Download Complete Asymptotic perturbation methods: for nonlinear differential equations in physics a

Page 1


https://ebookmass.com/product/asymptotic-perturbationmethods-for-nonlinear-differential-equations-in-physics-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Proper orthogonal decomposition methods for partial differential equations Chen

https://ebookmass.com/product/proper-orthogonal-decomposition-methodsfor-partial-differential-equations-chen/ ebookmass.com

Mathematical Physics with Differential Equations Yisong. Yang

https://ebookmass.com/product/mathematical-physics-with-differentialequations-yisong-yang/

ebookmass.com

Mechanics and Physics of Structured Media : Asymptotic and Integral Equations Methods of Leonid Filshtinsky 1st Edition Igor Andrianov

https://ebookmass.com/product/mechanics-and-physics-of-structuredmedia-asymptotic-and-integral-equations-methods-of-leonidfilshtinsky-1st-edition-igor-andrianov/ ebookmass.com

Regional Geology and Tectonics: Principles of Geologic Analysis: Volume 1: Principles of Geologic Analysis 2nd Edition Nicola Scarselli (Editor)

https://ebookmass.com/product/regional-geology-and-tectonicsprinciples-of-geologic-analysis-volume-1-principles-of-geologicanalysis-2nd-edition-nicola-scarselli-editor/ ebookmass.com

Richard

https://ebookmass.com/product/startup-accelerators-a-field-guide-1stedition-richard-busulwa/

ebookmass.com

In My Dreams I Hold a Knife Ashley Winstead

https://ebookmass.com/product/in-my-dreams-i-hold-a-knife-ashleywinstead/

ebookmass.com

Molecular, Cellular, and Metabolic Fundamentals of Human Aging Evandro Fei Fang

https://ebookmass.com/product/molecular-cellular-and-metabolicfundamentals-of-human-aging-evandro-fei-fang/

ebookmass.com

Commercial Law 4th Edition Eric Baskind

https://ebookmass.com/product/commercial-law-4th-edition-eric-baskind/

ebookmass.com

Invariant Imbedding T-matrix Method for Light Scattering by Nonspherical and Inhomogeneous Particles Bingqiang Sun

https://ebookmass.com/product/invariant-imbedding-t-matrix-method-forlight-scattering-by-nonspherical-and-inhomogeneous-particlesbingqiang-sun/

ebookmass.com

https://ebookmass.com/product/conan-d20-rpg-the-exiles-sourcebookmodiphius-entertainment/

ebookmass.com

AsymptoticPerturbationMethods

AsymptoticPerturbationMethods

ForNonlinearDifferentialEquationsinPhysics

AttilioMaccari

Author

Prof.AttilioMaccari ViaAlfredoCasella3

00013Rome Italy

CoverImage: ©CallistaImages/Getty Images

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>

©2023WILEY-VCHGmbH,Boschstraße12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-41421-5

ePDFISBN: 978-3-527-84172-1

ePubISBN: 978-3-527-84173-8

oBookISBN: 978-3-527-84174-5

Typesetting Straive,Chennai,India

Contents

AbouttheAuthor xi

Foreword xiii

Introduction xv

1TheAsymptoticPerturbationMethodforNonlinear Oscillators 1

1.1Introduction 1

1.2NonlinearDynamicalSystems 3

1.3TheApproximateSolution 5

1.4ComparisonwiththeResultsoftheNumericalIntegration 10

1.5ExternalExcitationinResonancewiththeOscillator 11

1.6Conclusion 16

2TheAsymptoticPerturbationMethodforRemarkable NonlinearSystems 19

2.1Introduction 19

2.2PeriodicSolutionsandTheirStability 21

2.3GlobalAnalysisoftheModelSystem 27

2.4Infinite-periodSymmetricHomoclinicBifurcation 35

2.5AFewConsiderations 41

2.6APeculiarQuasiperiodicAttractor 42

2.7BuildinganApproximateSolution 44

2.8ResultsfromNumericalSimulation 46

2.9Conclusion 52

3TheAsymptoticPerturbationMethodforVibrationControl withTime-delayStateFeedback 53

3.1Introduction 53

3.2Time-delayStateFeedback 53

3.3ThePerturbationMethod 56

3.4StabilityAnalysisandParametricResonanceControl 59

3.4.1TheFrequency–ResponseCurveIs 62

3.5SuppressionoftheTwo-periodQuasiperiodicMotion 63

3.6VibrationControlforOtherNonlinearSystems 68

4TheAsymptoticPerturbationMethodforVibrationControlby NonlocalDynamics 69

4.1Introduction 69

4.2VibrationControlforthevanderPolEquation 72

4.3StabilityAnalysisandParametricResonanceControl 74

4.4SuppressionoftheTwo-periodQuasiperiodicMotion 79

4.5Conclusion 82

5TheAsymptoticPerturbationMethodforNonlinear ContinuousSystems 83

5.1Introduction 83

5.2TheApproximateSolutionforthePrimaryResonanceofthe nth Mode 86

5.3TheApproximateSolutionfortheSubharmonicResonanceofOrder One-halfofthe nthMode 91

5.4Conclusion 93

6TheAsymptoticPerturbationMethodforDispersiveNonlinear PartialDifferentialEquations 95

6.1Introduction 95

6.2ModelNonlinearPDESObtainedfromtheKadomtsev–Petviashvili Equation 97

6.3TheLaxPairfortheModelNonlinearPDE 98

6.4AFewRemarks 100

6.5AGeneralizedHirotaEquationin2 + 1Dimensions 100

6.6ModelNonlinearPDEsObtainedfromtheKPEquation 101

6.7TheLaxPairfortheHirota–MaccariEquation 103

6.8Conclusion 105

7TheAsymptoticPerturbationMethodforPhysics Problems 107

7.1Introduction 107

7.2DerivationoftheModelSystem 108

7.3IntegrabilityoftheModelSystemofEquations 111

7.4ExactSolutionsfortheC-integrableModelEquation 112

7.4.1NonlinearWave 112

7.4.2Solitons 112

7.4.3Dromions 113

7.4.4Lumps 116

7.4.5RingSolitons 116

7.4.6Instantons 117

7.4.7MovingBreather-LikeStructures 117

7.5Conclusion 120

8TheAsymptoticPerturbationModelforElementaryParticle Physics 121

8.1Introduction 121

8.2DerivationoftheModelSystem 122

8.3IntegrabilityoftheModelSystemofEquations 124

8.4ExactSolutionsforthe C-integrableModelEquation 125

8.4.1NonlinearWave 125

8.4.2Solitons 126

8.4.3Dromions 126

8.4.4Lumps 127

8.4.5RingSolitons 127

8.4.6Instantons 129

8.4.7MovingBreather-likeStructures 129

8.5AFewConsiderations 130

8.6HiddenSymmetryModels 130

8.7DerivationoftheModelSystem 133

8.8CoherentSolutions 138

8.8.1NonlinearWave 138

8.8.2Solitons 138

8.8.3Dromions 139

8.8.4Lumps 139

8.8.5RingSolitons 140

8.8.6Instantons 141

8.8.7MovingBreather-likeStructures 142

8.9ChaoticandFractalSolutions 143

8.9.1Chaotic–ChaoticandChaotic–PeriodicPatterns 143

8.9.2ChaoticLineSolitonSolutions 145

8.9.3ChaoticDromionandLumpPatterns 145

8.9.4NonlocalFractalSolutions 147

8.9.5FractalDromionandLumpSolutions 147

8.9.6StochasticFractalDromionandLumpExcitations 148

8.10Conclusion 150

9TheAsymptoticPerturbationMethodforRogueWaves 151

9.1Introduction 151

9.2TheMathematicalFramework 153

9.3TheMaccariSystem 154

9.4RogueWavePhysicalExplanationAccordingtotheMaccariSystemand BlowingSolutions 156

9.5Conclusion 158

10TheAsymptoticPerturbationMethodforFractalandChaotic Solutions 159

10.1Introduction 159

10.2ANewIntegrableSystemfromtheDispersiveLong-waveEquation 161

10.3NonlinearCoherentSolutions 165

10.3.1NonlinearWave 165

10.3.2Solitons 165

10.3.3Dromions 166

10.3.4Lumps 166

10.3.5RingSolitons 167

10.3.6Instantons 167

10.3.7MovingBreather-LikeStructures 168

10.4ChaoticandFractalSolutions 168

10.4.1Chaotic–ChaoticandChaotic–PeriodicPatterns 168

10.4.2ChaoticLineSolitonSolutions 168

10.4.3ChaoticDromionandLumpPatterns 169

10.4.4NonlocalFractalSolutions 169

10.4.5FractalDromionandLumpSolutions 169

10.4.6StochasticFractalExcitations 170

10.4.7StochasticFractalDromionandLumpExcitations 170 10.5Conclusion 171

11TheAsymptoticPerturbationMethodforNonlinear RelativisticandQuantumPhysics 173

11.1Introduction 173

11.2TheNLSEquationfor a1 > 0 174

11.3TheNLSEquationfor a1 < 0 176

11.4APossibleExtension 178

11.5TheNonrelativisticCase 180

11.6TheRelativisticCase 183

11.7Conclusion 185

12Cosmology 187

12.1Introduction 187

12.2ANewFieldEquation 188

12.3ExactSolutionintheRobertson–WalkerMetrics 191

12.4EntropyProduction 195

12.5Conclusion 197

13ConfinementandAsymptoticFreedominaPurelyGeometric Framework 199

13.1Introduction 199

13.2TheUncertaintyPrinciple 201

13.3ConfinementandAsymptoticFreedomfortheStrongInteraction 203

13.4TheMotionofaLightRayIntoaHadron 207

13.5Conclusion 208

14TheAsymptoticPerturbationMethodforaReverse Infinite-PeriodBifurcationintheNonlinearSchrodinger Equation 209

14.1Introduction 209

14.2BuildinganApproximateSolution 210

14.3AReverseInfinite-PeriodBifurcation 212

14.4Conclusion 215

Conclusion 217 References 219 Index 235

AbouttheAuthor

AttilioMaccariisafree-lanceresearcherinnonlinearphysics.HereceivedhisPhD fromLaSapienzaRomeUniversityin1990.Hehaspublishedaboutonehundred papers,mainlyoncoupledoscillatorsandnonlinearpartialdifferentialequationsin physicsandengineering.

Amonghismostimportantaccomplishments,werecalltheMaccarisystemfor roguewavesaswellastheHirota–Maccariequationfornonlinearsystems.Both equationsareintegrableandwithremarkablenonlinearwaves.Hisrecentwork hasbeendevotedtovibrationcontrol,andhefoundtwonewmethodsinorderto performthisveryimportanttask,time-delaystatefeedbackcontrolandnonlocal feedbackcontrol.

Foreword

Thistextbookisdevotedtononlinearphysics.

Theasymptoticperturbationmethodisusedasamathematicaltoolandis explainedinsomedetail,andthetheoryisdevelopedsystematically,startingwith nonlinearoscillators,limitcyclesandtheirbifurcations,followedbyiteratednonlinearmaps,continuoussystems,nonlinearpartialdifferentialequations(NPDEs), andculminatingwithinfinite-periodbifurcationinthenonlinearSchrodinger equationandfractalandchaoticsolutionsinNPDEs.

Aremarkablefeatureofthebookistheemphasisonapplications.Thereareseveralexamples,andthescientificbackgroundisexplainedatanelementaryleveland closelyintegratedwiththemathematicaltheory.

Thisbookisidealforanintroductorycourseattheseniororfirst-yeargraduate level.Itisalsoadvisableforascientistwhohasnotadeepknowledgeaboutnonlinearphysicsbutnowwantstobeginacompletestudy.

Theprerequisitesaremultivariablecalculusandintroductoryphysics.

Introduction

Nonlinearsystemsareparamountinengineeringandscience.Manyperturbation methodscanbeusedtostudythesesystemsinordertopredictremarkablebifurcations(aqualitativechangeintheirbehavior).Inthisbook,wewillusetheasymptoticperturbation(AP)methodbothfornonlinearordinarydifferentialequations (NODEs)andnonlinearpartialdifferentialequations(NPDEs).

InChapters1–4,wewillstudyNODEsandwillderiveasuitablemodelsystem tofindthemostimportantnonlinearsystemcharacteristics.Themainfindingis thatanonlinearmodelsystemofequationsdescribestheirbehavior.Inparticular,in Chapter2,wewilldescribeaninfinite-periodbifurcationforaparametricallyexcited Liènardsystemandfindapeculiarattractorforaweaklynonlinearoscillatorwitha two-periodquasiperiodicforcing.

InChapter3,weconsidervibrationcontrolwithtime-delaystatefeedback andperformasuccessfulcontrolstrategy.InChapter4,weillustrateanother vibration-controlmethodbasedonnonlocaldynamics.Numericalsimulation confirmsourmethod’svalidity.

InChapter5,weenlargeourperspectiveandstudynonlinearcontinuoussystems, inparticularthevibrationsofanEuler–Bernoullibeamrestingonanonlinearelasticfoundationandwithanexternalperiodicexcitation.Frequency–responseand externalforce–responsecurvescanbeeasilyfoundandcomparedwithnumerical simulation.

InChapter6,theAPmethodisusedtostudyNPDEs,andweareableto findtwonewandintegrablenonlinearequations,theMaccarisystemandthe Hirota–Maccariequation.

Atthesametime,theAPmethodcanbeusedinordertofindapproximatesolutionstorelevantphysicsproblems.InChapter7,westudytheZakharov–Kusnetsov equationandshowtheexistenceofinteractinglocalizedsolutionsbecausethe ZKequationcanbedescribedthroughaC-integrable(solvableviaanappropriate changeofvariables)systemofnonlinearevolutionequations.Dromions,lumps, ringsolitons,andbreathersexistforthisremarkablenonlinearequation.

InChapter8,westudytheconnectionbetweentheAPmethodandelementary particlephysics.

Introduction

InChapter9,wetrytoexplaintheroguewavesappearanceinnonlinear systems.

InChapter10,wearriveatoneofthemostimportantfindingsinthisbook, fractalandchaoticsolutionsarepossiblefornonlinearsystemsandperhapsata veryfundamentallevelwemustlettheparticleconcept(i.e.acoherentsolution) downbecausewecanstatethatingeneralsolutionshavefractalandchaotic properties.

InChapter11,weusetheAPmethodinordertoarriveatnonlinearquantum mechanicsandachievetheEinstein–deBroglesoliton-particleconceptbystudyingtheweaklynonlinearKlein–Gordonequationforaparticleconfinedinabox. InChapter12,weillustratehowtomodifytheEinsteinequationsoastoexplain theacceleratingandirreversibleevolutionoftheuniverse.AccordingtoPrigogine’s ideas,theentropyincreaseisconnectedwithmatterproduction.

InChapter13,thisnewtheoryisusedtofindhowconfinementandasymptotic freedomcanbeexplainedinaframeworkwhereparticlesarelikesmallblackholes. Finally,Chapter14isdevotedtoareverseinfinite-periodbifurcationforthenonlinearSchrodingerequationin2 + 1dimensions.

Manyteachingyearsallowedmewritingthisbook,andIwouldliketothank mystudentsatFolignoinPerugiaUniversity,Italy,fortheirhelpfulandvaluable suggestions.

TheAsymptoticPerturbationMethodforNonlinear

Oscillators

1.1Introduction

Oscillationsareafundamentaltopicinphysics.Whenasystemisnearitsequilibriumpoint,itbeginstooscillate,butifthedisplacementincreases,thenthenonlineartermsarenotnegligible.Thestartingpointisthedifferentialequationforthe harmonicoscillator

d2 X dt + �� 2 X (t)= 0(1.1)

where X (t)isthedisplacementand ω thecircularfrequency.Themostgeneralsolutionis

where �� and �� arefixedbytheinitialconditions(theCauchyproblem) if X (0) = X 0 forthedisplacement and ̇ X (0)= ̇ X 0 fortheinitialvelocity thenweeasilyget

Now,wecanconsideraweaklynonlinearpartinthedifferentialEq.(1.1)or,onthe contrary,astronglynonlinearpartbutwithsmallsolutions.Thefirstconsequenceis thattheamplitudeandthephaseareslowlyvaryingwithtime,sowecanintroduce anotherslowtime ��

where �� isabookkeepingdeviceand q isarationalnumberthatwillbechosenafterwards.Ifwewanttostudytheasymptoticsolutionbehavior(t → ∞)and �� → 0,then

AsymptoticPerturbationMethods:ForNonlinearDifferentialEquationsinPhysics, FirstEdition.AttilioMaccari. ©2023WILEY-VCHGmbH.Published2023byWILEY-VCHGmbH.

1TheAsymptoticPerturbationMethodforNonlinearOscillators

�� mustassumefinitevalues.So,weassumethatanapproximatesolutionisgivenby

orbetter

where c.c.standsforcomplexconjugateand h.o.t.forhigherorderterms. Followingthispath,wearemixingthemostimportantfeaturesoftwowell-known perturbationmethods,theharmonicbalanceandthemultiplescalemethods(for moredetailsaboutthesetwoperturbationmethods,seeRefs.[202,203,249]).

Ifweconsideraweaklynonlineardifferentialequation

where NL standsforthenonlinearpart,forinstance,

wecaninsertthesolution(1.7)inthenonlinearEq.(1.8)andwithsomealgebra manipulation,wegetfor n = 0

andfor n = 1

then, q = 2forthepropernonlineartermbalanceandwithsomealgebra manipulation

Weobservethatthevariablechange(1.5)impliesthat

whenthetemporaldifferentialoperatoractsonthefunction

FromEq.(1.10),wecanseethattheapproximatesolutionisalwaysperiodic,the amplitudeisconstant,buttheperiodchangesandbecomes

However,if

theperioddoesnotchangeandisequaltothelinearcaseperiod.

Inthischapter,wewanttoextendthismethodandstudyageneralizedVander Pol–Duffingoscillatorinresonancewithaperiodicexcitation

Weusetheasymptoticperturbation(AP)methodbasedonFourierexpansionand timerescaling(seeabove)anddemonstratethroughasecond-orderperturbation analysistheexistenceofoneortwolimitcycles.Moreover,weidentifyasufficient conditiontoobtainadoublyperiodicmotionwhenasecondlowfrequencyappears, inadditiontotheforcingfrequency.Thecomparisonwiththesolutionobtainedby thenumericalintegrationconfirmsthevalidityofouranalysis.

1.2NonlinearDynamicalSystems

Thestudyofnonlineardynamicalsystemshasinterestedmanyresearchers,andvariousmethodshavebeenused.Historically,theAPmethodwasfirstappliedinorder tostudythemostimportantcharacteristicsofanonlocaloscillator[112,113,118].

Wenowdevoteourattentiontothefollowingtypeofnonlinearequation

wherethedotdenotesdifferentiationwithrespecttothetimeandthefunctions f (x ) and g(x , y)aresupposedtobeanalytic.

ThelimitcyclesofthemodifiedVanderPolequation

havebeenstudiedinRef.[23]bymeansofatimetransformationmethod.

Phaseportraitsanddynamicalpropertiesoftheequation

havebeeninvestigatedwiththemethodsofdifferentiabledynamics[74]andthe equation

withthemethodofaveraging,theKBMmethod,themethodofmultiplescales,and thePoincaré–Lindstedtmethod[202,203].

NotethatEqs.(1.22)–(1.24)belongtothegeneralclass(1.21)andarecharacterized bythefactthat f (x )isanoddfunctionof x .

1TheAsymptoticPerturbationMethodforNonlinearOscillators

WerestrictourstudytothefollowingparticularcaseofEq.(1.21)

Eq.(1.5)canbeconsideredageneralizedVanderPol–Duffingequationbecauseit includesasparticularcasestheVanderPoloscillator(f 2 , f 3 , g1 = 0and g0 =− g2 ≠ 0) andtheDuffingequation(f 2 = g1 = g2 = 0and g0 = f 3 ≠ 0).ManyauthorshavestudiedtheproblemofapproximatingthelimitcycleoftheVanderPolequation.Stokes [249]usedthenonlinearGalerkinmethodanddevelopedaseriesrepresentation; DepritandSchmidt[47]utilizedthePoincaré–Lindstedtmethodtofindtheamplitudeandfrequencyofthelimitcycle;andGarcia-MagalloandBejarano[57]consideredageneralizedVanderPolequationbymeansoftheharmonicbalancemethod. Thesteady-statebehavioroftheVanderPoloscillatorhasalsobeenstudiedbyintegralmanifoldmethodsandsymbolicmanipulationpackagesbyGilsinn[59,61]. MehriandGhorashi[195]consideredtheperiodicallyforcedDuffingequationin ordertoestablishsufficientconditionstohaveaperiodicsolution,andQaisi[233] studiedasimilarproblemusingananalyticalapproachbasedonthepowerseries method.Inaseriesofpapers[69–71],Hassanusedthehigherordermethodofmultiplescaleswithreconstitutionandtheharmonicbalancemethodtodeterminethe periodicstateresponseoftheDuffingoscillator.

InourtreatmentofEq.(1.25),noconditionsareimposedonthecoefficients f 2 , f 3 , g1 ,and g2 ,whichcanbeoforder1.Onlythedissipativecoefficient g0 issupposedto beoforder e2 .Eq.(1.25)transformsinto

Inthesecondsection,wecalculatetheapproximatesolutiongoodtotheorder of ��4 andconstructaccurateexpressionsforthelimitcycleofEq.(1.26).Moreover, wedemonstratethat,inthefirstapproximation,thebehaviorofthesolutioncanbe describedbymeansofamodelsystemofdifferentialequations,whichrepresents thecharacteristicsofEq.(1.26)bymeansofareducedsetofparameters.

Usually,perturbationanalysisiscarriedoutonlytothefirstorderbecause,inmany cases,asecondorder-calculationdoesnotchangethequalitativebehaviorofthe solution.However,inSection1.2,wedemonstratethatiftheparametersareappropriatelychosen,wecanfindtwolimitcyclesandcancalculatetheirpositionsonly byasecond-orderperturbationanalysis.

InSection1.3,acomparisonwiththeresultsofthenumericalintegrationpermits discussionofthevalidityoftheAPmethod.

InSection1.4,wetreatanextensionofEq.(1.26)thatisanonlinearoscillator forcedbyasmallperiodicexcitation,oforder e2 ,inresonancewiththenaturalfrequencyoftheoscillator

Wedemonstratethat,underappropriateconditions,astablelimitcycleappears andcalculatetherelativeapproximatesolution.Moreover,wederivesufficient conditionsfortheexistenceofadoublyperiodicmotionwhenthefundamental

1.3TheApproximateSolution 5

oscillationissubjectedtoaslightmodulation,withanamplitudeproportionalto themagnitudeoftheperiodicexcitation.

Finally,inthelastsection,webrieflyrecapitulatethemostimportantresultsand indicatesomepossiblegeneralizationsofthepresentstudy.

1.3TheApproximateSolution

TheAPmethodweusetocalculatetheapproximatesolutionwasfirstdevelopedin Refs.[1,2],andtheninthissection,wesketchthemainstepsofthisperturbation technique.

Firstofall,wenowintroducearationalnumber

q = rationalnumber(1.28)

thetemporalrescaling t = eq t (1.29)

wheretherationalnumber q willbefixedafterwardsbecauseitestablishestowhat extentwecanpushthetemporalasymptoticlimitinsuchawaythatthenonlinear effectsbecomeconsistentandnotnegligible.If t → ∞,then �� → 0,when �� assumes afinitevalue.

Ifwetake �� = 0inEqs.(1.26)andneglectnonlinearterms,weseethatitadmits simpleharmonicsolutions X (t) = A exp( it) + c c.,where A isaconstantdependingoninitialconditionsand c. c.standsforcomplexconjugate.Nonlineareffects induceamodulationoftheamplitude A andtheappearanceofhigherharmonics. Themodulationisbestdescribedintermsoftherescaledvariable t thataccountsfor theneedtolookonlargertimescales,toobtainanonnegligiblecontributionfrom thenonlinearterm.

Theassumedsolution X (t)of(1.26)canbeexpressedbymeansofapowerseries intheexpansionparameter ��,weformallywrite

with �� n = |n|for n ≠ 0,and �� 0 = r isapositivenumber,whichwillbefixedlateron; inconsequenceoftherealityof(1.30a)

Theassumedsolution(1.30a)canbeconsideredacombinationofthedifferentharmonics,solutionsofthelinearequation,i.e.oftheequationobtainedafterneglecting allthenonlinearterms,andthecoefficientsofthiscombinationdependon �� and ��.

Eq.(1.30a)canbewrittenmoreexplicitly

1TheAsymptoticPerturbationMethodforNonlinearOscillators

Thefunctions �� n (t, ��)dependontheparameter ��,andwesupposethat �� n ’slimit for �� → 0existsandisfiniteand,moreover,theycanbeexpandedinpowerseriesof ��,i.e.

Inthefollowing,forsimplicity,weusetheabbreviations �� (0) n = ��n for n ≠ 1and �� (0) 1 = �� for n = 1.

Notethatthevariablechange(1.29)impliesthat (����n exp(−int))

AfterinsertingthisexpansionintoEq.(1.26),weobtainequationsforeveryharmonicandforafixedorderofapproximation,whicharerightforthepurposeof determiningthecoefficients.

For n = 0,weobtain

Acorrectbalanceoftermsshows r = 2,andthenwederivethefollowingrelation

For n = 2,takingintoaccountEq.(1.32),wehave

andthen

For n = 1,Eq.(1.26)yieldsfortheright-handside

andfortheleft-handside

If q = 2,thefirsttermhasthesamemagnitudeorderofnonlinearterms. TakingintoaccountEqs.(1.33b)and(1.34b),wecanderiveadifferentialequation, whichinvolvesonly �� ,

Substitutingthepolarform

intoEq.(1.36),andseparatingrealandimaginaryparts,wearriveatthefollowing modelsystem:

AswecanseefromEqs.(1.30c),(1.31),and(1.40),theapproximatesolutionof Eq.(1.26)canbewrittenasasumofacontributionoforder �� andacontributionof order ��2

ByinspectionofEq.(1.41),whichcanbeeasilyintegrated,weconcludethata stablesteady-stateresponseispossibleif �� 1 > 0and �� 1 < 0.Inthiscase,weobtaina stableequilibriumpoint,whichcorrespondstoastablelimitcycleforEq.(1.26),and itsapproximateexpressionisgivenby(1.43),with

Thenaturalfrequencyoftheoscillatorissubjecttoaslightmodificationand becomes

Ifwewanttoimprovethevalidityoftheapproximatesolution,wemustinclude higherorderterms.However,wecaneasilyconcludethat

0 (fortheirdefinition,seeEq.(1.31)).Indeed,weconsiderEq.(1.26)for n = 0and Eqs.(1.33b)and(1.34a)for n = 0and n = 2insuchawaytoobtain

Afterinserting(1.26b)into(1.26a),weseethattheresultingequationissatisfied if �� (1) 1 = 0.Recallthatwecanalwaysassumethattheinitialconditionis �� (1) 1 (0)= 0, becausetheinitialconditionsassociatedwithequation(1.25), X (0) = X 0 and X (0)= X 0 ,canbeusedtodetermine �� (0)= ��(0) exp(i�� (0))

Avalidhigherorderapproximationcanbederivedonlyifwetakeintoaccount �� (2) 1 ,�� (2) 2 ,�� (2) 0 For n = 0,wederivethefollowingrelation

8 1TheAsymptoticPerturbationMethodforNonlinearOscillators where h.o.t = higherordertermsand

Theobviousconclusionis

Inasimilarway,for n = 2,weobtain

Ifweneglectonlytermsoforder ��6 orhigher,Eq.(1.33a–c)transformsinto

Theterm d

inEq.(1.50)canbeeliminatedtakingintoaccountthatifwedifferentiateEq.(1.36),wehave

Moreover,from(1.50),weseethatitisnecessarytoconsiderEq.(1.26)for n = 3

Ifweusetheabbreviation

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.