[FREE PDF sample] Image segmentation: principles, techniques, and applications tao lei ebooks

Page 1


https://ebookmass.com/product/image-segmentation-principlestechniques-and-applications-tao-lei/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Eco-Friendly Corrosion Inhibitors : Principles, Designing and Applications Lei Guo

https://ebookmass.com/product/eco-friendly-corrosion-inhibitorsprinciples-designing-and-applications-lei-guo/

ebookmass.com

Eco-Friendly Corrosion Inhibitors : Principles, Designing and Applications Lei Guo

https://ebookmass.com/product/eco-friendly-corrosion-inhibitorsprinciples-designing-and-applications-lei-guo-2/

ebookmass.com

Medical image recognition, segmentation and parsing : machine learning and multiple object approaches 1st Edition Zhou

https://ebookmass.com/product/medical-image-recognition-segmentationand-parsing-machine-learning-and-multiple-object-approaches-1stedition-zhou/

ebookmass.com

Measuring

Research: What Everyone Needs to Know® 1st Edition

https://ebookmass.com/product/measuring-research-what-everyone-needsto-know-1st-edition-cassidy-r-sugimoto/

ebookmass.com

Sugar Daddies 1st Edition Jade West

https://ebookmass.com/product/sugar-daddies-1st-edition-jade-west/

ebookmass.com

Integrated Advertising, Promotion, and Marketing Communications, Global Edition Kenneth Clow

https://ebookmass.com/product/integrated-advertising-promotion-andmarketing-communications-global-edition-kenneth-clow/

ebookmass.com

Epistemic Consequentialism H. Kristoffer Ahlstrom-Vij

https://ebookmass.com/product/epistemic-consequentialism-h-kristofferahlstrom-vij/

ebookmass.com

Heartlands Heroes : Heartland's MC Books 1 & 2 Dani Wyatt

https://ebookmass.com/product/heartlands-heroes-heartlands-mcbooks-1-2-dani-wyatt/

ebookmass.com

Mutual Aid Groups, Vulnerable and Resilient Populations, and the Life Cycle 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/mutual-aid-groups-vulnerable-andresilient-populations-and-the-life-cycle-3rd-edition-ebook-pdf/

ebookmass.com

The Get Things Done Book: 41 Tools to Start, Stick With and Finish Things

https://ebookmass.com/product/the-get-things-done-book-41-tools-tostart-stick-with-and-finish-things-mikael-krogerus/

ebookmass.com

ImageSegmentation

ImageSegmentation

Principles,Techniques,andApplications

TaoLei

ShaanxiUniversityofScienceandTechnology

Xi’an,China

AsokeK.Nandi

BrunelUniversityLondon Uxbridge,UK

Thiseditionfirstpublished2023 ©2023JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inany formorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw. Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/ permissions.

TherightofTaoLeiandAsokeK.Nanditobeidentifiedastheauthorsofthisworkhasbeenassertedinaccordance withlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsin standardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowof informationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewand evaluatetheinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceofequipment,reagent, ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusageandforaddedwarningsand precautions.Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecifically disclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessfora particularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsor promotionalstatementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasa citationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorendorsethe informationorservicestheorganization,website,orproductmayprovideorrecommendationsitmaymake.This workissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadvice andstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhere appropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappeared betweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorshallbeliableforanylossof profitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages.

LibraryofCongressCataloging-in-Publicationdataappliedfor

ISBN:9781119859000

CoverDesign:Wiley

CoverImage:©d3sign/GettyImages

Setin9.5/12.5ptSTIXTwoTextbyStraive,Pondicherry,India

To

Myparents,mywifeYanLu,andourdaughter LuLei. TaoLei

Mywife,Marion,andourchildren Robin,David,andAnitaNandi. AsokeK.Nandi

BriefContents

AbouttheAuthors xv

Preface xvii

Acknowledgment xix

ListofSymbolsandAbbreviations xxi

ListofAcronyms xxxi

PartIPrinciples 1

1Introduction 3

2Clustering 21

3MathematicalMorphology 37

4NeuralNetworks 63

PartIIMethods 97

5FastandRobustImageSegmentationUsingClustering 99

6FastImageSegmentationUsingWatershedTransform 125

7Superpixel-BasedFastImageSegmentation 151

PartIIIApplications 179

8ImageSegmentationforTrafficSceneAnalysis 181

9ImageSegmentationforMedicalAnalysis 199

10ImageSegmentationforRemoteSensingAnalysis 229

11ImageSegmentationforMaterialAnalysis 263

Index 289

Contents

AbouttheAuthors xv

Preface xvii

Acknowledgment xix

ListofSymbolsandAbbreviations xxi

ListofAcronyms xxxi

PartIPrinciples 1

1Introduction 3

1.1PreliminaryConcepts 3

1.2FoundationsofImageSegmentation 5

1.2.1Pixel-BasedImageSegmentation 5

1.2.2Contour-BasedImageSegmentation 6

1.2.3Region-BasedImageSegmentation 7

1.2.4NeuralNetwork–BasedImageSegmentation 8

1.3Examples:ImageSegmentation 9

1.3.1AutomaticDrive 9

1.3.2MedicalImageAnalysis 10

1.3.3RemoteSensing 10

1.3.4IndustrialInspection 11

1.4AssessmentofImageSegmentation 13

1.5DiscussionandSummary 15 References 17

2Clustering 21

2.1Introduction 21

2.2K-Means 22

2.3FuzzyC-meansClustering 24

2.4HierarchicalClustering 27

2.5SpectralClustering 29

2.6GaussianMixedModel 30

2.7DiscussionandSummary 33 References 34

3MathematicalMorphology 37

3.1Introduction 37

3.2MorphologicalFiltering 37

3.2.1ErosionandDilation 37

3.2.2OpeningandClosing 40

3.2.3BasicMorphologicalOperationforGrayscaleImages 41

3.2.4ComposedMorphologicalFilters 42

3.3MorphologicalReconstruction 43

3.3.1GeodesicDilationandErosion 43

3.3.2ReconstructionofOpeningOperationsandClosingOperations 45

3.4WatershedTransform 47

3.4.1BasicConcepts 47

3.4.2WatershedSegmentationAlgorithms 48

3.5MultivariateMathematicalMorphology 51

3.5.1RelatedConcepts 51

3.5.2DualityofGrayscaleMathematicalMorphology 51

3.5.3OrderingRelations 52

3.5.4MultivariateDualMorphologicalOperators 57

3.6DiscussionandSummary 60 References 60

4NeuralNetworks 63

4.1ArtificialNeuralNetworks 63

4.1.1Overview 63

4.1.2NeuronModel 65

4.1.3Single-LayerPerceptronandLinearNetwork 72

4.1.3.1SingleLayerPerceptron 72

4.1.3.2PerceptronLearningAlgorithm 73

4.1.3.3LinearNeuralNetwork 75

4.2ConvolutionalNeuralNetwork 76

4.2.1ConvolutionanditsApplicationinImages 76

4.2.1.1Definition 76

4.2.1.2One-DimensionalConvolutioninDiscreteDomain 77

4.2.1.3Two-DimensionalConvolutioninDiscreteDomain 78

4.2.1.4ExtendedConvolutionOperation 81

4.2.2ConvolutionalNetworkArchitectureandParameterLearning 83

4.2.2.1ConvolutionalNetworkArchitecture 83

4.2.2.2ConvolutionLayer 85

4.2.2.3PoolingLayer 86

4.2.2.4FullConnectionLayer 87

4.2.2.5ParameterLearning 88

4.2.2.6Back-PropagationAlgorithm 89

4.3GraphConvolutionalNetwork 90

4.3.1Overview 90

4.3.2ConvolutionalNetworkoverSpectralDomains 91

4.3.3ChebyshevNetwork 92

4.3.4GraphConvolutionalNetwork 93

4.4DiscussionandSummary 95 References 96

PartIIMethods 97

5FastandRobustImageSegmentationUsingClustering 99

5.1Introduction 99

5.2RelatedWork 101

5.2.1ObjectiveFunctionofFCMBasedonNeighborhoodInformation 102

5.2.2MembershipCorrectionBasedonLocalDistance 103

5.3LocalSpatialInformationIntegrationtoFCM 103

5.3.1FastandRobustFCMBasedonHistogram 104

5.3.2MorphologicalReconstruction 105

5.4MembershipFilteringforFCM 107

5.5DiscussionandSummary 111

5.5.1ResultsonSyntheticImages 111

5.5.2ResultsonRealImages 113

5.5.3ResultsonColorImages 116

5.5.4RunningTime 119

5.5.5Summary 121 References 121

6FastImageSegmentationUsingWatershedTransform 125

6.1Introduction 125

6.2RelatedWork 127

6.2.1MorphologicalOpeningandClosingReconstructions 127

6.2.2MultiscaleandAdaptiveMathematicalMorphology 128

6.2.3SeededSegmentation 129

6.2.4SpectralSegmentation 132

6.3AdaptiveMorphologicalReconstruction(AMR) 132

6.3.1ThePresentedAMR 132

6.3.2TheMonotonicIncreasing-nessPropertyofAMR 133

6.3.3TheConvergencePropertyofAMR 136

6.3.4TheAlgorithmofAMR 138

6.4AMRforSeededImageSegmentation 140

6.4.1SeededImageSegmentation 140

6.4.2Seed-BasedSpectralSegmentation 144

6.5DiscussionandSummary 147

6.5.1Discussion 147

6.5.2Summary 148 References 149

7Superpixel-BasedFastImageSegmentation 151

7.1Introduction 151

7.2RelatedWork 153

7.2.1FuzzyClusteringwithAdaptiveLocalInformation 153

7.2.2FCMBasedonHistogramofGrayImages 154

7.3SuperpixelIntegrationtoFCM 155

7.3.1SuperpixelBasedonLocalFeature 157

7.3.2Superpixel-BasedFastFCM 159

7.4DiscussionandSummary 164

7.4.1ComparisonwithOtherAlgorithms 164

7.4.2ParameterSetting 165

7.4.3ResultsonSyntheticImage 165

7.4.4ResultsonRealImages 167

7.4.5ExecutionTime 174

7.4.6Conclusions 174 References 176

PartIIIApplications 179

8ImageSegmentationforTrafficSceneAnalysis 181

8.1Introduction 181

8.2RelatedWork 182

8.2.1ConvolutionalNeuralNetworksforImageClassification 182

8.2.2TrafficSceneSemanticSegmentationUsingConvolutionalNeuralNetworks 183

8.3Multi-ScaleFeatureFusionNetworkforSceneSegmentation 185

8.3.1Multi-ScaleFeatureFusionUsingDilatedConvolution 186

8.3.2Encoder-DecoderArchitecture 186

8.3.3Experiments 187

8.4Self-AttentionNetworkforSceneSegmentation 188

8.4.1Non-localattentionModule 189

8.4.2DualAttentionModule 190

8.4.3Criss-CrossAttention 191

8.4.4Multi-scaleNon-localModule 193

8.4.5Experiments 193

8.5DiscussionandSummary 194

8.5.1NetworkArchitectureSearch 194

8.5.2CompactNetworks 195

8.5.3VisionTransformer 195 References 196

9ImageSegmentationforMedicalAnalysis 199

9.1Introduction 199

9.2RelatedWork 200

9.2.1TraditionalApproachesforMedicalImageSegmentation 200

9.2.2DeepLearningforMedicalImageSegmentation 200

9.3LightweightNetworkforLiverSegmentation 203

9.3.1NetworkCompression 203

9.3.23DDeepSupervision 205

9.3.3Experiment 206

9.3.3.1DataSetPreprocessing 206

9.3.3.2Training 207

9.3.3.3EvaluationandResults 207

9.4DeformableEncoder–DecoderNetworkforLiverandLiver-TumorSegmentation 208

9.4.1DeformableEncoding 209

9.4.2Ladder-ASPP 212

9.4.3LossFunction 214

9.4.4Postprocessing 215

9.4.5Experiment 216

9.4.5.1DataSetandPreprocessing 216

9.4.5.2ExperimentalSetupandEvaluationMetrics 216

9.4.5.3AblationStudy 217

9.4.5.4ExperimentalComparisononTestDataSets 219

9.4.5.5Model-SizeComparison 223

9.5DiscussionandSummary 224 References 224

10ImageSegmentationforRemoteSensingAnalysis 229

10.1Introduction 229

10.2RelatedWork 230

10.2.1ThresholdSegmentationMethods 230

10.2.2ClusteringSegmentationMethods 230

10.2.3RegionSegmentationMethods 231

10.2.4SegmentationMethodsUsingDeepLearning 231

10.3UnsupervisedChangeDetectionforRemoteSensingImages 232

10.3.1ImageSegmentationUsingImageStructuringInformation 232

10.3.2ImageSegmentationUsingGaussianPyramid 234

10.3.3FastFuzzy C-MeansforChangeDetection 236

10.3.4PostprocessingforChangeDetection 237

10.3.5TheProposedMethodology 241

10.3.6Experiments 242

10.3.6.1DataDescription 242

10.3.6.2ExperimentalSetup 243

10.3.6.3ExperimentalResults 245

10.3.6.4ExperimentalAnalysis 247

10.4End-to-EndChangeDetectionforVHRRemoteSensingImages 252

10.4.1MMRforImagePreprocessing 252

10.4.2PyramidPooling 253

10.4.3TheNetworkStructureofFCN-PP 254

10.4.4Experiments 255

10.4.4.1DataDescription 255

10.4.4.2ExperimentalSetup 256

10.4.4.3ExperimentalResults 256

10.4.4.4ExperimentalAnalysis 257

10.5DiscussionandSummary 259

References 259

11ImageSegmentationforMaterialAnalysis 263

11.1Introduction 263

11.2RelatedWork 264

11.2.1MetalMaterials 264

11.2.2FoamMaterials 265

11.2.3CeramicsMaterials 265

11.3ImageSegmentationforMetalMaterialAnalysis 266

11.3.1SegmentationofPorousMetalMaterials 267

11.3.2ClassificationofHoles 268

11.3.3ExperimentAnalysis 269

11.4ImageSegmentationforFoamMaterialAnalysis 272

11.4.1EigenvalueGradientClustering 272

11.4.2TheAlgorithm 274

11.4.3ExperimentAnalysis 276

11.5ImageSegmentationforCeramicsMaterialAnalysis 278

11.5.1Preprocessing 279

11.5.2RobustWatershedTransform 279

11.5.3ContourOptimization 282

11.5.4ExperimentAnalysis 284

11.6DiscussionandSummary 285 References 286

Index 289

AbouttheAuthors

TaoLei receivedaPhDininformationandcommunicationengineeringfromNorthwesternPolytechnical University,Xi’an,China,in2011.From2012to2014, hewasapostdoctoralresearchfellowwiththeSchool ofElectronicsandInformation,NorthwesternPolytechnicalUniversity,Xi’an,China.From2015to2016,he wasavisitingscholarwiththeQuantumComputation andIntelligentSystemsgroupatUniversityofTechnologySydney,Sydney,Australia.From2016to2019,he wasapostdoctoralresearchfellowwiththeSchoolof ComputerScience,NorthwesternPolytechnicalUniversity,Xi’an,China.Hehasauthoredandcoauthored 80+researchpaperspublishedinIEEETIP,TFS,TGRS, TGRSL,ICASSP,ICIP,andFG.

HeiscurrentlyaprofessorwiththeSchoolofElectronicInformationandArtificialIntelligence,ShaanxiUniversityofScienceandTechnology. Hiscurrentresearchinterestsincludeimageprocessing,patternrecognition,andmachinelearning. ProfessorLeiisanassociateeditorof FrontiersinSignalProcessing;heisalsoaguesteditorof RemoteSensing and IEEEJESTAR.HeisaseniormemberofIEEEandCCF.

AsokeK.Nandi receivedthedegreeofPhDinphysics fromtheUniversityofCambridge(TrinityCollege), Cambridge.Heheldacademicpositionsinseveraluniversities,includingOxford,ImperialCollegeLondon, Strathclyde,andLiverpool,aswellasFinlandDistinguishedProfessorshipinJyvaskyla(Finland).In2013 hemovedtoBrunelUniversityLondon,tobecome theChairandHeadofElectronicandComputer Engineering.

In1983ProfessorNandijointlydiscoveredthethree fundamentalparticlesknownasW+,W ,andZ0,providingtheevidencefortheunificationoftheelectromagneticandweakforces,forwhichtheNobel CommitteeforPhysicsin1984awardedtheprizeto histwoteamleadersfortheirdecisivecontributions.

Hiscurrentresearchinterestslieintheareasofsignalprocessingandmachinelearning,withapplicationstocommunications,geneexpressiondata,functionalmagneticresonancedata,machine conditionmonitoring,andbiomedicaldata.Hehasmademanyfundamentaltheoreticalandalgorithmiccontributionstomanyaspectsofsignalprocessingandmachinelearning.Hehasmuch expertiseinbigdata,dealingwithheterogeneousdataandextractinginformationfrommultiple datasetsobtainedindifferentlaboratoriesanddifferenttimes.ProfessorNandihasauthoredover 600technicalpublications,including260journalpapersaswellasfivebooks,entitled Condition MonitoringwithVibrationSignals (Wiley,2020), AutomaticModulationClassification:Principles, AlgorithmsandApplications (Wiley,2015), IntegrativeClusterAnalysisinBioinformatics (Wiley, 2015), BlindEstimationUsingHigher-OrderStatistics (Springer,1999),and AutomaticModulation RecognitionofCommunicationsSignals (Springer,1996).Theh-indexofhispublicationsis80(GoogleScholar)andhisErdösnumberis2.

ProfessorNandiisaFellowoftheRoyalAcademyofEngineering(UK)andofsevenother institutions.AmongthemanyawardshereceivedaretheInstituteofElectricalandElectronics Engineers(USA)HeinrichHertzAwardin2012,theGloryofBengalAwardforhisoutstanding achievementsinscientificresearchin2010,fromtheSocietyforMachineryFailurePrevention Technology,adivisionoftheVibrationInstitute(USA)in2000,theWaterArbitrationPrizeof theInstitutionofMechanicalEngineers(UK)in1999,andtheMountbattenPremiumoftheInstitutionofElectricalEngineers(UK)in1998.ProfessorNandiisanIEEEDistinguishedLecturer (2018–2019).ProfessorNandiistheFieldChiefEditorof FrontiersinSignalProcessing journal.

Imagesegmentationisoneofthemostchallengingfrontiertopicsincomputervision.Itprovidesan importantfoundationforimageanalysisandimagedescription,aswellasimageunderstanding. Thebasictaskofimagesegmentationistosegmentanimageintoseveralregionsthatarenonoverlapping,withtheseregionshavingaccurateboundaries.Thecurrenttaskofimagesegmentation notonlyrequiresaccurateregiondivisionbutalsorequiresalabeloutputondifferentregions,that is,semanticsegmentation.Withthedevelopmentofcomputervisionandartificialintelligence techniques,therolesandimportanceofimagesegmentationhavegrownsignificantly.Imagesegmentationhasbeenappliedwidelyinvariousfields,suchasindustryofdetection,intelligenttransportation,biologicalmedicine,agriculture,defense,andremotesensing.Atpresent,alargenumber ofimagesegmentationtechniqueshavebeenreported,andmanyofthemhavebeensuccessfully appliedtoactualproductdevelopment.However,thefastdevelopmentofimagingandartificial intelligencetechniquesrequiresimagesegmentationtodealwithincreasinglymorecomplextasks. Thesecomplextasksrequiremoreeffectiveandefficientimagesegmentationtechniques.Forthat reason,thereisagrowingbodyofliteratureresultingfromeffortsinresearchanddevelopmentby manyresearchgroupsaroundtheworld.Althoughtherearemanypublicationsonimagesegmentation,thereisonlyafewcollectionsofrecenttechniquesandmethodsdevotedtothefieldofcomputervision.

Thisbookattemptstosummarizeandimproveprinciples,techniques,andapplicationsofcurrent imagesegmentation.Itcanhelpresearchers,postgraduatestudents,andpracticingengineersfrom colleges,researchinstitutes,andenterprisestounderstandthefieldquickly.Firstly,basedonthis book,researcherscanquicklyunderstandthebasicprinciplesofimagesegmentationandrelated mathematicalmethodssuchasclustering,mathematicalmorphology,andconvolutionalneural networks.Secondly,basedonclassicimageprocessingandmachinelearningtheory,thebook introducesaseriousofrecentmethodstoachievefastandaccurateimagesegmentation.Finally, thebookintroducestheeffectofimagesegmentationinvariousapplicationscenariossuchastraffic,medicine,remotesensing,andmaterials.Inbrief,thebookaimstoinform,enthuse,andattract moreresearcherstoenterthefieldandthusdevelopfurtherimagesegmentationtheoryand applications.

Chapter1 isabriefintroductiontoimagesegmentationanditsapplicationsinvariousfields includingindustry,medicine,defense,andenvironment.Besides,anexampleispresentedtohelp readersunderstandimagesegmentationquickly.

Chapter2 isconcernedwithprinciplesofclustering.Threeclusteringapproachesthatareconcernedcloselywithimagesegmentation,arepresented,i.e. k-meansclustering,fuzzy c-meansclustering,spectralclustering,andgaussianmixedmodel.

Chapter3 isconcernedwithprinciplesofmathematicalmorphologysinceitisimportantin imageprocessing,especiallywatershedtransform,whichispopularforimagesegmentation.Inthis chapter,morphologicalfiltering,morphologicalreconstruction,andthewatershedtransformare presented.Besides,multivariatemathematicalmorphologyispresentedsinceitisimportantfor multichannelimageprocessing,whichcanhelpimagesegmentationformultichannelimages.

Chapter4 isconcernedwithprinciplesofneuralnetworkssincetheyareimportantinimage processing,especiallyconvolutionalneuralnetworks,whicharepopularforimagesegmentation. Inthischapter,artificialneuralnetworks,convolutionalneuralnetworks,andgraphconvolutional networksarepresented.

Chapter5 introducesafastimagesegmentationapproachbasedonfuzzyclustering.ThischapterillustratesrelatedworkswithimprovedFCMandpresentstwostrategies:localspatialinformationintegrationandmembershipfiltering,whichachievesbettersegmentationresults.

Chapter6 introducesafastandrobustimagesegmentationapproachbasedonthewatershed transform.Thischapterillustratesrelatedworkswithseededimagesegmentationandpresents anadaptivemorphologicalreconstructionmethodthatcanhelpthewatershedtransformto achievebettersegmentationresults.

Chapter7 introducesafastimagesegmentationapproachbasedonsuperpixelandtheGaussian mixedmodel(GMM).ThischapterillustratesrelatedworkswithsuperpixelalgorithmsandpresentstheideaofcombingsuperpixelandGMMforimagesegmentation.

Chapter8 introducestheapplicationofimagesegmentationfortrafficscenesegmentation.This chapterillustratesrelatedworkswithtrafficscenesemanticsegmentationandpresentstheideaof multi-scaleinformationfusioncombingnonlocalnetworkfortrafficscenesemanticsegmentation.

Chapter9 introducestheapplicationofimagesegmentationformedicalimages.Thischapter illustratesrelatedworkswithliverandliver-tumorsegmentationandpresentstwoapproaches forliverandliver-tumorsegmentationincludinglightweightV-netanddeformablecontextencodingnetwork.

Chapter10 introducestheapplicationofimagesegmentationforremotesensing.Thischapter illustratesrelatedworkswithchangedetectionandpresentstwoapproachesforchangedetection includingunsupervisedchangedetectionandend-to-endchangedetectionforveryhighresolution (VHR)remotesensingimages.

Chapter11 introducestheapplicationofimagesegmentationformaterialanalysis.Thischapter presentsthreeapplicationsfordifferentmaterialanalysisincludingmetallicmaterials,foammaterials,andceramicsmaterials.

Thisbookisup-to-dateandcoversalotoftheadvancedtechniquesusedforimagesegmentation, includingrecentlydevelopedmethods.Inaddition,thisbookprovidesnewmethods,including unsupervisedclustering,watershedtransform,anddeeplearningforimagesegmentation,which coversvarioustopicsofcurrentresearchinterest.Additionally,thebookwillprovideseveralpopularimagesegmentationapplicationsincludingtrafficscene,medicalimages,remotesensing images,andscanningelectronmicroscopeimages.Aworkofthismagnitudewill,unfortunately, containerrorsandomissions.Wewouldliketotakethisopportunitytoapologizeunreservedlyfor allsuchindiscretionsinadvance.Wewelcomecommentsandcorrections;pleasesendthemby emailtoa.k.nandi@ieee.orgorbyanyothermeans.

Acknowledgment

Itshouldberemarkedthatsomeoftheresearchresultsreportedinthisbookhavebeensourced fromrefereedpublications,arisingfromprojectsoriginallyfundedbytheRoyalSociety(UK)grant (IEC\NSFC\170396)andNSFC(China)grant(61811530325).

SEPTEMBER2022TAO LEIAND ASOKE K.NANDI

XI’AN,CHINA, AND LONDON,UK

ListofSymbolsandAbbreviations

Chapter1

SymbolsandAbbreviations

pii Thenumberofpixelsof i-thclasspredictedasbelongingto i-thclass

pij Thenumberofpixelsof i-thclasspredictedasbelongingto j-thclass

MPA Meanpixelaccuracy

TP Thetruepositivefraction

FP Thefalsepositivefraction

FN Thefalsenegativefraction

F1-ScoreTheharmonicmeanofprecisionandrecall

S(A)ThesetofsurfacevoxelsofA

Chapter2

SymbolsandAbbreviations

c Thenumberofclusters

N Thenumberofsamples

ϖ Thenumberofiterations

uik Thestrengthofthe i-thsample xi relativetothe k-thclustercenter vk

||xi vk||TheEuclideandistancebetweensample xi andclustercenter vk

η Theconvergencethreshold

B Themaximumnumberofiterations

V (0) Theinitializeclustercenter

vk Theclustercenter

λj TheLagrangemultiplier

U (0) Theinitializedmembershipmatrix

xxii ListofSymbolsandAbbreviations

U

Theantifuzzymembershipmatrix

SA Asimilaritymatrix

σ ThescaleparametersofGaussiankernelfunction

D Adegreematrix

Fe Thefeaturevector

N(X vk, Σk)The k-thGaussiandensityfunction

Σ

k Thecovariancematrix

π k ThePriorProbability

Chapter3

SymbolsandAbbreviations

A Aset

E Astructuringelement

f Animage

δ Thedilationoperation

ε Theerosionoperation

Cl Acompletelattice

Γ Acompletelattice

γ Openingoperator

ϕ Closingoperator

ψ Idempotent

s f Thefilterofsize

δ 1 g Geodesicdilation

g Amaskerimage

ε 1 i f Thegeodesicerosion

x Apixelinanimage

tmax Themaximumvalue

f c Thecomplementofagrayscaleimage f

ψ ∗ Thedualoperatorof ψ

P1 Thefunctionofthevariant r

P2 Thefunctionofthevariant g

P3 Thefunctionofthevariant b

ListofSymbolsandAbbreviations

Chapter4

SymbolsandAbbreviations

wi Theweight

b Thebiasterm

z Ahyperplane

fa Anactivationfunction

ar Anactivatedresult

xi Aninput

σ ( )Asigmoidfunction

β Alearnableparameterorafixed hyperparameter

M Themaximumnumberofiterations

∗ Theconvolutionoperation

F Theconvolutionkernelspacesize

K Thenumberofconvolutionkernels

Sc Theconvolutionkernelslidingstep

P Thefillingsizeofinputtensors

N Thenumberofcategoriesofclassificationtasks

l Thenumberofconvolutionallayers

Thecross-correlationoperation

err Theerrorterm

p Featuremaps

f l Thederivativeoftheactivationfunction

Thewideconvolution

rot180( )The180 ofrotation

F{ f }Thecorrespondingspectraldomainsignal

L Alaplacematrix

x Agraphsignal

g Afilter

HadamardProduct

g

θ Adiagonalmatrix

X AfeatureMatrix

x l i The i-thcolumnofmatrix

Tk Thechebyshevpolynomial

Θ Aparametermatrix

Z Theoutputaftergraphconvolution

H l Thenodevectorofthe l-thlayer

W l Theparametersofthecorrespondinglayer

MA Anadjacencymatrix

xxiv ListofSymbolsandAbbreviations

Chapter5

SymbolsandAbbreviations

g ={x1, x2, , xN

xi

pvk

vki

U =[uki]c × N

N

}Agrayscaleimage

Thegrayvalueofthe i-thpixel

Theprototypevalueofthe k-thcluster

Thefuzzymembershipvalue

Themembershippartitionmatrix

Thetotalnumberofpixels

c Thenumberofclusters

m

Gki

xr

Ni

dir

x i

ukl

ξl

τ

RC

fo

λL

η

gv

c

m

w

η

fn

U (0)

R

δ g f

δ

Rg f

ε

Theweightingexponent

Thefuzzyfactor

Theneighborof xi

Thesetofneighborswithinawindow around xi

ThespatialEuclideandistance

Ameanvalueormedianvalue

Thefuzzymembership

Thegraylevel

Thenumberofthegraylevels

Themorphologicalclosingreconstruction

Theoriginalimage

Thelagrangemultiplier

Aminimalerrorthreshold

Thegrayscalevalue

Theclusterprototypesvalue

Thefuzzificationparameter

Thesizeoffilteringwindow

Theminimalerrorthreshold

Anewimage

Theinitializedmembershippartition matrix

Themorphologicaldilation reconstruction

Thedilationoperation

Thepointwiseminimum

Themorphologicalerosion reconstruction

Theerosionoperation

Thepointwisemaximum

RC(g)Themorphologicalclose reconstruction

E

CV

PRI

ϖ

w

Astructuringelement

Overlapmeasure

Similaritymeasure

Theiterationnumber

Thesizeofthefilteringwindow

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.