Immediate download An introduction to data-driven control systems ali khaki-sedigh ebooks 2024

Page 1


An Introduction to Data-Driven Control Systems Ali

Visit to download the full and correct content document: https://ebookmass.com/product/an-introduction-to-data-driven-control-systems-ali-kha ki-sedigh/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Introduction to linear control systems Bavafa-Toosi

https://ebookmass.com/product/introduction-to-linear-controlsystems-bavafa-toosi/

An Introduction to Data Science 1st Edition, (Ebook PDF)

https://ebookmass.com/product/an-introduction-to-datascience-1st-edition-ebook-pdf/

Data-driven Solutions to Transportation Problems Yinhai

Wang

https://ebookmass.com/product/data-driven-solutions-totransportation-problems-yinhai-wang/

An Introduction to System Modeling and Control 1st Edition John Chiasson

https://ebookmass.com/product/an-introduction-to-system-modelingand-control-1st-edition-john-chiasson/

Data Driven: Harnessing Data and AI to Reinvent Customer Engagement 1st Edition Tom Chavez

https://ebookmass.com/product/data-driven-harnessing-data-and-aito-reinvent-customer-engagement-1st-edition-tom-chavez/

An Introduction to Statistical Methods and Data Analysis 7th Edition, (Ebook PDF)

https://ebookmass.com/product/an-introduction-to-statisticalmethods-and-data-analysis-7th-edition-ebook-pdf/

From Statistical Physics to Data-Driven Modelling: with Applications to Quantitative Biology Simona Cocco

https://ebookmass.com/product/from-statistical-physics-to-datadriven-modelling-with-applications-to-quantitative-biologysimona-cocco/

An Introduction to Self-adaptive Systems: A Contemporary Software Engineering Perspective Danny Weyns

https://ebookmass.com/product/an-introduction-to-self-adaptivesystems-a-contemporary-software-engineering-perspective-dannyweyns/

Data Control Jean-Louis Monino

https://ebookmass.com/product/data-control-jean-louis-monino/

AnIntroductiontoData-DrivenControlSystems

IEEEPress

445HoesLane

Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktsson

AnjanBose

JamesDuncan

AminMoeness

DesineniSubbaramNaidu

BehzadRazavi

JimLyke

HaiLi

BrianJohnson

JeffreyReed

DiomidisSpinellis

AdamDrobot

TomRobertazzi

AhmetMuratTekalp

AnIntroductiontoData-Driven ControlSystems

AliKhaki-Sedigh K.N.ToosiUniversityofTechnology

Iran

Copyright©2024byTheInstituteofElectricalandElectronicsEngineers,Inc. Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.

PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers, MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requeststo thePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley& Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley& Sons,Inc.and/oritsaffiliatesintheUnitedStatesandothercountriesandmaynotbeused withoutwrittenpermission.Allothertrademarksarethepropertyoftheirrespectiveowners. JohnWiley&Sons,Inc.isnotassociatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechanged ordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublisher norauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbut notlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,please contactourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidethe UnitedStatesat(317)572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsin printmaynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts, visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationDataAppliedfor:

HardbackISBN:9781394196401

CoverDesign:Wiley CoverImage:©zfL/GettyImages

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Contents

Preface xi

Acknowledgements xv ListofAcronyms xvii

1Introduction 1

1.1Model-BasedControlSystemDesignApproach 1

1.1.1TheEarlyDevelopments 1

1.1.2Model-basedControlSystemStatusQuo 2

1.1.3ChallengesofModelsinControlSystemsDesign 3

1.1.4AdaptiveandRobustControlMethodologies 5

1.2Data-drivenControlSystemDesignApproach 5

1.2.1TheDesignerChoice:Model-basedorData-drivenControl? 7

1.2.2TechnicalRemarksontheData-DrivenControlMethodologies 9

1.3Data-DrivenControlSchemes 10

1.3.1UnfalsifiedAdaptiveControl 10

1.3.1.1UnfalsifiedControl:SelectedApplications 11

1.3.2VirtualReferenceFeedbackTuning 12

1.3.2.1VRFT:SelectedApplications 14

1.3.3SimultaneousPerturbationStochasticApproximation 15

1.3.3.1SPSA:SelectedApplications 16

1.3.4TheWillems’FundamentalLemma 16

1.3.4.1FundamentalLemma:SelectedApplications 18

1.3.5Data-DrivenControlSystemDesignBasedonKoopmanTheory 18

1.3.5.1Koopman-basedDesign:SelectedApplications 21

1.3.6Model-freeAdaptiveControl 23

1.3.6.1MFAC:SelectedApplications 24

1.4OutlineoftheBook 25 References 29

2PhilosophicalPerspectivesoftheParadigmShiftinControl SystemsDesignandtheRe-EmergenceofData-Driven Control 35

2.1Introduction 35

2.2BackgroundMaterials 36

2.2.1ScientificTheory 36

2.2.2ScientificRevolutionsandParadigmShifts 37

2.2.3RevolutionsinControlSystemsDesignfromKuhn’sPerspective 39

2.2.4PhilosophicalIssuesinControlEngineeringandControlSystems Design 41

2.2.5AGeneralSystemClassification 43

2.3ParadigmShiftsinControlSystemsDesign 44

2.3.1Pre-historyandPrimitiveControl 44

2.3.2Pre-classicalControlParadigm 44

2.3.3GeneralSystemTheoryandthePhilosophicalFoundationsof Model-BasedControl 45

2.3.4Model-BasedDesignParadigm 46

2.3.4.1PhilosophicalDiscussionsonModelPrevalenceinFeedback Control 46

2.3.5ClassicalControlDesign 49

2.3.6ModernControlDesign 50

2.4UncertaintyCombatParadigm 54

2.4.1UncertaintyandPerformanceProblem 54

2.4.2UncertaintyCombat:theRobustControlApproach 56

2.4.3UncertaintyCombat:theAdaptiveControlApproach 57

2.4.4UncertaintyCombat:theSoftComputing-basedControlApproach 59

2.5TheParadigmShiftTowardsData-drivenControlMethodologies 61

2.5.1UnfalsifiedPhilosophyinControlSystemsDesign 64

2.6Conclusions 68 References 69

3UnfalsifiedAdaptiveSwitchingSupervisoryControl 73

3.1Introduction 73

3.2APhilosophicalPerspective 75

3.3PrinciplesoftheUnfalsifiedAdaptiveSwitchingControl 77

3.3.1BasicConceptsandDefinitionsintheUASCMethodology 78

3.3.2TheMainResults 79

3.4TheNon-MinimumPhaseController 87

3.5TheDALPhenomena 88

3.6PerformanceImprovementTechniques 91

3.6.1FilteredCostFunction 91

3.6.2ThresholdHysteresisAlgorithm 92

3.6.3Scale-IndependentHysteresisAlgorithm 93

3.7IncreasingCostLevelAlgorithmsinUASC 95

3.7.1IncreasingCostLevelAlgorithm 97

3.7.2LinearIncreasingCostLevelAlgorithm 98

3.8Time-varyingSystemsintheUASC 101

3.9Conclusion 104

Problems 106

References 108

4Multi-ModelUnfalsifiedAdaptiveSwitchingSupervisory Control 111

4.1Introduction 111

4.2TheMulti-ModelAdaptiveControl 113

4.3PrinciplesoftheMulti-ModelUnfalsifiedAdaptiveSwitching Control 116

4.4PerformanceEnhancementTechniquesintheMMUASC 126

4.4.1DifferentMMUASCCostFunctions 126

4.4.2AdaptiveWindowintheMMUASC 127

4.5Input-constrainedMulti-ModelUnfalsifiedSwitchingControl Design 129

4.5.1Multi-ModelUnfalsifiedConstrainedAnti-WindupControl 130

4.5.2TheFeasibilityProblem 135

4.5.3QuadraticInverseOptimalControl 138

4.5.4Multi-ModelUnfalsifiedConstrainedGeneralisedPredictive Control 141

4.5.5VirtualReferenceSignalintheMMUCGPCScheme 143

4.5.6SwitchingAlgorithmintheMMUCGPC 144

4.6Conclusion 147 Problems 148 References 151

5Data-DrivenControlSystemDesignBasedontheVirtual ReferenceFeedbackTuningApproach 155

5.1Introduction 155

5.2TheBasicVRFTMethodology 156

5.2.1FilterDesign 159

5.3TheMeasurementNoiseEffect 163

5.3.1TheInstrumentalVariableSelection 164

5.4TheNon-MinimumPhasePlantsChallengeintheVRFTDesign Approach 166

5.5ExtensionsoftheVRTFMethodologytoMultivariablePlants 171

5.6OptimalReferenceModelSelectionintheVRFTMethodology 177

5.6.1TheParticleSwarmOptimisationScheme 180

5.7Closed-loopStabilityoftheVRFT-BasedData-DrivenControl Systems 183

5.7.1AnIdentification-BasedApproach 183

5.7.2AnUnfalsification-BasedApproach 184

5.8Conclusions 187

Problems 188 References 190

6TheSimultaneousPerturbationStochastic Approximation-BasedData-DrivenControlDesign 193

6.1Introduction 193

6.2TheEssentialsoftheSPSAAlgorithm 195

6.2.1TheMainTheoreticalResultoftheSPSAAlgorithm 198

6.3Data-DrivenControlDesignBasedontheSPSAAlgorithm 201

6.3.1ThePIDControl 202

6.3.2TheMPCApproach 202

6.4ACaseStudy:Data-DrivenControlofUnder-actuatedSystems 205

6.4.1TheLiquidSloshExample 205

6.4.2TheBallandBeamExample 210

6.5Conclusions 212 Problems 213 References 215

7Data-drivenControlSystemDesignBasedonthe FundamentalLemma 217

7.1Introduction 217

7.2TheFundamentalLemma 218

7.3SystemRepresentationandIdentificationofLTISystems 222

7.3.1EquivalentData-drivenRepresentationsofLTISystems 222

7.3.2Data-drivenState-spaceIdentification 224

7.4Data-drivenState-feedbackStabilisation 225

7.5RobustData-drivenState-feedbackStabilisation 228

7.6Data-drivenPredictiveControl 233

7.6.1TheData-enabledPredictiveControl(DeePC) 235

7.6.1.1Input–OutputDataCollection 235

7.6.1.2StateEstimationandTrajectoryPrediction 235

7.6.1.3TheDeePCAlgorithm 237

7.6.2LTISystemswithMeasurementNoise 239

7.6.3Data-drivenPredictiveControlforNonlinearSystems 241

7.7Conclusion 247 Problems 247 References 250

8KoopmanTheoryandData-drivenControlSystemDesignof NonlinearSystems 253

8.1Introduction 253

8.2FundamentalsofKoopmanTheoryforData-drivenControlSystem Design 254

8.2.1BasicConceptsandDefinitions 254

8.2.2Finite-dimensionalKoopmanLinearModelApproximation 258

8.2.3ApproximatingtheKoopmanLinearModelfromMeasuredData:The DMDApproach 259

8.2.4SystemStateVectorResponsewithDMD 262

8.2.5ApproximatingtheKoopmanLinearModelfromMeasuredData:The EDMDApproach 265

8.3Koopman-basedData-drivenControlofNonlinearSystems 269

8.3.1Koopman-WillemsLemmaforNonlinearSystems 270

8.3.2Data-drivenKoopmanPredictiveControl 272

8.3.3RobustStabilityAnalysisoftheData-drivenKoopmanPredictive Control 275

8.3.4RobustData-drivenKoopmanPredictiveControl 277

8.4ACaseStudy:Data-drivenKoopmanPredictiveControlofthe ACUREXParabolicSolarCollectorField 281

8.4.1Data-drivenKoopmanPredictiveControloftheACUREXSolar CollectorField 285

8.5Conclusion 288 Problems 288 References 290

9Model-freeAdaptiveControlDesign 293

9.1Introduction 293

9.2TheDynamicLinearisationMethodologies 295

9.2.1TheCompactFormDynamicLinearisation 296

9.2.2ThePartialFormDynamicLinearisation 297

9.2.3TheFullFormDynamicLinearisation 300

9.3ExtensionsoftheDynamicLinearisationMethodologiesto MultivariablePlants 302

9.3.1CFDLDataModelforNonlinearMultivariablePlants 303

9.3.2PFDLDataModelforNonlinearMultivariablePlants 303

x Contents

9.3.3FFDLDataModelforNonlinearMultivariablePlants 304

9.4DesignofModel-freeAdaptiveControlSystemsforUnknown NonlinearPlants 304

9.4.1Model-freeAdaptiveControlBasedontheCFDLDataModel 305

9.4.2Model-freeAdaptiveControlBasedonthePFDLDataModel 308

9.4.3Model-freeAdaptiveControlBasedontheFFDLDataModel 310

9.5ExtensionsoftheModel-freeAdaptiveControlMethodologiesto MultivariablePlants 314

9.5.1MFACDesignBasedontheCFDLDataModelforNonlinear MultivariablePlants 314

9.5.2MFACDesignBasedonthePFDLDataModelforNonlinear MultivariablePlants 318

9.5.3MFACDesignBasedontheFFDLDataModelforNonlinear MultivariablePlants 320

9.6ACombinedMFAC–SPSAData-drivenControlStrategy 330

9.7Conclusions 337 Problems 338 References 339

Appendix 341

ANorms 341

BLyapunovEquation 343

CIncrementalStability 343

DSwitchingandtheDwell-time 344

EInverseMoments 346

FLeastSquaresEstimation 349

GLinearMatrixInequalities 351

HLinearFractionalTransformations 353 References 355

Index 357

Preface

Model-basedcontrolsystems.Model-basedcontrolsystemanalysisanddesign approacheshavebeenthedominantparadigmincontrolsystemeducationand thecornerstoneofcontrolsystemdesignfordecades.Thesemethodologies relyonaccuratemathematicalmodelsandassumptionstoachievethedesired systembehaviour.Intheearlydecadesofthelastcentury,despitethetremendous interestinmodel-basedcontrolapproaches,manyPIDcontrollersintheindustry weredesignedbasedonthedata-driventechniqueofZiegler–NicholsPID parametertuning,whichisconsideredthefirstdata-drivencontrolapproach. Later,theadvancedadaptiveandrobustmodel-basedcontroltechniquesevolved tocombattheuncertaintychallengeintheestablishedmodel-basedtechniques. Theseadvancedcontroltechniquessuccessfullycontrolledmanyreal-worldand industrialplants.Yet,bothstrategiesrequiremathematicalmodelsandprior plantassumptionsmandatedbythetheory.

Data-drivencontrolmethodologies.Thelimitationsanduncertaintiesassociatedwithmodelsandassumptions,ontheonehand,andtheemergenceof progressivelycomplexsystems,ontheotherhand,havesparkedaparadigm shifttowardsdata-drivencontrolmethodologies.Theexponentiallyincreasing numberofresearchpapersinthisfieldandthegrowingnumberofcourses offeredinuniversitiesworldwideonthesubjectclearlyshowthistrend.Thenew data-drivencontrolsystemdesignparadigmhasre-emergedtocircumvent thenecessityofderivingofflineoronlineplantmodels.Manyplantsregularly generateandstorehugeamountsofoperatingdataatspecificinstantsoftime. Suchdataencompassesalltherelevantplantinformationrequiredforcontrol, estimation,performanceassessment,decision-makingandfaultdiagnosis. Thisdataavailabilityhasfacilitatedthedesignofdata-drivencontrolsystems.

Intendedaudience.Thisbookisanintroductiontodata-drivencontrolsystems andattemptstoprovideanoverviewofthemainstreamdesignapproachesin thefield.Theselectedapproachesmaybecalledwithcautiontheconventional approaches,notincludingtheapproachesbasedonsoftcomputingtechniques.

Auniquechapterisdevotedtophilosophical–historicalissuesregardingthe emergenceofdata-drivencontrolsystemsasthefuturedominantcontroldesign paradigm.Thischapterwillbeparticularlyappealingtoreadersinterestedin gaininginsightsintothephilosophicalandhistoricalaspectsofcontrolsystem designmethodologies.Conceptsfromthephilosophyofscienceandhistorical discussionsarepresentedtoshowtheinevitableprevalenceofdata-driven techniquesinthefaceofemergingcomplexadaptivesystems.Thisbookcancover agraduatecourseondata-drivencontrolandcanalsobeusedbyanystudent orresearcherwhowishestostartworkinginthefieldofdata-drivencontrol systems.Thisbookwillpresenttheprimarymaterial,andthereadercanperceive ageneraloverviewofthedevelopingdata-drivencontroltheory.Thebook presentationavoidsdetailedmathematicalrelationsandderivationsthatare availableinthecitedtechnicalpapersoneachsubject.However,algorithmsfor easyimplementationofthemethodswithnumericalandsimulationexamples areprovided.Thesoftwarecodesareavailableuponrequestfromtheauthor. Data-drivencontrolisalsoahotresearchtopic;manyfinal-yearundergraduate andpostgraduatestudentsareinterestedinstartingaresearchprojectinits differentareas.Theavailablereadingsourcesarethetechnicalpapersandthe limitednumberofresearchmonographsandbooksonthesubject.However,the technicalpapersareveryspecialisedandinvolvedeepmathematicalderivations. Thelimitednumberofpublishedmonographsandbooksalsospecialiseinspecific subjectareasanddonotprovideageneralintroductionandoverviewofdifferent methodologiesforafirst-timereaderindata-drivencontrol.Theselectedtopics inthisbookcanbeindividuallytaughtinmanydifferentcoursesonadvanced controltheory.Also,foraninterestedresearcherinanyofthecoveredfields,it wouldbebeneficialtolearnaboutthebasicsofotheralternativemethodologies toplanaresearchprogramme.

Prerequisites.Thebookisdesignedforgraduate-levelcoursesandresearchers specialisingincontrolsystemsacrossvariousengineeringdisciplines.Thebook assumesthatthereaderpossessesasolidunderstandingoffeedbackcontrol systemsaswellasfamiliaritywiththeprinciplesofdiscrete-timecontrolsystems andoptimisationproblems.Moreover,abasicunderstandingofsystemidentification,adaptivecontrolandrobustcontrolcanenhancethereader’scomprehension andappreciationofdata-drivencontrolmethodologies.

Overviewofthebook.Thebookisorganisedasfollows.Chapter1introduces boththemodel-basedanddata-drivencontrolsystemdesignapproaches. Itdiscussestheearlydevelopmentsandthecurrentstatusquoofmodel-based controlsystems,aswellasthechallengestheyface.Thechapteralsoexplores adaptiveandrobustcontrolmethodologiesasameanstoovercomesomeofthese

Preface

challenges.Subsequently,thedata-drivencontrolsystemdesignapproachis presented,andthetechnicalaspectsofdifferentdata-drivencontrolschemesare discussed.

Chapter2takesaphilosophicalperspectivetoanalysetheparadigmshiftsin controlsystemdesign.Itpresentsscientifictheory,revolutionsandparadigm shifts,drawingparallelstotheevolutionofcontrolsystemdesignmethodologies. Thehistoricaldevelopmentofcontrolsystemsdesignparadigmsandtheir philosophicalfoundationsisintroduced,andageneralclassificationofcontrol systemsisgiven.Thechapterconcludeswithanexplorationoftheparadigm shiftstowardsdata-drivencontrolmethodologies,withafocusontheinfluence oftheunfalsifiedphilosophy.

Chapters3and4presentdata-drivenadaptiveswitchingsupervisorycontrol andmulti-modeladaptiveswitchingsupervisorycontrol,respectively.ThephilosophicalbackboneofthepresentedmethodologiesisPopper’sfalsification theory,whichisintroducedinadata-drivencontrolcontextbySafonov.Itis showninChapter3thattheunfalsifiedadaptiveswitchingsupervisorycontrol caneffectivelycontrolunknownplantswithguaranteedclosed-loopstability undertheminimumassumptionoftheexistenceofastabilisingcontroller. Althoughseveralclosed-looptransientimprovementtechniquesarepresentedin Chapter3,themulti-modelunfalsifiedadaptiveswitchingcontrolisintroduced inChapter4toensureasuperiorclosed-looptransientperformance.Itisshown thatperformanceimprovementisachievedbyutilisingamodelsettoselect theappropriatecontrollerbasedonthefalsifyingtheory.Theadaptivememory concept,input-constraineddesignproblemsandquadraticinverseoptimal controlnotionarealsodiscussed.

Chapter5presentsthevirtualreferencefeedbacktuningapproach.Itisshown thatbyformulatingthecontrollertuningproblemasacontrollerparameter identificationproblem,adata-basedcontrollerdesignmethodologyisderived. Inthisapproach,avirtualreferencesignalisintroduced,anditisassumedthat thecontrollerstructureisknownapriori.Afterintroducingthebasicconcepts andmethodology,theproblemsofappropriatefilterdesign,measurementnoise, non-minimumphasezerochallenges,closed-loopstabilityandextensionsto multivariableplantsareaddressedinthischapter.

ThesimultaneousperturbationstochasticapproximationoptimisationtechniqueisintroducedandutilisedinChapter6forthedesignofdata-driven controlsystems.Itisshownthatthiscircumventsthenecessityofananalytical closed-formsolutiontothecontroloptimisationproblemsthatrequirealmost exactmathematicalmodelsofthetrueplant.Theessentialsofthetechnique arepresentedforplantswithunknownexactmathematicalmodels.Then,after

selectingacontrollerwithafixedknownstructurebutunknownparameters,by minimisingacostfunction,thecontrollerparametersarederived.Thepresented data-drivencontrolmethodologyisthenappliedtounknown,under-actuated systemsasapracticalcasestudy.

Chapter7presentsaclassofdata-drivencontrollersbasedonWillem’sFundamentalLemma.Itisinitiallyshownthatpersistentlyexcitingdatacanbeused torepresenttheinput–outputbehaviourofalinearsystemwithouttheneedto identifythelinearsystem’smatrices.Thederivedso-calledequivalentdata-based representationsofalineartimeinvariant(LTI)systemaresubsequentlyutilised todesigndata-drivenstate-feedbackstabilisersandpredictivecontrollerscalled Data-enabledPredictiveControl,orDeePCforshort.Resultswithmeasurement noiseandnonlinearsystemsarealsogiveninthischapter.

Chapter8presentsdata-drivencontrollersbasedonKoopman’stheoryandthe FundamentalLemmapresentedinChapter7.ThefundamentalsofKoopman’s theoryarebrieflyreviewedfordata-drivencontrol.Itisshownthatnonlinear dynamicalsystemsarepresentedbyhigherdimensionallinearapproximations. Themainnotionsof lifting or embedding andtheeffectivetoolsof(extended) dynamicmodedecompositionsareintroducedandadata-drivenKoopman-based predictivecontrolschemeispresentedbyincorporatingWillem’sFundamental LemmaofChapter7.Arobuststabilityanalysisisprovided,andtheresultsare finallyappliedtotheACUREXsolarcollectorfield.

Themodel-freeadaptivecontroldesignisadata-drivencontroldesignapproach basedondynamiclinearisationmethodologiesandispresentedinChapter9. Thethreemaindynamiclinearisationsdiscussedinthischapterareshownto capturethesystem’sbehaviourbyinvestigatingtheoutputvariationsresulting frominputsignals.Thesedatamodelsareutilisedforcontrollerdesignandtheir virtualnaturemakestheminappropriateforothersystemanalysispurposes.Also, inChapter9,thevirtualdatamodelresultsandtheircorrespondingmodel-free adaptivecontrollersareextendedtomultivariableplants.

Somepreliminaryconceptsthatareusefulforthechaptersarepresentedin theAppendix.Thechaptersareaccompaniedbyproblemsetsthatprovidereaderswiththeopportunitytoreinforcetheirunderstandingandapplytheconcepts discussed.Asolutionmanualisalsoprovidedforinstructorsteachingaclasson data-drivencontrolusingthisbookbycontactingtheauthor.

October2023

Acknowledgements

Thepreparationofthisbookhasgreatlybenefitedfromtheinvaluablecontributionsandsupportofnumerouspostgraduatestudentsandcolleagueswho generouslydedicatedtheirtimetoshareexpertise,valuablesuggestionsand correctionsthroughouttheprocess.Iextendmysinceregratitudetothefollowing individuals,whosesignificanteffortshavegreatlyenrichedthecontentofthis book:

● AmirehsanKarbasizadehfromtheDepartmentofPhilosophyattheUniversity ofIsfahan,forhisinsightfuldiscussionsonthephilosophyofscienceandhis invaluablecommentsthatnotablyenhancedChapter2.

● MojtabaNooiManzarfromFacultyofElectricalandComputerEngineering, ShahidBeheshtiUniversity,forhiscontributionstotheinitialdraftofChapters 3and4,aswellascorrectionsandthesimulationresultsforthesechapters.

● MohammadMoghadasi,MehranSoleymaniandMaedehAlimohamadi, mymaster’sstudentsintheAdvancedControlLaboratory,fortheirdiligent proofreadingofChapter3.

● BahmanSadeghiandMaedehAlimohamadi,mymaster’sstudentsinthe AdvancedControlLaboratory,fortheirvaluablecontributionstoChapter4.

● MohammadJeddiandFatemehHematiKheirabadi,mymaster’sstudentsinthe AdvancedControlLaboratory,fortheirinsightfulcontributionstoChapter5.

● SepidehNasrollahi,myPhDstudentintheAdvancedControlLaboratory,for hercontributionstoChapter6,aswellashervaluablecontributionstoother chaptersandthecreationofnumerousfiguresthroughoutthebook.

● TaherehGholaminejad,myPhDstudentintheAdvancedControlLaboratory, forhersignificantcontributionstoChapters7and8.

● SaraIman,PhDstudentfromIranUniversityofScienceandTechnology,forher meticulousproofreadingandusefulcommentsonChapters7and8.

● AliRezaei,mymaster’sstudentintheAdvancedControlLaboratory,forhis valuablecontributionstoChapter9andtheefforthededicatedtosimulations throughoutthebook.

Finally,Iwouldliketoexpressmysincereappreciationtotheanonymous reviewerswhoprovidedinvaluablefeedbackduringthereviewprocessof thisbook,andspecialthankstoWiley-IEEEPressfortheirexceptional professionalism,dedication,industryknowledgeandseamlesscoordination thatexceededmyexpectations.Lastbutnotleast,Iamalsogratefultomyfamily fortheircollaborationandsupport,allowingmetodedicatemostofmyholidays, weekendsandeveningstocompletingthisbook.

ListofAcronyms

ASSCAdaptiveswitchingsupervisorycontrol

BIBOBounded-inputbounded-output

CFDLCompact-formdynamiclinearisation

CSPConcentratedsolarpower

DALDehghani–Anderson–Lanzon

DDKPCData-drivenKoopmanpredictivecontrol

DeePC Data-enabled Predictive Control

DFTDiscreteFouriertransform

DMDDynamicmodedecomposition

EDMDExtendeddynamicmodedecomposition

ETFEEmpiricaltransferfunctionestimate

FFDLFull-formdynamiclinearisation

GLAGeneralisedLaplaceanalysis

GPCGeneralisedpredictivecontrol

ICLAIncreasingcostlevelalgorithm

IFACInternationalFederationofAutomaticControl

LFTLinearfractionaltransformation

LICLALinearlyincreasingcostlevelalgorithm

LLCLinearisationlengthconstant

LMILinearmatrixinequality

LQGLinearquadraticGaussian

LQRLinearquadraticregulator

LSTMLongshort-termmemory

LTILineartime-invariant

MFACModel-freeadaptivecontrol

MMUASCMulti-modelunfalsifiedadaptiveswitchingcontrol

MMUASC-RMMUASCwithresettime

MMUCGPCMulti-modelunfalsifiedconstrainedGPC

MPCModelpredictivecontrol

MPUMMostpowerfulunfalsifiedmodel

PEPersistenceofexcitation,persistentlyexciting

PFDLPartial-formdynamiclinearisation

PGPseudo-gradient

PIDProportionalintegralderivative

PJMPseudo-Jacobianmatrix

PPDPseudo-partialderivative

PPJMPseudo-partitioned-Jacobianmatrix

PSOParticleswarmoptimisation

QFTQuantitativefeedbacktheory

SAStochasticapproximation

SCLIStablycausallyleftinvertible

SICESocietyofInstrumentandControlEngineering

SIHSAScale-independenthysteresisalgorithm

SISOSingle-input-single-output

SNRSignal-to-noiseratio

SPSASimultaneousperturbationstochasticapproximation

SVDSingularvaluedecomposition

THSAThresholdhysteresisalgorithm

UASCUnfalsifiedadaptiveswitchingcontrol

UASC-RUASCwithreset-time

UASSCUnfalsifiedadaptiveswitchingsupervisorycontrol

VRFTVirtualreferencefeedbacktuning

1.1.1TheEarlyDevelopments

Theadventofmodelsincontrolsystemstheoryanddesignisrootedintheseminal paperofMaxwell OnGoverners [1].NorbertWiener,inintroducingtheword cyberneticsinRef.[2]describestheMaxwellpaperas‘… thefirstsignificantpaper onfeedbackmechanismsisanarticleongovernors,whichwaspublishedbyClerk Maxwellin1868’andinRef.[3],Maxwellisrecognisedasthe‘fatherofcontrol theory’.TheMaxwellmagicwastointroducedifferentialequationsinmodelling thebehaviouroftheflyballgovernorfeedbackcontrolsysteminventedbyJames Wattin1788.Thisground-breakingcontributionbyMaxwellintroducedthe conceptofmathematicalmodellinginthestabilityanalysisofaclosed-loopcontrolsystem,anideathatsoonfoundmanyapplicationsandadvocatesandsolved manyuntilthenunsolvedstabilityanalysisproblems.Thedifferentialequations encounteredintheflyballgovernormodelwerenonlinear.Bylinearisingthese nonlinearequations,Maxwellmanagedtointroducethenotionsofwhatistoday calledrealpoles,imaginarypolesandthesignificanceofpolepositionintheright halfplane.Thismodel-basedapproachtotheanalysisofacontrolsystemthrough thedifferentialequationsofmotionwasperformedforthefirsttimeinthehistory ofcontroltheory.Hence,itisplausibletointroduceMaxwellasthepioneerofthe model-basedcontroltheory.

Intheearlytwentiethcentury,controlsystemdesignmethodologiessuchas the classicalcontrol techniquesinitiatedbyBode,Nyquist,EvansandNichols wereallmodel-basedapproachestocontroldesignsincethetransferfunction knowledgeofthecontrolledsystemisrequired.Thetransferfunctioncanbe derivedfromasetofalgebraicanddifferentialequationsthatanalyticallyrelate inputsandoutputs,oritcouldbeobtainedfromsimpletestsperformedonthe plantwiththeassumptionsoflinearityandtimeinvariance.Laterinthe1960s,

AnIntroductiontoData-DrivenControlSystems,FirstEdition.AliKhaki-Sedigh. ©2024TheInstituteofElectricalandElectronicsEngineers,Inc.Published2024byJohnWiley&Sons,Inc.

Kalmanintroducedthemodel-basedstate-spaceapproachthatwasmoredetailed andmathematical.

Theonlynotabledata-driventechniqueofthefirsthalfofthelastcentury istheZiegler–Nicholsproportional-integral-derivative(PID)parametertuning proposedinRef.[4],whichbecameawidelyusedcontroltechniqueinthe industry[5].ItisstatedinRef.[4]that“Apurelymathematicalapproachtothe studyofautomaticcontroliscertainlythemostdesirablecoursefromastandpoint ofaccuracyandbrevity.Unfortunately,however,themathematicsofcontrolinvolves suchabewilderingassortmentofexponentialandtrigonometricfunctionsthatthe averageengineercannotaffordthetimenecessarytoplowthroughthemtoasolution ofhiscurrentproblem.”Thisstatementfromtheeminentcontrolengineersof thattimeshowsthelong-lastinginfluenceofmathematicalmodel-baseddesign techniquesonthecontrolsystemsdesigncommunity.Indescribingtheirwork, theyimmediatelystatethat‘thepurposeofthispaperistoexaminetheactionof thethreeprincipalcontroleffectsfoundinpresent-dayinstruments,assignpractical valuestoeacheffect,seewhatadjustmentofeachdoestothefinalcontrol,andgive amethodforarrivingquicklyattheoptimumsettingsofeachcontroleffect.The paperwillthusfirstendeavortoanswerthequestion:“Howcanthepropercontroller adjustmentsbequicklydeterminedonanycontrolapplication? ”’Thisstatement canenlightenaspectsofthephilosophyofthedata-drivencontrolsystemsthat evolvedinthelatetwentiethcenturyonwards.

1.1.2Model-basedControlSystemStatusQuo

Model-basedcontrolsystemdesignisthedominantparadigmincontrolsystem educationanddesign.Thisapproachisbasedonderivedanalyticalmodelsfrom basicphysicallawsandequationsormodelsfromanidentificationprocess.Models areonlyapproximationsofrealityandcannotcaptureallthefeaturesandcharacteristicsofaplantundercontrol.High-frequencyun-modelleddynamicsarean example,asinroboticandspacecraftapplicationswheretheresidualvibration modesarenotincludedinthemodel[6].Thestructureofamodel-basedcontrol systemisshowninFigure1.1.Inthecaseofadaptivecontrolstrategies,theapproximateplantmodelisupdatedusingtheinput–outputdata.

AsisshowninFigure1.1,theplantmodel,derivedfromfirstprinciplesoridentifiedfromplant-measureddata,isusedtodesignafixed-ordercontrollersatisfying thespecifiedclosed-looprequirements.However,thedesignedcontrollerdoesnot necessarilysatisfythepre-definedrequirementswhenconnectedtotherealplant, andtheclosed-loopperformanceislimitedbythe modellingerrors.Modelling errorscanhavemanyrootcauses,suchasun-modelleddynamics,unknownor varyingplantparametersresultingfromchangingoperatingpoints,equipment ageingorfaultsandinappropriatemodelstructures.

Figure1.1 Thestructureofamodel-basedcontrolsystemdesign.

Modellingerrorsduetoun-modelleddynamicsarejustifiedinthestandardpracticeofmodel-basedcontroldesignwhenthesystemiscomplexandisofa high order,andalow-ordermodelisemployedtofacilitatethecontroldesign.Onthe otherhand,therecanbeatendencytoincreasethemodelordertofindasuitable model.ItisshowninRef.[7]thatthisisnotgenerallytrueifthemodelhastobe usedforcontroldesign.Infact,the order ofarealsystemisabadlydefinedconcept, andeventhemostaccuratemodelsareonlyanapproximationoftherealplant. Intherealworld,a full-ordermodel doesnotexist,andanydescriptionis,bydefinition,anapproximation[7].Model-basedcontroldesigncanonlybeemployedwith confidenceinreal-worldapplicationsifthemodelstructureisperfectlyknown.

Theissueofmodel-basedcontrolsystemdesignandtheparadigmshiftstoand frommodel-basedapproachesisfurtherelaboratedinChapter2.

1.1.3ChallengesofModelsinControlSystemsDesign

Theintroductionofthestate-spaceconceptbyKalmanin1960,togetherwiththe newlyestablishednotionofoptimality,resultedinaremarkabledevelopmentof model-basedcontroldesignmethods.BeforeKalman’sstate-spacetheory,most ofthecontroldesignwasbasedontransferfunctionmodels,asisintheBode andNyquistplotsortheroot-locusmethodandtheNicholschartsforlead–lag compensatordesign.

Inthecaseswherereliablemodelswereunavailable,orinthecaseofvarying parametersandchangingoperatingconditions,theapplicationofthemodel-based controlwasseverelylimited.Inthemid-1960s,thesystemidentificationstrategy evolved.TheproposedMaximumLikelihoodframeworkfortheidentificationof

input–outputmodelsresultedinthepredictionerror-typeidentifiers.Theadvent ofidentificationtheorysolvedtheproblemofcontrollingcomplextime-varying plantsusingmodel-basedcontroldesignmethodologies.

Initially,controlscientistsworkingontheidentificationmethodsaimedat developingsophisticatedmodelsandmethodologieswiththeelusivegoalof convergingtothe truesystem,undertheassumptionthatthetruesystemwas inthedefinedmodelset.Later,theyrealisedthatthetheorycouldbestachieve anapproximationofthetruesystemandcharacterisethisapproximationin termsofbiasandvarianceerrorontheidentifiedmodels.Finally,system identificationwasguidedtowardsacontrol-orientedidentification.Inallthe modellingstrategies,modellingbyfirstprinciplesorbyidentificationfromdata, modellingerrors areunescapable,and explicitquantification ofmodellingerrorsis practicallyimpossible.Hence,themodellingstrategiescannotprovideadequate practicaluncertaintydescriptionsforcontroldesignpurposes.Therefore,thefirst modellingprinciplegiveninRef.[8],thatarbitrarilysmallmodellingerrorscan leadtoarbitrarilybadclosed-loopperformance,isseriouslyalarmingforcontrol systemsdesigners.

Applicationofthe certaintyequivalenceprinciple (seeChapter2)wasbasedon theearlyoptimisticassumptionthatitispossibletoalmostperfectlymodelthe actualplantandthemathematicalmodelobtainedfromthefirstprinciplesor byidentificationfrominput–outputdataisvalidenoughtorepresentthetrue system.However,applicationsinreal-worldproblemsdidnotmeettheexpectationsofthecontrolscientistsanddesigners.Therefore,anobviousneedprevailed toguaranteeclosed-loopstabilityandperformanceinthemodel-basedcontrol designapproaches.Thisledtothedevelopmentofthemodel-basedapproaches offixed-parameterrobustcontrolandadaptivecontrolsystemdesign[9].

Themathematicalmodelsderivedfromthephysicallawshavebeeneffectively usedinpracticalapplications,providedthatthefollowingassumptionshold:

● Accuratelymodeltheactualplant.

● Prioriboundsonthenoiseandmodellingerrorsareavailable.

Also,identificationmodelshavebeenemployedinmanypracticalapplications. Theidentifiedmodelcancapturethemainfeaturesoftheplant,providedthat

● Compatibilityoftheselectedmodelstructureandparameterisationwiththe actualplant’scharacteristicsisassumed.

● Theexperimentdesignisappropriate;thatis,forcontrolproblems,theselection oftheinputsignalisinaccordancewiththeactualplant’scharacteristicsorthe persistenceofexcitation(PE)condition.

Itisimportanttonotethateveninthecaseofanaccuratelymodelledplant, iftheassumptionsabouttheplantcharacteristicsarenotmet,themathematical

theoremsrigorouslyprovingclosed-looprobuststabilityandperformanceand parameterconvergencearenotofpracticalvalue. Hence,insummary,if

● Anaccuratemodelisunavailable,or

● Theassumptionsregardingtheplantdonothold, thedesignedmodel-basedcontroller,validatedbysimulations,canleadtoan unstableclosed-loopplantorpoorclosed-loopperformance.

1.1.4AdaptiveandRobustControlMethodologies

Adaptiveandrobustcontrolsystemshavesuccessfullycontrolledmanyreal-world andindustrialplants.However,bothstrategiesrequiremanypriorplantassumptionstobemandatedbythetheory.Thekeyquestionsaretheclosed-looprobust stabilityandrobustperformanceissuesinpracticalimplementations.Theassessmentofthesespecificationsisnotpossibleapriori,asunforeseeneventsmayoccur inpractice.Hence,thecontrolengineermustresortto adhoc methodsforasafe andreliableclosed-loopoperation.Thisisoftendonebyperformingmanytestsfor manydifferentvariationsofuncertaintiesandoperatingscenariosintheMonte Carlosimulations.However,withthegrowingplantcomplexityandthepossible testsituations,thecostoftheseheuristictestsincreases.Hence,thelimitations inherentintheadaptiveandrobustcontrollersareclearlyobserved.Parameter adjustmentsandrobustcontrolandtheirsynergisticdesignpackagesaretheultimatesolutionsofthemodel-basedcontrolscientistsfortheutmostguaranteeof safeandreliableclosed-loopcontrol.

Aclosed-loopsystem’sperformancedegradationandeveninstabilityarealmost inevitablewhentheplantuncertaintyistoolargeorwhentheparameterchanges orstructuralvariationsaretoolargeoroccurabruptly.Theadaptiveswitching controlwasintroducedasoneoftherobustadaptivecontroltechniquesto handlesuchsituationsandlessentherequiredpriorassumptions.Thisledto theswitchingsupervisorycontrolmethods,whereasupervisorcontrollerselects theappropriatecontrollerfromacontrollerbank,similartotheirancestor,the gain-schedulingmethodology,whichhasbeenandstilliswidelyusedinmany applications.Thismindsetandtherecentlydevelopedselectionprocessbasedon thefalsificationtheoryareregardedasthefirstattempttowardstrulydata-driven, almostplant-independentadaptivecontrolalgorithms[10].

1.2Data-drivenControlSystemDesignApproach

Tocircumventthenecessityofderivingofflineoronlineplantmodels,analternativeapproachtocontrolsystemdesignistousetheplantdatatodirectlydesign

thecontroller.Thisisthe data-driven approach,whichappearedattheendofthe 1990s.Manyplantsregularlygenerateandstorehugeamountsofoperatingdataat specificinstantsoftime.Suchdataencompassalltherelevantplantinformation requiredforcontrol,estimation,performanceassessment,decisionmakingsand faultdiagnosis.Thisfacilitatesthedesignofdata-drivencontrolsystems.Theterm data-drivenwasinitiallyusedincomputerscienceandhasenteredthecontrolsystemscienceliteratureinthepasttwodecades.Althoughdata-drivencontrolwas actuallyintroducedinthefirstdecadesofthetwentiethcentury(seeChapter2), theapproachwasnotcalleddata-drivenatthattime.Thedata-drivencontroland data-basedcontrolconceptsaredifferentiatedinRef.[11].Also,Ref.[12]haselaboratedonthedifferencebetweendata-basedanddata-drivencontrol.Itisstated inRef.[12]that‘data-drivencontrolonlyreferstoaclosedloopcontrolthatstartingpointanddestinationarebothdata.Data-basedcontrolisthenamoregeneral termthatcontrollersaredesignedwithoutdirectlymakinguseofparametricmodels, butbasedonknowledgeoftheplantinput-outputdata.Sortedaccordingtotherelationshipbetweenthecontrolstrategyandthemeasurements,databasedcontrolcan besummarizedasfourtypes:post-identificationcontrol,directdata-drivencontrol, learningcontrol,andobserverintegratedcontrol.’

Themainfeaturesofthedata-drivencontrolapproachescanbecategorisedas follows:

● Controlsystemdesignandanalysisemployonlythemeasuredplant input–outputdata.Suchdataarethecontrollerdesign’sstartingpoint andendcriteriaforcontrolsystemperformance.

● Noprioriinformationandassumptionsontheplant’sdynamicsorstructureare required.

● Thecontrollerstructurecanbepredetermined.

● Theclosed-loopstability,convergenceandsafeoperationissuesshouldbe addressedinadata-drivencontext.

● Adesigner-specifiedcostfunctionisminimisedusingthemeasureddatato derivethecontrollerparameters.

Thestructureofadata-drivencontrolsystemdesignisshowninFigure1.2. Severaldefinitionsfordata-drivencontrolareproposedintheliterature.The followingdefinitionfromRef.[11]ispresented.

Definition1.1

Data-drivencontrolincludesallcontroltheoriesandmethodsin whichthecontrollerisdesignedbydirectlyusingonlineorofflineinput–output dataofthecontrolledsystemorknowledgefromthedataprocessingbutnot anyexplicitinformationfromamathematicalmodelofthecontrolledprocess andwhosestability,convergenceandrobustnesscanbeguaranteedbyrigorous mathematicalanalysisundercertainreasonableassumptions.

Control design with NO prior assumption on

Figure1.2 Thestructureofadata-drivencontrolsystemdesign.

Thethreekeypointsofthisdefinitionarethedirectuseofthemeasured input–outputdata,datamodellingratherthanfirstprinciplesmodellingor identifiedmodelling,andtheguaranteeoftheresultsbytheoreticalanalysis.

1.2.1TheDesignerChoice:Model-basedorData-drivenControl?

Ingeneral,systemsencounteredincontrolsystemsdesigncanbecategorisedas simple,complicated,complexandcomplexadaptive(seeChapter2fordefinitions andmoredetails).Inreal-worldapplications,thecontrolledplantsandallthe conditionsthattheymayconfrontintermsofmodelsandassumptionscanbe categorisedintothefollowingclasses:

Class1:Inthisclass,itispossibletoderiveaccuratemathematicalmodelsfrom thefirstprinciplesortheidentification-basedschemes,anditcanbeanticipated thatthetheoreticallyindispensableplantassumptionshold.Thisclassincludes simpleplantsandcertainwell-modelledcomplicatedsystems.

Class2:Inthisclass,forsomeevensimpleplants,manycomplicatedsystems, andafewcomplexsystems,modelsderivedfromthefirstprinciplesorthe identification-basedschemesarecrudelyaccurate,butuncertaintiescanbe usedtocompensateforthemodellingerrorwithknownbounds,anditcanbe anticipatedthatthetheoreticallyindispensableplantassumptionshold.

Class3:Inthisclass,conditionsaresimilartothoseofclass2,butwiththe differencethatthetheoreticallyindispensableplantassumptionsmaynotbe guaranteedtohold.

Class4:Inthisclass,forsomecomplicatedsystemsandmostcomplexsystems, modelsderivedfromthefirstprinciplesortheidentification-basedschemes modelsarecrudelyaccurate,andtheuncertaintiesusedtodescribethemodellingerrorsaredifficulttoobtainaccurately,anditcanbeanticipatedthatthe theoreticallyindispensableplantassumptionsmaynothold.

Class5:Inthisclass,forafewcomplicated,somecomplex,andcomplex adaptivesystems,derivationofmodelsfromthefirstprinciplesorthe identification-basedschemes,andreliableuncertaintydescriptionsaredifficult orpracticallyunavailable,anditcanbeanticipatedthatthetheoretically indispensableplantassumptionsdonothold.

Theplantsfallingintotheclass1categoryhavebeensuccessfullycontrolledby thewell-establishedandwell-documentedmodel-basedcontrolstrategiesfrom theclassicalandstate-spaceschoolsofthought.Fortheplantsfallingintotheclass 2category,bothadaptiveandrobustcontrolschoolsarewelldevelopedandhave beensuccessfullyimplementedinpractice.Althoughtherearestillmanyopen problemsintheadaptiveandrobustcontrolapproachestoreliablycontrolallsuch plants,solutionsareconceivableinthefuturewiththepresenttheoreticaltoolsor someextensionsandmodifications.Adaptiveandrobustcontrolmethodologies mustbeselectedwithmuchhesitationforthecontrolofthereal-worldplants fallingintotheclass3category.Insuchcases,adata-drivenapproachwould betherecommendedchoice.Fortheplantsfallingintotheclass4category,the data-drivenapproachisthestronglyrecommendedchoice.Althoughsomeof thepresentadaptiveandrobustcontroltechniquesmaybeemployedinafew class4categoryplants,theirapplicationisdifficult,time-consumingandwith noguaranteedsafetyandreliability.Inthecaseofplantsfallingintotheclass 5category,data-drivencontrolisthesolechoice.Manyofthefuturereal-world plantsaregoinginthisdirection[13],andthecontrolscientist’scommunity mustbeequippedwithawell-establishedandstrongsufficienttheoretical backgroundofdata-drivencontroltheorytohandlethesecontrolproblems.The finalpointtonoteisthatpracticalcontrollersshouldnotbetoocomplex,difficult ornon-economicaltouse.

Tosummarise,themaincharacteristicsofdata-drivencontrolsystemsthatmake themappealingtoselectionbyadesigneraregivenasfollows:

● Inthedata-drivencontrolapproaches,thedesignmethodologiesdonotexplicitlyincludeanypartsorthewholeoftheplantmodelorarenotrestrictedby theassumptionsfollowingthetraditionalmodellingprocesses.Hence,theyare basically model-free designs.

● Thestabilityandconvergencederivationsofthedata-drivenapproachdonot dependonthemodelanduncertaintymodellingaccuracy.

● Inthedata-drivencontrolframework,theinherentlybornconceptsof un-modelleddynamicsandrobustnessinthemodel-basedcontrolmethodologiesarenon-applicable.

1.2.2TechnicalRemarksontheData-DrivenControlMethodologies

Thefollowingremarksareimportanttoclarifycertainambiguitiesandconcepts inthecurrentdata-drivencontrolliterature:

Remark1:Inthecontrolliterature,thecontroldesigntechniquesthat implicitly utilisetheplantmodel,suchasthedirectadaptivecontrolandthe subspace-identification-basedpredictivecontrolmethods,aresometimes categorisedasdata-drivencontrol.However,theircontrollerdesign,stability andconvergenceanalysisarefundamentallymodel-basedandalsorequire fulfillingstrongassumptionsondifferentmodelcharacteristicssuchasthe modelorder,relativedegree,timedelay,noise,uncertaintycharacteristicsand bounds.Hence,thisbookcategorisessuchtechniquesasmodel-basedrather thandata-driven.

Remark2:Indealingwithmathematicalmodels,issuessuchasnonlinearity, time-varyingparametersandtime-varyingmodelstructurescauseserious limitationsandrequirecomplextheoreticalhandling.However,suchissuesat theinput–outputdatalevelarenon-existent.Infact,atrulydata-drivencontrol approachshouldbeabletodealwiththeabovecontrolproblems.

Remark3:Theconceptsofrobustnessandpersistencyofexcitationthatappearin adaptiveandrobustcontrolmethodologiesaregeneralnotionsthatmustalsobe dealtwithinthedata-drivencontrolapproach.However,newdefinitionsand frameworksarenecessarytopursuetheseconceptsinthedata-drivencontrol context.

Remark4:Thetheory–practicegapinthemodel-basedapproachesisgreatly alleviatedinthedata-drivenapproachastheimplementationsaredirectly field-based.

Remark5:Averyrichliteratureonthemathematicalsystemtheoryand immenselyvaluableexperiencesintheimplementationofmodel-basedcontrol techniquesisavailable.Itwouldnotbedesirableorwisetoignoresuchvaluable information.Thefactisthatplantmodelscanplayavitalroleinthedesign ofcontrolsystems.Oneaspectistheapplicationofmodel-basedcontroller designtechniques,ifpossible.Theotheraspectwouldbethecooperationof data-drivencontrolwithothercontroltheoriesandmethods.Therelationship betweendata-drivenandmodel-basedcontrolshouldbecomplementary, anddata-drivenapproachescanlearnandbenefitfromtheestablished model-basedconcepts.Theeffectiveemploymentofexistingaccurateinformationabouttheplantbythedata-drivenapproachisanopenproblemforfurther research.

Remark6:Data-drivencontrolispredictedtobethedominantparadigmofcontroldesignscience,complementingandsubstitutingthepresentmodel-based paradigm.

1.3Data-DrivenControlSchemes

Inthissection,sixdifferentdata-drivencontrolschemesarebrieflyintroduced.A classificationandabriefsurveyontheavailabledata-drivenapproachesaregiven inRef.[11].

1.3.1UnfalsifiedAdaptiveControl

UnfalsifiedcontrolwasproposedbySafonovin1995[14].TheunderlyingphilosophyofunfalsifiedcontrolisPopper’sfalsificationtheoryproposedforthedemarcationprobleminthephilosophyofscience(seeChapter2).

Unfalsifiedcontrolisadata-drivencontroltheorythatutilisesphysicaldatato learnorselecttheappropriatecontrollerviaafalsificationoreliminationprocess. Intheunfalsifiedfeedbackcontrolconfiguration,thegoalistodetermineacontrol law C forplant P suchthattheclosed-loopsystem T satisfiesthedesiredspecifications,wheretheplantiseitherunknownoronlypartiallyknown,andthe input–outputdataareutilisedinselectingthecontrollaw C.Intheunfalsified control,thecontrolsystem learns whennewinput–outputinformationenablesit toeliminatethecandidatecontrollersfromthecontrolbank.Thethreeelements thatformtheunfalsifiedcontrolproblemareasfollows:

● Plantinput–outputdata.

● Thebankofcandidatecontrollers.

● Desiredclosed-loopperformancespecificationdenotedby T spec consistingofthe 3-tuplesofthereferenceinput,outputandinputsignals(r , y, u).

Definition1.2[15] Acontroller C issaidtobe falsified bymeasurement informationifthisinformationissufficienttodeducethattheperformance specification(r , y, u) ∈ T spec ∀ r ∈ ℝ wouldbeviolatedifthatcontrollerwerein thefeedbackloop.Otherwise,thecontrollaw C issaidtobe unfalsified

Figure1.3showsthegeneralstructureoftheclosed-loopunfalsifiedcontrolsystem.Theinputstothefalsificationlogicandalgorithmaretheplantinput–output data,thesetofcandidatecontrollersinacontrolbankorset,andthedesired closed-loopperformance.Thecontrollersareverifiedusingafalsificationlogicand algorithmwithperformancegoalsandphysicaldataasitsinputs.Notethatno

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Immediate download An introduction to data-driven control systems ali khaki-sedigh ebooks 2024 by Education Libraries - Issuu