Get Advances in business statistics, methods and data collection ger snijkers free all chapters

Page 1


https://ebookmass.com/product/advances-in-businessstatistics-methods-and-data-collection-ger-snijkers/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Statistics for Ecologists Using R and Excel: Data Collection, Exploration,

https://ebookmass.com/product/statistics-for-ecologists-using-r-andexcel-data-collection-exploration/

ebookmass.com

Understandable Statistics: Concepts and Methods 12th Edition

https://ebookmass.com/product/understandable-statistics-concepts-andmethods-12th-edition/

ebookmass.com

Data Collection In Fragile States: Innovations From Africa And Beyond Johannes Hoogeveen

https://ebookmass.com/product/data-collection-in-fragile-statesinnovations-from-africa-and-beyond-johannes-hoogeveen/

ebookmass.com

The Politics of Global Competitiveness Paul Cammack

https://ebookmass.com/product/the-politics-of-global-competitivenesspaul-cammack/

ebookmass.com

Art Through the Ages - A Concise Global History 4th

https://ebookmass.com/product/art-through-the-ages-a-concise-globalhistory-4th-edition-fred-s-kleiner/

ebookmass.com

German Infantryman on the Eastern Front 1st Edition Simon Forty

https://ebookmass.com/product/german-infantryman-on-the-easternfront-1st-edition-simon-forty/

ebookmass.com

Rhapsodic (The Bargainer) Laura Thalassa

https://ebookmass.com/product/rhapsodic-the-bargainer-laurathalassa-3/

ebookmass.com

Linear Algebra 6th Edition Seymour Lipschutz

https://ebookmass.com/product/linear-algebra-6th-edition-seymourlipschutz/

ebookmass.com

Hacking Darwin: Genetic Engineering and the Future of Humanity Jamie Metzl

https://ebookmass.com/product/hacking-darwin-genetic-engineering-andthe-future-of-humanity-jamie-metzl/

ebookmass.com

https://ebookmass.com/product/assistive-technology-for-people-withdisabilities-2nd-edition/

ebookmass.com

AdvancesinBusinessStatistics,Methods andDataCollection

Editedby

GerSnijkers StatisticsNetherlands

MojcaBavdaž UniversityofLjubljana

StefanBender

DeutscheBundesbankandUniversityofMannheim

JacquiJones AustralianBureauofStatistics

SteveMacFeely WorldHealthOrganizationandUniversityCollegeCork

JosephW.Sakshaug InstituteforEmploymentResearchandLudwigMaximilianUniversityofMunich

KatherineJ.Thompson U.S.CensusBureau

ArnoutvanDelden

StatisticsNetherlands

Thiseditionfirstpublished2023 ©2023JohnWileyandSons,Inc.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted, inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermitted bylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableat http://www.wiley.com/go/permissions.

TherightofGerSnijkers,MojcaBavdaž,StefanBender,JacquiJones,SteveMacFeely,JosephW.Sakshaug, KatherineJ.ThompsonandArnoutvanDeldentobeidentifiedastheauthorsofthisworkhasbeenassertedin accordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice

111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappears instandardprintversionsofthisbookmaynotbeavailableinotherformats.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons,Inc.and/or itsaffiliatesintheUnitedStatesandothercountriesandmaynotbeusedwithoutwrittenpermission.Allother trademarksarethepropertyoftheirrespectiveowners.JohnWiley&Sons,Inc.isnotassociatedwithanyproduct orvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflow ofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreview andevaluatetheinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceofequipment, reagent,ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusageandforadded warningsandprecautions.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,they makenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityor fitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensales materialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductisreferredtoin thisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthors endorsetheinformationorservicestheorganization,website,orproductmayprovideorrecommendationsitmay make.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices. Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwitha specialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedor disappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbe liableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental, consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationDataAppliedfor

HardbackISBN:9781119672302

CoverDesign:Wiley

CoverImage:©Denphumi/Shutterstock

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Contents

ListofContributors xxix

Section1IntroductiontoNewMeasures/IndicatorsfortheEconomy 1

1AdvancesinBusinessStatistics,MethodsandDataCollection: Introduction 3

GerSnijkers,MojcaBavdaž,StefanBender,JacquiJones,SteveMacFeely, JosephW.Sakshaug,KatherineJ.Thompson,andArnoutvanDelden

1.1TheICES-VIEditedVolume:ANewBookonEstablishmentStatistics Methodology 3

1.2TheImportanceofEstablishmentStatistics 5

1.3ICESTrends 8

1.4OrganizationofThisBook 11

1.4.1Section1:IntroductiontoNewMeasures/IndicatorsfortheEconomy 12

1.4.2Section2:TopicsintheProductionofOfficialEstablishmentStatisticsand OrganizationalFrameworks 12

1.4.3Section3:TopicsintheUseofAdministrativeData 13

1.4.4Section4:TopicsinBusinessSurveyDataCollection 14

1.4.5Section5:TopicsintheUseofNewDataSourcesandNewTechnologies 15

1.4.6Section6:TopicsinSamplingandEstimation 16

1.4.7Section7:TopicsinDataIntegration,LinkingandMatching 16

1.5ToConclude 17 Disclaimer 17 References 18 Appendix:AvailableICES-VIIntroductoryOverviewLecture(IOL)Videos 21

2GDPandtheSNA:PastandPresent 23

SteveMacFeelyandPetervandeVen

2.1Introduction 23

2.2TheOriginsofNationalIncomeStatistics–ABriefHistory 23

2.2.1EarlyDevelopments 23

2.2.2InventionofGrossNationalProduct(GNP) 24

2.2.3TheDebateonIncludingGovernment 26

2.2.4TowardaSystemofNationalAccounts 27

2.2.5GlobalProliferationofGDP 27

2.3SNAandGDPToday 28

2.3.1TheSystematLarge 28

2.3.2SupplyandUseTables 28

2.3.3InstitutionalSectorAccounts 31

2.3.4TheLinkBetweenSupplyandUseTablesandtheInstitutionalSectorAccounts 33

2.3.5ConsistencyandCoherence 33

2.3.6TheRelationshipBetweenNationalAccountsandBusinessStatistics 34

2.3.6.1DefinitionalAdjustments 35

2.3.6.2AdjustmentsforExhaustiveness 35

2.3.6.3AdjustmentsforTimeConsistency 35

2.3.6.4BalancingAdjustments 35

2.4MostRecentandImportantRevisionstoSNA(Implicationsfor BusinessStatistics) 36

2.4.1InternationalStandardsNotSetinStone 36

2.4.2FromSNA1968toSNA1993 37

2.4.3FromSNA1993toSNA2008 38

2.4.4TheSNAandSourceStatisticsforEnterprises 39

2.5ConclusionsandImplicationsforBusinessStatistics 40 References 41

3GDPandtheSNA:FutureChallenges 43 SteveMacFeelyandPetervandeVen

3.1Introduction 43

3.2AnAgendafortheFuture 44

3.3TheTangledWebofGlobalization 44

3.4TheDigitalRevolution 47

3.5MovingBeyondGDP:GDPImpeached 48

3.6IncludingaMeasureofWell-being 50

3.7PuttingaValueontheEnvironment 52

3.8ChallengesReplacingGDP 53

3.9ConclusionsandImplicationsforBusinessStatistics 54 References 56

4BridgingtheGapBetweenBusinessandMacroeconomicStatistics: MethodologicalConsiderationsandPracticalSolutions 63 TimoKoskimäkiandKristianTaskinen

4.1Introduction 63

4.2GlobalProductionandStatistics 63

4.2.1ConceptsofNationalityandEconomicOwnership 64

4.2.2CaseFinland:GlobalProductioninEconomicStatistics 65

4.2.2.1IdentificationofEnterprisesInvolvedinGlobalProduction 65

4.2.2.2CaseonAutomotiveIndustry 66

4.2.2.3ForeignTradeofGoodsBasedonEconomicOwnership 67

4.2.2.4ChallengesRelatedtoGlobalProductionRecordings 68

4.3Co-operationBetweenNationalStatisticalOfficesandNationalCentralBank StatisticsFunctionsTacklingGlobalizationProblems 69

4.3.1ForeignDirectInvestmentNetworkasanExampleofCo-operation 69

4.3.2Early-WarningSystem(EWS) 70

4.3.3ARoadmapforSolvingtheGlobalization-RelatedIssuesinMonetary,Financial, andBalanceofPayments–Statistics 71

4.4BridgingtheGapBetweenBusinessandEconomicStatisticsThroughGlobalData Sharing 72

4.4.1ProductInnovation–One-OfforRegularDataSharingforBetterQuality 72

4.4.2ServiceInnovation–ImprovingRespondentServiceforMNEs 73

4.4.3ProcessInnovationtoStatisticalProductionbyDataSharing 73

4.4.4InnovatingUserExperience–BetterRelevanceandConsistencyforUsers 74

4.4.5OrganizationalInnovation–ChangingtheBusinessModelofOfficialStatistics 74

4.4.6CulturalInnovation–KeytoMakingitHappen 75

4.4.7InnovationinOtherIndustriestoLearnFrom 75 References 76

5MeasuringInvestmentinIntangibleAssets 79 MojcaBavdaž,AhmedBounfour,JoshMartin,AlbertoNonnis,GiulioPerani, andTjašaRedek

5.1Introduction 79

5.2DataSourcesonIntangibles 80

5.2.1PastSurveysonIntangibles 81

5.2.2ComparisonofPastSurveysonIntangibles 85

5.3MeasurementChallengesinSurveys 86

5.3.1IntangiblesAreIntangibleandMobile 86

5.3.2Own-AccountInvestmentPrevails 87

5.3.3PricingofIntangiblesIsDifficult 87

5.3.4InSearchoftheMostSuitableRespondentforIntangibles 88

5.3.5InvestmentsinIntangiblesTakeTime 88

5.3.6DataExistenceQuestioned 89

5.3.7EvidenceofInconsistentRespondentBehavior 89

5.3.8SummarizingtheChallengesinIntangibleSurveys:The4“F”Words 90

5.4IntangiblesandtheProductivityPuzzle 91

5.4.1AnalyticalConsiderations 91

5.4.2RoleofGlobalValueChains 91

5.5CollectingDataonIntangibles:TheWayAhead 93

5.5.1MethodologicalImprovements 93

5.5.2DataNeedsTodayandTomorrow 94

5.5.2.1CurrentandPotentialUsers 94

5.5.2.2A(Single)IASurveyoraBundleofDataSources? 95

5.5.2.3AParallelDevelopmentPath:AssessingIntangibleAssetStocks 95

5.6Conclusion 96 Acknowledgment 98 References 98

6MeasuringtheUSDigitalEconomy 105

6.1Introduction 105

6.2ExperimentalDigitalEconomyMeasures 105

6.2.1Methodology 106

6.2.1.1DefiningtheDigitalEconomy 107

6.2.1.2CalculatingResults 110

6.2.2DomesticTrends 110

6.2.2.1ValueAdded 110

6.2.2.2GrossOutput 112

6.2.2.3Prices 112

6.2.3InternationalCollaborationandAlignment 112

6.2.3.1TheOrganizationforEconomicCo-operationandDevelopmentWorkingPartyon NationalAccounts 113

6.2.3.2InternationalComparisons 114

6.2.4OtherAreasofResearch 115

6.2.4.1“Free”DigitalMedia 115

6.2.4.2MeasurementandTreatmentofData 116

6.2.4.3Prices 117

6.3MeasuringDigitalServicesTrade 118

6.3.1DefiningDigitalServicesforInternationalTrade 119

6.3.2TrendsinICTandICT-enabledServices 119

6.3.3AreasofResearch 121

6.4ConclusionandWayForward 122 References 123

7EstablishmentBasedInformalSectorStatistics:AnEndeavorof MeasurementfromEconomicCensus2018ofNepal 125 MaheshC.Pradhan

7.1Introduction 125

7.2IssuesofInformalSectorinLegislationandPoliciesinNepal 125

7.2.1Constitution2015 126

7.2.2LaborAct2017 126

7.2.3ContributionBasedSocialSecurityAct2017 126

7.2.4FifteenthPeriodicPlan(2019/20–2023/24) 126

7.2.5NationalEmploymentPolicy2014 126

7.3ConceptandDefinitionofInformalSector 127

7.3.1DefinitionofInformalSectorfromStatisticalPerspective 127

7.4EndeavorsofMeasuringInformalEconomicActivitiesinNepal 128

7.4.1NepalLaborForceSurvey 128

7.4.2NepalLivingStandardSurveys(NLSS) 129

7.4.3PopulationCensuses 129

7.5EconomicCensus2018 130

7.5.1ContentsofEconomicCensus2018 130

7.6StatusoftheInformalSectorStatistics 131

7.6.1InformalSectorStatisticsfromNepalLaborForceSurvey1998and2008 131

7.6.2InformalSectorStatisticsfromNepalLaborForceSurvey2017/18 131

7.6.3InformalSectorStatisticsfromNationalPopulationCensus2011 131

7.6.4InformalSectorStatisticsfromNationalEconomicCensus2018 133

7.6.5StatusofKeepingAccountingRecord 133

7.6.6InformalityinMicroSmallandMediumEstablishments(MSME) 133

7.6.7StreetBusinessSituation 135

7.7AnnualRevenues/Sales,OperatingExpensesinNot-RegisteredEstablishments 137

7.8NeedofRegularMeasurementInformalSector 140

7.9Conclusion 141 References 142

Section2TopicsintheProductionofOfficialEstablishmentStatistics andOrganizationalFrameworks 145

8StatisticalProducersChallengesandHelp 147

JacquiJonesandHollyO’Byrne

8.1Introduction 147

8.2ABriefOverviewoftheEvolutionofEconomicStatistics,andtheEstablishmentof NationalStatisticalInstitutes 147

8.3OurStatisticalEcosystem 150

8.4HelpAvailabletoUs 152

8.4.1InternationalGovernance 152

8.4.2StatisticalPrinciplestoProduceandDisseminateOfficialStatistics 154

8.4.3StatisticalProductionModelsandFrameworks 155

8.4.3.1QualityAssuranceFrameworks 156

8.4.4StatisticalManualsandHandbooks 156

8.4.5Classifications 156

8.4.5.1ClassifyingBusinesses 157

8.4.5.2ClassifyingEmploymentandWorkers 157

8.4.5.3ClassificationsOverview 158

8.4.6StatisticalTools 158

8.4.7InternationalCollaborationandSupport 158

8.5SummaryBeforetheCaseStudy 159

8.6StandardizationLeadstoEfficiency:Canada’sIntegratedBusinessStatistics Program 159

8.7IBSPObjectives 160

8.8CornerstonesofanIntegratedInfrastructureSystem 160

8.9Metadata-DrivenModel 161

8.10IntegratedInfrastructure 161

8.11InformationManagement 162

8.12StandardizationandCooperationWithinIBSP 162

8.13TheBusinessRegister 163

8.13.1TheBRastheCommonFrame 163

8.13.2AllocationFactorsontheBR 163

8.13.3CommoditiesandActivitiesontheBR 164

8.13.4RobustMethodologiesandGeneralizedSystems 164

8.14StandardToolsforDevelopingEQ 164

x Contents

8.15DevelopingaHarmonizedContentModel 165

8.16TheIBSPDataMartandAnalyticalTools 165

8.17ManagingResponseBurden 166

8.18ElectronicQuestionnaires 166

8.19LargeandComplexEnterprises 166

8.19.1EPM/LAOSPrograms 167

8.19.2CustomizedCollection 167

8.20TaxReplacementStrategy 167

8.21ActiveCollectionManagement 168

8.22RollingEstimateModel 168

8.23IBSPGrowthandAdaptation 169

8.24EfficienciesGainedandLearned 170

8.25Conclusion 170 References 171

9TheDevelopmentandMaintenanceofStatisticalBusinessRegistersas StatisticalInfrastructureinStatisticsIndonesiaandtheAustralianBureauof Statistics 175 ImamMachdi,RatihPutriPertiwi,Rr.Nefriana,andWillemErasmus

9.1Introduction 175

9.2TheIndonesianandAustralianContext 175

9.3TheDefinitionofaStatisticalBusinessRegister 176

9.4TheEvolutionofSBRsinStatisticsIndonesiaandtheAustralianBureauof Statistics 176

9.4.1DevelopmentoftheStatisticalBusinessRegisterinStatisticsIndonesia 177

9.4.1.1Phase1(1970–2012):BusinessDirectory 177

9.4.1.2Phase2(2013–2015):IntegratedBusinessRegister 177

9.4.1.3Phase3(2015–2021):TheStatisticalBusinessRegister 178

9.4.2DevelopmentoftheStatisticalBusinessRegisterintheAustraliaBureauof Statistics 178

9.5StatisticalBusinessRegisterDesigns 180

9.5.1TheDesignoftheBPSSBR 180

9.5.1.1StatisticalUnitModel 180

9.5.1.2UnitCoverage 180

9.5.1.3DataSources 181

9.5.1.4MainProcesses 181

9.5.1.5SBRIntegration 183

9.5.2TheDesignoftheABSStatisticalBusinessRegister 183

9.5.2.1CentralizedMaintenance 184

9.5.2.2Dissemination 184

9.5.2.3Uses 185

9.6StatisticalBusinessRegisterBenefits 185

9.7StatisticalBusinessRegisterChallenges 186

9.7.1SBRGovernanceandPolicy 186

9.7.2BusinessProcessIntegration 187

9.7.3SystemDevelopment 187

9.8OpportunitiesinSBRImplementation 188

9.8.1TransformationProgram 188

9.8.2NationalPolicyandInitiative 189

9.9TheFutureSpineConcept 190

9.10Conclusion 191 Acknowledgment 192 References 192

10ManagingResponseBurdenforOfficialStatisticsBusiness Surveys–ExperiencesandRecentDevelopmentsatStatisticsNetherlands, StatisticsPortugal,andStatisticsSweden 193 JohanErikson,DeirdreGiesen,LeanneHouben,andPauloSaraiva

10.1Introduction 193

10.2UnderstandingandMeasuringResponseBurden 194

10.2.1TheConceptofResponseBurden 194

10.2.2MeasuringandMonitoringResponseBurden 194

10.3OrganizationofResponseBurdenManagement 197

10.3.1LegalContextandCooperationwithOtherGovernmentBodies 197

10.3.2OrganizationofBurdenManagementWithintheNSI 198

10.4BurdenReductionMeasures 198

10.4.1UsingAlternativeSources 199

10.4.2ImprovingPrimaryDataCollection 199

10.4.2.1RedesigningContenttoFitDataProvisionCapacities 200

10.4.2.2SampleCoordination 200

10.4.2.3BusinessSurveyCommunication 201

10.4.2.4Feedback 202

10.4.2.5FileTransferandOtherTechniques(HybridDataCollection) 203

10.4.3Survey-assistedModelingwithMixedSources 204

10.4.4ReducingBurdenThroughCooperation 204

10.4.4.1CoordinationofMetadata 205

10.4.4.2TechnicalCooperationandStandards 206

10.4.4.3StandardBusinessReporting 206

10.5Discussion 208

DisclaimerandAcknowledgments 209 References 210

Appendix10.A:BurdenMeasurementQuestions 214

Appendix10.B:ExampleofStatisticsNetherlands’CommunicationAboutMandatory Reporting 218

Appendix10.C:ExampleofAdaptationCommunicationtoDataProvidersduetoCOVID-19 Crises–WebsiteStatisticsNetherlands2021 219

Appendix10.D:PersonalizedFeedbacktoBusinessDataProvider–MonthlyReport 220

Appendix10.E:PersonalizedFeedbacktoBusinessDataProvider–YearlyReport 221 Appendix10.F:ExampleofRCSFIImportinStatisticsNetherlandsStructuralBusiness StatisticsQuestionnaire 222

11ProducingOfficialStatisticsDuringtheCOVID-19Pandemic 225 JacquiJones,LuisaRyan,A.J.Lanyon,MarieApostolou,TanyaPrice,CorinnaKönig, MariekeVolkert,JosephW.Sakshaug,DaneMead,HelenBaird,DuncanElliott, andCraigH.McLaren

11.1Introduction 225

11.2ManagingtheAustralianStatisticalBusinessRegisterDuringCOVID-19 226

11.2.1ABSBusinessRegisterandCOVID-19 227

11.2.2ChangestoBusinessReporting 228

11.2.3PotentialImpactstotheABSBR 229

11.2.4IncreasingNumberofEmployers 229

11.2.5IndustryRecoding 232

11.2.6BusinessCancellations 232

11.2.7TheNewNormal? 233

11.3MitigatingCOVID-19ResponseRateRisksintheCollectionoftheABSProducer andInternationalTradePriceIndexes 234

11.3.1OverviewofABSProducerandInternationalTradePriceIndexes 234

11.3.2ABSProducerandInternationalTradePricesDataCollection 235

11.3.3DevelopingtheCOVID-19Response 235

11.3.4TheOptimizingResponseStrategy 236

11.3.5PrefieldPreparation 236

11.3.6FieldDevelopmentandOperations 236

11.3.7OutcomesoftheOptimizingResponseStrategy 239

11.3.8LessonsLearned 240

11.4TheImpactofChangingDataCollectionModesintheIABEstablishmentPanelin ResponsetotheCOVID-19Pandemic 241

11.5ClassificationandStatisticalImplementationofAustralianCOVID-19Government Policies 247

11.5.1BuildingaNewWorkProgram 247

11.5.2ChangestoBusinessSurveys 248

11.5.3PolicyCaseStudy–JobKeeper 248

11.5.3.1ClassificationofthePolicy 249

11.5.3.2ImplementationofPolicyClassification 249

11.5.4LessonsfortheOrganization 250

11.6SeasonalAdjustmentandTrendDuringandPost–COVID-19 251

11.6.1Pre-COVIDPublicationandPresentationofData 252

11.6.2SeasonalAdjustmentandTrendEstimationinPractice 252

11.6.3PublicationandPresentationDuringCOVID-19 253

11.6.4OptionsforTimeSeriesPublicationsDuringCOVID-19 254

11.6.5ModelingOutliers 254

11.6.6ForwardFactors 256

11.6.7OptiontoSuspendSeries 257

11.6.8UseofHigh-FrequencyEstimates 259

11.6.9OtherTimeSeriesChallenges 259

11.6.10Conclusion 259

Appendix 260 References 261

Section3TopicsintheUseofAdministrativeData 265

12MethodologyfortheUseofAdministrativeDatainBusinessStatistics 267 ArnoutvanDeldenandDanniLewis

12.1Introduction 267

12.2ReceivetheData 269

12.3InspecttheData 270

12.4LinktoPopulationFrame 270

12.4.1BasicLinkageMethods 271

12.4.2LinkageofDataSetsinthePresenceofDifferentUnitTypes 271

12.5FromActualtoTargetPopulation 272

12.5.1EstimationMethodstoAdjustforUndercoverage 273

12.5.2TemporaryCoverageIssues 274

12.6FromObservedtoTargetedVariables 274

12.6.1HarmonizationMethods 274

12.6.2EditingMethodsforMeasurementErrors 276

12.6.3CorrectingforBiasDuetoDecentralizedandAutonomousOrganizations 277

12.7FromObservedtoTargetedPeriods 278

12.7.1EstimationMethodsWhenDataAreNotAvailableonTime 278

12.7.1.1Benchmarking 278

12.7.1.2ForecastingfromPreviousCompleteData 279

12.7.1.3EstimationTechniques 279

12.7.2EstimationMethodstoAdjustforPeriodicity 280

12.8AssessDataQuality 280

12.8.1ThroughputQuality 280

12.8.2OutputQuality 281

12.8.3AnalysisofDifferencesBetweenSurveyandAdministrativeDataEstimates 282

12.9UnsolvedIssues 283

12.10Conclusion 285 References 285

13DevelopingStatisticalFrameworksforAdministrativeDataandIntegratingIt intoBusinessStatistics.ExperiencesfromtheUKandNewZealand 291 NicholasCox,CraigH.McLaren,ClaireShenton,TomTarling,andEllaW.Davies

13.1Introduction 291

13.1.1Background 291

13.1.2AdministrativeDataMethodsResearchProgram 292

13.2QualityFrameworksforAdministrativeData 293

13.2.1StatisticsNetherlandsandUNECEFramework 295

13.2.2StatsNewZealandandZhangFramework 295

13.2.3TheESSnetKomusoProject 296

13.2.4TheSouthamptonUniversityErrorProject 296

13.3CaseStudyOne–TheUseofValueAddedTaxDataintheUnitedKingdom 297

13.3.1OrganizationalContextWithintheOfficeforNationalStatistics 297

13.3.1.1AdministrativeDatainPractice 298

13.3.1.2DealingwiththeData 298

13.3.1.3ComplexUnitsinUKTaxData 299

13.3.2DevelopingStatisticalPipelinesforProcessing 300

13.3.3TheUseofAdministrativeDatainUKMonthlyShort-termIndicators 301

13.3.4TheUseofAdministrativeDataforRegionalEstimation 301

13.3.5Example:ComparisonofVATDatatoSurveyData 303

13.4CaseStudy2–AGreaterUseofAdministrativeDatainNewZealand’sLaborMarket Statistics 305

13.4.1OrganizationalContext 305

13.4.2StatsNZ’sNewMonthlyEmploymentIndicator 307

13.4.3RedesigningtheQuarterlyEmploymentSurvey 308

13.4.3.1PhaseOne 309

13.4.3.2PhaseTwo 310

13.4.4IntroducingStatsNZ’sNewQuarterlyBusinessEmploymentData 310

13.5ConcludingRemarks 311 References 311

14TheEvolutionofIntegratingAdministrativeDatainBusinessStatisticsin Ireland 315 ColinHanleyandSorchaO’Callaghan

14.1Introduction 315

14.2AdministrativeData 316

14.2.1Benefits 316

14.2.1.1Resources 317

14.2.1.2Coverage 317

14.2.1.3Timeliness 317

14.2.1.4ResponseBurden 317

14.2.2Challenges 318

14.2.2.1Access 318

14.2.2.2Quality 318

14.2.2.3StatisticalUnits 318

14.3AdministrativeDatainCSOBusinessStatistics 319

14.3.1LegalMandate 319

14.3.2BusinessRegister 319

14.3.3StructuralBusinessStatistics(SBS) 321

14.4DataLinkageUsingAdministrativeData 322

14.4.1ExportingEnterprisesinIreland 322

14.4.1.1TradeDataSources 322

14.4.1.2Linking 323

14.4.1.3LinkingTradetoBusinessRegister 323

14.4.1.4Results 324

14.4.2BusinessSignsofLife 325

14.4.2.1Linking 326

14.4.2.2Results 327

14.4.3LessonsLearned 329

14.4.3.1Quality 329

14.4.3.2Profiling 329

14.4.3.3Coverage 329

14.4.3.4Transparency 329

14.5TheUseofVATDatainBusinessStatistics 330

14.5.1TheCurrentSituation 330

14.5.2VATDataAvailableinIreland 330

14.5.3VATDataforShort-TermBusinessStatistics 330

14.5.4VATDataasaTimelyIndicatorofBusinessSignsofLife 331

14.5.5BusinessSignsofLifeSeries 331

14.6Summary 331 References 332

Section4TopicsinBusinessSurveyDataCollection 335

15WhatComputerizedBusinessQuestionnairesandQuestionnaire ManagementToolsCanOffer 337

GustavHaraldsen

15.1Introduction 337

15.2BusinessSurveyChallenges 338

15.2.1Concepts 338

15.2.2Units 339

15.2.3TimeReferences 340

15.3ThePathtoCompetentandMotivatedRespondents 341

15.4WhatComputerizationCanOffer 343

15.4.1Source-OrientedInstruments 343

15.4.2CombinedCommunicationMeans 345

15.4.3DesignedDialogues 348

15.5WhatWeKnowThatWeDon’tKnow 351 Acknowledgments 352 References 352

16TailoringtheDesignofaNewCombinedBusinessSurvey:Process,Methods, andLessonsLearned 357

GerSnijkers,LeanneHouben,andFredDemollin

16.1Introduction 357

16.2TowardtheNew“CBS-DNBFinancesofEnterprisesandBalanceofPayments” Survey 359

16.3AchievingCoherentStatistics 359

16.4QuestionnaireCommunication:TailoringtheDesign 361

16.4.1StepsintheQuestionnaireDevelopmentProcess 362

16.4.2TheFeasibilityStudy 363

16.4.3WhatDataandWhereAretheData? 365

16.4.4TheBusinessResponseProcess 366

16.4.5How:QuestionnaireDesignRequirements 367

16.4.6QuestionnaireDevelopment 368

16.5IntroducingtheSurveyintheField:TheSurveyCommunicationStrategy 370

16.5.1TheThreePhasesintheSurveyCommunicationStrategy 370

16.5.1.1Pre-fieldPhase 370

16.5.1.2FieldPhaseoftheFirstWaveoftheSurvey 372

16.5.1.3Post-fieldPhaseoftheFirstWaveoftheSurvey 373

16.5.2EvaluationoftheCommunicationStrategy:WastheStrategyEffective? 374

16.5.2.1EffectivenessofthePre-fieldStrategy 374

16.5.2.2TheResponseRateDevelopmentintheNextQuartersof2019 378

16.6LessonsLearned 379

Acknowledgment 381

Disclaimer 381

References 382

17AdvancesinQuestion(naire)Development,Pretesting,andEvaluation 387

DianeK.Willimack,HeatherRidolfo,AmyAndersonRiemer,MelissaCidade,andKathyOtt

17.1Introduction 387

17.2AdaptationandInnovationinPretestingMethods 388

17.2.1CaseStudy#1:EmergingTopicofRobotics– ittakesavillage389

17.2.1.1Background 389

17.2.1.2PretestingMethodology 389

17.2.1.3Summary 391

17.2.2CaseStudy#2:MultipleModesandMethods– differentstrokesfordifferentfolks391

17.2.2.1Background 391

17.2.2.2PretestingMethodology 392

17.2.2.3Summary 393

17.2.3CaseStudy#3:Record-KeepingStudy–“Idon’tkeepmyrecordsthatway”394

17.2.3.1Background 394

17.2.3.2PretestingMethodologyforPhaseI 394

17.2.3.3PretestingMethodologyforPhaseII 395

17.2.4CaseStudy#4:UsabilityTesting– whenhumanmeetscomputer397

17.2.4.1Background 397

17.2.4.2PretestingMethodology 398

17.2.4.3Summary 401

17.2.5CaseStudy#5:RemoteTesting,Logistics,andCOVID– realityisvirtual401

17.2.5.1Background 401

17.2.5.2RemoteTestingatNASS 401

17.2.5.3RemoteTestingattheCensusBureau 401

17.2.5.4Summary 403

17.2.6CaseStudy#6:PretestingPlusParadata– alookunderneaththehood403

17.2.6.1Background 403

17.2.6.2PretestingMethodology 403

17.3PretestingMethodologies:CurrentFeaturesandFutureNeeds 405

17.3.1CurrentFeaturesandConsequences 405

17.3.1.1Finding“theMissingLink”:CollaborativePartnerships 405

17.3.1.2TheOdyssey:ExploratoryMethods 405

17.3.1.3LeaveNoStoneUnturned:MultipleMethods 405

17.3.1.4Methuselah:TheManyRolesofTechnology 406

17.3.1.5TrusttheProcess:TheResponseProcess 406

17.3.2FutureNeedsandImplications 406 Acknowledgments 408

References 408

18UsingParadatainElectronicBusinessSurveyQuestionnaires 413 GerSnijkers,SusanDemedash,andJessicaAndrews

18.1Introduction 413

18.2Paradata 414

18.3QuestionnaireCompletionParadata 417

18.4LookingInsidetheQuestionnaireCompletionProcess 419

18.4.1CompletingtheCBS-DNBQuarterlySurveyonFinancesofEnterprisesandBalance ofPayments 421

18.4.1.1QuestionnaireCompletionProfiles 421

18.4.1.2UsageofDownloadandImportFunctions 423

18.4.1.3UsageofDutchandEnglishVersionsoftheQuestionnaire 424

18.4.1.4TimeNeededtoCompletetheQuestionnaire 424

18.4.1.5EffectoftheCommunicationStrategy 426

18.4.2BusinessSurveyUseofParadataatStatisticsCanada 427

18.5Conclusions 431

Acknowledgment 432

Disclaimer 433 References 433

19RecentFindingsfromExperimentsinEstablishmentSurveys 437 JoshLangeland,HeatherRidolfo,JakiMcCarthy,KathyOtt,DougKilburg,KarenCyBulski, MelissaKrakowiecki,LarryVittoriano,MattPotts,BenjaminKüfner,JosephW.Sakshaug, andStefanZins

19.1Introduction 437

19.2ExperimentswithMailedSurveyPacketstoImproveRecruitmentStrategiesina NationalEstablishmentSurvey(BLS) 438

19.2.1Motivation 438

19.2.2AdvanceLetterStudy 439

19.2.2.1ExperimentDesign 439

19.2.2.2Results 440

19.2.3FolderDesignStudy 441

19.2.3.1ExperimentDesign 441

19.2.3.2Results 441

19.2.4Discussion 443

19.3ExperimentsTestingChangestoDataCollectionTimingandContentofContactsinthe USCensusofAgriculture(NASS) 443

19.3.1Motivation 443

19.4ComparingFedExtoTraditionalPostageinaSurveyofSubstanceAbuseandMental HealthFacilities(byMathematicaforSAMHSA) 451

19.4.1Motivation 451

19.4.2ExperimentDesign 452

19.4.3Results 454

19.4.4Discussion 458

19.5AddressingItemNonresponsewithClarifyingInformation–EvidencefromtheIAB JobVacancySurvey(IAB) 458

19.5.1Motivation 458

19.5.2ExperimentDesign 459

19.5.3Results 461

19.5.3.1ItemDuration 461

19.5.3.2ItemNonresponse 461

19.5.3.3SpilloverEffects 462

19.5.4Discussion 463

19.6Summary 464 Acknowledgment 465 References 465

20WebPortalsforBusinessDataCollection 469 BenteHoleandLeanneHouben

20.1Introduction 469

20.2TheNSIWeb-PortalStudy 470

20.2.1MoreAbouttheSurvey 470

20.2.2SurveyResultsandOtherFindings 471

20.2.2.1TypeandSizeofPortals 472

20.2.2.2CommonFeaturesandStatus 474

20.2.2.3Registration,Authentication,andAuthorization 476

20.2.2.4DataImportandTransfer 481

20.2.2.5IdentifyingtheRightBusinessUnit 483

20.2.2.6ReturningDatatotheRespondents 484

20.2.2.7ContactOptionsandCommunication 485

20.2.2.8StrengthsandWeaknesses 487

20.3InvestigatingHowtoBuildaCustomizedPortalatStatisticsNetherlands 488

20.4RecommendationsandFutureDevelopments 489

20.4.1Recommendations 489

20.4.2FutureWebPortalDevelopments 491 DisclaimerandAcknowledgements 493

Appendix20.AListofNSIstheQuestionnairewasSentto 493 Appendix20.BWordCopyofQuestionnaire 494 References 498

21ACreativeApproachtoPromotingSurveyResponse 501 CharlesF.Brady,Jr.andKariL.Klinedinst

21.1Introduction 501

21.2Background 502

21.3ApproachandMethods 503

21.3.1PublicSector–PrivateSectorPartnership 503

21.3.2StrategicObjectives 504

21.3.3TargetSegmentationandFocusGroups 505

21.3.4CommunicationsPlan 506

21.4ResultsfromFocusGroups 507

21.4.1FocusGroups–RoundOne 507

21.4.2FocusGroups–RoundTwo 508

21.4.3IntermediaryMeetingatCensus 508

21.4.4FocusGroupsRoundThree 509

21.4.5AdditionalMeetings 509

21.5DevelopmentofCampaignMaterials 510

21.5.1Brochures 511

21.5.2Videos 512

21.5.3CampaignWebsite 512

21.5.4PartnerBriefingPresentationContent 513

21.5.5IslandAreas 513

21.6CampaignImplementation 513

21.6.1“9-8-7”Campaign 513

21.6.2Webinar 514

21.6.3EmailAwarenessCampaign 514

21.6.4InternalCommunications 514

21.6.5EconomicCensusDayforCensusBureauStaff 514

21.6.6MediaRelations 514

21.6.7CongressionalandIntergovernmentalAffairs 514

21.6.8SocialMedia 515

21.6.9MeetingsandEvents 515

21.7MovingForward 515

21.7.1RespondentPortalChanges 515

21.7.2AdaptationforCurrentSurveys 516

21.8Conclusion 516 References 517

Section5TopicsintheUseofNewDataSourcesandNew Technologies 519

22StatisticalDataProductioninaDigitizedAge:TheNeedtoEstablish SuccessfulWorkflowsforMicroDataAccess 521 StefanBender,JannickBlaschke,andChristianHirsch

22.1Introduction 521

22.2BuildingBlocksforSuccessfulWorkflowsEnablingAccesstoMicroData 522

22.2.1BuildingBlock1:LayingtheTechnicalandProceduralFoundations 523

22.2.2BuildingBlock2:GeneratingSafeResults 525

22.2.3BuildingBlock3:GeneratingValueforAllStakeholders 526

22.3AnAlternativeApproachtoMeasuringValue:FAIRData 527

22.4ApplyingtheBUBMICModeltoResearchDataCenters 528

22.4.1BuildingBlock1:LayingtheTechnicalandProceduralFoundations 529

22.4.2BuildingBlock2:GeneratingSafeResults 530

22.4.3BuildingBlock3:GeneratingValueforAllStakeholders 531

22.4.4ExamplesofGeneratingValueforAllStakeholders 531

22.4.4.1RulesforVisitingResearchersattheRDSC 531

22.4.4.2SDCPackagesinStataandR 532

22.4.4.3Dobby,theBBk-RDSC’sHigh-PerformanceandStreamlinedDataProduction Pipeline 532

22.4.4.4RDSCContractGenerator 532

22.4.4.5AnnodataSchema 532

22.5Conclusion 534 Acknowledgments 534 Disclaimer 534 References 534

23MachineLearninginGermanOfficialStatistics 537 FlorianDumpert

23.1Introduction 537

23.2TerminologyandaShortIntroductiontoMachineLearning 537

23.3MachineLearninginOfficialStatistics–InternationalOverview 541

23.4HistoryandCurrentStatusofMachineLearninginGermanOfficialStatistics 543

23.4.1FederalStatisticalOfficeofGermany 543

23.4.2HistoryandCurrentStatusintheGermanOfficialStatisticsNetwork 544

23.5SomeCurrentProjectsattheFederalStatisticalOffice 545

23.5.1Overview 545

23.5.2MachineLearningtoIncreaseAnalysisCapabilitiesintheAreaofMinimumWage UsingOfficialStatistics 545

23.5.3MachineLearningforEditingandImputation 550

23.5.3.1Relevance 550

23.5.3.2EditingandImputationintheNewDigitalEarningsSurvey 550

23.5.3.3StudiesonthePreservationoftheDistributionunderImputation 552

23.6SummaryandOutlook 555 References 557

24SixYearsofMachineLearningintheBureauofLaborStatistics 561 AlexanderMeasure

24.1Introduction 561

24.2WhyOfficialStatistics? 561

24.3HowShouldWeDoIt? 562

24.4IsItGoodEnough? 564

24.5HowShouldWeUseIt? 565

24.6HowDoWeIntegrateIt? 567

24.7HowDoWeMaintainIt? 568

24.8Conclusion 570 References 570

Appendix:F1-scoreandMacroF1-score 572

25UsingMachineLearningtoClassifyProductsfortheCommodityFlow Survey 573 ChristianMoscardiandBenjaminSchultz

25.1Background 573

25.1.1CommodityFlowSurvey(CFS)Background 573

25.1.2CFSDataCollectionChallenges 573

25.1.2.1Nonrespose 573

25.1.2.2DataQuality 574

25.1.2.3RespondentBurden 574

25.1.2.4RelatedWork 575

25.2Data 575

25.3Methods 577

25.3.1FilteringandTextCleansing 577

25.3.1.1FilteringCFSResponseData 577

25.3.1.2TextPreprocessing 578

25.3.1.3De-duplicationandDisambiguation 578

25.3.2DerivingVariables(Features)fromTextData 580

25.3.3OtherFeaturesIncorporatedintoModel–NAICSCode 580

25.3.4ResolvingPreviouslyUnseenVariablesduringPrediction 581

25.3.5Model 581

25.3.6TrainingandEvaluation 582

25.3.7ImputingandCorrectingData–EditRuleAgreement 583

25.4Results 584

25.4.1ModelResults 584

25.4.2Applicationsto2017CFSandImpactofML 586

25.4.2.1Applications 586

25.4.2.2ImpactofML 587

25.5ConclusionandFutureWork 588 Disclaimer 590 References 590

26AlternativeDataSourcesintheCensusBureau’sMonthlyStateRetailSales DataProduct 593

RebeccaHutchinson,ScottScheleur,andDeannaWeidenhamer

26.1Introduction/Overview 593

26.2HistoryofState-LevelRetailSalesatCensus 594

26.3OverviewoftheMSRS 595

26.4Methodology 597

26.4.1DirectlyCollectedDataInputs 597

26.4.2FrameCreation 598

26.4.3EstimationandImputation 599

26.4.3.1CompositeEstimator 599

26.4.3.2SyntheticEstimator 600

26.4.3.3HybridEstimator 601

26.4.4QualityMetrics 602

26.5UseofAlternativeDataSourcesinMSRS 602

26.5.1InputtoMSRSModel 602

26.5.2Validation 605

26.6Conclusion 609 Disclaimer 610 References 610

Section6TopicsinSamplingandEstimation 613

27IntroductiontoSamplingandEstimationforBusinessSurveys 615

PaulA.SmithandWesleyYung

27.1Introduction 615

27.2StatisticalBusinessRegisters 615

27.3Sampling 619

27.3.1StratifiedSampling 619

27.3.2Cut-offSampling 622

27.3.3ProbabilityProportionaltoSizeSampling 622

27.3.4IndirectSampling 623

27.3.5BalancedSampling 624

27.4Estimation 624

27.4.1Model-assistedandCalibrationEstimation 624

27.4.2Outliers 628

27.5Model-basedEstimation 629

27.5.1SmallAreaEstimation 629

27.5.2Nowcasting 630

27.5.3Model-basedEstimators 631

27.6Conclusion 631 References 632

28SampleCoordinationMethodsandSystemsforEstablishmentSurveys 637

AlinaMateiandPaulA.Smith

28.1Introduction 637

28.2SampleCoordination 638

28.2.1NotationandDefinitions 638

28.2.2MethodsforSampleCoordination 638

28.2.3MethodsBasedonPRNs 639

28.2.4Non-PRNMethods 642

28.3ComparingSampleCoordinationMethods 644

28.3.1MeasuresUsedinSampleCoordination 644

28.3.2CriteriaforSampleCoordination 645

28.4SampleCoordinationSystems 647

28.4.1OptimizationMeasuresinSampleCoordinationSystems 648

28.5OverviewofSampleCoordinationSystems 648

28.5.1CoordinatedPoissonSampling/ConditionalSelection 648

28.5.2SAMU 650

28.5.3SynchronizedSampling 650

28.5.4Burden-BasedCoordination 651

28.5.5CoordinationFunctions 651

28.6Discussion 652

28.6.1DistinguishingSampleCoordinationMethodsandSampleCoordinationSystems 652

28.6.2FurtherChallenges 653

28.7Conclusion 653

Acknowledgments 654 References 654

29VarianceEstimationforProbabilityandNonprobabilityEstablishment Surveys:AnOverview 659

29.1EstimationforProbabilityBusinessSurveyData 660

29.1.1ProbabilitySamplinginPractice 660

29.1.2TheoriesofPopulationInference 660

29.1.3BasicWeightingSteps 662

29.1.4VarianceEstimationforProbabilitySurveys 662

29.1.4.1ExactFormulas 663

29.1.4.2LinearizationMethods 664

29.1.4.3ReplicationMethods 665

29.1.5VarianceEstimationwithImputedValues 671

29.1.6VarianceEstimationApplicationsAmongProbabilityEstablishmentSurveys 671

29.2EstimationwithNonprobabilityEstablishmentSurveyData 673

29.2.1NonprobabilitySamplinginPractice 673

29.2.2AnalyticObjectives 673

29.2.2.1MethodsforNonprobabilityEstimation 675

29.2.2.2MethodsforHybridEstimation 676

29.2.3VarianceEstimators 677

29.2.3.1Quasi-randomizationMethods 677

29.2.3.2SuperpopulationandModel-basedMethods 678

29.3ConcludingRemarks 678 References 679

30BayesianMethodsAppliedtoSmallAreaEstimationforEstablishment Statistics 685

PaulA.Parker,RyanJanicki,andScottH.Holan

30.1Introduction 685

30.2BayesianHierarchicalModelingforDependentData 688

30.3Area-LevelModels 690

30.4Unit-LevelModels 692

30.4.1BasicUnit-LevelModel 692

30.4.2AccountingforSurveyDesign 693

30.4.3ModelsforNon-GaussianData 694

30.5EmpiricalSimulationStudy 695

30.6DataAnalysis 698

30.7Discussion 701 Acknowledgments 702 References 702

31VarianceEstimationUnderNearestNeighborRatioHotDeckImputationfor MultinomialData:TwoApproachesAppliedtotheServiceAnnualSurvey (SAS) 705

RebeccaAndridge,JaeKwangKim,andKatherineJ.Thompson

31.1Introduction 705

31.2BasicSetup 709

31.3SingleImputationVarianceEstimation 710

31.4MultipleImputationVarianceEstimation 711

31.5SimulationStudy 712

31.5.1DataGeneration 712

31.5.2ImputationMethodsImplemented 714

31.5.3EvaluationofPerformance 715

31.5.4Results 716

31.6EmpiricalApplication 718

31.6.1Background 718

31.6.2Results 720

31.7GeneralConclusion 722 Acknowledgments 724

Disclaimer 724 References 724

32MinimizingRevisionsforaMonthlyEconomicIndicator 727

NicoleCzaplicki,StephenKaputa,andLauraBechtel

32.1Introduction 727

32.2MARTSandMRTSBackgroundandMotivation 729

32.2.1SampleDesign 729

32.2.2UnitDefinitions 730

32.2.3ResponseRates 730

32.2.4EstimationMethodology 730

32.2.5ImputationMethodologyandProcedures 732

32.3EstimationEvaluation 733

32.3.1EstimationMethodsConsidered 733

32.3.1.1LinkRelativeEstimation 733

32.3.1.2ModifiedLinkRelativeEstimator 734

32.3.1.3WeightingClassEstimator 734

32.3.1.4RatioEstimator 735

32.3.2EstimationEvaluationCriteria 735

32.3.3EstimationEmpiricalResults 736

32.3.4EstimationDiscussion 737

32.4AutomatingtheDetectionofHigh-PriorityUnitsforImputation 738

32.4.1MethodsforIdentifyingUnitsforAnalystImputation 738

32.4.1.1InfluenceMeasureMethod(Month-to-MonthChange) 738

32.4.1.2SizeIdentificationMethod 739

32.4.1.3Prioritization 741

32.4.2IdentifyingHigh-PriorityUnitsforAnalystImputationEvaluation 742

32.4.3IdentifyingHigh-PriorityUnitsforAnalystImputationDiscussion 742

32.5AutomatingImputationProcedures 743

32.5.1ImputationModel 743

32.5.1.1RegARIMATimeSeriesModel 744

32.5.1.2HierarchicalBayesianRegression(HBR)Model 745

32.5.2SimulationStudy 745

32.5.2.1SimulationStudyDesign 746

32.5.2.2EvaluationStatistics 746

32.5.2.3SimulationResults 747

32.5.3ImputationDiscussion 750

32.6Conclusion 751

Acknowledgments 752

Disclaimer 752 References 752

Section7TopicsinDataIntegration,LinkingandMatching 755

33RecordLinkageforEstablishments:Background,Challenges,andan Example 757

MichaelD.LarsenandAlanHerning

33.1Introduction 757

33.2VariablesforLinkingRecords 758

33.3Exact,Deterministic,andProbabilisticMatching 759

33.3.1ExactMatchingandDeterministicMatchingwithMultiplePasses 759

33.3.2ProbabilisticMatching 761

33.3.3CombiningDeterministicandProbabilisticLinkage 763

33.4AdditionalConsiderationsinRecordLinkage 763

33.4.1StructuralConsiderationsinRecordLinkage 763

33.4.2One-to-OneMatching 764

33.4.3UsingLinkedFilesinAnalysis 765

33.4.4ConfidentialityandComputing 766

33.5APracticalExampleofBusinessDataLinking:TheBusinessLongitudinalAnalysis DataEnvironment 768

33.5.1Overview 768

33.6BLADELinkingMethodology 768

33.6.1BLADEIntegratingFrame 768

33.6.2LinkingDatatoBLADE 770

33.6.2.1ABSSurveyData 770

33.6.2.2BLADECore 770

33.6.2.3LinkageofOtherAdministrativeData 771

33.6.3MaintainingBLADE 772

33.6.3.1StaticandDynamicBLADE 773

33.7BLADEAccessModel 773

33.7.1AccessingBLADE 774

33.7.2CustomizedBLADEProducts 775

33.7.3HowBLADEIsBeingUsed 775

33.8Conclusion 775 References 776

34MethodsforEstimatingtheQualityofMultisourceStatistics 781 ArnoutvanDelden,SanderScholtus,TondeWaal,andIreneCsorba

34.1Introduction 781

34.2RepresentationError 783

34.2.1EstimatingandCorrectingSelectivity 783

34.2.1.1EstimatingOutputAccuracywithRespecttoRepresentationErrors 783

34.2.1.2CorrectingforRepresentationErrors 785

34.2.2CaseStudyonEstimatingBiasDuetoSelectivity 785

34.2.3CaseStudyonCorrectingOutputforSelectivity 787

34.3LinkageError 788

34.3.1EstimatingtheEffectofLinkageErrorsonOutputs 788

34.3.2AdjustingOutputstoCorrectforLinkageErrors 790

34.3.3SimulationStudyonCorrectingContingencyTablesforLinkageErrors 792

34.4MeasurementError 793

34.4.1QuantifyingMeasurementError 794

34.4.2EstimatingtheEffectofMeasurementErroronOutputs 795

34.4.3CaseStudyonTurnoverGrowthRatesbyEconomicActivity 796

34.4.4CaseStudyonInternetPurchases 797

34.4.5ObtainingaBias-correctedEstimatorforMeasurementErrors 798

34.4.6SimulationStudyComparingtheBias-correctedEstimators 799

34.5Conclusion 800

References 801

35AdoptingPreviouslyReportedDataintothe2022CensusofAgriculture: LessonsLearnedfromthe2020SeptemberAgriculturalSurvey 805

LindaJ.Young,JosephB.Rodhouse,ZacharyTerner,andGavinCorral

35.1Introduction 805

35.2AgriculturalSurveyandPreviouslyReportedData(PRD) 806

35.3StudyDesign 807

35.3.1SurveyQuestionsandPRDIncludedintheStudy 807

35.3.2DesignoftheStudy 808

35.3.3DataCollection 810

35.3.4AnalysisoftheStudy 810

35.4StudyResults 810

35.4.1ComparisonofResponseRates 811

35.4.2ComparisonofCompletionTimes 812

35.4.3AnalysisofUpdateRates 814

35.4.4AnalysisofEditRates 816

35.5Discussion 816

Acknowledgments 818

References 819

36IntegratingAlternativeandAdministrativeDataintotheMonthlyBusiness Statistics:SomeApplicationsfromStatisticsCanada 821 Marie-ClaudeDuval,RichardLaroche,andSébastienLandry

36.1ContextforIntegratingAlternativeandAdministrativeData 821

36.2ReplacementofSurveyDatabyTaxDataintheMonthlySurveyofFoodServicesand DrinkingPlaces 822

36.2.1PreviousMethodologyUnderaSurveyDesign 822

36.2.2TheGSTAdministrativeFile 823

36.2.3TheNewMethodologyProposedtoReplaceSurveyDatawithAdministrative Data 824

36.2.4AssessmentandRequirementsBeforetheImplementation 825

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.