCfluidcatalyticcracking

FOPDTfirst-orderplusdeadtime(model)

GMgainmargin

IAEintegral(of)absoluteerror

IEKFiteratedextendedKalmanfilter

IMCinternalmodelcontrol

ISEintegral(of)squarederror

KISSkeepitsimple,stupid

LHPlefthalf-plane(ofthecomplexplane)

LPlinearprogramming

LQlinearquadratic

LQGlinearquadraticGaussian

MHEmovinghorizonestimation

MIMOmultipleinputmultipleoutput

MPCmodelpredictivecontrol

MVmanipulatedvariable

MVCminimumvariancecontroller

MWBmovingwindowblocking

NGInon-Gaussianityindex

NLInonlinearityindex

OCIoscillationcontributionindex

OPcontrolleroutput

PCAprincipalcomponentanalysis

PIDproportionalintegralderivative

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.