MACHINELEARNINGFOR BUSINESSANALYTICS
Concepts,Techniques,and
SecondEdition
GALITSHMUELI
NationalTsingHuaUniversity Taipei,Taiwan
PETERC.BRUCE statistics.com Arlington,USA
MIAL.STEPHENS
JMPStatisticalDiscoveryLLC Cary,USA
MURALIDHARAANANDAMURTHY
SASInstituteInc Mumbai,India
NITINR.PATEL Cytel,Inc. Cambridge,USA
Copyright2023byJohnWiley&Sons,Inc.Allrightsreserved
PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.
Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyany means,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunder Section107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthe Publisher,orauthorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter, Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)750-4470,oronthewebat www.copyright.com.RequeststothePublisherforpermissionshouldbeaddressedtothePermissions Department,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201) 748-6008,oronlineathttp://www.wiley.com/go/permission.
Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons,Inc. and/oritsaffiliatesintheUnitedStatesandothercountriesandmaynotbeusedwithoutwrittenpermission. Allothertrademarksarethepropertyoftheirrespectiveowners.JohnWiley&Sons,Inc.isnotassociatedwith anyproductorvendormentionedinthisbook.
LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessof thecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessfora particularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials. Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwitha professionalwhereappropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.
Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomer CareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax (317)572-4002.
Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com.
LibraryofCongressCataloging-in-PublicationDataAppliedfor:
Hardback:9781119903833
CoverDesign:Wiley
CoverImage: ©AdobeLibrary/AdobeStockPhotos
Setin10/12ptTimesLTStdbyStraive,Chennai,India
Toourfamilies
BoazandNoa
Liz,Lisa,andAllison
Michael,JadeAnn,andAudreyL SeethaandAnanda
Tehmi,Arjun,andinmemoryofAneesh
1.1WhatIsBusinessAnalytics?3
1.2WhatIsMachineLearning?5
1.3MachineLearning,AI,andRelatedTerms5 StatisticalModelingvs.MachineLearning6
1.4BigData6
1.5DataScience7
1.6WhyAreThereSoManyDifferentMethods?8
1.7TerminologyandNotation8
1.8RoadMapstoThisBook10 OrderofTopics12
2.1Introduction17
2.2CoreIdeasinMachineLearning18 Classification18 Prediction18 AssociationRulesandRecommendationSystems18
PredictiveAnalytics19
DataReductionandDimensionReduction19
DataExplorationandVisualization19
SupervisedandUnsupervisedLearning19
2.3TheStepsinAMachineLearningProject21
2.4PreliminarySteps22 OrganizationofData22
SamplingfromaDatabase22
OversamplingRareEventsinClassificationTasks23 PreprocessingandCleaningtheData23
2.5PredictivePowerandOverfitting29 Overfitting29
CreationandUseofDataPartitions31
2.6BuildingaPredictiveModelwith JMPPro 34 PredictingHomeValuesinaBostonNeighborhood34 ModelingProcess36
2.7Using JMPPro forMachineLearning42
2.8AutomatingMachineLearningSolutions43 PredictingPowerGeneratorFailure44 Uber’sMichelangelo45
2.9EthicalPracticeinMachineLearning47 MachineLearningSoftware:TheStateoftheMarketbyHerb Edelstein47 Problems52
PARTIIDATAEXPLORATIONANDDIMENSIONREDUCTION
3DataVisualization
3.1Introduction59
3.2DataExamples61
Example1:BostonHousingData61 Example2:RidershiponAmtrakTrains62
3.3BasicCharts:BarCharts,LineGraphs,andScatterPlots62 DistributionPlots:BoxplotsandHistograms64 Heatmaps67
3.4MultidimensionalVisualization70
AddingVariables:Color,Hue,Size,Shape,MultiplePanels, Animation70
Manipulations:Rescaling,AggregationandHierarchies,Zooming, Filtering73
Reference:TrendLineandLabels77
ScalingUp:LargeDatasets79
MultivariatePlot:ParallelCoordinatesPlot80 InteractiveVisualization80
3.5SpecializedVisualizations82
VisualizingNetworkedData82
VisualizingHierarchicalData:MoreonTreemaps83 VisualizingGeographicalData:Maps84
3.6Summary:MajorVisualizationsandOperations,Accordingto MachineLearningGoal87 Prediction87 Classification87 TimeSeriesForecasting87 UnsupervisedLearning88 Problems89
4DimensionReduction 91
4.1Introduction91
4.2CurseofDimensionality92
4.3PracticalConsiderations92 Example1:HousePricesinBoston92
4.4DataSummaries93 SummaryStatistics94 TabulatingData96
4.5CorrelationAnalysis97
4.6ReducingtheNumberofCategoriesinCategoricalVariables98
4.7ConvertingaCategoricalVariabletoaContinuousVariable100
4.8PrincipalComponentAnalysis100 Example2:BreakfastCereals101 PrincipalComponents106 StandardizingtheData107 UsingPrincipalComponentsforClassificationandPrediction110
4.9DimensionReductionUsingRegressionModels110
4.10DimensionReductionUsingClassificationandRegressionTrees111 Problems112
PARTIIIPERFORMANCEEVALUATION
5EvaluatingPredictivePerformance 117
5.1Introduction118
5.2EvaluatingPredictivePerformance118 NaiveBenchmark:TheAverage118 PredictionAccuracyMeasures119 ComparingTrainingandValidationPerformance120
5.3JudgingClassifierPerformance121 Benchmark:TheNaiveRule121 ClassSeparation121 TheClassification(Confusion)Matrix122 UsingtheValidationData123 AccuracyMeasures123
CONTENTS
PropensitiesandThresholdforClassification124 PerformanceinUnequalImportanceofClasses127
AsymmetricMisclassificationCosts130
GeneralizationtoMoreThanTwoClasses132
5.4JudgingRankingPerformance133
LiftCurvesforBinaryData133 BeyondTwoClasses135
LiftCurvesIncorporatingCostsandBenefits136
5.5Oversampling137
CreatinganOver-sampledTrainingSet139
EvaluatingModelPerformanceUsingaNonoversampled ValidationSet139
EvaluatingModelPerformanceIfOnlyOversampledValidation SetExists140 Problems142
PARTIVPREDICTIONANDCLASSIFICATIONMETHODS
6MultipleLinearRegression 147
6.1Introduction147
6.2Explanatoryvs.PredictiveModeling148
6.3EstimatingtheRegressionEquationandPrediction149 Example:PredictingthePriceofUsedToyotaCorolla Automobiles150
6.4VariableSelectioninLinearRegression155 ReducingtheNumberofPredictors155 HowtoReducetheNumberofPredictors156 ManualVariableSelection156 AutomatedVariableSelection157
Regularization(ShriknageModels)164 Problems170
7 k-NearestNeighbors(k-NN) 175
7.1The ��-NNClassifier(CategoricalOutcome)175 DeterminingNeighbors175 ClassificationRule176 Example:RidingMowers176
ChoosingParameter �� 178 SettingtheThresholdValue179 Weighted ��-NN181 ��-NNwithMoreThanTwoClasses182 WorkingwithCategoricalPredictors182
7.2 ��-NNforaNumericalResponse184
7.3AdvantagesandShortcomingsof ��-NNAlgorithms184 Problems186
8TheNaiveBayesClassifier 189
8.1Introduction189
ThresholdProbabilityMethod190 ConditionalProbability190 Example1:PredictingFraudulentFinancialReporting190
8.2ApplyingtheFull(Exact)BayesianClassifier191 Usingthe“AssigntotheMostProbableClass”Method191 UsingtheThresholdProbabilityMethod191 PracticalDifficultywiththeComplete(Exact)BayesProcedure192
8.3Solution:NaiveBayes192
TheNaiveBayesAssumptionofConditionalIndependence193 UsingtheThresholdProbabilityMethod194 Example2:PredictingFraudulentFinancialReports194 Example3:PredictingDelayedFlights195 EvaluatingthePerformanceofNaiveBayesOutputfrom JMP 198 WorkingwithContinuousPredictors199
8.4AdvantagesandShortcomingsoftheNaiveBayesClassifier201 Problems203
9ClassificationandRegressionTrees 205
9.1Introduction206 TreeStructure206 DecisionRules207 ClassifyingaNewRecord207
9.2ClassificationTrees207 RecursivePartitioning207 Example1:RidingMowers208 CategoricalPredictors210 Standardization210
9.3GrowingaTreeforRidingMowersExample210 ChoiceofFirstSplit211 ChoiceofSecondSplit212 FinalTree212 UsingaTreetoClassifyNewRecords213
9.4EvaluatingthePerformanceofaClassificationTree215 Example2:AcceptanceofPersonalLoan215
9.5AvoidingOverfitting219 StoppingTreeGrowth:CHAID220 GrowingaFullTreeandPruningItBack220 How JMPPro LimitsTreeSize221
9.6ClassificationRulesfromTrees222
9.7ClassificationTreesforMoreThanTwoClasses224
9.8RegressionTrees224 Prediction224 EvaluatingPerformance225
9.9AdvantagesandWeaknessesofaSingleTree227
9.10ImprovingPrediction:RandomForestsandBoostedTrees229
RandomForests229
BoostedTrees230 Problems233
10LogisticRegression
10.1Introduction237
10.2TheLogisticRegressionModel239
10.3Example:AcceptanceofPersonalLoan240
ModelwithaSinglePredictor241
EstimatingtheLogisticModelfromData:MultiplePredictors243
InterpretingResultsinTermsofOdds(foraProfilingGoal)246
10.4EvaluatingClassificationPerformance247
10.5VariableSelection249
10.6LogisticRegressionforMulti-classClassification250
LogisticRegressionforNominalClasses250
LogisticRegressionforOrdinalClasses251
Example:AccidentData252
10.7ExampleofCompleteAnalysis:PredictingDelayedFlights253 DataPreprocessing255
ModelFitting,Estimation,andInterpretation---ASimpleModel256
ModelFitting,EstimationandInterpretation---TheFullModel257
ModelPerformance257 Problems264
11NeuralNets 267
11.1Introduction267
11.2ConceptandStructureofaNeuralNetwork268
11.3FittingaNetworktoData269
Example1:TinyDataset269
ComputingOutputofNodes269 PreprocessingtheData272
TrainingtheModel273
UsingtheOutputforPredictionandClassification279
Example2:ClassifyingAccidentSeverity279 AvoidingOverfitting281
11.4UserInputin JMPPro 282
11.5ExploringtheRelationshipBetweenPredictorsandOutcome284
11.6DeepLearning285
ConvolutionalNeuralNetworks(CNNs)285 LocalFeatureMap287
AHierarchyofFeatures287 TheLearningProcess287
UnsupervisedLearning288 Conclusion289
11.7AdvantagesandWeaknessesofNeuralNetworks289 Problems290
12DiscriminantAnalysis
12.1Introduction293
Example1:RidingMowers294
Example2:PersonalLoanAcceptance294
12.2DistanceofanObservationfromaClass295
12.3FromDistancestoPropensitiesandClassifications297
12.4ClassificationPerformanceofDiscriminantAnalysis300
12.5PriorProbabilities301
12.6ClassifyingMoreThanTwoClasses303
Example3:MedicalDispatchtoAccidentScenes303
12.7AdvantagesandWeaknesses306 Problems307
13Generating,Comparing,andCombiningMultipleModels
13.1Ensembles311
WhyEnsemblesCanImprovePredictivePower312
SimpleAveragingorVoting313
Bagging314
Boosting315
Stacking316
AdvantagesandWeaknessesofEnsembles317
13.2AutomatedMachineLearning(AutoML)317
AutoML:ExploreandCleanData317
AutoML:DetermineMachineLearningTask318
AutoML:ChooseFeaturesandMachineLearningMethods318
AutoML:EvaluateModelPerformance320
AutoML:ModelDeployment321
AdvantagesandWeaknessesofAutomatedMachineLearning322
13.3Summary322 Problems323
PARTVINTERVENTIONANDUSERFEEDBACK
14Interventions:Experiments,UpliftModels,andReinforcementLearning327
14.1Introduction327
14.2A/BTesting328
Example:TestingaNewFeatureinaPhotoSharingApp329
TheStatisticalTestforComparingTwoGroups(�� -Test)329
MultipleTreatmentGroups:A/B/n Tests333
MultipleA/BTestsandtheDangerofMultipleTesting333
14.3Uplift(Persuasion)Modeling333
GettingtheData334
ASimpleModel336
ModelingIndividualUplift336
CreatingUpliftModelsin JMPPro 337
UsingtheResultsofanUpliftModel338
14.4ReinforcementLearning340
Explore-Exploit:Multi-armedBandits340 MarkovDecisionProcess(MDP)341
14.5Summary344 Problems345
PARTVIMININGRELATIONSHIPSAMONGRECORDS
15AssociationRulesandCollaborativeFiltering
15.1AssociationRules349
DiscoveringAssociationRulesinTransactionDatabases350 Example1:SyntheticDataonPurchasesofPhoneFaceplates350 DataFormat350 GeneratingCandidateRules352 TheAprioriAlgorithm353 SelectingStrongRules353 TheProcessofRuleSelection356 InterpretingtheResults358 RulesandChance359
Example2:RulesforSimilarBookPurchases361
15.2CollaborativeFiltering362 DataTypeandFormat363 Example3:NetflixPrizeContest363
User-BasedCollaborativeFiltering:“PeopleLikeYou”365 Item-BasedCollaborativeFiltering366 EvaluatingPerformance367
AdvantagesandWeaknessesofCollaborativeFiltering368 CollaborativeFilteringvs.AssociationRules369
15.3Summary370 Problems372
16ClusterAnalysis
16.1Introduction375 Example:PublicUtilities377
16.2MeasuringDistanceBetweenTwoRecords378 EuclideanDistance379 StandardizingNumericalMeasurements379 OtherDistanceMeasuresforNumericalData379 DistanceMeasuresforCategoricalData382 DistanceMeasuresforMixedData382
16.3MeasuringDistanceBetweenTwoClusters383 MinimumDistance383 MaximumDistance383
AverageDistance383
CentroidDistance383
16.4Hierarchical(Agglomerative)Clustering385
SingleLinkage385
CompleteLinkage386
AverageLinkage386
CentroidLinkage386
Ward’sMethod387
Dendrograms:DisplayingClusteringProcessandResults387
ValidatingClusters391
Two-WayClustering393
LimitationsofHierarchicalClustering393
16.5NonhierarchicalClustering:The ��-MeansAlgorithm394
ChoosingtheNumberofClusters(��)396 Problems403
PARTVIIFORECASTINGTIMESERIES
17HandlingTimeSeries
17.1Introduction409
17.2Descriptivevs.PredictiveModeling410
17.3PopularForecastingMethodsinBusiness411 CombiningMethods411
17.4TimeSeriesComponents411 Example:RidershiponAmtrakTrains412
17.5DataPartitioningandPerformanceEvaluation415
BenchmarkPerformance:NaiveForecasts417 GeneratingFutureForecasts417 Problems419
18Regression-BasedForecasting
18.1AModelwithTrend424
LinearTrend424 ExponentialTrend427 PolynomialTrend429
18.2AModelwithSeasonality430
Additivevs.MultiplicativeSeasonality432
18.3AModelwithTrendandSeasonality433
18.4AutocorrelationandARIMAModels433 ComputingAutocorrelation433
ImprovingForecastsbyIntegratingAutocorrelationInformation437 FittingARModelstoResiduals439
EvaluatingPredictability441 Problems444
19SmoothingandDeepLearningMethodsforForecasting
19.1Introduction455
19.2MovingAverage456
CenteredMovingAverageforVisualization456
TrailingMovingAverageforForecasting457
ChoosingWindowWidth(��)460
19.3SimpleExponentialSmoothing461
ChoosingSmoothingParameter �� 462
RelationBetweenMovingAverageandSimpleExponential Smoothing465
19.4AdvancedExponentialSmoothing465
SeriesWithaTrend465
SeriesWithaTrendandSeasonality466
19.5DeepLearningforForecasting470 Problems472
PARTVIIIDATAANALYTICS
20TextMining
20.1Introduction483
20.2TheTabularRepresentationofText:Document–TermMatrixand “Bag-of-Words”484
20.3Bag-of-Wordsvs.MeaningExtractionatDocumentLevel486
20.4PreprocessingtheText486 Tokenization487
TextReduction488
Presence/Absencevs.Frequency(Occurrences)489 TermFrequency-InverseDocumentFrequency(TF-IDF)489 FromTermstoTopics:LatentSemanticAnalysisandTopic Analysis490 ExtractingMeaning491
FromTermstoHighDimensionalWordVectors:Word2Vec491
20.5ImplementingMachineLearningMethods492
20.6Example:OnlineDiscussionsonAutosandElectronics492 ImportingtheRecords493
TextPreprocessingin JMP 494 UsingLatentSemanticAnalysisandTopicAnalysis496 FittingaPredictiveModel499 Prediction499
20.7Example:SentimentAnalysisofMovieReviews500 DataPreparation500 LatentSemanticAnalysisandFittingaPredictiveModel500
20.8Summary502 Problems503
21ResponsibleDataScience 505
21.1Introduction505
Example:PredictingRecidivism506
21.2UnintentionalHarm506
21.3LegalConsiderations508
TheGeneralDataProtectionRegulation(GDPR)508 ProtectedGroups508
21.4PrinciplesofResponsibleDataScience508 Non-maleficence509 Fairness509 Transparency510 Accountability511 DataPrivacyandSecurity511
21.5AResponsibleDataScienceFramework511 Justification511 Assembly512 DataPreparation513 Modeling513 Auditing513
21.6DocumentationTools514 ImpactStatements514 ModelCards515 Datasheets516 AuditReports516
21.7Example:ApplyingtheRDSFrameworktotheCOMPASExample517 UnanticipatedUses518 EthicalConcerns518 ProtectedGroups518 DataIssues518 FittingtheModel519 AuditingtheModel520 BiasMitigation526
21.8Summary526 Problems528
PARTIXCASES
22Cases 533
22.1CharlesBookClub533 TheBookIndustry533 DatabaseMarketingatCharles534 MachineLearningTechniques535 Assignment537
22.2GermanCredit541 Background541 Data541 Assignment544
22.3TaykoSoftwareCataloger545
Background545
TheMailingExperiment545 Data545
Assignment546
22.4PoliticalPersuasion548
Background548
PredictiveAnalyticsArrivesinUSPolitics548 PoliticalTargeting548 Uplift549 Data549 Assignment550
22.5TaxiCancellations552
BusinessSituation552 Assignment552
22.6SegmentingConsumersofBathSoap554
BusinessSituation554
KeyProblems554 Data555
MeasuringBrandLoyalty556
Assignment556
22.7CatalogCross-Selling557
Background557
Assignment557
22.8Direct-MailFundraising559
Background559 Data559
Assignment559
22.9TimeSeriesCase:ForecastingPublicTransportationDemand562
Background562
ProblemDescription562 AvailableData562
AssignmentGoal562 Assignment563 TipsandSuggestedSteps563
22.10LoanApproval564 Background564
RegulatoryRequirements564 GettingStarted564 Assignment564
PREFACE
Thistextbookfirstappearedinearly2007andhasbeenusedbynumerousstudents andpractitionersandinmanycourses,includingourownexperienceteachingthismaterialbothonlineandinpersonformorethan15years.Thefirstedition,basedon theExceladd-inAnalyticSolverDataMining(previouslyXLMiner),wasfollowed bytwomoreAnalyticSolvereditions,aJMPPro® edition,twoReditions,aPython edition,aRapidMineredition,andnowthissecondJMPProedition,withitscompanion website, www.jmp.com/dataminingbook.JMPProisadesktopstatisticalpackagefrom JMPStatisticalDiscoverythatrunsnativelyonMacandWindowsmachines.1
ThefirstJMPProeditionwasthefirsteditiontofullyintegrateJMPPro.Asinthe previousJMPedition,thefocusinthisneweditionisonmachinelearningconceptsand howtoimplementtheassociatedalgorithmsinJMPPro.Allexamples,specialtopicsboxes, instructions,andexercisespresentedinthisbookarebasedon JMPPro 17,theprofessional versionofJMP,whichhasaricharrayofbuilt-intoolsforinteractivedatavisualization, analysis,andmodeling.2
ForthisnewJMPProedition,anewco-author,MuralidharaAnandamurthy,comeson boardbringingextensiveexperienceinanalyticsanddatascienceatGenpact,Target,and Danske,andasamemberoftheJMPAcademicTeam.
TheneweditionprovidessignificantupdatesbothintermsofJMPProandintermsof newtopicsandcontent.Inadditiontoupdatingsoftwareroutinesandoutputsthathave changedorbecomeavailablesincethefirstedition,thiseditionalsoincorporatesupdates andnewmaterialbasedonfeedbackfrominstructorsteachingMBA,MS,undergraduate, diploma,andexecutivecourses,andfromtheirstudents.Importantly,thiseditionincludes severalnewtopics:
∙ Anewchapteron ResponsibleDataScience (Chapter21)coveringtopicsoffairness, transparency,modelcardsanddatasheets,legalconsiderations,andmore,withanillustrativeexample.
∙ Adedicatedsectionon deeplearning inChapter11.
∙ Anewchapteronrecommendations,coveringassociationrulesandcollaborativefiltering(Chapter15).
∙ AnewchapteronTextMiningcoveringmainapproachestotheanalysisoftextdata (Chapter20).
∙ The PerformanceEvaluation expositioninChapter5wasexpandedtoincludefurther metrics(precisionandrecall,F1).
1JMPStatisticalDiscoveryLLC,100SASCampusDriveCary,NC27513.
2See https://www.jmp.com/pro
∙ Anewchapteron Generating,Comparing,andCombiningMultipleModels (Chapter13)thatcoversensemblesandAutoML.
∙ Anewchapterdedicatedto InterventionsandUserFeedback (Chapter14)thatcovers A/Btests,upliftmodeling,andreinforcementlearning.
∙ Anewcase(LoanApproval)thattouchesonregulatoryandethicalissues.
Anoteaboutthebook’stitle:Thefirsttwoeditionsofthebookusedthetitle Data MiningforBusinessIntelligence.Businessintelligencetodayrefersmainlytoreporting anddatavisualization(“whatishappeningnow”),whilebusinessanalyticshastakenover the“advancedanalytics,”whichincludepredictiveanalyticsanddatamining.Latereditionswerethereforerenamed DataMiningforBusinessAnalytics.However,therecentAI transformationhasmadetheterm machinelearning morepopularlyassociatedwiththe methodsinthistextbook.Inthisnewedition,wethereforeusetheupdatedterms Machine Learning and BusinessAnalytics
SincetheappearanceofthefirstJMPProedition,thelandscapeofthecoursesusingthetextbookhasgreatlyexpanded:whereasinitiallythebookwasusedmainlyin semester-longelectiveMBA-levelcourses,itisnowusedinavarietyofcoursesinbusinessanalyticsdegreesandcertificateprograms,rangingfromundergraduateprogramsto postgraduateandexecutiveeducationprograms.Coursesinsuchprogramsalsovaryin theirdurationandcoverage.Inmanycases,thistextbookisusedacrossmultiplecourses. Thebookisdesignedtocontinuesupportingthegeneral“predictiveanalytics”or“data mining”courseaswellassupportingasetofcoursesindedicatedbusinessanalytics programs.
Ageneral“businessanalytics,”“predictiveanalytics,”or“datamining”course,common inMBAandundergraduateprogramsasaone-semesterelective,wouldcoverPartsI–III, andchooseasubsetofmethodsfromPartsIVandV.Instructorscanchoosetousecasesas teamassignments,classdiscussions,orprojects.Foratwo-semestercourse,PartVIImight beconsidered,andwerecommendintroducingthenewPartVIII(DataAnalytics).
Forasetofcoursesinadedicatedbusinessanalyticsprogram,hereareafewcourses thathavebeenusingourbook:
PredictiveAnalytics—SupervisedLearning: Inadedicatedbusinessanalyticsprogram, thetopicofpredictiveanalyticsistypicallyinstructedacrossasetofcourses.Thefirst coursewouldcoverPartsI–III,andinstructorstypicallychooseasubsetofmethods fromPartIVaccordingtothecourselength.Werecommendincluding“PartVIII: DataAnalytics.”
PredictiveAnalytics—UnsupervisedLearning: Thiscourseintroducesdataexploration andvisualization,dimensionreduction,miningrelationships,andclustering(PartsII andVI).IfthiscoursefollowsthePredictiveAnalytics:SupervisedLearningcourse, thenitisusefultoexamineexamplesandapproachesthatintegrateunsupervisedand supervisedlearning,suchasthenewparton“DataAnalytics.”
ForecastingAnalytics: Adedicatedcourseontimeseriesforecastingwouldrelyon PartVII.
AdvancedAnalytics: Acoursethatintegratesthelearningsfrompredictiveanalytics (supervisedandunsupervisedlearning)canfocusonPartVIII:DataAnalytics,where socialnetworkanalyticsandtextminingareintroduced,andresponsibledatascience isdiscussed.SuchacoursemightalsoincludeChapter13,Generating,Comparing,
andCombiningMultipleModelsfromPartIV,aswellasPartV,whichcoversexperiments,uplift,andreinforcementlearning.Someinstructorschoosetousethecases (Chapter22)insuchacourse.
Inallcourses,westronglyrecommendincludingaprojectcomponent,wheredata areeithercollectedbystudentsaccordingtotheirinterestorprovidedbytheinstructor (e.g.,fromthemanymachinelearningcompetitiondatasetsavailable).Fromourexperienceandotherinstructors’experience,suchprojectsenhancethelearningandprovidestudentswithanexcellentopportunitytounderstandthestrengthsofmachinelearningandthe challengesthatariseintheprocess.
GALIT SHMUELI,PETER BRUCE,MIA STEPHENS,MURALIDHARA ANANDAMURTHY, AND NITIN PATEL 2022
ACKNOWLEDGMENTS
Wethankthemanypeoplewhoassistedusinimprovingthebookfromitsinceptionas Data MiningforBusinessIntelligence in2006(usingXLMiner,nowAnalyticSolver),itsreincarnationas DataMiningforBusinessAnalytics,andnow MachineLearningforBusiness Analytics,includingtranslationsinChineseandKoreanandversionssupportingAnalytic SolverDataMining,R,Python,RapidMiner,andJMP.
AnthonyBabinec,whohasbeenusingearliereditionsofthisbookforyearsinhisdata miningcoursesatStatistics.com,provideduswithdetailedandexpertcorrections.Dan ToyandJohnElderIVgreetedourprojectwithearlyenthusiasmandprovideddetailedand usefulcommentsoninitialdrafts.RaviBapna,whousedanearlydraftinadatamining courseattheIndianSchoolofBusiness,andlateratUniversityofMinnesota,hasprovided invaluablecommentsandhelpfulsuggestionssincethebook’sstart.
Manyoftheinstructors,teachingassistants,andstudentsusingearliereditionsofthe bookhavecontributedinvaluablefeedbackbothdirectlyandindirectly,throughfruitful discussions,learningjourneys,andinterestingdataminingprojectsthathavehelpedshape andimprovethebook.TheseincludeMBAstudentsfromtheUniversityofMaryland,MIT, theIndianSchoolofBusiness,NationalTsingHuaUniversity,andStatistics.com.Instructorsfrommanyuniversitiesandteachingprograms,toonumeroustolist,havesupported andhelpedimprovethebooksinceitsinception.
KuberDeokar,instructionaloperationssupervisoratStatistics.com,hasbeenunstinting inhisassistance,support,anddetailedattention.WealsothankAnujaKulkarni,Poonam Tribhuwan,andShwetaJadhav,assistantteachers.ValerieTroianohasshepherdedmany instructorsandstudentsthroughtheStatistics.comcoursesthathavehelpednurturethe developmentofthesebooks.
Colleaguesandfamilymembershavebeenprovidingongoingfeedbackandassistance withthisbookproject.VijayKambleatUICandTravisGreeneatNTHUhaveprovided valuablehelpwiththesectiononreinforcementlearning.BoazShmueliandRaquelleAzran gavedetailededitorialcommentsandsuggestionsonthefirsttwoeditions;BruceMcCulloughandAdamHughesdidthesameforthefirstedition.NoaShmueliprovidedcareful proofsofthethirdedition.RanShenbergeroffereddesigntips.KenStrasma,founderof themicrotargetingfirmHaystaqDNAanddirectoroftargetingforthe2004Kerrycampaignandthe2008Obamacampaign,providedthescenarioanddataforthesectionon upliftmodeling.
MariettaTretteratTexasA&Msharedcommentsandthoughtsonthetimeserieschapters,andStephenFewandBenShneidermanprovidedfeedbackandsuggestionsonthedata visualizationchapterandoveralldesigntips.
SusanPalocsayandMargretBjarnadottirhaveprovidedsuggestionsandfeedbackon numerousoccasions.WealsothankCatherinePlaisantattheUniversityofMaryland’s Human–ComputerInteractionLab,whohelpedoutinamajorwaybycontributingexercises
andillustrationstothedatavisualizationchapter.GregoryPiatetsky-Shapiro,founderof KDNuggets.com,wasgenerouswithhistimeandcounselintheearlyyearsofthisproject.
WethankcolleaguesattheSloanSchoolofManagementatMITfortheirsupportduring theformativestageofthisbook—DimitrisBertsimas,JamesOrlin,RobertFreund,Roy Welsch,GordonKaufmann,andGabrielBitran.Asteachingassistantsforthedatamining courseatSloan,AdamMersereaugavedetailedcommentsonthenotesandcasesthatwere thegenesisofthisbook,RomyShiodahelpedwiththepreparationofseveralcasesand exercisesusedhere,andMaheshKumarhelpedwiththematerialonclustering.
ColleaguesattheUniversityofMaryland’sSmithSchoolofBusiness:ShrivardhanLele, WolfgangJank,andPaulZantekprovidedpracticaladviceandcomments.WethankRobert WindleandUniversityofMarylandMBAstudentsTimothyRoach,PabloMacouzet,and NathanBirckheadforinvaluabledatasets.WealsothankMBAstudentsRobWhitenerand DanielCurtisfortheheatmapandmapcharts.
AnandBodapatiprovidedbothdataandadvice.JakeHofmanfromMicrosoftResearch andSharadBorleassistedwithdataaccess.SureshAnkolekarandMayankShahhelped developseveralcasesandprovidedvaluablepedagogicalcomments.VinniBhandarihelped writetheCharlesBookClubcase.
WewouldliketothankMarvinZelen,L.J.Wei,andCyrusMehtaatHarvard,aswell asAnilGoreatPuneUniversity,forthought-provokingdiscussionsontherelationshipbetweenstatisticsanddatamining.OurthankstoRichardLarsonoftheEngineeringSystems Division,MIT,forsparkingmanystimulatingideasontheroleofdatamininginmodeling complexsystems.Overtwodecadesago,theyhelpedusdevelopabalancedphilosophical perspectiveontheemergingfieldofmachinelearning.
WethankthefolksatWileyforthissuccessfuljourneyofnearlytwodecades.Steve QuigleyatWileyshowedconfidenceinthisbookfromthebeginning,helpedusnavigate throughthepublishingprocesswithgreatspeed,andtogetherwithCurtHinrichs’sencouragementandsupporthelpedmakethisJMPPro® editionpossible.JonGurstelle,Kathleen Pagliaro,AllisonMcGinniss,SariFriedman,andKatrinaMacedaatWiley,andShikha PahujafromThomsonDigital,wereallhelpfulandresponsiveaswefinalizedthefirstJMP Proedition.BrettKurzmanhastakenoverthereinsandisnowshepherdingtheproject. BeckyCowan,SarahLemore,andKavyaRamugreatlyassistedusinpushingaheadand finalizingthisnewJMPProedition.WearealsoespeciallygratefultoAmyHendrickson, whoassistedwithtypesettingandmakingthisbookbeautiful.
Finally,we’dliketothankthereviewersofthefirstJMPProeditionfortheirfeedback andsuggestions,andmembersoftheJMPDocumentation,EducationandDevelopment teams,fortheirsupport,patience,andresponsivenesstoourendlessquestionsandrequests. WethankL.AllisonJones-Farmer,MariaWeese,IanCox,DiMichelson,MarieGaudard, CurtHinrichs,RobCarver,JimGrayson,BradyBrady,JianCao,ElizabethClaassen,Peng Liu,ChrisGotwalt,RussWolfinger,andFangChen.Mostimportant,wethankJohnSall, whoseinnovation,inspiration,andcontinueddedicationtoprovidingaccessibleanduserfriendlydesktopstatisticalsoftwaremadeJMP,andthisbook,possible.