Instant download Design of three-phase ac power electronics converters fei "fred" wang pdf all chapt

Page 1


Design of Three-phase AC Power Electronics Converters Fei "Fred" Wang

Visit to download the full and correct content document: https://ebookmass.com/product/design-of-three-phase-ac-power-electronics-converte rs-fei-fred-wang/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Model Predictive Control for Doubly-Fed Induction Generators and Three-Phase Power Converters Alfeu J. Sguarezi Filho

https://ebookmass.com/product/model-predictive-control-fordoubly-fed-induction-generators-and-three-phase-power-convertersalfeu-j-sguarezi-filho/

Advanced

Control of Power Converters Hasan Komurcugil

https://ebookmass.com/product/advanced-control-of-powerconverters-hasan-komurcugil/

Power Electronics Step-by-Step: Design, Modeling, Simulation, and Control Weidong Xiao

https://ebookmass.com/product/power-electronics-step-by-stepdesign-modeling-simulation-and-control-weidong-xiao/

Origin of Power Converters: Decoding, Synthesizing, and Modeling Yu-Kai Chen

https://ebookmass.com/product/origin-of-power-convertersdecoding-synthesizing-and-modeling-yu-kai-chen/

Control of Power Electronic Converters with Microgrid Applications Arindam Ghosh

https://ebookmass.com/product/control-of-power-electronicconverters-with-microgrid-applications-arindam-ghosh/

Design Computing and Cognition’22 John S. Gero

https://ebookmass.com/product/design-computing-andcognition22-john-s-gero/

Power Electronics 1st Edition Daniel W. Hart

https://ebookmass.com/product/power-electronics-1st-editiondaniel-w-hart/

Data-Driven Traffic Engineering: Understanding of Traffic and Applications Based on Three-Phase Traffic Theory Hubert Rehborn

https://ebookmass.com/product/data-driven-traffic-engineeringunderstanding-of-traffic-and-applications-based-on-three-phasetraffic-theory-hubert-rehborn/

The Worlds I See: Curiosity, Exploration, and Discovery at the Dawn of AI Fei-Fei Li

https://ebookmass.com/product/the-worlds-i-see-curiosityexploration-and-discovery-at-the-dawn-of-ai-fei-fei-li/

DesignofThree-PhaseACPower

ElectronicsConverters

IEEEPress

445HoesLane Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktssonBehzadRazaviJeffreyReed AnjanBoseJimLykeDiomidisSpinellis JamesDuncan AminMoeness DesineniSubbaramNaidu

HaiLi BrianJohnson AdamDrobot TomRobertazzi AhmetMuratTekalp

DesignofThree-PhaseACPower ElectronicsConverters

UniversityofTennessee,Knoxville,TN,USA

ZheyuZhang

RensselaerPolytechnicInstitute,Troy,NY,USA

RuiruiChen

UniversityofTennessee,Knoxville,TN,USA

Copyright©2024byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans, electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection107or108 ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,orauthorization throughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive, Danvers,MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requeststothe PublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111River Street,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permission.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons,Inc.and/orits affiliatesintheUnitedStatesandothercountriesandmaynotbeusedwithoutwrittenpermission.Allother trademarksarethepropertyoftheirrespectiveowners.JohnWiley&Sons,Inc.isnotassociatedwithanyproductor vendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparing thisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsof thisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategies containedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhereappropriate. Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthis workwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomer CareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993or fax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationDataappliedfor

[ISBN:9781119794233,ePDF:9781119794240,epub:9781119794257,oBook:9781119794264]

CoverImage:Wiley

CoverDesign:CourtesyofFeiWang,ZheyuZhang,RuiruiChen

Setin9.5/12.5ptSTIXTwoTextbyStraive,Pondicherry,India

Contents

AbouttheAuthors xiii

Preface xv

Acknowledgments xvii

1Introduction 1

1.1BasicsofThree-PhaseACConverters 1

1.1.1BasicApplications 2

1.1.2BasicTopologies 10

1.1.3CompositionofThree-PhaseACConverters 16

1.2BasicsofThree-PhaseACConverterDesign 20

1.2.1EssenceoftheDesignandDesignTasks 20

1.2.2DesignProcedure,Strategy,andPhilosophy 23

1.3GoalandOrganizationofThisBook 26 References 29

PartIComponents 31

2PowerSemiconductorDevices 33

2.1Introduction 33

2.2StaticCharacteristics 35

2.2.1OutputCharacteristics 35

2.2.2On-stateCharacteristics 38

2.2.3TransferCharacteristicsofActivePowerSwitch 41

2.2.4LeakageCurrentandBreakdownVoltage 43

2.2.5JunctionCapacitance 46

2.2.6GateCharge 49

2.3SwitchingCharacteristics 50

2.3.1Model 50

2.3.2Method 54

2.4ThermalCharacteristics 57

2.4.1Model 58

2.4.2Method 58

2.5OtherAttributes 60

2.5.1SOA 60

2.5.2ReliabilityCharacteristics 60

2.5.3MechanicalCharacteristics 63

2.5.4NonstandardCharacteristics 66

2.6Scalability(Parallel/Series) 68

2.7RelevancetoConverterDesign 70

2.8Summary 72 References 73

3Capacitors 75

3.1Introduction 75

3.2CapacitorTypesandTechnologies 75

3.2.1CeramicCapacitors 76

3.2.2Paper 76

3.2.3Mica 76

3.2.4Poly-Film 77

3.2.5AluminumElectrolyticCapacitors(AECs) 77

3.2.6TantalumElectrolyticCapacitors(TECs) 78

3.2.7CapacitorTechnologiesComparison 78

3.2.8EmergingCapacitorTechnologies 78

3.3CapacitorSelectioninaConverterDesign 82

3.4CapacitorCharacteristicsandModels 84

3.4.1CapacitorEquivalentCircuitModelandCapacitance 84

3.4.2VoltageandCurrentCapabilityModels 88

3.4.3LossandThermalModels 93

3.4.4LifetimeModel 96

3.5CapacitorBank(Parallel/Series) 98

3.5.1CapacitorBankConfigurationandVoltageBalancing 98

3.5.2CapacitorBankLayoutforParasiticInductanceReduction 99

3.6RelevancetoConverterDesign 100

3.6.1CapacitorScaling 101

3.6.2ACCapacitorClassification 101

3.7Summary 102 References 102

4Magnetics 105

4.1Introduction 105

4.2MagneticCoreMaterialsandConstruction 105

4.2.1SoftMagneticAlloy-BasedLaminated,TapeWoundandCutCores 105

4.2.2PowderCores 107

4.2.3FerriteCores 108

4.3InductorDesigninaConverter 108

4.4InductorCharacteristicsandModels 110

4.4.1InductanceandPermeability 110

4.4.2FluxDensityandCoreSaturation 113

4.4.3FillFactor 113

4.4.4CurrentDensityandCoreWindowAreaProduct Ap 113

4.4.5CoreLoss 114

4.4.6WindingLoss 120

4.4.7TemperatureRise 121

4.4.8LeakageInductance 123

4.4.9FringingEffectofGappedCores 124

4.5RelevancetoConverterDesign 127

4.5.1CapacitorWindingCapacitance 127

4.6Summary 128 References 129

PartIISubsystemsDesign 131

5PassiveRectifiers 133

5.1Introduction 133

5.2PassiveRectifierDesignProblemFormulation 135

5.2.1PassiveRectifierDesignVariables 136

5.2.2PassiveRectifierDesignConstraints 136

5.2.3PassiveRectifierDesignConditions 138

5.2.4PassiveRectifierDesignObjectivesandDesignProblemFormulation 139

5.3PassiveRectifierModels 140

5.3.1ACInputHarmonicCurrent 141

5.3.2MinimumandMaximumDCVoltagesUnderNormalOperatingConditions 148

5.3.3Ride-ThroughorHoldupTimeWithoutInputPower 149

5.3.4DC-LinkStability 149

5.3.5Device-RelatedConstraints – Inrush 149

5.3.6Inductor-RelatedConstraintsandDesign 154

5.3.7Capacitor-RelatedConstraintsandSelection 157

5.4PassiveRectifierDesignOptimization 157

5.5InterfacetoOtherSubsystemDesigns 161

5.5.1GeneralClassifications 161

5.5.2Discussion 162

5.6Summary 164 References 165

6Load-sideInverters 167

6.1Introduction 167

6.2Load-sideInverterDesignProblemFormulation 167

6.2.1Load-sideInverterDesignVariables 168

6.2.2Load-sideInverterDesignConstraints 169

6.2.3Load-sideInverterDesignConditions 170

6.2.4Load-sideInverterDesignObjectivesandDesignProblemFormulation 172

6.3Load-sideInverterModels 173

6.3.1ACLoadHarmonicCurrent 174

6.3.2InverterPowerLoss 188

6.3.3ControlPerformance 198

6.3.4DeviceMaximumJunctionTemperature – MaximumThermalImpedance Requirement 200

6.3.5DeviceSwitchingOvervoltage 204

6.3.6DecouplingCapacitor 218

6.3.7DecouplingInductor 222

6.4Load-sideInverterDesignOptimization 230

6.5Load-sideInverterInterfacestoOtherSubsystemDesigns 236

6.5.1GeneralClassifications 236

6.5.2Discussion 238

6.6Summary 241 References 241

7ActiveRectifiersandSource-sideInverters 245

7.1Introduction 245

7.2ActiveRectifierandSource-sideInverterDesignProblemFormulation 245

7.2.1ActiveRectifierandSource-sideInverterDesignVariables 246

7.2.2ActiveRectifierorSource-sideInverterDesignConstraints 247

7.2.3ActiveRectifierandLoad-sideInverterDesignConditions 248

7.2.4ActiveRectifierandSource-sideInverterDesignObjectivesandDesignProblem Formulation 249

7.3ActiveRectifierandSource-sideInverterModels 251

7.3.1ACSourceHarmonicCurrent 252

7.3.2ControlPerformance 264

7.3.3DC-LinkStability 266

7.3.4Reliability 267

7.4ActiveRectifierandSource-sideInverterDesignOptimization 280

7.5ImpactofTopology 280

7.5.1CircuitModelingforDifferentTopologies 280

7.5.2TopologyImpactonDeviceModels 286

7.6ActiveRectifierandSource-sideInverterInterfacestoOtherSubsystemDesigns 300

7.7Summary 300 References 302

8EMIFilters 305

8.1Introduction 305

8.2EMIFilterDesignBasics 306

8.2.1EMI/EMCStandards 306

8.2.2DefinitionofCMandDMNoise 306

8.2.3EMINoiseMeasurement 312

8.2.4BasicEMIFilterDesignMethod 316

8.2.5EMIFilterTopology 322

8.3EMIFilterDesignProblemFormulation 324

8.3.1EMIFilterDesignVariables 324

8.3.2EMIFilterDesignConstraints 325

8.3.3EMIFilterDesignConditions 325

8.3.4EMIFilterDesignObjectivesandDesignProblemFormulation 326

8.4EMIFilterModels 326

8.4.1EMINoiseSourceModel 327

8.4.2EMIPropagationPathImpedanceModel 332

8.4.3EMIFilterCornerFrequencyvs.SwitchingFrequency 342

8.5EMIFilterDesignOptimizationandSomePracticalConsiderations 343

8.5.1GroundingEffect 344

8.5.2EMIFilterCoupling 346

8.5.3Mixed-ModeNoise 350

8.5.4EMINoiseModeTransformationDuetoPropagationPathUnbalance 353

8.6EMINoiseandFilterReductionTechniques 353

8.6.1SwitchingFrequency 354

8.6.2ModulationScheme 354

8.6.3EMIFilterTopology 354

8.6.4Active/HybridFilter 358

8.6.5ParalleledConvertersInterleavingAngleOptimization 363

8.6.6EMIFilterIntegration 365

8.7InterfacetoOtherSubsystemDesigns 365

8.7.1VoltageDistribution 365

8.7.2CurrentDistribution 365

8.7.3Input/OutputTerminals 366

8.7.4Load-side dv/dt366

8.8Summary 366 References 367

9ThermalManagementSystem 369

9.1Introduction 369

9.2CoolingTechnologyOverview 369

9.2.1BasicConventionalCoolingMethodsforPowerElectronics 370

9.2.2AdvancedCoolingTechniques 372

9.2.3ComparisonofCoolingTechnologies 375

9.2.4HeatsinksandOtherComponents 377

9.3ThermalManagementSystemDesignProblemFormulation 384

9.3.1ThermalManagementSystemDesignVariables 385

9.3.2ThermalManagementSystemDesignConstraints 385

9.3.3ThermalManagementSystemDesignConditions 386

9.3.4ThermalManagementSystemDesignObjectivesandDesignProblem Formulation 386

9.4ThermalManagementSystemModels 388

9.4.1ThermalImpedance 388

9.4.2HeatsinkDimensions 393

9.5ThermalManagementSystemDesignOptimization 393

9.5.1DesignOptimizationExample 394

9.5.2DesignVerification 397

9.6ThermalManagementSystemInterfacetoOtherSubsystems 397

9.6.1GeneralClassification 397

9.6.2Discussion 399

9.7OtherCoolingConsiderations 400

9.7.1Force-LiquidConvectionCooling 400

9.7.2CoolingforPassives 403

9.8Summary 407

References 408

10ControlandAuxiliaries 411

10.1Introduction 411

10.2ControlArchitecture 411

10.2.1SystemControlLayer 411

10.2.2ApplicationControlLayer 412

10.2.3ConverterControlLayer 413

10.2.4SwitchingControlLayer 413

10.2.5HardwareControlLayer 414

10.3ControlHardwareSelectionandDesign 414

10.4Isolation 415

10.4.1SignalIsolator 415

10.4.2IsolatedPowerSupply 417

10.4.3DiscussiononIsolationStrategiesforLow-PowerConverterDesign 418

10.5GateDriver 418

10.5.1GateDriverFundamentals 419

10.5.2GateDriver-RelatedKeyDeviceCharacteristics 420

10.5.3GateDriverDesign 422

10.5.4BootstrapGateDriver 429

10.6SensorsandMeasurements 430

10.6.1VoltageSensors 431

10.6.2CurrentSensors 431

10.6.3TemperatureSensors 432

10.6.4High-VoltageSensors 432

10.6.5SensingCircuitDesignConsiderationsforHigh-FrequencyWBG Converters 434

10.7Protection 445

10.7.1Device-LevelProtection 445

10.7.2Converter-LevelProtection 450

10.8PrintedCircuitBoards 452

10.9DeadtimeSettingandCompensation 455

10.9.1DeadtimeSetting 456

10.9.2DeadtimeCompensation 461

10.10InterfacetoOtherSubsystems 466

10.11Summary 467

References 468

11MechanicalSystem 471

11.1Introduction 471

11.2MechanicalSystemDesignProblemFormulation 475

11.2.1MechanicalSystemDesignVariables 475

11.2.2MechanicalSystemDesignConstraints 476

11.2.3MechanicalSystemDesignConditions 477

11.2.4MechanicalSystemDesignObjectivesandDesignProblemFormulation 478

11.3BusbarDesign 482

11.3.1BusbarDesignProblemFormulation 482

11.3.2BusbarDesignProceduresandConsiderations 483

11.3.3BusbarLayoutDesignExampleforaThree-LevelANPCConverter 491

11.4MechanicalSystemInterfacetoOtherSubsystems 502

11.4.1GeneralClassifications 502

11.4.2Discussion 503

11.5Summary 504

References 505

12ApplicationConsiderations 507

12.1Introduction 507

12.2MotorDriveApplications 507

12.2.1HarmonicsinMotors 509

12.2.2CMVoltageinMotors 513

12.2.3Switching dv/dt ImpactonMotors 523

12.2.4MotorDriveGrounding 544

12.3GridApplications 547

12.3.1BaselineDesign 548

12.3.2ImpactofHigh-andLow-VoltageRide-Through 556

12.3.3ImpactofGridFaults 559

12.3.4ImpactofFrequencyRide-ThroughandGridVoltageAngleChange 562

12.3.5ImpactofLightningSurge 563

12.3.6ImpactofGridRequirementsonConverterHardwareDesign 566

12.3.7OtherFactorsinGridApplications 571

12.4Summary 577

References 578

PartIIIDesignOptimization 581

13DesignOptimization 583

13.1Introduction 583

13.2DesignOptimizationConceptandProcedure 583

13.2.1ConceptandMathematicalFormulation 583

13.2.2Optimization-BasedDesignProcedure 584

13.2.3Multi-objectiveOptimizationandParetoFront 585

13.2.4MathematicalPropertiesofPowerConverterDesignOptimization Problems 586

13.3OptimizationAlgorithms 587

13.3.1OptimizationAlgorithmClassification 587

13.3.2OptimizationAlgorithmSelection 589

13.4PartitionedOptimizersvs.SingleOptimizerforConverterDesign 590

13.4.1PartitionedOptimizers 590

13.4.2SingleOptimizer 594

13.5DesignToolDevelopment 596

13.5.1DesignToolandItsDesiredFeatures 596

13.5.2AGA-BasedOptimizationToolforGeneral-PurposeIndustrialMotor Drive 597

13.5.3ADesignToolforHigh-DensityInverters 616

13.5.4Partition-BasedDesignvs.WholeConverterDesign 635

13.6VirtualPrototyping 638

13.7Summary 642

References 643

Index 647

AbouttheAuthors

Fei “Fred” Wang hasbeenaProfessorandCondraChairofExcellenceinPowerElectronicsatthe Min.H.KaoDepartmentofElectricalEngineeringandComputerScience,UniversityofTennessee (UTK)since2009.HeisaCo-founderandtheTechnicalDirectoroftheUSNSF-DOEEngineering ResearchCenterforUltra-wide-areaResilientElectricEnergyTransmissionNetworks(CURENT) atUTK.HeholdsajointappointmentwithOakRidgeNationalLaboratory.Dr.Wangreceivedhis BSdegreefromXi’anJiaotongUniversity,Xi’an,China,andhisMSandPhDdegreesfromthe UniversityofSouthernCalifornia,LosAngeles,in1982,1985,and1990,respectively,allinelectricalengineering.Dr.WangwasaResearchScientistatElectricPowerLab,UniversityofSouthern California,from1990to1992.HejoinedGEPowerSystemsEngineeringDepartment,Schenectady, NY,asanApplicationEngineerin1992.From1994to2000,hewasaSeniorProductDevelopment EngineerwithGEDriveSystems,Salem,VA.During2000–2001,hewasManagerofElectronicand PhotonicSystemsTechnologyLab,GEGlobalResearchCenter,Schenectady,NY,and Shanghai,China.In2001,hejoinedtheCenterforPowerElectronicsSystems(CPES)atVirginia Tech,Blacksburg,VA,asaResearchAssociateProfessorandbecameanAssociateProfessorin 2004.From2003to2009,healsoservedasCPESTechnicalDirector.Dr.Wanghaspublishedover 600journalandconferencepapers,authoredonebookandsevenbookchapters,andholds20US patents.Hisachievementshaveresultedinthe2018IEEEIASGeraldKlimanInnovationAward, 12IEEEprizepaperawards,DushmanAward – GE’shighestawardfortechnicalteamcontributions,andfourUniversityofTennesseeEngineeringFacultyResearchAchievementsAwards.Heis afellowofIEEEandafellowoftheUSNationalAcademyofInventors.Hisresearchmainlyfocuses onwidebandgapdevice-basedpowerelectronicsandpowerelectronicsapplicationsintransportation,motordrives,renewableenergysystems,andelectricpowergrids.

ZheyuZhang receivedtheBSandMSdegreesfromHuazhongUniversityofScienceandTechnology,Wuhan,China,andthePhDdegreefromTheUniversityofTennessee,Knoxville,TN,in2008, 2011,and2015,respectively,allinelectricalengineering.

Dr.ZheyuZhangisanAssistantProfessoratRensselaerPolytechnicInstitute.HewastheWarren H.Owen-DukeEnergyAssistantProfessorofEngineeringatClemsonUniversityfrom2019to 2023.HewasaResearchAssistantProfessorintheDepartmentofElectricalEngineeringandComputerScienceattheUniversityofTennessee,Knoxville,from2015to2018.Afterward,hejoined GeneralElectricResearchastheLeadPowerElectronicsEngineeratNiskayuna,NY,USA,from 2018to2019.Hehaspublished100+papersinthemostprestigiousjournalsandconferenceproceedings,filed10+patentapplications,authoredonebookandonebookchapter,andpresented 10IEEEtutorialseminarsandwebinars.Hisresearchinterestsincludewidebandgap-basedpower electronicscharacterizationandapplications.Dr.ZhangiscurrentlytheStandardVice-Chairof IEEEIASPowerElectronicsDevicesandComponentsCommitteeandAssociateEditorfor IEEE

TransactionsonPowerElectronics and IEEETransactionsonIndustryApplications.Hewasthe recipientofthreeprizepaperawardsfromtheIEEEIndustryApplicationsSocietyandIEEEPower ElectronicsSociety,2021IEEEIASAndrewW.SmithOutstandingYoungMemberAchievement Award,and2022NASAEarlyCareerFacultyAward.HeisaseniormemberofIEEE.

RuiruiChen receivedaBSdegreefromHuazhongUniversityofScienceandTechnology,Wuhan, China;anMSdegreefromZhejiangUniversity,Hangzhou,China;andaPhDdegreefromthe UniversityofTennessee,Knoxville,USA,in2010,2013,and2020,respectively,allinelectrical engineering.

Dr.RuiruiChenisaResearchAssistantProfessorwiththeDepartmentofElectricalEngineering andComputerScience,theUniversityofTennessee,Knoxville,USA.From2013to2015,hewasan electricalengineeratFSP-PowerlandTechnologyInc.,China.Hehaspublishedover50journaland conferencepapers,authoredonebookchapter,andreceivedoneIEEEprizepaperaward.His researchinterestsincludewidebandgapdevicesandapplications,medium-voltagepowerelectronics,cryogenicpowerelectronics,EMI,andpowerelectronicsforelectrifiedtransportationandgrid applications.

Preface

Myfirstinvolvementinthree-phaseACconverterdesignwasonthedevelopmentteamfor medium-voltage,MW-classmotordrivesinGEDriveSystemsduring1990s.Theproducts Ihelpedtodesignincludedthyristor-basedcycloconverters,IGBT-basedthree-levelneutralpoint-clamped(NPC)pulse-widthmodulation(PWM)inverterswithdiodefront-endrectifiers, andIGCT-basedthree-levelNPCback-to-backAC/DC/ACconverters.Thedevelopmentofeach oftheseproductswasamulti-yeareffortwithdozenstohundredsofworld-classGEengineers throughmanydesign,simulation,andtestingiterations.

WhenIjoinedVirginiaTechintheearly2000s,oneofthefirstprojectsIhelpedleadwas thedesignandcostoptimizationofgeneral-purposeindustrialmotordrivessponsoredby Schneider-ToshibaInverterEurope.Withtheobjectivetominimizethemotordrivecost,aswell astoincreasethedesigner’sefficiencyandreducetime,anautomateddesigntoolwasbuiltbased onanalyticalmodelsforthefront-endpassiverectifier,theinverterpowerstageandthermalmanagementsystem,andtheelectromagneticinterference(EMI)filter.Later,thedesignandoptimizationmethodforthree-phaseACconverterswasusedandfurtherdevelopedinseveral projects,especially,inprojectssponsoredbyBoeingonSiC-basedhigh-densityinvertersandrectifiers.Inthemeantime,Ifelttheneedtotrainstudentssystematicallyonthree-phaseACconverter designandstartedagraduate-levelcourseECE5984 “ApplicationandDesignofMulti-phasePWM Converters.” AfterImovedtotheUniversityofTennessee,Knoxville(UTK)in2009,Ihave continuedtoteachasimilarcourse,ECE683 “DriveSystemControlandConverterDesign,” while continuingtoconductresearchonhigh-power,high-densitythree-phaseACconvertersforelectrifiedtransportation,grid,andindustryapplications.Asaresultoftheresearchandcourseworkat UTK,anotherdesignautomationtoolwasdevelopedfocusingonoptimizingwidebandgap(WBG) device-basedhigh-densitythree-phaseACconverters.

Myco-author,Prof.ZheyuZhang,alsousedsimilarmaterialsintheECE4930/6930 “FundamentalsofPowerElectronics” andECE8930 “AdvancedPowerElectronics” coursesatClemson University.Thematerialsweusearelargelybasedonourresearchprojectreportsandpapers, aswellaspublishedpapersbyotherresearchers.Three-phaseACconvertersarenotnew,andthere aremanybooksontheircircuittopologies,operatingprinciples,andcontrol.However,inour teachingandresearch,weseeaclearvalueandneedforabookfocusingonthree-phaseACconverterdesign,withsufficientcoverageofanalyses,models,andmethodsrelatedtodesign.Given thattheconverterdesignisessentiallyanoptimizationprocess,thisbookpresentsthedesignof three-phaseACconvertersandtheirsubsystemsasclearlyformulatedoptimizationproblems. Thebookhasalsoincorporatedrecentdevelopmentsinthree-phaseACconverterdesign,especially WBGdeviceenabledtechnologiesandapplications,andrelatednewrequirements.Theintentis

thatthebookcanbeusedbyprofessors,graduatestudents,andpracticingengineersworkinginthe areaofthree-phaseACconverters,asaclassroomtextbookorasareference.

InadditiontoChapter1 “Introduction,” thisbookconsistsofthreeparts.PartI,fromChapters2 to4,isoncomponents,includingpowersemiconductordevices,capacitors,andmagnetics.PartII, fromChapters5to12,isonthedesignofsubsystems,includingpassiveandactiverectifiers,inverters,EMIfilters,thermalmanagementsystems,controlandauxiliaries,mechanicalsystems,and applicationconsiderations.PartIIIcomprisesChapter13 “DesignOptimization.” Ifusedasatextbook,itisprobablychallengingtocoverthewholebookinaone-semestercourse.Inmyown ECE683courseatUTK,IhavefocusedonChapter5 “PassiveRectifiers,” Chapter6 “Load-side Inverter,” Chapter8 “EMIFilters,” Chapter9 “ThermalManagementSystem,” Chapter10 “ControlandAuxiliaries,” andpartofChapter12 “ApplicationConsiderations” onmotordrives, andpartofChapter13.Otherchapterscanbeusedasreferenceandfurtherstudymaterials.Similar contentswerecoveredbyProf.Zhang’sgraduate-levelECE8930courseatClemson.Inaddition, ProfessorZhangalsodeliveredpartofChapter2 “PowerSemiconductorDevices” andChapter4 “Magnetics” inhisundergraduateandgraduatecombined4930/6930courseatClemson.

TheACthree-phaseconverterdesignisacomplexmultidisciplinarytask.Inthisbook,wehave triedtocoverthesubjectcomprehensivelybutsurelyhavemissedsomeimportanttopicsduetoour knowledgelimitations.Stillwehopethereaderswillfindthebookuseful.Wesincerelywelcome yourfeedback.

Fei “Fred” Wang Knoxville,Tennessee,USA August2023

Acknowledgments

Inpreparingthisbook,theauthorsreceivedgeneroushelpfrommanyformerandcurrent colleaguesandstudents:Dr.PuqiNingforhelpanddiscussiononthermalmanagementsystem design,Dr.QianLiuondecouplingcapacitordesign,Dr.RenRenondesignoptimizationand designtool,Dr.ZhouDongonharmonicsanalysisanddesigntool,Dr.HaiguoLionmechanical systemdesignandgridapplications,Dr.BoLiuontopologyimpactandsensingcircuit,Dr.Wen Zhangonswitchingtransientsandmotorfilters,Dr.ShimulDamondesignoptimization examples,Mr.DingruiLiongridapplications,Dr.LeKongandMr.LiangQiaoonstability, andMr.BillGiewontandMr.BobMartinonmechanicalsystemdesign.Mr.JiaohaoNiuand Dr.VenkataIttepreparedmanyfigures,andtheirhelpisgreatlyappreciated.

Thisbookislargelyaresultoftheauthors’ research,development,andteachingactivitiesrelated tothree-phaseACpowerelectronicsconvertersoverthelast30years.Theauthorshavebeenvery fortunatetohavetheopportunitytoworkwithandlearnfrommanysponsors,mentors,collaborators,colleagues,andstudentsontheseactivities.Inadditiontoindividualsmentionedearlier,the authorswouldliketoacknowledgethefollowingformerandcurrentcolleaguesandstudents fromGE,VirginiaTech,andUniversityofTennessee,Knoxville:Dr.JimLyons,Mr.PaulEspelage, Mr.LeeTupper,Dr.DushanBoroyevich,Dr.FredLee,Dr.DaanvanWyk,Dr.RolandoBurgos, Dr.KaiNgo,Dr.G.Q.Lu,Dr.ZhenxianLiang,Dr.WeiShen,Dr.RixinLai,Dr.DiZhang,Dr.Shuo Wang,Dr.RuxiWang,Dr.FangLuo,Dr.GangChen,Dr.ZhengChen,Dr.XuningZhang, Mr.YoannMillet,Dr.LeonTolbert,Dr.DanielCostinett,Dr.BenBlalock,Dr.KevinBai,Dr.Dong Jiang,Dr.BenGuo,Dr.JingXue,Dr.FanXu,Dr.ZhuxianXu,Dr.WeiminZhang,Dr.Shuoting Zhang,Dr.YalongLi,Dr.WenchaoCao,Dr.YiweiMa,Dr.HandongGui,Dr.ZheYang, Dr.XingxuanHuang,Dr.ShiqiJi,Dr.ChengNie,Dr.LiZhang,Mr.CraigTimms,Mr.JacobDyer, Mr.JimmyPalmer,Dr.EdwardJones,Ms.PaigeWilliford,andMr.ZihanGao.

Theauthorswouldliketothankthefollowingsponsors:Boeing,Schneider-ToshibaInverter Europe,SAFRAN,Thales,Rolls-Royce,ABB,GE,II-VIFoundation,Keysight,Volkswagen, NSF,DOE,ARPA-E,OakRidgeNationalLaboratory,NASA,PowerAmerica,OfficeofNaval Research,andArmyResearchLab.ThisbookmadeuseofEngineeringResearchCenterShared FacilitiessupportedbytheEngineeringResearchCenterProgramoftheNationalScienceFoundationandDOEunderNSFAwardNumberEEC-1041877andtheCenterforUltra-wide-areaResilientElectricEnergyTransmissionNetworks(CURENT)IndustryPartnershipProgram.

TheauthorswouldliketothankWileystaff,especially,BrettKurzman,KimberlyMonroe-Hill, andInfantaRavikumar.Withouttheirsupport,thisbookwouldnothavebeenpossible.

Thisbookfocusesonthedesignofpowerelectronicsconvertersforthree-phaseACapplications. Outofmanydifferenttypesofpowerelectronicsconverters,three-phaseACconvertersareamong themostimportantandmostpopular,especiallyformedium-andhigh-power(e.g.kilowattsand higher)applications.

Whilethree-phaseACconvertersarenotnew,theyhavegonethroughsignificantnewdevelopmentsinrecentyearsasaresultofnewapplications,newadvancesinpowerelectronicstechnologies,andcorrespondingnewrequirements.Applications,suchaselectrifiedtransportationand renewableenergysystems,demandconverterswithever-increasingpowerdensityandefficiency, atthesametimeachievinglowcostandhighreliability.Technologieslikewidebandgap(WBG) powersemiconductordevicesoffertremendousperformanceimprovementopportunitiesbutalso posemanynewchallengesfortheconverterdesign.Morethanever,thereisaneedforconverter designthatcanaccuratelyresembletheactualconverter,withonlythenecessaryandscientifically determineddesignmargins.Thedesignshouldalsobeabletoconsidertheinteractionandintegrationofvariousfunctionsandsubsystemsinaconverter.Inaddition,thedesignmethodshouldbe veryefficientinfindingdesiredsolutionsforagivenapplicationanditsassociatedrequirements.

Considerableworkshavebeenconductedinrecentyearsbypowerelectronicsresearchersand engineers,includingtheauthors,onadvanceddesignmethodology,optimization,andautomation forthree-phaseACconverters.Theseworksaregenerallyscatteredinresearchpapers,technical reports,andapplicationnotes.Thisbookintendstoprovideasystematictreatmentofthetopic, coveringbothnewandconventionalmaterials.

1.1BasicsofThree-PhaseACConverters

CorrespondingtothreebasictypesofACpowerconverters,therearethreebasictypesofthreephaseACpowerconvertersasillustratedinFigure1.1.Theyarethree-phaseAC-to-DC (AC/DC)rectifiers,DC-to-AC(DC/AC)three-phaseinverters,andthree-phaseACtothree-phase AC(AC/AC)converters.

• Three-phaserectifiers:three-phaserectifiersconvertthree-phaseACtoDC.Dependingondevice types,theycanbepassive(diode-based),phase-controlled(thyristor-based),oractive(active switch-based).

• Three-phaseinverters:three-phaseinvertersconvertDCtothree-phaseAC.Invertersgenerally requireactiveswitchingdevices.

DesignofThree-phaseACPowerElectronicsConverters,FirstEdition.Fei “Fred” Wang,ZheyuZhang,andRuiruiChen. ©2024TheInstituteofElectricalandElectronicsEngineers,Inc.Published2024byJohnWiley&Sons,Inc.

Figure1.1 Basictypesofthree-phaseACconverters:(a)three-phaserectifier,(b)three-phaseinverter, and(c)three-phaseAC/ACconverter. Source: GeneralElectric.

• Three-phaseAC/ACconverters:three-phaseAC/ACconvertersdirectlyconvertonethree-phase ACtoanother,eitheronlythevoltagemagnitudeorbothmagnitudeandfrequency.Theformer canalsobecalledACswitch,andthelattercanbecalledfrequencychanger.

Eachoftheconvertertypescanbefurtherclarified.Forexample,aconvertercanhave unidirectionalpowerfloworbidirectionalpowerflow.Diode-basedrectifiersshouldbeunidirectionalasaresultofthediode’ssingle-quadrantcharacteristics.Notethatalthoughthereexistdirect AC/ACconversiontopologieslikecycloconvertersormatrixconverters,mostthree-phaseAC/AC converterstodayarerealizedbycascadingAC/DCandDC/ACconverters.

1.1.1BasicApplications

1.1.1.1MotorDrives

Three-phaseACconvertersarewidelyused.Thebest-knownapplicationsaremotordrivesfor three-phaseACinductionorsynchronousmachines(includingpermanentmagnetorPMsynchronousmachines).Figure1.2 showsatypicalconfigurationforathree-phaseAC-fedmotordrive. NotethatsomemotordrivescanbeDC-fed,whereonlyathree-phaseinverterwillbeneeded.Also notethatingeneralaninputfilterisrequiredforthemotordriveforpowerqualityenhancement (e.g.harmonicsattenuation)and/orelectromagneticinterference(EMI)mitigation.Motordrives canbefoundinalmostallindustries.Someexamplesarelistedbelow[1].

• pulpandpaperindustry:papermachines,dryerfans,boilerfansandpumps,chippers,refiners, andconveyors;

• metalindustry:rollingmillstands,reels,andwinders;

• materialhandlingindustry:cranesandconveyors;

• miningindustry:excavators,conveyors,andgrindingmills;

• cementindustry:kilndrivesandfansandconveyors;

• oilandchemicalindustry:pipelinecompressorsandpumps,oilwelldrillingequipment(draw works,topdrives,mudpumps,andcementpumps),waterandwastewaterpumps,andrubber andplasticsequipment(extruders,inletpumps,pelletizers,andmixers);

• transportationindustry:locomotivetraction,shippropulsion,aircraftgenerators,off-highway vehicles,elevators,andescalators;

• automotiveindustry:electricvehicles,dynamometers,andwindtunnels;

Figure1.2 Atypicalmotordriveconfiguration(PWMstandsforpulse-widthmodulationorpulse-width modulated).

1.1BasicsofThree-PhaseACConverters 3

• applianceindustry:washingmachines,heating,ventilation,andairconditioning(HVAC)and robotics;

• electricutility:turbinestarters,boilerandcoolingtowerfansandpumps,windturbines,photovoltaic(PV)stations,energystoragesystems,andmicro-turbines;

• ITindustry:cooling

Figure1.3 showstwotraditionalapplicationsformotordrives:paperandsteelmills.Theseapplicationsgenerallyinvolveseveralmotordrivesworkinginacoordinatedmannertomakepaperor rollsteel,andthereforetheyaresystemdrivesandrequiredtohavehighperformanceintermsof control.Figure1.4showspicturesofdifferenttypesofmotordriveproducts.Theintegratedmotor drivereferstocombiningthedriveconverterandmotorwithinthesameassembly.

1.1.1.2HighPowerSupply

Inadditiontomotordrives,three-phaseACconvertersarealsousedinmanyotherapplications.

Figure1.5 showsatypicalmedium-orhigh-power(kilowattsandhigher)powersupplyconfigurationusingathree-phaseACconverterasarectifierdrivingaDCload,inthiscase,aDC/DCconverter.Thisconfigurationcorrespondstoathree-phasepowerfactorcorrection(PFC)converterin manypowersupplies,includingbatterychargers,datacenterpowersupplies,andlargeDCcurrent sourcesforindustrialprocessing(e.g.metalplating).Notethatthefilterbetweentherectifierand

Figure1.3 Applicationexamplesfortraditionalhigh-performancemotordrives:(a)papermilland (b)steelmill. Source: JoseLuisStephens/AdobeStock;rukhmalev/AdobeStock.

Figure1.4 Examplemotordrives:(a)lowpower(kWlevel)drive. Source: GeneralElectric.(b)Integratedmotor drive. Source: RegalRexnordCorporation.(c)highpower(MWlevel)drive. Source: GeneralElectric.

DC/DCconverterisoftenforEMIattenuation,andthedashedboxindicatesthatthefilteris optional.

AlthoughmostpowersuppliesareforDCloads,therearepowersuppliesforACloads,e.g.uninterruptiblepowersupplies(UPS).Inthecaseofathree-phaseUPS,aDCtothree-phaseACinverter isneeded.

1.1.1.3EmergingApplications

Therehavebeentremendousgrowthsforthree-phaseACconvertersinrecentyears.Someare drivenbymoreeconomicalandhigherperformancepowerelectronicsconverters,andbydemand forbetterenergyefficiencyinconventionalapplications,suchasinthecaseofHVAC,wheremore motorsaredrivenbymotordrivesforimprovedefficiency.Moregrowthsaredrivenbynewand emergingapplications,includingrenewableenergysystems,electrifiedtransportation(electric vehicles(EVs),electrifiedtrains,all-electricships,more-electricaircraft(MEA),andelectrifiedaircraftpropulsion(EAP)),EVchargingstationsandotherenergystoragesystems(e.g.UPS),and ever-growingdatacenters.

Nomatterwhatthesenewapplicationsare,duetotheirnatureofeithertheDC/ACortheAC/DC conversion,theiroperatingprinciplesareinessencesimilartothoseofthebasicapplicationsof motordrives,DCpowersupplies,orACpowersupplies.However,theconverterdesignforeach applicationcanbedifferentduetodifferentapplicationrequirements,aswillbediscussedlater inthisbook.

1.1.1.3.1ElectrifiedTransportation Figure1.6 showsatypicalpowertrainelectricpowersystem architectureforEV.ThethreeACconvertersinthefigure:thefront-endAC/DCrectifierfor thebatterychargerandtheDC/ACinvertersforthetractionelectricmachineandair-conditioning compressormotorarepowersupplyandmotordrives,respectively.Similarobservationscanbe

Figure1.5 Atypicalmedium-orhigh-powerpowersupplyconfiguration.
Figure1.6 EVpowertrainpowersystemarchitecture. Source: Adaptedfrom[2].

madeforotherelectrifiedtransportationsystems,suchasMEA,electrifiedtrains,andall-electric ships,althoughthelargersystemstendtoinvolvemorecomplexapplications.Figure1.7showsan exampleofastate-of-the-artshipboardelectricpowersystembasedonzonaldistributionwithpoddedpropulsors.ThevariousbusesofthesystemareallofACthreephases.Three-phaseACpower convertersareanessentialpartofthesystem,convertingthethree-phaseACpowerproducedby generatorsatfixedvoltageandfrequency(e.g.13.8kVand60Hz)tothree-phaseACpoweratvariousvoltagelevelsandfrequencies,andDCpoweratvariousvoltagelevels.ThesevariousACand DCpowersareneededforsupplyingandcontrollingpropulsionmotors,shipserviceloads,mission loads,anddistributionbuses.

Shipboardelectricpowersystemexample:zonaldistributionwithpoddedpropulsors. Source: Adaptedfrom[2,3].

Zone 1
Figure1.7

MEApowersalmostallloadsintheaircraftwithelectricpower,exceptthepropulsion.Onthe otherhand,aircraftwithelectrifiedpropulsionaregettingincreasedinterestsduetoeconomicand environmentalconsiderations.Figure1.8 showsthearchitectureofaconceptualcommercialMEA electricalsystem,whichcoverstheenvironmentalcontrolsystem(EMS),entertainmentsystem, actuation,etc.Three-phasepowerconversionequipmentincludestheAC/DCrectifierfrom115 or230VvariablefrequencyACbusto270or540VDCbus,theAC/DCrectifierfromACbus to28VDCbus,theDC/ACinverterfromDCbustoAC400Hzbus,andtheDC/ACinverterfrom 270or540DCbustodrivemotors.Thepowerratingsofthethree-phaseconvertersinaMEAare typicallyaround100kWorless.Figure1.9showsseveralexampleelectricalarchitecturesforfuture EAPelectricalsystems,whichwillrequirethree-phaseAC/DCrectifiersandDC/ACmotordrives rangingfromhundredsofkilowattstotensofmegawatts.

Figure1.10 isatypicalconfigurationofelectrifiedrailwaytractionsystem.Inthisconfiguration, thesingle-phaseACcatenaryisconnectedtoprimarywindingofthelow-frequencytransformer (LFT)andgroundedthroughtherail.ThesecondarywindingofLFTisconnectedtoasingle-phase AC/DCrectifiertoprovidetheDCvoltageforthemotordrivesystem,whichiscomprisedofa three-phaseinverterandathree-phasemotor.Notethatatwo-levelthree-phasevoltagesource inverterisillustratedinFigure1.10asthemotordrive,althoughotherthree-phasetopologieshave alsobeenusedinpractice.

WiththerapidgrowthofEV,oneimportantrelatedpowerelectronicsapplicationisthecharging station.ThebatteryDCvoltageforEVnormallyrangesinthehundredsofvolts.TheinputACvoltagecanbesingle-phaseortwo-phaseresidentialvoltage,orthree-phaselowvoltage(<1kV)or mediumvoltage(uptotensofkV)usedincommercialfastchargers.Formedium-powerLevel 3(60kW)orhigherpoweroff-boardfastcharger,athree-phaserectifierplusaDC/DCconverter isoftenused.Withmanyfastchargerswithinafuturechargingstation,itcanbeexpectedthateven MW-level,medium-voltagethree-phaserectifierswillbeneeded.

1.1.1.3.2RenewableEnergySystems Renewableenergysources,especiallywindandPVsolar energy,areincreasinglyusedforelectricitygenerationandexpectedtolargelydisplaceconventionalfossilfuel-basedpowerplantsinthefuture.ModernwindandPVsolarenergysourcesrely

Figure1.8 AconceptualMEAelectricalsystem. Source: From[2]/withpermissionofJohnWiley&Sons.

AC catenary (15kV, 16 2/3 Hz or 25kV, 50Hz)

Configurationsofatypicalelectrifiedrailtractionsystem. Source: From[2]/withpermission ofJohnWiley&Sons.

Windturbinegenerators:(a)typeIIIand(b)typeIV.

onpowerelectronicstointerfacewithelectricgrid.Figure1.11 showstwopopularwindturbine generatorconfigurations:TypeIIIwindturbinegeneratorusingdoubly-fedinductiongenerator (DFIG)andTypeIVwindturbinegeneratorusingPMgenerator.Inbothconfigurations,threephaseACrectifiersandinvertersareused.ForTypeIIIconfiguration,therectifierisinterfaced

Figure1.10
Figure1.11

1.1BasicsofThree-PhaseACConverters

totheDFIGrotorwindings;forTypeIVconfiguration,itisinterfacedtothePMgeneratorstator windings.Inbothconfigurations,theinverterisinterfacedtothegrid.

PVpanelsgenerateDCatavoltageleveloftensofvoltsandnormallyrequireaDC/DCconverter toboostthevoltagetotherequiredlevel,e.g.hundredsofvolts,beforeinterfacingtoACgrid throughaDC/ACinverter.ForsmallresidentialrooftopPV,theinverterisoftensinglephase;however,forlargeutility-scalePVgenerationwithseveralhundredsofkilowattstomegawatts,threephaseinvertersareused.Figure1.12 showsatypicalconfigurationofutility-scalePVfarmusinga three-phasecentralinverter.

1.1.1.3.3DataCenter Oureconomyanddailylivesareincreasinglygoingdigitalanddata-driven. Datacentersarebecominganimportanttypeofload.Figure1.13ashowsawidelyusedACpower architectureindatacenters.Thepowersupplytrainofthisarchitecturecontainsseveralparts, includingUPS,powerdistributionunit(PDU),powersupplyunit(PSU),andvoltageregulator (VR).Itcanbeseenclearlythattherearemanypowerelectronicsconverters:three-phase480V ACtoDC,DCtosingle-phase120VAC,single-phaseACto400VDC,400–12VDC/DC,and 12–1VVR.Figure1.13bshowsamorerecent400V(or380V)DCpowerarchitecture[2], withfewerpowerconversionstages,buthavingathree-phase480VACto400VDCconverter.

Figure1.12 Utility-scalePVsystem.

Figure1.13 Powerdistributionarchitectureofdatacenterpowersupply.(a)120-VACpowerarchitectureand (b)400-VDCpowerarchitecture. Source: From[2]/withpermissionofJohnWiley&Sons.

Withreducedconversionstages,theefficiencyoftheDCpowerarchitectureisimprovedover thatoftheACarchitecture,e.g.73%vs.67%inFigure1.13.Otherbenefitsincludespace-saving, reliabilityimprovement,andsimplifiedwiring.

Othernotableemergingapplicationsinvolvingthree-phaseconvertersincludethoserelatedto increaseduseofenergystoragesystems(e.g.batterychargers,traditionalUPS,andutility-scale energystorageinterfaceconverters),andvariouspowercontrolandconditioningequipmentfor ACpowertransmissionanddistributionsystems.

1.1.2BasicTopologies

Thereareanumberofconvertertopologiesforeachtypeofthree-phaseconverter.Themostcommonlyusedbasictopologiesforthree-phaserectifiersandinvertersareshowninFigures1.14 and 1.15,respectively.Notethatinthesefigures,insulatedgatebipolartransistors(IGBTs)anddiodes havebeenassumedtobethesemiconductordevices.Inpractice,anyswitchingdevicescanbeused, includingmetal-oxide-semiconductorfield-effecttransistors(MOSFETs).Thesebasictopologies canbeexpandedthroughparallelingorseriesofdevicesand/orconverterstoachievehighercurrentandvoltageratings.Itshouldbepointedoutthatinsomeapplications,athree-phaseconverter canbeformedbycombiningthreesingle-phaseconverters,whicharenotconsideredasbasicthreephaseconvertertopologieshere.

Notethatnowadayscurrentsource-basedconvertersarelesspopularthanvoltagesource-based convertersduetolimitedavailabilityofbidirectionalvoltageblockingswitchingdevices;however, historicallyCSCshaveplayedanimportantroleasafeasiblethree-phaseconvertertopology.For mostofthethree-phaseapplicationstoday,thebasicstate-of-the-arttopologyistheVSCshownin

Figure1.14 Commonlyusedthree-phaserectifiertopologies.(a)Diode-basedrectifier,(b)thyristor-based phase-controlledrectifier,(c)voltagesourceconverter(VSC)basedorboostrectifier,and(d)currentsource converter(CSC)-basedorbuckrectifier.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.