Interval methods for uncertain power system analysis alfredo vaccaro all chapter instant download

Page 1


Interval Methods for Uncertain Power System Analysis Alfredo

Vaccaro

Visit to download the full and correct content document: https://ebookmass.com/product/interval-methods-for-uncertain-power-system-analysi s-alfredo-vaccaro/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Affine Arithmetic-Based Methods for Uncertain Power System Analysis Alfredo Vaccaro

https://ebookmass.com/product/affine-arithmetic-based-methodsfor-uncertain-power-system-analysis-alfredo-vaccaro/

Graph Database and Graph Computing for Power System Analysis

Renchang Dai

https://ebookmass.com/product/graph-database-and-graph-computingfor-power-system-analysis-renchang-dai/

Power System Analysis and Design 6th Edition J. Duncan

Glover

https://ebookmass.com/product/power-system-analysis-anddesign-6th-edition-j-duncan-glover/

Energy Storage for Modern Power System Operations

Sandeep Dhundhara

https://ebookmass.com/product/energy-storage-for-modern-powersystem-operations-sandeep-dhundhara/

https://ebookmass.com/product/power-system-protection-2ndedition/

Statistical Methods for Survival Data Analysis 3rd Edition Lee

https://ebookmass.com/product/statistical-methods-for-survivaldata-analysis-3rd-edition-lee/

System on Chip Interfaces for Low Power Design 1st Edition Mishra

https://ebookmass.com/product/system-on-chip-interfaces-for-lowpower-design-1st-edition-mishra/

Intelligent Coordinated Control of Complex Uncertain Systems for Power Distribution and Network Reliability 1st Edition Meng Xiangping

https://ebookmass.com/product/intelligent-coordinated-control-ofcomplex-uncertain-systems-for-power-distribution-and-networkreliability-1st-edition-meng-xiangping/

Solar Photovoltaic System Modelling and Analysis: Design and Estimation (River Publishers Series in Power) 1st Edition Mariprasath

https://ebookmass.com/product/solar-photovoltaic-systemmodelling-and-analysis-design-and-estimation-river-publishersseries-in-power-1st-edition-mariprasath/

IntervalMethodsforUncertainPower

SystemAnalysis

IEEEPress

445HoesLane

Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktssonBehzadRazaviJeffreyReed

AnjanBoseJimLykeDiomidisSpinellis

JamesDuncanHaiLiAdamDrobot

AminMoenessBrianJohnsonTomRobertazzi DesineniSubbaramNaiduAhmetMuratTekalp

IntervalMethodsforUncertainPower

SystemAnalysis

AlfredoVaccaro

UniversityofSannio

Italy

Copyright©2023byTheInstituteofElectricalandElectronicsEngineers,Inc. Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers, MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requeststo thePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley& Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley& Sons,Inc.and/oritsaffiliatesintheUnitedStatesandothercountriesandmaynotbeused withoutwrittenpermission.Allothertrademarksarethepropertyoftheirrespectiveowners. JohnWiley&Sons,Inc.isnotassociatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechanged ordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublisher norauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbut notlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,please contactourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidethe UnitedStatesat(317)572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsin printmaynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts, visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationData:

Names:Vaccaro,Alfredo,author.|JohnWiley&Sons,publisher.

Title:Intervalmethodsforuncertainpowersystemanalysis/Alfredo Vaccaro.

Description:Hoboken,NewJersey:Wiley-IEEEPress,[2023]|Includes index.

Identifiers:LCCN2023014418(print)|LCCN2023014419(ebook)|ISBN 9781119855040(cloth)|ISBN9781119855057(adobepdf)|ISBN 9781119855064(epub)

Subjects:LCSH:Electricpowersystems.|Electricpower systems–Mathematicalmodels.|Electricpowersystems–Reliability.| Systemanalysis.

Classification:LCCTK1005.V252023(print)|LCCTK1005(ebook)|DDC 621.3101/5118–dc23/eng/20230506

LCrecordavailableathttps://lccn.loc.gov/2023014418

LCebookrecordavailableathttps://lccn.loc.gov/2023014419

CoverDesign:Wiley

CoverImage:©Sukpaiboonwat/Shutterstock

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Tomyfamily

Contents

AbouttheAuthor ix

Preface xi

Acknowledgments xiii

Acronyms xv

Introduction 1

1IntroductiontoReliableComputing 3

1.1ElementsofReliableComputing 4

1.2IntervalAnalysis 7

1.3Interval-BasedOperators 8

1.4IntervalExtensionsofElementaryFunctions 9

1.5SolvingSystemsofLinearIntervalEquations 11

1.6FindingZerosofNonlinearEquations 15

1.7SolutionofSystemsofNonlinearIntervalEquations 16

1.8TheOverestimationProblem 20

1.9AffineArithmetic 22

1.9.1ConversionBetweenAAandIA 25

1.9.2AA-BasedOperators 25

1.9.3ChebyshevApproximationofUnivariateNonaffineFunctions 28

1.9.4MultiplicationofAffineForms 31

1.9.5EffectsofRecursiveSolutionSchemes 35

1.10IntegratingAAandIA 35

2UncertainPowerFlowAnalysis 37

2.1SourcesofUncertaintiesinPowerFlowAnalysis 39

2.2SolvingUncertainLinearizedPowerFlowEquations 41

2.3SolvingUncertainPowerFlowEquations 46

2.3.1Optimization-BasedMethod 48

2.3.2DomainContractionMethod 52

3UncertainOptimalPowerFlowAnalysis 59

3.1RangeAnalysis-BasedSolution 61

3.1.1OptimalEconomicDispatch 63

3.1.2ReactivePowerDispatch 66

3.2AA-BasedSolution 70

4UncertainMarkovChainAnalysis 75

4.1MathematicalPreliminaries 77

4.2EffectsofDataUncertainties 78

4.3MatrixNotation 79

4.4AA-BasedUncertainAnalysis 80

4.5ApplicationExamples 83

4.5.1CaseStudy1:GridResilienceAnalysis 83

4.5.2CaseStudy2:EnergyStorageModel 84

4.5.3Summary 86

5Small-SignalStabilityAnalysisofUncertainPower Systems 87

5.1ProblemFormulation 89

5.2TheIntervalEigenvalueProblem 90

5.3Applications 92

5.3.1CaseStudy1 92

5.3.2CaseStudy2 93

6UncertainPowerComponentsThermalAnalysis 95

6.1ThermalRatingAssessmentofOverheadLines 96

6.1.1SourcesofDataUncertainties 98

6.1.2AA-BasedThermalRatingAssessment 99

6.1.3ApplicationExamples 100

6.2ThermalRatingAssessmentofPowerCables 104

6.2.1ThermalModelingofPowerCables 105

6.2.2SourcesofDataUncertainties 107

6.2.3ToleranceAnalysisofCableThermalDynamicsbyIA 108

6.2.4ApplicationExamples 109

References 112 Index 119

AbouttheAuthor

AlfredoVaccaro,PhD,isafullprofessorofelectricpowersystemsatthe DepartmentofEngineeringofUniversityofSannio.Heistheeditor-in-chiefof SmartGridsandSustainableEnergy,SpringerNatureandassociateeditor ofIEEEtrans.onSmartGrids,IEEEtrans.onPowerSystems,andIEEEPower EngineeringLetters.

Preface

Thisbooksummarizesthemainresultsofmyresearchactivitiesinthefieldof uncertainpowersystemanalysisbyintervalmethods.

Istartedworkingonthisinterestingandchallengingissueinearly2000, inspiredbythepapersofProf.FernandoAlvaradoabouttheapplicationof intervalarithmeticinuncertainpowerflowanalysis.Thefirstcontributionswere focusedonmitigatingtheeffectsofthe“dependencyproblem”and“wrapping effect”inintervalanalysis,whichcanreducethevalueoftheresultsbyoverestimatingtheboundsofthepowerflowsolutions.Thisoverestimationproblem hasbeenobservedwhensolvingmanyconventionalpowersystemoperation problemsby“naive”intervalanalysis,whichmayleadtoaberrantsolutions, duetotheinabilityofintervalarithmetictomodelthecorrelationsbetweenthe uncertainvariables.Consequently,eachstepofthealgorithmintroducesspurious values,causingthesolutionboundstoconvergetooverconservativevalues. Thisphenomenahasbeenextensivelystudiedinqualitativesystemsanalysisand requirestheuseofcomplexandtime-consumingpreconditioningtechniques.

ThisstimulatedtheresearchintoalternativeintervalmethodsbasedonAffine Arithmetic,whichisoneofthemaintopicsofthisbook.

Inthisapproach,eachuncertainvariableisdescribedbyafirst-degreepolynomialcomposedofacentralvalueandanumberofpartialdeviations,eachone modelingtheeffectofanindependentsourceofuncertainty.

TheadoptionofAffineArithmeticmakesitpossibletosolveuncertain mathematicalprogrammingproblemsandobtainareliableestimationofthe solutionhullsbyincludingtheeffectofcorrelationbetweentheuncertain variables,aswellastheheterogeneityofthesourcesofuncertainty.

Thisreliablecomputingparadigmhasbeensuccessfullydeployedtosolvealarge numberofpowersystemoperationproblemsinthepresenceofdatauncertainty. Theexamplespresentedinthisbookcoverpowerflowstudies,optimalpower flowanalysis,dynamicthermalratingassessment,stateestimation,andstability analysis.

xii Preface

Theobtainedresultsdemonstratetheeffectivenessofintervalmethodsto solvethecomplexuncertainproblemsencounteredwhenanalyzingrealistic powersystemoperationscenarios,hence,makingthesemethodsoneofthe mostpromisingalternativesforstochasticinformationmanagementinmodern powersystems.

May2023

AlfredoVaccaro Benevento,Italy

Acknowledgments

IwishtoexpressmysinceregratitudetomymentorProf.ClaudioCanizares,who inspiredandstimulatedmyresearchactivitiesinthefieldofuncertainpower systemanalysis.

IwouldalsoliketothankProf.KankarBhattacharyaforhisvaluableand qualifiedsuggestionsaboutthepotentialroleofrangeanalysisinmarketstudies, andDr.AdamJ.CollinandDr.FabrizioDeCarofortheirvaluablesupportin reviewingthisbook.

AlfredoVaccaro

Acronyms

AAaffinearithmetic

DTRdynamicthermalrating

IAintervalanalysis

IMintervalmathematics

MCMarkovChain

OPFoptimalpowerflow

PFpowerflow

Introduction

Powersystemanalysisisoftenaffectedbylargeandcorrelateduncertainties, whichcouldseriouslyaffectthevalidityoftheobtainedresults.Uncertaintiesin modernpowersystemsstemfrombothinternalandexternalfactors,including modelinaccuracies,measurementerrors,inconsistentdata,andimprecise knowledgeaboutsomeinputinformation.

Conventionalmethodsforuncertaintymodelinginpowersystemanalysis involveusingprobabilistictechniquestocharacterizethevariabilityininput dataandsampling-basedapproachestosimulatethesystembehaviorforalarge numberofpossibleoperatingscenarios.

However,relyingonprobabilisticmethodshasitslimitations,aspowersystem engineersmaystruggletoexpresstheirimpreciseknowledgeaboutcertaininput variableswithprobabilitydistributions(duetothesubjectiveandqualitative natureoftheirexpertise),and,moregenerally,theremaybealackofreliabledata forcharacterizingtheprobabilityparameters.Additionally,theuseofprobabilistic methodsoftenrequirestheassumptionsofnormaldistributionsandstatistical independence,e.g.inthecaseofweathervariables,butoperationalexperience showsthattheseassumptionsarefrequentlyunsupportedbyempiricalevidence.

Recentadvancesinthefieldhaveexpandedtherangeofmethodsforaddressinguncertaintybyintroducinganumberofnonprobabilistictechniques,suchas intervalanalysis,fuzzyarithmetic,andevidencetheory.

Nonprobabilistictechniquesareoftenusedwhenuncertaintyarisesfrom limitationsinourunderstandingofthesystem,ratherthanunpredictablenumericaldata.Inthesecases,onlyroughestimatesofvaluesandrelationshipsbetween variablesareavailable.Consider,forexamplethepowerprofilesgeneratedby smallanddispersedrenewablegenerators,whichstrictlydependontheevolution ofsomeweathervariables,e.g.solarradiationforphotovoltaicgeneratorsand windspeedanddirectionforwindturbines.Althoughthesevariablescanbe measuredataspecificlocation,itischallengingtodeterminetheirdistributions overawidegeographicalarea.Nonetheless,weatherforecastsperiodicallyprovide IntervalMethodsforUncertainPowerSystemAnalysis,FirstEdition.AlfredoVaccaro. ©2023TheInstituteofElectricalandElectronicsEngineers,Inc.Published2023byJohnWiley&Sons,Inc.

qualitativeinformationabouttheexpectedevolutionoftheweathervariableson differenttimehorizons,butthesepredictedprofilescannotbeeasilyexpressedas probabilities.

Itfollowsthattheavailabilityofreliableframeworksformodelingandmanaging nonprobabilisticknowledgecangreatlyenhancetherobustnessandeffectiveness ofpowersystemanalysis.

Forthispurpose,intervalmethodshavebeenrecognizedasanenablingmethodologyforuncertainpowersystemanalysis.

Theprimarybenefitofthesetechniquesisthattheyintrinsicallykeeptrack ofthecomputingaccuracyofeachelementarymathematicaloperation,without needinginformationorassumptionsabouttheinputparameteruncertainties.

Thesimplestandmostcommonlyusedofthesemodelsisintervalmathematics, whichenablesnumericalcomputationsinwhicheachvalueisrepresentedbya rangeoffloating-pointnumberswithoutaprobabilitystructure.Theseintervals areprocessedbyproperaddition,subtraction,and/ormultiplicationoperators, ensuringthateachcomputedintervalenclosestheunknownvalueitrepresents.

Manyanalystsviewintervalmathematicsasasubsetoffuzzytheory,asinterval variablescanbeviewedasaspecificinstanceoffuzzynumbers.However, connectingintervalmathematicstofuzzysettheoryisnotstraightforward. Recently,fuzzysettheoryandintervalanalysishavebothbeenlinkedtoabroader topologicaltheory.Similarly,itisarguedthatfuzzyinformationgranulation, roughsettheory,andintervalanalysisareallsubsetsofalargercomputationalparadigmcalledgranularcomputing,wherethesemethodologiesare complementaryandsymbiotic,ratherthanconflictingandexclusive.

Thisbookfocusesontheapplicationofintervalmethodsinuncertainpower systemanalysis.Inparticular,afterintroducingthebasicelementsofinterval computing,asetofconventionalpowersystemoperationproblemsinthe presenceofdatauncertaintiesareformalizedandsolved.Manynumerical examplesarepresentedanddiscussedinordertodemonstratetheeffectiveness ofintervalmethodstoreliablysolvethecomplexproblemsencounteredwhen analyzingtherealisticoperatingscenariosofmodernpowersystems.

IntroductiontoReliableComputing

Manypower-engineeringcomputations,especiallythoserelatedtosystem analysis,areaffectedbylargeandcomplexuncertainties.Theseuncertainties makeitdifficulttocomputethe“exact”problemsolution,andtheanalystis requiredtoidentifyaproperapproximatedsolution,whichisascloseaspossible tothe“exact”one.Thedifferencebetweenthe“exact”andtheapproximated solutioniscommonlyreferredtoasthesolution“error.”

Thesourcesofuncertaintiesaffectingpowersystemanalysisaremultipleand heterogeneous,andcanbebothexternalandinternaltothecomputingprocess. Externaluncertaintiesincludemeasurementerrors,missingdata,andsimplified models;whileinternaluncertaintiesaremainlyrelatedtothecomputingerrors inducedbydigitalprocessing,whichfrequentlyrequiresreplacingrigorous mathematicalmodelswithdiscreteapproximations(e.g.timediscretization, truncation,andround-offerrors).

Hence,whenintegratingtheresultsofnumericalanalysisinpowersystem operationtools,theimpactoftheseuncertaintiesmustbeassessedandaformal erroranalysisshouldbeconsideredanimportantpartofthedevelopmentprocess.Theobjectiveofsuchformalerroranalysisistocomprehensivelyassessthe accuracyofallthecomputationsinvolved,definethemagnitudeofthesolution errorsasafunctionofthevaluesandtheerrorsoftheinputdata(i.e.variables andparameters).

Unfortunately,definingaformalmathematicalprocessforspecifyingthe accuracyofnumericalcomputingalgorithmsisextremelycomplex,since estimatingthepropagationofboththeexternalandinternalerrorsforallthe basicoperationscomposingthecomputingprocessisoftenunfeasible,evenfor simplealgorithms.

Moreover,accuracyspecificationrequiresthecomplianceoftheinputdata withasetofstrictprerequisites(e.g.well-conditionedmatrices,nooverflow,

1IntroductiontoReliableComputing

andfunctionswithboundedderivatives).Guaranteeingorevencheckingthese prerequisitesforallthepossiblecombinationsoftheinputdatarepresents anotherchallengingissuetoaddress.

Hence,powersystemanalystsfrequentlydeploynumericalalgorithmswithout formalaccuracyspecificationsandrigorouserroranalysis,checkingtheconsistencyoftheobtainedresultsonthebasisoftheirownexperienceorbycrudetests. Thispracticecouldhindertheintegrationofapproximatenumericalcomputing inmodernpowersystemstools,whicharecharacterizedbythepresenceoflarge datauncertainties,stemmingfrommultipleandheterogeneoussources.

Totryandovercomethislimitation,thepowersystemresearchcommunity startedadoptingreliablecomputing-basedmodels,whichallowtheaccuracy ofthecomputedquantitiestobeautomaticallyestimatedaspartoftheprocessof computingthem.Theapplicationofthesemodelsinnumericalcomputationsis alsoreferredtoasself-validatedcomputing,sinceitcanestimate“aposteriori” theerrormagnitudeoftheentirecomputingprocess(StolfiandDeFigueiredo, 1997).Thisfeatureisextremelyimportant,especiallywhenthedatauncertainties areinducedbyexternalcauses.Inthiscase,iftheoutputerrorscomputedby theself-validatedmodelbecometoolarge,i.e.overcomingafixedacceptable threshold,thenspecificremedialactionscanbeautomaticallytriggeredinorder toenhancethemodelaccuracy(e.g.acquiremoredata,re-adjourntheinput parameters,andusemoreaccuratemodels).

1.1ElementsofReliableComputing

Let f ∶ Rm → Rn beacontinuousmathematicalfunction,andsupposeweneedto compute z = f (x ) for x ∈ Rm .Forthis,weshouldimplementadiscretenumerical computation Z = F (X ),where X and Z arediscretemathematicalobjectsapproximatingthecorrespondingcontinuousvariables x and z. Tosolvethisissuedifferentreliablecomputingmodelscanbeadopted,including probabilitydistributionsandrange-basedmethods.

Inparticular,theadoptionofprobabilitydistributionscanapproximate,ina statisticalsense,thecomputedresult Z byconsideringeachcomponentofthe vector z asareal-valuerandomvariable,whoseprobabilitydistributionfunction isfrequentlyassumedtofollowaGaussiandistribution.Inthiscase,areliable computingmodelshouldspecifythestatisticalmomentsofeachcomponent zi , andthecorrespondingcovariancematrixdescribingthejointGaussianprobabilitydistributionoftherandomvector (z1 , , zn ),giventhosecharacterizingthe randominputvariables (x1 , , xm )

Theapplicationofthisprobabilistic-basedreliablecomputingmodelisoften limitedtospecificapplicationdomains,whicharecharacterizedbyGaussian uncertainties,linearmappings,andnegligibletruncationerrors.Thelackofthese conditionsmakesthestatisticalcharacterizationofthecomputedresultextremely complexorevenmathematicallyintractable(StolfiandDeFigueiredo,1997).

Totryandovercomethislimitation,mostreliablecomputingmodelsapproximatethecomputedresultsbyranges,ratherthanbyprobabilitydistributions.

Accordingtothesemodels,theapproximatedsolution Z isdescribedbymeans ofitsrange [Z ],whichisacompactsetcontainingthe“exact”solutions z = f (x ) foralltheinputvariables x lyingintherange [X ].

Thisimportantfeature,whichisusuallyreferredtoasthe fundamentalinvariant ofrangeanalysis,guaranteesthattherange [Z ] containsthetruesolutionset, providedthattheinputvariablesvaryinafixedrange.

ThesimplestmodelofrangeanalysisisIntervalArithmetic(Moore,1966), whichdefinestherangeofeachcomponentofthecomputedresult [Zi ] bya realinterval,whichisasetofrealnumberslyingbetweenitsupperandlower bounds.Sincenoconstraintsrelatingtheseintervalsareassumed,meaningthat alltheuncertaintiesareassumedtobestatisticallyindependent,therangeofthe computedresult [Z ] istheCartesianproductoftherangesofitscomponents [Zi ], sinceallcombinationsof z1 , … , zn inthebox [Z1 ]×···×[Zn ] areallowed.

Inmoreadvancedreliablecomputing-basedmodels,suchasthosebasedon affinearithmetic(AA),thecomputedresultalsointegratesusefulinformation aboutthepartialcorrelationsbetweentheoutputvectorcomponents zi ;hence, identifyingthestatisticaldependenciesbetweentheinputvariables xi andthe computedresult.Inthiscase,therangeofthecomputedresult [Z ] isaproper subsetoftheCartesianproductoftheindividualranges.

Oneofthemostimportantfeatureswhichcharacterizesallrange-basedmodels istheircapabilityofcomputing,foreveryfunction f ∶ Rm → Rn ,a rangeextension F ∶ ℜm → ℜn ,whichischaracterizedbythe fundamentalinvariantofrange analysis:

Iftheinputvector x =(x1 , … , xm ) liesintherangejointlydeterminedbythe givenapproximatevalues X =(X1 , … , Xm ),thenthequantities z =(z1 , … , zn )= f (x1 , … , xm ) areguaranteedtolieintherangejointlydefinedbytheapproximate values Z =(Z1 , , Zn )= F (X1 , , Xm ).

Thispropertyisextremelyusefulinreliablecomputing,sincethejointrange determinedbytheapproximatedvalues Zi isanouterestimationoftherealsolutionset,namely: S ={z ∶ z = f (x1 , … , xm ), x1 ∈ X1 , … ., xm ∈ Xm } ⊆ Z (1.1)

hence,introducingaconservativefactorinapproximatingthesolutionvectors. Thisconservativismisavaluablefeatureofrangeanalysis-basedmethods,which isextremelyimportantinreliablepowersystemanalysis,sinceitallowsthe Analysttoboundallinternalandexternaluncertaintiesinnumericalcomputing. However,obtainingasuitable(nottoolarge)conservativismlevelisarelevant probleminrange-basedcomputation,sincethenaiveapplicationofrange-based modelsoftenresultsinextremelyconservativesolutionranges,whicharetoo wide,andhence,notusefulinrealisticapplicationdomains.

Therefore,inordertoassessandcomparetheconservativismofrange-based reliablecomputingmodels,propermetricsshouldbedefined.Forthispurpose, weintroducethe relativeaccuracy oftherange-basedapproximation Z ,whichis definedas:

where ||Y

and

[Z ]|| arethenormsoftherealsolutionrange Y

(

)∶ x ∈[X ]} andthecomputedrange [Z ],respectively.

Thisindexisareliablemeasureoftheconservativismintroducedbyrange-based computing,indicatingtheouterestimationaccuracybyanumber,whichcould varybetweenzero(i.e.thecomputedrangeismuchwiderthantherealone)and one(i.e.noconservativismisintroducedinrangecomputing).

Obviously,thisindexrequiresthattheinputvector x =(x1 , … , xm ) shouldvary intherangejointlydeterminedbythegivenapproximatevalues X =(X1 , , Xm ), asstatedbythefundamentalinvariantofrangeanalysis.Thishypothesiscannot beverifiedinrealapplicationdomains,wheresomeoftheinputdataareacquired bymeasurements,whichcanbeaffectedbyunboundederrors.Inthiscontext, theassumptionrelatedtotheinclusionoftheoutputvariables z intherange jointlydeterminedbytheapproximatevalues Z shouldberevisedbyintroducing probabilisticinformationabouttherangeofthepossiblevalues [Z ].Thisrequires determining,forthecomputedrange[Z],thecorresponding confidencerangepZ , whichistheprobabilityof z tobeincludedin[Z].Thisapproachdiffersfrom theGaussian-basedprobabilisticmodelsasitdoesnotassumeanyhypothesis abouttheprobabilitydistributionoftheerrorinsidetherange [Z ],butonlythat itsintegraloverthecomputedrangeisatleast pZ .

Hence,theapplicationofrange-basedmethodsinthiscontextrequirescomputing,foreachmathematicaloperation,notonlythejointrange,butalsoaconservativeestimationofthecorrespondingconfidencelevel,asafunctionofthe confidenceleveloftheinputdata.

1.2IntervalAnalysis

Intervalanalysis(IA),alsoreferredtoasintervalarithmetic,isarange-based modelfornumericalcomputingthatdescribeseachuncertainvariable x byan intervalofrealnumbers x ,whichisguaranteedtocontainthe(unknown)“true” valueof x (Moore,1966).

Morespecifically,arealintervalisacompactset,whichisdefinedas:

where xlo and xhi arethelowerandupperboundsoftheinterval,respectively.

Thoseintervalsarecombinedandprocessedbyspecificmathematicaloperators,whichgeneralizeallthereal-valuefunctionstoprocessinterval-based uncertainvariables,insuchawaythatthecomputedintervalsareguaranteed tocontainallthepossiblevaluesofthecomputedquantities.Toachievethis, IAdefinesforeachmathematicalfunction z = f (x1 , , xn ) with xi ∈ R aproper intervalextension z = f (x 1 , , x n ),whichallowscomputationofaninterval z that containsallthevalues z = f (x ) for (x1 , … , xn ) varyingindependentlyoverthe givenintervals (x 1 , … , x n ).

Computingintervalextensionforlinearfunctionsisextremelysimple,sinceit onlyrequiresdefiningaclosedformexpressionfortheextremevaluesofthefunctionwhenitsargumentsvaryindependentlyoverspecifiedintervals.

Onthecontrary,computingintervalextensionsfornonlinearfunctionsisa verycomplexissue.Indeed,defininganalyticformulaforcomputingthe“exact” extremevaluesofthesefunctionscanbeextremelydifficult.Hence,inorderto satisfythefundamentalinvariantofrangeanalysis,aconservative(buteasily computable)approximationofthe“exact”functionrangeshouldbeidentified. Inthesecases,thecorrespondingcomputedintervalsareouterestimationsofthe “exact”solutionsets.

Theintervalextensionsofthemainmathematicaloperatorsandelementary functionscanbecomposedinordertocomputetheintervalextensionsforany complexfunctionbyusingthesamemathematicalschemesadoptedinreal numberscomputing.Hence,anynumericalalgorithmprocessingrealnumbers canbeautomaticallydeployedforprocessingintervalvariablesbyreplacingthe realnumberoperatorsandfunctionswiththeircorrespondingintervalextensions. Thisschemeallowsthenumericalalgorithmstoevolvefromcomputingwith realnumberstocomputingwithintervalsandtoidentifysolutionswhichare nolongerdeterministic(validonlyforfixedrealinputdata),butdescribedby intervalsthat,accordingtothefundamentalinvariantofrangeanalysis,are

1IntroductiontoReliableComputing

guaranteedtoincludetherealvaluesofthesolutionsforallinstancesofthe uncertaininputdata(thatshouldvaryinthespecifiedintervals).

1.3Interval-BasedOperators

Theintervalextensionsofthebasicmathematicaloperatorscanbeeasilydefined asfollows:

x =[−xhi , xlo ]

x + y =[xlo + ylo , xhi + yhi ]

x + c =[xlo + c, xhi + c]

x y =[xlo yhi , xhi ylo ]

c x =[c xlo , c xhi ]c > 0

c ⋅ x =[c ⋅ xhi , c ⋅ xlo ]c < 0

(1.4)

Todefinetheintervalextensionofthemultiplication, x ∗ y,itisnecessaryto deriveananalyticexpressionoftheminimumandmaximumvaluesofthefunction xy for (x , y) varyingovertherange [xlo , xhi ]×[ylo , yhi ].Tosolvethisproblem,it shouldbenotedthatthefunction xy islinearin y (x )foreachfixed x (y);hence,its maximumandminimumvalues,referredtoas a and b,respectively,arelocatedat thecorneroftherectangle [xlo , xhi ]×[ylo , yhi ],namely:

a = min {xlo ⋅ ylo , xlo ⋅ yhi , xhi ⋅ ylo , xhi ⋅ yhi }

b = max {xlo ylo , xlo yhi , xhi ylo , xhi yhi }

(1.5)

Thesameschemecanalsobeadoptedforcomputingtheintervalextensionof thedivision, x ∕y,whichcanberepresentedastheproductof x by1∕y.Inthiscase,it shouldbenotedthatthereciprocalfunction1∕y isnotdefinedfor y = 0;hence, thisconditionshouldbeproperlycheckedasfollows:

if ylo < 0and yhi > 0then a =−∞, b =+∞

if yhi = 0then a =−∞

if yhi ≠ 0then a = 1 yhi

if ylo = 0then b =+∞

if ylo ≠ 0then b = 1 ylo

(1.6)

Theseinterval-basedarithmeticoperatorsgeneralizethearithmeticofrealnumberstothesetofrealintervals.

Otherusefulintervaloperatorsincludethemidpoint m(x ) andtheradius r (x ) of theinterval x ,whicharedefinedas:

m(x )= xlo + xhi 2

r (x )= xhi xlo 2

Moreover,itisalsousefultodefinetheintersectionoftwointervals x and y, whichisdefinedas:

x ∩ y =[max {xlo , ylo }, min {xhi , yhi }]

andtheconvexhulloftwointervals x and y,whichisthesmallestinterval x ∪ y containing [min {xlo , ylo }, max {xhi , yhi }]

Finally,inordertosolvemultidimensionalproblems,wedefineinterval matrices A =(aij ) with i ∈[1, m] and j ∈[1, n],andintervalvectors x =(x i ),with i ∈[1, n],whicharedefinedasfollows(GötzandGünter,2000):

[Alo , Ahi ]={B ∈ Rmxn ∶ Alo ≤ B ≤ Ahi }

Therealmatrix A ∈(Rnxn ) issaidtobean M matrix,if aij ≤ 0for i ≠ j andif A 1 existsandisnonnegative.Thisdefinitioncanbegeneralizedtointervalmatrices; inparticular,ifeachmatrix A fromagivenintervalmatrix A isan M matrix,then theintervalmatrix A isan M matrix.

Startingfromthesedefinitions,itispossibletoexpresstheproduct Ax asfollows:

Hence, Ax istheintervalvectorcontainingtheleftsetin(1.9).

Anintervalvectorenclosingsomeset S astightaspossibleiscalledthe(interval) hullof S.

1.4IntervalExtensionsofElementaryFunctions

Computingtheintervalextensionofthesquarerootisstraightforwardsincethis functionismonotonic,andapreliminarycheckoftheinputrangeisonlyrequired, asfollows: if xlo < 0and xhi < 0then √x =[] if xlo < 0and xhi > 0then √x =[0, √xhi ] if xlo > 0and xhi > 0then √x =[√xlo , √xhi ] (1.10)

1IntroductiontoReliableComputing

Asimilarapproachcanbeadoptedfordefiningtheintervalextensionofthe logarithmlog(x ) (whichisnotdefinedatzero)andtheexponentialexp(x )= ex , whicharedescribedin(1.11)and(1.12),respectively.

if xhi < 0thenlog x =[]

if xlo < 0and xhi > 0thenlog x =[−∞, log xhi ]

if xlo > 0and xhi > 0thenlog x =[log xlo , log xhi ]

ex =[exlo , exhi ]

Thedefinitionofintervalextensionoftrigonometricfunctionsisnottrivial, becausetheycouldbenonmonotonicintheconsideredinputinterval,butthis canbeobtainedbycomputingthemaximumandminimumfunctionvaluesfor inputsvaryinginthespecifiedinterval,whichforcosandsinfunctionsoccurat integermultiplesof �� and �� ∕2,respectively.Hence,thefollowingprocedurescan beadoptedforcomputingthecorrespondingintervalextensionofcosandsin functions,respectively:

if k�� ∈ x (k = 0, 2, 4, …) then b = 1

else b = max (cos(xlo ), cos(xhi ))

if k�� ∈ x (k = 1, 3, 5, …) then a =−1

else a = min (cos(xlo ), cos(xhi ))

cos x =[a, b] (1.13)

if k �� 2 ∈ x (k = 0, 2, 4, …) then b = 1

else b = max (sin(xlo ), sin(xhi ))

if k �� 2 ∈ x (k = 1, 3, 5, …) then a =−1

else a = min (sin(xlo ), sin(xhi ))

sin x =[a, b] (1.14)

Thesecomputingprocedurescanbeproperlygeneralizedinordertocompute theintervalextensionofanyelementaryfunction f ∶ D ⊆ Rn → Rm with x ⊆ D, which,thankstothefundamentalinvariantofrangeanalysis,isanenclosureof thecorrespondingfunctionrange.

TheeffectivenessofIAinconservativelyestimatingtherangeofanyelementary functionwhentheinputsrangesoverassignedintervalsisaneffectivetool,which canbeusedforeffectivelysolvingcomplexmathematicalproblems,suchas:

1.Computingtheglobalminimaofscalarfunctions

2.EstimatingtherangeoftheJacobianmatrix

3.Verifyingandenclosingsolutionsofinitialvalueproblems, 4.Computingthezerosofscalarfunctions.

1.5SolvingSystemsofLinearIntervalEquations

IA-basedcomputingcanbeappliedtosolvethefollowinguncertainlinear problem:

Ax = b (1.15)

where A and b areknown n × n intervalmatrix,and n-dimensionintervalvector, respectively.Theseknownquantitiescanbeexpressedas:

A =[m(A)− r (A), m(A)+ r (A)]

b =[m(b)− r (b), m(b)+ r (b)] (1.16)

where m(A) (m(b))and r (A) (r (b))arethecenterandtheradiusoftheinterval matrix A (intervalvector b),respectively.

Thesolutionsetoftheselinearequationsisdefinedas:

X ={x ∈ Rn ∶ Ax = b, A ∈ A, b ∈ A} (1.17)

Ourtaskistoidentifyanouterintervalenclosureofthisset. Tothisaim,let’sdefinethefollowing:

1. e =(1, 1, … , l)T ∈ Rn

2. f =−e,

3. Y ={y ∶ |y| = e, y ∈ Rn },sothat Y has2n elements.Forexample,for n = 2 Y ={(1, 1);(−1, 1);(1, 1);(−1, 1)}

4. ∀z ∈ Rn , Tz isthediagonalmatrixwiththevectorcomponents zi onitsdiagonal (namely diag(Tz )={z1 , , zn })

5. Ayz = m(A)− Ty r (A)Tz and by = m(b)+ Ty r (b)∀y, z ∈ Rn

6. dy = m(A) 1 by

7. by = m(b)+ Ty r (b)

Thankstothesedefinitions,itispossibletorigorouslysolvetheproblem(1.15) bysolvingthefollowing2n linearcomplementaryproblems:

x + = A 1 ye Ayf x + A 1 ye by ∀y ∈ Y (1.18) (2.4).

Thesolutionofthisproblemforeach y ∈ Y ,herereferredtoas xy ,maybe obtainedusingconventionaltechniquesforsolvinglinearcomplementarity

1IntroductiontoReliableComputing

problems.Oncethese2n solutionshavebeencomputed,theouterinterval estimationofthesolutionsetcanbeeasilyobtainedasfollows:

xlo = min (xy ∶ y ∈ Y )

xhi = max (xy ∶ y ∈ Y ) (1.19)

However,inordertosimplifythesolutionprocess,i.e.byavoidingtheinversion ofthematrix Aye ,itispossibletorecasttheproblem(1.18)asfollows:

Ayz x = by Tz x ≥ 0

z ∈ Y (1.20)

Thisproblemcanbesolvedbysolvingthesystems Ayz x = by ,fordifferent z’s untilsatisfyingthecondition Tz x ≥ 0,whichisequivalentto zj xj ≥ 0foreach j Hence,thefollowingalgorithmcanbeadoptedtosolvetheproblem(Rohn,1989):

Algorithm

● Step0:Select z ∈ Y (recommended z = sign(dy ))

● Step1:Solve Ayz x = by

● Step2:If Tz x ≥ 0set xY = x andterminate

● Step3:Otherwise,find k = min (j; zj xj < 0) (1.21)

● Step4:Set zk =−zk andgotoStep1.

if A isregular,namelyifeach A ∈ A isnonsingular,thenthisiterativescheme convergesinafinitenumberofstepsforeach y ∈ Y andforanarbitrarystarting z ∈ Y instep0(Rohn,1989).

Inmanyrealisticcases,computing xy onlyrequiresthesolutionofasingle system Ayz x = by ,andthereisnoneedtocomputeall2n vectors yz;hence,a subsetof Y canbeconsideredingeneratingthevectors y

Example1.1 Let’sconsiderthefollowingsetoflinearintervalequations:

Inthiscase,itfollowsthat:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.