Superconducting radiofrequency technology for accelerators : state of the art and emerging trends 1s

Page 1


https://ebookmass.com/product/superconducting-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Membranes with Functionalized Nanomaterials : Current and Emerging Research Trends in Membrane Technology Suman Dutta

https://ebookmass.com/product/membranes-with-functionalizednanomaterials-current-and-emerging-research-trends-in-membranetechnology-suman-dutta/ ebookmass.com

Current Trends and Future Developments on (Bio-) Membranes

Membrane Technology for Water and Wastewater TreatmentAdvances and Emerging Processes Angelo Basile■ Antonio Comite

https://ebookmass.com/product/current-trends-and-future-developmentson-bio-membranes-membrane-technology-for-water-and-wastewatertreatment-advances-and-emerging-processes-angelobasile%ef%bc%8c-antonio-comite/ ebookmass.com

Emerging Membrane Technology for Sustainable Water Treatment 1st Edition Hankins

https://ebookmass.com/product/emerging-membrane-technology-forsustainable-water-treatment-1st-edition-hankins/ ebookmass.com

Savage King (The Caraksay Brotherhood Book 1) Ashe Barker

https://ebookmass.com/product/savage-king-the-caraksay-brotherhoodbook-1-ashe-barker/

ebookmass.com

The Impact of the First World War on British Universities

1st ed. Edition John Taylor

https://ebookmass.com/product/the-impact-of-the-first-world-war-onbritish-universities-1st-ed-edition-john-taylor/

ebookmass.com

Tiger's Little Waif (Bratburg Daddies Book 5) Cooper Mckenzie

https://ebookmass.com/product/tigers-little-waif-bratburg-daddiesbook-5-cooper-mckenzie/

ebookmass.com

Odell's Clinical Problem Solving in Dentistry 4th Edition Avijit Banerjee

https://ebookmass.com/product/odells-clinical-problem-solving-indentistry-4th-edition-avijit-banerjee/

ebookmass.com

Conquering ACT Math and Science Steven W. Dulan

https://ebookmass.com/product/conquering-act-math-and-science-stevenw-dulan/

ebookmass.com

Master Tara Singh in Indian History: Colonialism, Nationalism, and the Politics of Sikh Identity J.S. Grewal

https://ebookmass.com/product/master-tara-singh-in-indian-historycolonialism-nationalism-and-the-politics-of-sikh-identity-j-s-grewal/

ebookmass.com

Sh*t Out of Luck (Festive Fun Book 3) Amanda Bentley

https://ebookmass.com/product/sht-out-of-luck-festive-funbook-3-amanda-bentley/

ebookmass.com

SuperconductingRadiofrequencyTechnologyforAccelerators

SuperconductingRadiofrequencyTechnology forAccelerators

StateoftheArtandEmergingTrends

HasanPadamsee

Author

Dr.HasanPadamsee

CornellUniversity

NewmanLaboratory

CornellUniversity NY UnitedStates

CoverImage:CourtesyofFermiNational AcceleratorLaboratory

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie;detailedbibliographicdataareavailable ontheInternetat <http://dnb.d-nb.de>

©2023WILEY-VCHGmbH,Boschstraße12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyothermeans–nortransmittedortranslatedintoamachine languagewithoutwrittenpermissionfromthe publishers.Registerednames,trademarks,etc. usedinthisbook,evenwhennotspecifically markedassuch,arenottobeconsidered unprotectedbylaw.

PrintISBN: 978-3-527-41409-3

ePDFISBN: 978-3-527-83629-1

ePubISBN: 978-3-527-83630-7

oBookISBN: 978-3-527-83631-4

Typesetting Straive,Chennai,India

1Introduction 3

2SRFFundamentalsReview 7

2.1SRFBasics 7

2.2FabricationandProcessingonNb-BasedSRFStructures 11

2.2.1CavityFabrication 12

2.2.2Preparation 12

2.2.3ADecadeofProgress 15

2.3SRFPhysics 15

2.3.1ZeroDCResistance 15

2.3.2MeissnerEffect 17

2.3.3SurfaceResistanceandSurfaceImpedanceinRFFields 19

2.3.4NonlocalResponseofSupercurrent 22

2.3.5BCS 24

2.3.6ResidualResistance 30

2.3.7SmearingofDensityofStates 31

2.3.8Ginzburg–Landau(GL)Theory 31

2.3.9CriticalFields 34

2.3.10ComparisonBetweenGinzburg–LandauandBCS 39

2.3.11Derivationof Rs and X s 39

PartIIHighQFrontier:PerformanceAdvancesand Understanding 43

3Nitrogen-Doping 45

3.1Introduction 45

3.2N-DopingDiscovery 46

3.3SurfaceNitride 48

3.4InterstitialN 49

3.5ElectronMeanFreePathDependence 52

3.5.1LE-μSRMeasurementsofMeanFreepath 53

3.6Anti-Q-SlopeOriginsfromBCSResistance 55

3.7N-DopingandResidualResistance 58

3.7.1TrappedDCFluxLosses 58

3.7.2ResidualResistancefromHydrideLosses 58

3.7.3TunnelingMeasurements 59

3.8RFFieldDependenceoftheEnergyGap 61

3.9FrequencydependenceofAnti-Q-Slope 63

3.10TheoriesforAnti-Q-Slope 63

3.10.1XiaoTheory 63

3.10.2GurevichTheory 68

3.10.3NonequilibriumSuperconductivity 72

3.10.4Two-FluidModel-BasedonWeakDefects 75

3.11QuenchFieldofN-DopedCavities 77

3.12EvolutionandComparisonofN-dopingRecipes 83

3.13High Q andGradientR&DProgramforLCLS-HE 83

3.14N-DopingatOtherLabs 88

3.15SummaryofN-doping 88

4High Q via300 ∘ CBake(Mid-T-Bake) 91

4.1ASurpriseDiscovery 91

4.2SimilaritiestoN-Doping 91

4.3Mid-TBakingatOtherLabs 95

4.4TheLow-FieldQ-Slope(LFQS)and340 ∘ CBakingCures 97

4.5LossesatVeryLowFields 100

4.6LossesfromTwo-LevelSystems(TLS) 100

4.7EliminatingTLSLosses 101

5High Q’sfromDCMagneticFluxExpulsion 105

5.1TrappedFluxLosses,Sensitivity 105

5.2TrappedFluxSensitivityModels 106

5.3VortexPhysics 108

5.4CalculationofSensitivitytoTrappedFlux 110

5.5DependenceofSensitivityonRFFieldAmplitude 112

5.6DCMagneticFluxExpulsion 114

5.6.1Fast versus Slow-CoolingDiscovery 114

5.6.2ThermoelectricCurrents 118

5.7CoolingRatesforFluxExpulsion 122

5.8FluxExpulsionPatterns 123

5.9GeometricEffects–FluxHole 127

5.10FluxTrappingWithQuench 127

5.11MaterialQualityVariations 129

5.12ModelingFluxTrappingFromPinningVariations 135

PartIIIHighGradientFrontier:PerformanceAdvancesand Understanding 139

6High-Field Q Slope(HFQS)–UnderstandingandCures 141

6.1HFQSSummary 141

6.2HFQSinLow-�� Cavities 142

6.3Deconvolutionof RBCS and Rres 143

6.4DepthofBakingEffect 145

6.4.1FromAnodization 145

6.4.2FromHFRinsing 145

6.4.3DepthofMagneticFieldPenetrationbyLE-μSR 145

6.5RoleoftheOxideLayerandRoleofN-Infusion 148

6.6SIMSStudiesofO,H,andOHProfiles 151

6.7HydrogenPresenceinHFQS 156

6.8TEMStudiesonHydrides 158

6.9Niobium–hydrogenPhaseDiagram 160

6.10HEnrichmentatSurface 161

6.11 Q-diseaseReview 163

6.12VisualizingNiobiumHydrides 165

6.12.1Cold-stageConfocalMicroscopy 165

6.12.2Cold-stageAtomicForceMicroscopy(AFM) 166

6.13ModelforHFQS–ProximityEffectBreakdownofNano-hydrides 168

6.13.1BakingBenefitandProximityEffectModel 170

6.14PositronAnnihilationStudiesofHFQSandBakingEffect 172

6.15PointContactTunnelingStudiesofHFQSandBakingEffect 173

7QuestforHigherGradients:Two-StepBakingand N-Infusion 175

7.1Two-StepBaking 175

7.2SubtleEffectsofTwo-StepBaking–Bifurcation 175

7.2.1BifurcationReduction 177

7.3N-Infusionat120 ∘ C 181

7.4N-InfusionatMediumTemperatures 184

7.5UnifyingQuenchFields 188

7.6QuenchDetectionbySecondSoundinSuperfluidHelium 190

8ImprovementsinCavityPreparation 193

8.1ComparisonsofColdandWarmElectropolishingMethods 193

8.2ChemicalSoaking 197

8.3OpticalInspectionSystemandDefectsFound 199

8.4RoboticsinCavityPreparation 200

8.5PlasmaProcessingtoReduceFieldEmission 201

9PursuitofHigherPerformancewithAlternateMaterials 207

9.1NbFilmsonCuSubstrates 207

9.1.1DirectCurrentMagnetronSputtering 209

Contents

9.1.2DC-biasDiodeSputteringatHighTemperature(400–600 ∘ C) 209

9.1.3SeamlessCavityCoating 210

9.1.4Nb–CuFilmsbyECR 211

9.1.5Nb–CuFilmsviaHigh-PowerImpulseMagnetronSputtering (HIPIMS) 212

9.2AlternativestoNb 214

9.2.1Nb3 Sn 215

9.2.2MgB2 217

9.2.3NbNandNbTiN 221

9.3Multilayers 222

9.3.1SIS’Structures 222

9.3.2TheoreticalEstimates 223

9.3.3Results 223

9.3.4SS’Structures 225

9.4Summary 227

PartIVApplications 229

10NewCavityDevelopments 231

10.1CrabCavitiesforLHCHighLuminosity 231

10.2Short-PulseX-Rays(SPX)SystemfortheAPSUpgrade 238

10.3QWRCavityforAcceleration 239

10.4TravelingWaveStructureDevelopment 241

11OngoingApplications 245

11.1Overview 245

11.2Low-BetaAcceleratorsforNuclearScienceandNuclear Astrophysics 246

11.2.1ATLASatArgonne 246

11.2.2ISACandISAC-IIatTRIUMF 247

11.2.3SPIRALIIatGANIL 247

11.2.4HIEISOLDE 248

11.2.5RILACatRIKEN 249

11.2.6SPESUpgradeofALPIatINFN 249

11.2.7FRIBatMSU 250

11.2.8RAON 253

11.2.9SpokeResonatorStructureDevelopmentstoAvoidMultipacting 254

11.2.10JAEAUpgrade 255

11.2.11HELIAC 256

11.2.12SARAF 259

11.2.13HIAFatIMP 259

11.2.14IFMIF 260

11.3High-IntensityProtonAccelerators 260

11.3.1SNS 260

11.3.2ESS 262

11.3.3AcceleratorDrivenSystems(CADS) 262

11.3.4CiADS(ChinaInitiativeAcceleratorDrivenSystem) 265

11.3.5JapanAtomicEnergyAgency(JAEA)–ADS 266

11.3.6High-IntensityProtonAcceleratorDevelopmentinIndia 266

11.3.7PIP-IIandBeyond 267

11.4ElectronsforLightSources–Linacs 269

11.4.1EuropeanX-rayFreeElectronLaser(EXFEL) 269

11.4.2LinacCoherentLightSourceLCLS-IIandLCLS-HE(LCLS-High Energy) 273

11.4.3ShanghaiCoherentLightFacility(SCLF)SHINE 278

11.4.4InstituteofAdvancedScienceFacilities(IASF) 279

11.4.5PolishFree-ElectronLaserPOLFEL 279

11.5ElectronsforStorageRingLightSources 281

11.5.1High-EnergyPhotonSource(HEPS) 281

11.5.2TaiwanPhotonSource(TPS) 281

11.5.3HigherHarmonicCavitiesforStorageRingsChaoenWANG,NSRRC, Taiwan 282

11.5.4BNL 284

11.6ElectronsinEnergyRecoveryLinacs(ERL)forLightSources& Electron–IonColliders 285

11.6.1PrototypingERLTechnologyatCornell 285

11.6.2KEKERLs 287

11.6.3Light-HouseProjectforRadiopharmaceuticals 288

11.6.4PekingERL 288

11.6.5BerlinERL 288

11.6.6MESAERL 289

11.6.7SRFPhoto-injectorsforERLs 289

11.7ElectronsforNuclearPhysics,NuclearAstrophysics,Radio-Isotope Production 290

11.7.1CEBAFatJeffersonLab 290

11.7.2ARIELatTRIUMF 291

11.7.3ERLforLHeCatCERN 291

11.8CrabCavitiesforLHCHighLuminosity 292

11.9OngoingandNear-FutureProjectsSummary 293

12FutureProspectsforLarge-ScaleSRFApplications 295

12.1TheInternationalLinearCollider(ILC)forHigh-EnergyPhysics 295

12.2FutureCircularColliderFCCee 298

12.3ChinaElectron–PositronCollider,CEPC 300

13QuantumComputingwithSRFCavities 303

13.1IntroductiontoQuantumComputing 303

13.2Qubits 303

13.3SuperpositionandCoherence 304

x Contents

13.4Entanglement 304

13.52DSRFQubits 306

13.6JosephsonJunctions 307

13.7DilutionRefrigeratorforMilli-KelvinTemperatures 308

13.8QuantumComputingExamples 310

13.93DSRFQubits 310

13.10CavityQEDQuantumProcessorsandMemories 312

References 315

ListofSymbols 365

ListofAcronyms 369 Index 375

Preface

Ithasbeenmorethan20yearssinceWiley's1998publicationandenthusiastic receptionof RFSuperconductivityforAccelerators [1]andnowmorethan10years sincethesequelin2009: RFSuperconductivity–Science,Technology,andApplications [2].ManyaspectsofsuperconductingRF(SRF)developmentarethoroughly coveredinthesetwobooks,plusmanyreviewpapers[3–6],andmostcompletely intheproceedingsofinternationalSRFconferences(1980–2021)publishedon JACoW.org[7].

Overtheperiod2010–2022therehasbeenspectacularprogressintermsofthe performanceofSRFstructures,scientificunderstandingoftheimprovements, innovativecavitydesignsfornewapplications,andwideexplorationofnewmaterialavenuestotakeusbeyondthecapabilitiesofthepopularstandardofniobium, aswellasthelargescale,worldwideimplementationofthematuretechnologyto manynewaccelerators.Excitingnewprospectsareonthehorizon.

ItistimeforanewvolumeonRFSuperconductivitytoprovideacomprehensive updateformorethanadecadeofadvancescarriedoutbyenthusiasticresearchersall overtheworld.AlargefractionoftheprogressinSRFperformancereportedhereisa testamenttothecreativityandsuccessofimaginativeresearcherswhohaveworked oninnovativetreatments,pursuedeffortstogainunderstanding,andopenedthe doortonewapplications.OurreviewofthefieldcoversprogresstillJanuary2022. NodoubttherewillbemuchadditionalprogressreportedinupcomingcomingmeetingssuchasTeslaTechnologyCollaboration(TTC)Meetings,aswellasThinFilm SRFConferences.WelookforwardtomanynewresultsbythetimeofthenextSRF Conferencein2023.

Expertsaswellasnewcomerstothefield,includingstudents,willbenefitfromthe discussionofprogress,aswellasrecentandforthcomingapplications.Researchers inacceleratorphysicsmayalsofindmuchthatisrelevanttotheirdiscipline.There arenowmorethanathousandpractitionersoftheSRFfieldatmorethan150institutionsandindustriesworldwide.

Thebookhasfourparts.PartIistheintroductionandupdateofSRFfundamentals.ManyoftheSRFbasicscoveredinthefirsttwobookswillonlybebriefly touched,althoughessentialswillbesummarizedforthesakeofcompleteness. PartIIcoversperformanceadvancesandunderstandingatthe highQfrontier .Part IIIcoversperformanceadvancesandunderstandingatthe highgradient frontier.

PartIVcoversnewcavityandnewtreatmentdevelopments,aswellasongoing applicationsandfutureprospects.

AnexcitingnewdevelopmentdiscussedbrieflyinPartIVistheuseofSRFcavities forquantumcomputing.Nbcavitiesofferatransformativevehicleforincreasingthe coherencetimesofqubitsfromsub-millisecondstoseconds,promisingtobringthe quantumcomputingfieldtoquantumadvantageoverclassicalcomputers.

October26,2022

References

1 Padamsee,H.,Knobloch,J.,andHays,T.(1998). RFSuperconductivityfor Accelerators,2e,2008Wiley.

2 Padamsee,H.(2009).RFSuperconductivity:Science,Technology,and Applications,2e2008.Wiley.

3 Kelly,M.(2012).Superconductingradio-frequencycavitiesforlow-betaparticle accelerators. Rev.Accel.Sci.Technol. 5:185–203.https://doi.org/10.1142/ 9789814449953_0007.

4 Belomestnykh,S.(2012).Superconductingradio-frequencysystemsforhigh-ß particleaccelerators.In: ReviewsofAcceleratorScienceandTechnology: ApplicationsofSuperconductingTechnologytoAccelerators (eds.A.Choa andW.Chou)vol.5,147–184.WorldScientific.https://doi.org/10.1142/ S179362681230006X.

5 Reece,C.E.andCiovati,G.(2012).Superconductingradio-frequencytechnology R&Dforfutureacceleratorapplications.In: ReviewsofAcceleratorScienceand Technology:ApplicationsofSuperconductingTechnologytoAccelerators,vol.5 (ed.A.ChaoandW.Chou),285–312.WorldScientific.https://doi.org/10.1142/ S1793626812300113.

6 Gurevich,A.(2012).Superconductingradio-frequencyfundamentalsforparticleaccelerators. Rev.Accel.Sci.Technol. 5:119–146.https://doi.org/10.1142/ S1793626812300058.

7 SRFConferenceProceedings.

UpdateofSRFFundamentals

Introduction

Discoveredin1911,superconductivityisafascinatingphenomenaofmodern physicswithmarvelousscientificandtechnologicalapplications,suchaspowerful magnetsformedicalimaging(magneticresonanceimaging[MRI]),forhighenergy physics,inparticular,thelargehadroncollider(LHC),fornuclearfusion,anda widerangeofmodernapplications.

Thefirstmajormilestoneinthehistoryofsuperconductivitywasthediscovery byKamerlinghOnnes[1,2]thattheelectricalresistanceofvariousmetals,such asmercury,lead,andtindisappearswhenthetemperatureisloweredbelowsome criticaltemperaturevalue, T c .Zeroelectricalresistanceallowspersistentcurrentsin superconductingrings.Thesecurrentsflowwithoutanymeasurabledecreaseupto oneyear,allowingalowerboundof105 yearsontheirdecaytime.Comparedtogood conductors,suchascopper,whichhavearesidualresistivityatlowtemperatureof theorderof10 6 Ω-cm,theresistivityofasuperconductorislowerthan10 23 Ω-cm.

Subsequently,MeissnerandOchsenfeld[3]discoveredperfectdiamagnetismin superconductors.Magneticfieldsareexcludedfromsuperconductors.Anyfieldoriginallypresentinthemetalisexpelledfromthemetalwhenloweringthetemperature belowitscriticalvalue.Expulsionofmagneticfieldfromwallsofsuperconducting cavitiesviatheMeissnereffectwillbeanimportanttopicinChapter4.

Startingwithpioneeringeffortsinthe1960's,RFsuperconductivity(SRF)finally catapultedtoanenablingtechnologysincethe1980's.SRFhassinceequippedfrontieracceleratorsinhighenergyphysics,nuclearastrophysics,nuclearphysics,as wellaslightsourcesandneutronsourcesformaterialsandlifesciences.Newapplicationsarecomingonlinetointenseprotonsourcesforneutrinobeams,andtransmutationofnuclearwaste,aswellasfordeflectingcavitiesforbeamtiltsforhigher luminosityatLHC.

TheprimaryadvantagesoftheSRFtechnologyhavebeendiscussedinthetwo previousbooks[4,5].ThemostattractivefeaturesofapplyingSRFtoparticleacceleratorslieinthehighacceleratinggradient, Eacc ,possibleincontinuouswave(cw)and long-pulseoperatingmodes,alongwithextremelylowRFlossesinthecavitywalls atcryogenictemperatures.Thereisanotherimportantadvantage.Thepresenceof acceleratingstructureshasadisruptiveeffectonthebeam,limitingthequalityofthe beaminaspectssuchasenergyspread,beamhalo,orthemaximumcurrent.SRF systemscanbeshorter,andtherebyimposelessdisruptiontothebeam.Byvirtueof SuperconductingRadiofrequencyTechnologyforAccelerators:StateoftheArtandEmergingTrends, FirstEdition.HasanPadamsee.

©2023WILEY-VCHGmbH.Published2023byWILEY-VCHGmbH.

Figure1.1 Superconductingcavitiesspanningthefullrangeofparticlevelocities.

Source:[6]/M.Kelly,ArgonneNationalLab/withpermissionfromWorldScientificPublishing.

lowwalllosses,SRFcavitiescanbedesignedwithlargebeamholes(apertures)to furtherreducebeamdisruptionandallowhigherbeamcurrentsdesirable.

Therearetwodistincttypesofsuperconductingcavities.Thefirsttype,TM-mode cavities,isforacceleratingchargedparticlesthatmoveatnearlythespeedoflight, suchaselectronsinahigh-energylinearaccelerator(linac)orastoragering.The secondtype,TEM-modecavities,isforparticlesthatmoveatasmallfraction (e.g.0.01–0.5)ofthespeedoflight,suchastheheavyions.Structuresforthese applicationsarethequarterwaveresonator(QWR),thehalfwaveresonator(HWR) andthesinglespokeresonator(SSR),oronewithmultiplespokes.Atintermediate velocities,bothTMandTEMtypescouldbeused,dependingontheapplication. Figure1.1[6]showspracticalgeometrysketches,andtypicalRFfrequenciesfor eachcavitytype,dependingonthevelocityoftheparticlesspanningthefullvelocity rangeofparticles.

TheQWRisthecompactchoiceforlow-�� applications(��< 0.15)requiring ∼50% lessstructurewithlessoverallRFdissipationcomparedtotheHWRforthesamefrequencyand �� .(Here �� = v/c, where v isthespeedoftheparticleunderacceleration, and c isthespeedoflight.)Buttheasymmetricfieldpatternintheacceleratinggaps producesverticalsteeringthatincreaseswithvelocity.TheQWRislessmechanicallystablethantheHWRduetotheunsupportedendatthebottominFigure1.1. HencetheHWRismoresuitableinthemid-velocityrange(��> 0.15)orwheresteeringmustbeeliminated(i.e.forhighintensity).Ithasasymmetricfieldpatternand provideshighermechanicalrigidity.ButtheHWRislarger,requiresalargercryomodule(CM),andhasroughlytwicethedissipationforthesame �� andfrequency. TheSSRisamorecompactvariantoftheHWR.Itopensapathtoextensiontoseveralacceleratinggapsalongthebeaminasingleresonator,usingmultiplespokes. Itprovidesahighereffectivevoltage,butwithanarrowertransittimeacceptance.

1Introduction 5

Thisbookwillmostlyfocusonareviewforthenearvelocity-of-light,orhigh-�� acceleratingcavities,andtoparticleacceleratorsthatusethesestructures.Weonly brieflycoversomeofthelatestapplicationsoflow-�� structurestomajorfacilities. Forin-depthcoverageoflow-�� cavities,wereferthereadertoexcellentarticles[6], andtutorialsatInternationalSRFconferences[7,8].

ThisbookwillnotcovermanyimportanttopicsinSRF,suchasinputcouplers, higher-order-modecouplers,tuners,andcryomodules.Forlatestdevelopmentsin theseareas,wereferthereadertomanypaperspublishedintheProceedingsof theInternationalSRFConferences.TheproceedingsareavailableontheJACoW website[9].

SRFFundamentalsReview

2.1SRFBasics

Webrieflyreviewthekeyfiguresofmeritthatcharacterizetheperformanceofan SRFcavityorstructure,referringthereaderto[4,5]forin-depthcoverage.The firstimportantparameter–the acceleratingvoltageV c – istheratioofthemaximumenergygainthataparticlemovingalongthecavityaxiscanachieve,tothe chargeofthatparticle.Asallexistinghigh-�� multicellSRFstructuresoperateina �� standing-wavemode,theoptimallength(activelength)ofthecavitycellsis ����/2. Here �� istherfwavelength.Next,the acceleratinggradient istheratiooftheacceleratingvoltagepercelltothecelllength,or Eacc = V c /(����/2).Thecavity quality factorQ0 determinesthenumberofrfcycles(multipliedby2�� )requiredtodissipate theenergystoredinthecavity.ThekeyperformancefactorofanSRFcavityistypicallygivenbythe Q0 versus E curve,showinghowrflosseschangeasthegradient (Eacc )rises.Thequalityfactor(Q0 )isderivedasaratiooftwovaluesvia Rs = G/Q0 , where G isthegeometryfactor,and Rs isthesurfaceresistivity.Asthenamesuggests, thegeometryfactorisdeterminedonlybytheshapeofthecavity.Surfaceresistivity(oftenreferredtoassurfaceresistance, Rs )dependsonlyonmaterialproperties andtherffrequency.Thephysicsofsurfaceresistanceisdominatedbythephysics ofsuperconductors,andsowillbeamajortopicofthebook.Thecavity’sshunt impedance, Rsh ,determineshowmuchaccelerationaparticlecanderivefromacavityforagivenpowerdissipation, Pc inthecavitywalls.Hence Rsh = V c 2 /Pc .Arelated quantityisthegeometricshuntimpedance Rsh /Q0 ,orsimply R/Q,whichdepends onlyonthecavityshape.Twootherimportantfiguresofmeritaretheratios Epk /Eacc and Bpk /Eacc ofthepeaksurfaceelectricfield Epk andmagneticfield Bpk totheacceleratinggradient Eacc .Thetypicaldistributionsoftheelectricandmagneticfield inasinglecell �� = 1cavityareshowninFigure2.1a,b,aswellasforalow-�� QWR inFigure2.1c.Notethatforthesinglecell �� = 1 cavity,themagneticfieldismaximumneartheequator,whereastheelectricfieldisatapeakneartheiris.Maximum electricfieldlocationsfortheQWRareshowninred. Foragivenacceleratingfield,both Epk and H pk needtobeminimizedforagood design.Ahighsurfaceelectricfieldcancausefieldemissionofelectrons,which

Note: Q0 and Q willbeusedinterchangeablythroughoutthebook.

SuperconductingRadiofrequencyTechnologyforAccelerators:StateoftheArtandEmergingTrends, FirstEdition.HasanPadamsee. ©2023WILEY-VCHGmbH.Published2023byWILEY-VCHGmbH.

Figure2.1 (a)Electricandmagneticfielddistributionsforasingle-cellTM010 cavity. Source:[10]CourtesyofJ.Knobloch,CornellUniversity.(b)MicrowaveStudio® [11] simulationsoftheelectricfield(left)andmagneticfield(right)inaTM010 mode[12] CourtesyofD.Bafia,IllinoisInstituteofTechnology.Thephaseofthemagneticfieldis90∘ shiftedrelativetothephaseoftheelectricfield.(c)Electricfield(left)andmagneticfield (right)simulationfortheQWR[13].ZhangandVenturiniDelsolaro/JACoW/CCBY3.0.

(a)
Beam tube
(b)
Cell Beam tube
(c)

Figure2.2 Typical Q versus E curvesobtainedforcavitiesexhibitingvariousperformance limitingphenomenasuchas:hydrogen-Q-disease,multipacting,thermalinstability(or quench),fieldemission,orhighfield Q-slope(HFQS).Theflatcurvedepictingideal performanceisrarely(ornever)achieved.TheX-axisforgradientisnottoscale[14].

impactandheatthecavitywall,oftenleadingtoaprematurebreakdownofsuperconductivity(called“quench”).Fieldemissionelectronsalsogenerateundesirable “darkcurrent”intheaccelerator.Ahighsurfacemagneticfieldmaylimitthecavity’sperformanceathighgradientsifrfheatingfromahighresistanceregion(such asadefect)triggersaquenchofsuperconductivity,orifthelocalfieldapproaches thecriticalrfmagneticfield,discussedinmoredetailinlaterchapters.

ThekeyperformanceofanSRFcavityisexpressedbymeasuringthe Q0 versus Eacc curve.AsshowninFigure2.2,the Q0 departsfromtheidealflatcurvedue tolimitationsarisingfromvariousphenomenasuchasthehydrogen-related Q-disease,multipacting,breakdownfromadefect,fieldemission,highfield Q-slope (HFQS),andmediumfield Q-slope(MFQS).Eachofthesephenomenahasbeen extensivelystudiedwithgreatprogressinunderstandingthefundamentalcauses. Remedieshavebeendevelopedtoovercomethelimitationsandtoreturncavity behaviortowardtheideal,flat Q0 versus Eacc curve.

Temperaturemappingoftheouterwallofthecavityhasplayedacrucialrole inunderstandingandcuringmanyoftheselimitations.Figures2.3and2.4show theearliestsystem[15]for rapid mappingtheouter-walltemperaturebelow thelambdapointofliquidHe(2.2K).Figure2.4alsoshowsatemperaturemap whenthereisheatingatadefectthateventuallyleadstoaquenchatahigherfield. Thethermometrysystemshownherehasbeenimproved[16]andadoptedbymany labs[17–19].

TheperformanceofanSRFcavitydependsonthemaximumvaluesofthepeak surfacefieldsthatcanbetoleratedwithoutincreasingthemicrowavesurfaceresistancesubstantially,orwithoutcausingabreakdownofsuperconductivity.Ahigh surfaceelectricfieldcancausefieldemissionofelectrons,degradingthe Q0 .Ahigh surfacemagneticfieldmaylimitthegradientofthecavitythroughheatingata defectfollowedbythermalrunaway(Figure2.4),orthroughamagnetictransition tothenormalstateatthelocalcriticalmagneticfield.Theultimateacceleratingfield achievableforanidealNbcavityissetbytherfcriticalmagneticfield,theoretically

housing

GE varnish

Allen-Bradley resistor (100 Ω) 1 cm0.4 cm

Figure2.3 (a)Asinglethermometerboardholding21carbon-resistorthermometers.The shapeoftheboardmatchesthecontourofa1-cellcavity[10]CourtesyofJ.Knobloch, CornellUniversity.(b)Asinglethermometerencasedinepoxy.Thesensingelementisa 100 Ω Allen–Bradleycarbonresistorthesurfaceofwhichisgrounddowntojustexpose thecarbonelementforhighersensitivity.Source:CourtesyofJ.Knobloch,Cornell University.(c)Schematicofthethermometerhousingshowingthespring-loadedpogostick thathelpstokeepcontactwiththecavitywall,andtheleadsofmanganinwiretolimitthe strayheatinput.Thefaceofthethermometerispaintedwithinsulation. Source:[10,16]/withpermissionofAIPPublishingLLC.

equaltothesuperheatingcriticalmagneticfield[21], H sh .Foridealniobium, H sh at2Kisabout0.22T,whichtranslatestoamaximumacceleratingfieldofabout 52MV/mforatypicalshape �� = 1niobiumstructure,androughly30MV/mfora typical ��< 1Nbstructure.

OtherimportantdesignfeaturesforanSRFstructurediscussedfurtherin[22]are cell-to-cellcouplingformulticellstructures,Lorentz-force(LF)detuningcoefficient,

Pogostick
Mangamin wires
Stycast epoxy
G10

2.2FabricationandProcessingonNb-BasedSRFStructures

Figure2.4 (a)Thermometerspositionedonacavitywall.Apiezon-Ngreasepromotes thermalcontactbetweenthethermometerandthecavitywall.Someboardsare removedtoexposethecavity.[10,16].CourtesyofJ.Knobloch,CornellUniversity& withpermissionofAIPthroughCCC.(b)Sampletemperaturemapshowingheatingata sub-mmdefectsitethatleadstoquenchathigherfields.(c)AthigherRFfield,the defectheatinggrowstocauseaquenchofsuperconductivity,andalargeregionofthe cavitysurfacearoundthedefectshowshightemperatures.Source:[20]/H.Padamsee, CornellUniversity.

inputpowerrequiredforbeampower(Pb ),couplingstrengthofinputcoupler(Qext ), higherordermode(HOM)frequencies,HOMshuntimpedancesandHOM Q values. Mechanicalpropertiesalsoplayaroleinensuringstabilityunderatmosphericloadingandtemperaturedifferentials,tominimizeLorentz-forcedetuning,andtokeep microphonicsdetuningundercontrol.

2.2FabricationandProcessingonNb-BasedSRF Structures

ToappreciatethelatestprogressintheperformanceandapplicationsofSRFcavitiesitishelpfultobrieflyreviewthemainfeaturesofcustomaryfabricationand processingmethods.Theshortreviewwillhelpunderstandhowtheevolutionof

fabricationandsurfacetreatmentpracticescoupletothesolutionoftheperformance difficultiesmentionedabove,suchasthehydrogen Q-disease,fieldemissionand quench.Moredetailinformationaboutthefabricationandprocessingisavailable in[4,5,22].

2.2.1CavityFabrication

Severalindustriesprovideniobiumsheetswithwell-definedcavityspecifications [23].Thesheetsareinspectedforflatness,uniformgrainsize(typically50 μm), near-completeanduniformrecrystallization,RRRvalue(>300),andgoodsurface quality(absenceofscratches).HereRRRstandsforResidualResistivityRatio,and isameasureofthepurityofNb.Sincethemanyfabricationstagescanembed “defects,”suchasimpurityinclusions,pits,bumps,orscratches,eachsheetfrom industryisscannedwitheddy-currentscanning[24,25]toweedoutdefective sheets.Defectscanleadtobreakdownofsuperconductivity(quench)eitherbyoverheating,orbyloweringthelocalcriticalfield,resultinginamagneticquench.The highRRRNbhelpstostabilizedefectheatingduetothehighthermalconductivity thataccompaniesthehighRRR.

Fora �� ∼ 1structures,half-cellsarestamped,spun,orhydro-formed,checkedwith thecoordinatemeasuringmachine(CMM)forthecorrectshape,thentrimmedfor weldpreparations.Cavitypartsaregivenalight(20 μm)(BufferedChemicalPolish) BCPetchtoprepareforelectronbeamwelding.Electronbeamweldingisacritical processwithcarefullydevelopedparameters.Asmoothweldunderbeadwithcompleteabsenceofspatterisessentialforhighfieldperformance.Thiscanbeachieved withdefocusedelectron-beamwelding[26],orbyusingarasterwitharhombicor circularpatternasdescribedin[27].ToavoidRRRdegradation,thevacuuminthe electron-beamweldershouldbebetterthan2 × 10 5 Torr.Allweldsareinspected forcomplete,smoothunderbead,flatontheinside,andnoweldspatter.Aftercompletingasingle-cellormulticellstructure,theinsidesurfaceisinspectedoptically. Aspecialopticalinspectionapparatushasbeendevelopedandwidelyadopted[28]. Mechanicalmeasurementsensurestraightnessandcorrectdimensions.Theelectricfieldprofilealongthebeamaxisischeckedandadjusted.Thegoalisusually 98%fieldflatness.A“flat”fieldprofileisachievedbytuningthecellsrelativeto eachotherbysqueezingorstretchingthecellsmechanicallytoadjustandproperly matchthefrequencyofeachcell.

Mostlow-�� resonatorsaremadefrombulkniobiumwithhighRRR(150–300). Fabricationofpartsincludemachining,forming,rolling,andwelding.Recently,wire electricdischargemachining(EDM)hasbeendevelopedtogetherwithindustry[6] whichhaslittlepossibilityforforeignmaterialinclusionsascomparedtotraditional machining.Partsarejoinedtogetherbyelectronbeamweldinginhighvacuum.

2.2.2Preparation

Niobiumcavitiesundergoafirststageetching(100–150 μm)toremovethe“surface damage”layer.Methodsusedformaterialremovalarestandardbufferedchemical

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.