Full Download Bird’s electrical circuit theory and technology, 7th edition john o. bird PDF DOCX

Page 1


Bird’sElectricalCircuitTheoryandTechnology, 7thEditionJohnO.Bird

https://ebookmass.com/product/birds-electrical-circuittheory-and-technology-7th-edition-john-o-bird/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

A Bird on Water Street Elizabeth O. Dulemba

https://ebookmass.com/product/a-bird-on-water-street-elizabeth-odulemba/

ebookmass.com

Knowing Science Bird

https://ebookmass.com/product/knowing-science-bird/

ebookmass.com

Bird Migration: A New Understanding John H. Rappole

https://ebookmass.com/product/bird-migration-a-new-understanding-johnh-rappole/

ebookmass.com

Financial Machina: Machine Learning For Finance: The Quintessential Compendium for Python Machine Learning For 2024 & Beyond Sampson

https://ebookmass.com/product/financial-machina-machine-learning-forfinance-the-quintessential-compendium-for-python-machine-learningfor-2024-beyond-sampson/ ebookmass.com

Fundamentals of Building Construction: Materials and Methods 6th Edition – Ebook PDF Version

https://ebookmass.com/product/fundamentals-of-building-constructionmaterials-and-methods-6th-edition-ebook-pdf-version/

ebookmass.com

Agriculture for Economic Development in Africa. Evidence from Ethiopia Emelie Rohne Till

https://ebookmass.com/product/agriculture-for-economic-development-inafrica-evidence-from-ethiopia-emelie-rohne-till/

ebookmass.com

Screening Ulster. Cinema and the Unionists Richard Gallagher

https://ebookmass.com/product/screening-ulster-cinema-and-theunionists-richard-gallagher/

ebookmass.com

Global Perspectives in FinTech: Law, Finance and Technology Hung-Yi Chen

https://ebookmass.com/product/global-perspectives-in-fintech-lawfinance-and-technology-hung-yi-chen/

ebookmass.com

Fractal Noise Christopher Paolini

https://ebookmass.com/product/fractal-noise-christopher-paolini-2/

ebookmass.com

Cat's Chance in Hell: An MM Paranormal Romance (Charm City

https://ebookmass.com/product/cats-chance-in-hell-an-mm-paranormalromance-charm-city-chronicles-book-2-meghan-maslow/

ebookmass.com

Bird’sElectricalCircuitTheoryandTechnology

Whatskillsareneededforacareerinelectricalandelectronicengineering?

Whenyoudecidetobecomeanelectricalorelectronicengineer,you’recommittingyourselftoaprofessionthat involvesdeveloping,designing,testingandsupervisingthemanufacturingofelectricaldevicesandequipment, includingnavigationsystems,electricmotorsandpowergenerationequipment.Therefore,tobeabletohandlesuch complexconceptsandtheories,andunderstandhowtoapplythemtoreal-lifeprojects,youneedtopossessaunique andtailoredskillset.Indeed,it’snosecretthatahighproportionofengineeringstudentsdropoutorchangecourse, withalackofpreparednessoftencitedasthebiggestreasonforthisunusuallyhighattritionrate.

So,toseeifyouhavewhatittakestostaythecourseanddevelopapromisingcareerinthefield,herearethetop10 electricalandelectronicengineeringskillsthatyouwillneed.

1.Problem-SolvingSkills

Regardlessoftheirdiscipline,engineersare,attheircore,problem-solvers.Thisisparticularlytrueinelectricaland electronicengineering,whereyouareoftenrequiredtothinklogicallyandapplyaparticularruleorconcepttoa probleminordertosolveit.

2.BasicCircuitKnowledge

Electricaldesigncanbecomeanextraordinarilycomplextopic,especiallywherelargeinstallationsareconcerned (suchasenergygrids),orevenwithinhighlyadvancedpiecesofsmallhardware,suchasthoseusedinsmartphones. Therefore,ifyouaretohaveanyhopesofgettingtogripswithitall,youneedtofirsthaveasolidunderstandingof basiccircuitdesign.

3.EnthusiasmforLearning

Althoughitisanessentialandunavoidablestep,havingadegreeorahighqualificationisnottheendoftheeducationalroadforanelectrical/electronicengineer;infact,itisjustthebeginningofyouractivelearningjourney. Muchofthisisborneoutofnecessity.Electricalandelectronicengineeringisoneofthefastestevolvingandfiercely competitiveengineeringfields,soyouwillneedtobeconstantlyuptodate(forexample,withIEEwiringregs,and particularlyifyouworkintheproductdesignandmanufacturingsector).

4.CommunicationSkills

Thereisbarelyaprofessionintheworldwheretheabilitytocommunicateisnotimportant,andelectricaland electronicengineeringisnodifferent.Whetherit’sunderstandingtheneedsandrequirementsofaclient,working withinprojectteamstodeveloporimproveapieceofhardware/software,orworkingwithotherdepartmentsand stakeholders,communicationskillsareanessentialpartoftherole.

5.OrganisationalSkills

Theabilitytoorganiseandmanageyourtimeisimportantforanelectrical/electronicengineer,asmuchofyourwork willlikelybetime-sensitiveorproject-based,regardlessofwhichareaofengineeringyouspecialisein.

6.NumericalSkills

Acommonissueforelectricalandelectronicengineeringstudentsisthattheirmathematicalbackgroundisnotstrong enough.Therefore,itisimportanttofocusonmathematicsatcollegeoruniversity.Understandingengineeringis extremelydifficultwithoutagoodknowledgeofmathematics.

7.WorkEthic

Astrongworkethicisanotherhugelyimportantpartofasuccessfulengineer’smakeup.Therefore,youmustbe determinedandwillingtoworkuntilyoufindasolutiontowhatevertechnicalproblemsyouencounterinyourrole.

8.CriticalThinkingSkills

Criticalthinkingisabroadskillthatcanbeappliedtoawidearrayofsituations,butitisjustasimportantinelectrical andelectronicengineering.Possessingtheabilitytoapproachthingsdifferentlyortakeadifferentviewtothenorm canmakeabigdifferencewhenyouaretryingtoachieveacertaingoalwithyourproject.

9.CreativeThinkingSkills

Engineersarenotjustproblem-solvers-theyarepioneers.Whetherit’sonagrandscaleorasimpleone,thesolutions theyprovidechangethewaywelive;therefore,tobeabletoexploreandimplementsuchradicalideas,youneed tobeabletothink‘outsidethebox’.Thisisespeciallytrueinthecommercialsector,whereelectronicsgiantsare constantlycompetingtodevelopnewandexcitingtechnologies.Youcanhavealltheknowledgeintheworld,butif youdon’tknowhowtobecreativeandexplorenewpossibilitieswithit,thenyou’regoingtobeleftbehind.

10.ProgrammingSkills

Althoughtheimportanceofprogrammingishigherinsomeareasofelectricalandelectronicengineeringthanothers, itisstillaveryusefulskilltopossess,particularlywhenworkingwithlow-levelembeddedsystemsorwhenanalysing data.

Gorodenkoff/Shutterstock.com

Asyoucansee,thecareerofanelectrical/electronicengineerisdemanding.Apartfrompossessingtherequisite technicalknowledge,itisalsomandatoryforyoutoincorporateotherkeysoftskillsintoyouremployability repertoire,suchasdecision-making,leadershipandattentiontodetail.Therewardsarehighthough,with electricalandelectronicengineeringoneofthehighest-payingsectorsintheindustry. Hopefully, Bird’sElectricalCircuitTheoryandTechnology willhelpyouonyourfirstimportantstepsina longcareerinelectricaland/orelectronicengineering. Thereisalottolearn;staywithit-itwillbeworthit.

Bird’sElectricalCircuitTheoryandTechnology

Nowinitsseventhedition, Bird’sElectricalCircuitTheoryandTechnology explainselectricalcircuittheoryandassociatedtechnologytopicsinastraightforwardmanner,supportedbypracticalengineeringexamplesandapplications toensurethatreaderscanrelatetheorytopractice.

Theextensiveandthoroughcoverage,containingover800workedexamples,makesthisanexcellenttextfora rangeofcourses,inparticularforDegreeandFoundationDegreeinelectricalprinciples,circuittheory,telecommunications,andelectricaltechnology.Thetextincludessomeessentialmathematicsrevision,togetherwithallthe essentialelectricalandelectronicprinciplesforBTECNationalandDiplomasyllabusesandCity&GuildsTechnicianCertificateandDiplomasyllabusesinengineering.Thismaterialwillbeagreatrevisionforthoseonhigher courses.

Thiseditionincludesseveralnewsections,includingglassbatteries,climatechange,thefutureofelectricityproductionanddiscussionsconcerningeverydayaspectsofelectricity,suchaswattsandlumens,electricalsafety,ACvs DC,andtrendingtechnologies.

Itscompanionwebsiteat www.routledge.com/cw/bird providesresourcesforbothstudentsandlecturers,including fullsolutionsforall1400furtherquestions,listsofessentialformulae,andillustrations,aswellasfullsolutionsto revisiontestsforcourseinstructors.

JohnBird,BSc(Hons),CEng,CMath,CSci,FIMA,FIET,FCollT,istheformerHeadofAppliedElectronicsinthe FacultyofTechnologyatHighburyCollege,Portsmouth,UK.Morerecently,hehascombinedfreelancelecturing attheUniversityofPortsmouthwithExaminerresponsibilitiesforAdvancedMathematicswithCity&Guildsand examiningfortheInternationalBaccalaureateOrganisation.Hehasover45years’experienceofsuccessfullyteaching,lecturing,instructing,training,educating,andplanningtraineeengineers’studyprogrammes.Heistheauthorof 146textbooksonengineering,scienceandmathematicalsubjects,withworldwidesalesofoveronemillioncopies. Heisacharteredengineer,acharteredmathematician,acharteredscientistandaFellowofthreeprofessionalinstitutions.HehasrecentlyretiredfromlecturingattheRoyalNavy’sDefenceCollegeofMarineEngineeringinthe DefenceCollegeofTechnicalTrainingatH.M.S.Sultan,Gosport,Hampshire,UK,oneofthelargestengineering trainingestablishmentsinEurope.

Besidesthistext, ElectricalCircuitTheoryandTechnology7th Edition, otherbookswrittenbyJohnBird,andpublishedbyRoutledge,include:

• Bird’sBasicEngineeringMathematics8th Edition

• Bird’sEngineeringMathematics9th Edition

• Bird’sHigherEngineeringMathematics9th Edition

• Bird’sComprehensiveEngineeringMathematics2nd Edition

• MathematicsPocketBookforEngineersandScientists5th Edition

• Bird’sElectricalandElectronicPrinciplesandTechnology7th Edition

• ScienceandMathematicsforEngineering6th Edition

• MechanicalEngineeringPrinciples4th Edition

• MechanicsofSolids3rd Edition

Bird’sElectricalCircuitTheoryand Technology

SeventhEdition

JohnBird

Seventheditionpublished2022

byRoutledge

2ParkSquare,MiltonPark,Abingdon,Oxon,OX144RN

andbyRoutledge

605ThirdAvenue,NewYork,NY10158

RoutledgeisanimprintoftheTaylor&FrancisGroup,aninformabusiness

©2022JohnBird

TherightofJohnBirdtobeidentifiedasauthorofthisworkhasbeenassertedbyhiminaccordancewithsections77and78of theCopyright,DesignsandPatentsAct1988.

Allrightsreserved.Nopartofthisbookmaybereprintedorreproducedorutilisedinanyformorbyanyelectronic,mechanical, orothermeans,nowknownorhereafterinvented,includingphotocopyingandrecording,orinanyinformationstorageor retrievalsystem,withoutpermissioninwritingfromthepublishers.

Trademarknotice:Productorcorporatenamesmaybetrademarksorregisteredtrademarks,andareusedonlyforidentification andexplanationwithoutintenttoinfringe.

FirsteditionpublishedbyNewnes1997

SixtheditionpublishedbyRoutledge2017

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

Names:Bird,J.O.,author

Title:Bird’selectricalcircuittheoryandtechnology/JohnBird. Othertitles:Electricalcircuittheoryandtechnology

Description:Seventh.|NewYork:Routledge,2021.|Includesindex. Identifiers:LCCN2021003948(print)|LCCN2021003949(ebook)|ISBN 9780367672249(hbk)|ISBN9780367672225(pbk)|ISBN9781003130338 (ebk)

Subjects:LCSH:Electriccircuits.|Electricalengineering. Classification:LCCTK454.B482021(print)|LCCTK454(ebook)|DDC 621.319/2–dc23

LCrecordavailableat https://lccn.loc.gov/2021003948

LCebookrecordavailableat https://lccn.loc.gov/2021003949

ISBN:978-0-367-67224-9(hbk)

ISBN:978-0-367-67222-5(pbk) ISBN:978-1-003-13033-8(ebk)

TypesetinTimes byKnowledgeWorksGlobalLtd.

Accessthecompanionwebsite: www.routledge.com/cw/bird

InMemoryofElizabeth

1Somemathematicsrevision

1.1Useofcalculatorandevaluatingformulae4

1.9Solvingsimultaneousequations

5.1Resistorconstruction

5.3Temperaturecoefficientofresistance73

5.4Resistorcolourcodingandohmicvalues75

6Batteriesandalternativesourcesofenergy78

6.1Introductiontobatteries 79

6.2Somechemicaleffectsofelectricity79

6.5e.m.f.andinternalresistanceofacell81

7Seriesandparallelnetworks

7.1Seriescircuits

7.2Potentialdivider

7.3Parallelnetworks

7.4Currentdivision

7.5Loadingeffect

7.6Potentiometersandrheostats

7.7Relativeandabsolutevoltages

7.8Earthpotentialandshortcircuits110

7.9Wiringlampsinseriesandinparallel110

Practicallaboratoryexperiment:

8Capacitorsandcapacitance

8.1Introductiontocapacitors

8.2Electrostaticfield

8.3Electricfieldstrength

8.4Capacitance

8.5Capacitors

8.6Electricfluxdensity

8.7Permittivity

8.8Theparallelplatecapacitor

8.9Capacitorsconnectedinparallel andseries

8.10Dielectricstrength

8.11Energystored

8.12Practicaltypesofcapacitor

8.13Supercapacitors

8.14Dischargingcapacitors

9.1Introductiontomagnetismand

9.2Magneticfields

9.3Magneticfluxandfluxdensity

9.4Magnetomotiveforceandmagnetic fieldstrength 132

9.5Permeabilityand B–H curves 133

9.6Reluctance 134

9.7Compositeseriesmagneticcircuits136

9.8Comparisonbetweenelectricaland magneticquantities 139

9.9Hysteresisandhysteresisloss

10.4Principleofoperationofasimple

12Electricalmeasuringinstrumentsand measurements

12.8Instrument‘loading’effect 171 12.9Theoscilloscope 173

13Semiconductordiodes

14Transistors 206

14.1Transistorclassification 207

14.2Bipolarjunctiontransistors(BJTs)207

14.3Transistoraction 208

14.4Leakagecurrent 209

14.5Biasandcurrentflow 210

14.6Transistoroperatingconfigurations210

14.7Bipolartransistorcharacteristics211

14.8Transistorparameters 212

14.9Currentgain 213

14.10TypicalBJTcharacteristicsand maximumratings 214

14.11Fieldeffecttransistors 215

14.12Fieldeffecttransistorcharacteristics216

14.13TypicalFETcharacteristicsand maximumratings 217

14.14Transistoramplifiers 217 14.15Loadlines 219

16.8Rectification

16.9Smoothingoftherectifiedoutputwaveform273

Practicallaboratoryexperiment:Useofan oscilloscopetomeasurevoltage,frequencyand phase

Practicallaboratoryexperiment:Useofan oscilloscopewithabridgerectifiercircuit277

15.3Thesuperpositiontheorem

15.4Generald.c.circuittheory

15.5Thévenin’stheorem

15.6Constant-currentsource

15.7Norton’stheorem

15.8ThéveninandNortonequivalentnetworks248

15.9Maximumpowertransfertheorem251

Practicallaboratoryexperiment: Measurementoftheinductanceofacoil299

Practicallaboratoryexperiment:Seriesa.c. circuitandresonance

Practicallaboratoryexperiment:Parallela.c. circuitandresonance 320

Whyarerelayssoimportantinelectrical circuits? 322

19d.c.transients 324

19.1Introduction 325

19.2Chargingacapacitor 325

19.3Timeconstantfora C–R circuit 326

19.4Transientcurvesfora C–R circuit326

19.5Dischargingacapacitor 330

19.6Cameraflash 332

19.7Currentgrowthinan L–R circuit332

19.8Timeconstantforan L–R circuit333

19.9Transientcurvesforan L–R circuit333

19.10Currentdecayinan L–R circuit 335

19.11Switchinginductivecircuits 337

19.12Theeffectoftimeconstantona rectangularwaveform 337

Practicallaboratoryexperiment:Charging anddischargingacapacitor 339

20Operationalamplifiers 341

20.1Introductiontooperationalamplifiers342

20.2Someopampparameters 343

20.3Opampinvertingamplifier 344

20.4Opampnon-invertingamplifier 346

20.5Opampvoltage-follower 347

20.6Opampsummingamplifier 347

20.7Opampvoltagecomparator 348

20.8Opampintegrator 349

20.9Opampdifferentialamplifier 350

20.10Digitaltoanalogue(D/A)conversion352

20.11Analoguetodigital(A/D)conversion352

21.7Generatingelectricalpowerusingoil362

21.8Generatingelectricalpowerusing naturalgas 363

21.9Generatingelectricalpowerusing nuclearenergy 364

21.10Generatingelectricalpowerusinghydro power 366

21.11Generatingelectricalpowerusing pumpedstorage

21.12Generatingelectricalpowerusingwind368 21.13Generatingelectricalpowerusingtidal power

21.14Generatingelectricalpowerusingbiomass369 21.15Generatingelectricalpowerusingsolar energy

21.16Harnessingthepowerofwind,tideand sunonan‘energyisland’–afuture possibility?

22Three-phasesystems

22.3Starconnection

22.4Deltaconnection 378 22.5Powerinthree-phasesystems 379 22.6Measurementofpowerinthree-phase systems 381

22.7Comparisonofstaranddeltaconnections386 22.8Advantagesofthree-phasesystems386

23Transformers

389

23.1Introduction 390 23.2Transformerprincipleofoperation390 23.3Transformerno-loadphasordiagram392 23.4e.m.f.equationofatransformer 394 23.5Transformeron-loadphasordiagram396 23.6Transformerconstruction 397 23.7Equivalentcircuitofatransformer398 23.8Regulationofatransformer 399 23.9Transformerlossesandefficiency400 23.10Resistancematching 403 23.11Autotransformers 405 23.12Isolatingtransformers 407 23.13Three-phasetransformers 407 23.14Currenttransformers 408 23.15Voltagetransformers 409

21.1Introduction

21.3Evidenceofrapidclimatechange359

21.4Consequencesofglobalclimatechange359

21.5Howdoeselectricpowerproduction affecttheglobalclimate? 360

21.6Generatingelectricalpowerusingcoal361

24d.c.machines 412

24.1Introduction 413

24.2Theactionofacommutator 413

24.3d.c.machineconstruction 414

24.4Shunt,seriesandcompoundwindings414

24.5e.m.f.generatedinanarmaturewinding415

24.6d.c.generators 416

24.7Typesofd.c.generatorandtheir characteristics 417

24.8d.c.machinelosses 421

24.9Efficiencyofad.c.generator 421

24.10d.c.motors 422

24.11Torqueofad.c.machine 423

24.12Typesofd.c.motorandtheir characteristics 424

24.13Theefficiencyofad.c.motor 428

24.14d.c.motorstarter 430

24.15Speedcontrolofd.c.motors 431

24.16Motorcooling 433

25Three-phaseinductionmotors 434

25.1Introduction 435

25.2Productionofarotatingmagneticfield435

25.3Synchronousspeed 437

25.4Constructionofathree-phaseinduction motor 438

25.5Principleofoperationofathree-phase inductionmotor 438

25.6Slip 439

25.7Rotore.m.f.andfrequency 440

25.8Rotorimpedanceandcurrent 441

25.9Rotorcopperloss 441

25.10Inductionmotorlossesandefficiency442

25.11Torqueequationforaninductionmotor443

25.12Inductionmotortorque–speed characteristics 445

25.13Startingmethodsforinductionmotors446

25.14Advantagesofsquirrel-cageinduction motors 447

25.15Advantagesofwoundrotorinduction motor 448

25.16Doublecageinductionmotor 448

25.17Usesofthree-phaseinductionmotors448

26Revisionofcomplexnumbers 459

26.1Introduction 459

26.2OperationsinvolvingCartesiancomplex

26.4Thepolarformofacomplexnumber464

26.5Multiplicationanddivisionusing complexnumbersinpolarform 465

26.6DeMoivre’stheorem–powersandroots ofcomplexnumbers 467

27Applicationofcomplexnumberstoseries a.c.circuits

28Applicationofcomplexnumberstoparallel

29Powerina.c.circuits

29.4Useofcomplexnumbersfor

29.5Powerfactorimprovement

30.2Balanceconditionsforana.c.bridge507

30.4Workedproblemsona.c.bridges513 31SeriesresonanceandQ-factor

31.6Bandwidth 525

31.7Smalldeviationsfromtheresonant frequency 529

32ParallelresonanceandQ-factor 532

32.1Introduction 532

32.2The LR–C parallelnetwork 533

32.3Dynamicresistance 534

32.4The LR–CR parallelnetwork 534

32.5Q-factorinaparallelnetwork 535

32.6Furtherworkedproblemsonparallel resonanceandQ-factor 539

RevisionTest9 542

Whateverydayitemsinthehomeusemotors?543

33Introductiontonetworkanalysis 544

33.1Introduction 544

33.2Solutionofsimultaneousequations usingdeterminants 545

33.3NetworkanalysisusingKirchhoff’slaws547

34Mesh-currentandnodalanalysis 554

34.1Mesh-currentanalysis 554

34.2Nodalanalysis 558

35Thesuperpositiontheorem 565

35.1Introduction 565

35.2Usingthesuperpositiontheorem565

35.3Furtherworkedproblemsonthe superpositiontheorem 570

36Thévenin’sandNorton’stheorems 575

36.1Introduction 575

36.2Thévenin’stheorem 576

36.3FurtherworkedproblemsonThévenin’s theorem 582

36.4Norton’stheorem 586

36.5ThéveninandNortonequivalentnetworks593

39Complexwaveforms 626

39.1Introduction 627

39.2Thegeneralequationforacomplex waveform 627

39.3Harmonicsynthesis 628

39.4Fourierseriesofperiodicand non-periodicfunctions 636

39.5EvenandoddfunctionsandFourier seriesoveranyrange 641

39.6r.m.s.value,meanvalueandtheform factorofacomplexwave 645

39.7Powerassociatedwithcomplexwaves648

39.8Harmonicsinsingle-phasecircuits650

39.9Furtherworkedproblemsonharmonics insingle-phasecircuits 653

39.10Resonanceduetoharmonics 657

39.11Sourcesofharmonics 659

40Anumericalmethodofharmonicanalysis663

40.1Introduction 663

40.2Harmonicanalysisondatagivenin tabularorgraphicalform 663

40.3Complexwaveformconsiderations667

41Magneticmaterials 670

41.1Revisionoftermsandunitsusedwith magneticcircuits 671

41.2Magneticpropertiesofmaterials672

41.3Hysteresisandhysteresisloss 673

41.4Eddycurrentloss 677

41.5Separationofhysteresisandeddy currentlosses 680

41.6Non-permanentmagneticmaterials682

41.7Permanentmagneticmaterials 684

37Delta–starandstar–deltatransformations601

37.1Introduction 601

37.2Deltaandstarconnections 601

37.3Delta–startransformation 602

37.4Star–deltatransformation 610

38Maximumpowertransfertheoremsand impedancematching 614

38.1Maximumpowertransfertheorems615

38.2Impedancematching 620

42Dielectricsanddielectricloss 688

42.1Electricfields,capacitanceandpermittivity688

42.2Polarisation 689

42.3Dielectricstrength 689

42.4Thermaleffects 690

42.5Mechanicalproperties 691

42.6Typesofpracticalcapacitor 691

42.7Liquiddielectricsandgasinsulation691

42.8Dielectriclossandlossangle 691

43Fieldtheory 695

43.1Fieldplottingbycurvilinearsquares696

43.2Capacitancebetweenconcentriccylinders699

43.3Capacitanceofanisolatedtwinline704

43.4Energystoredinanelectricfield707

43.5Inducede.m.f.andinductance 709

43.6Inductanceofaconcentriccylinder(or coaxialcable) 709

43.7Inductanceofanisolatedtwinline712

43.8Energystoredinanelectromagneticfield715

44Attenuators 718

44.1Introduction 719

44.2Characteristicimpedance 719

44.3Logarithmicratios 721

44.4SymmetricalT-and π-attenuators723

44.5Insertionloss 728

44.6AsymmetricalT-and π-sections731

44.7TheL-sectionattenuator 734

44.8Two-portnetworksincascade 736

44.9 ABCD parameters 739

44.10 ABCD parametersfornetworks 742

44.11Characteristicimpedanceintermsof ABCD parameters 748

47Transmissionlines 801

47.1Introduction 801

47.2Transmissionlineprimaryconstants802

47.3Phasedelay,wavelengthandvelocityof propagation 803

47.4Currentandvoltagerelationships804

47.5Characteristicimpedanceand propagationcoefficientintermsofthe primaryconstants 806

47.6Distortionontransmissionlines 810

47.7Wavereflectionandthereflection coefficient 812

47.8Standing-wavesandthestanding-wave ratio 815

48TransientsandLaplacetransforms 820

48.1Introduction 821

48.2Responseof R–C seriescircuittoastep input 821

48.3Responseof R–L seriescircuittoastep input 823

48.4 L–R–C seriescircuitresponse 826

48.5IntroductiontoLaplacetransforms829

48.6InverseLaplacetransformsandthe solutionofdifferentialequations834

48.7Laplacetransformanalysisdirectlyfrom thecircuitdiagram 839

48.8 L–R–C seriescircuitusingLaplace transforms 849

48.9Initialconditions 852

45Filternetworks 753

45.1Introduction 753

45.2Basictypesoffiltersections 754

45.3Thecharacteristicimpedanceandthe attenuationoffiltersections 756

45.4Laddernetworks 757

45.5Low-passfiltersections 758

45.6High-passfiltersections 764

45.7Propagationcoefficientandtimedelayin filtersections 769

45.8‘m-derived’filtersections 775

45.9Practicalcompositefilters 780

46Magneticallycoupledcircuits 783

46.1Introduction 783

46.2Self-inductance 783

46.3Mutualinductance 784

46.4Couplingcoefficient 785

46.5Coilsconnectedinseries 786

46.6Coupledcircuits 789

46.7Dotruleforcoupledcircuits 794

Preface

Bird’sElectricalCircuitTheoryandTechnology 7th Edition providescoverageforawiderangeof coursesthatcontainelectricalprinciples,circuittheoryandtechnologyintheirsyllabuses,from IntroductorytoDegreelevel -andincludingEdexcelBTEC Levels2to5NationalCertificate/Diploma,Higher NationalCertificate/DiplomaandFoundationDegrees inEngineering

Inthisnewseventhedition, newmaterialadded includesmentionofthevasttopicofglobalclimate changeandthefutureofelectricityproduction,the developmentofglassbatteries,andsomepracticallaboratoryexperimentshavebeenaddedatappropriate placesinthetext,alongwithotherminoradditionsand modifications.Thetextisessentially,asthetitlesuggests,allabout electricalcircuittheory,andtoadd toomanypracticaldescriptionswouldhaveunduly increaseditsextent.However,anumberofassociated electricaltopics,hopefullyofinterestandhelptoreaders,havebeenadded,eachononeortwopages,some withphotographs,addingpractical,everydayaspects ofelectricity,showinghowtheprinciplesandtheory explainedinthetextarecommonlyused.

Thetextissetoutin fivesections asfollows:

SECTION1,comprising chapters1 and 2,involves Revisionofsomebasicmathematics neededforelectricalandelectronicprinciplesandingeneralenginerring.

SECTION2, involving chapters3 to 14,contains ‘Basicelectricalengineeringprinciples’ whichany studentwishingtoprogressinelectricalengineering wouldneedtoknow.Anintroductiontounits,electrical circuits,resistancevariation,batteriesandalternative sourcesofenergy,seriesandparallelcircuits,capacitors andcapacitance,magneticcircuits,electromagnetism, electromagneticinduction,electricalmeasuringinstrumentsandmeasurements,semiconductordiodesand transistorsareallincludedinthissection.

SECTION3,involving chapters15 to 25,contains ‘Electricalprinciplesandtechnology’ suitableasa

lead-intoDegreestudies,andsuitableforNationalCertificate,NationalDiplomaandCity&Guildscourses inelectricalandelectronicengineering.Directcurrentcircuittheory,alternatingvoltagesandcurrents, single-phaseseriesandparallelcircuits,d.c.transients, operationalamplifiers,globalclimatechangeandthe futureofelectricityproduction,three-phasesystems, transformers,d.c.machinesandthree-phaseinduction motorsareallincludedinthissection.

SECTION4,involving chapters26 to 48,contains ‘Advancedcircuittheoryandtechnology’ suitable forDegree,Foundationdegree,HigherNationalCertificate/DiplomaandCity&Guildscoursesinelectricalandelectronic/telecommunicationsengineering. Thethreeearliersectionsofthebookwillprovideavaluablereference/revisionforstudentsatthis level.

Complexnumbersandtheirapplicationtoseriesand parallelnetworks,powerina.c.circuits,a.c.bridges, seriesandparallelresonanceandQ-factor,network analysisinvolvingKirchhoff’slaws,meshandnodal analysis,thesuperpositiontheorem,Thévenin’sand Norton’stheorems,delta-starandstar-deltatransforms, maximumpowertransfertheoremsandimpedance matching,complexwaveforms,Fourierseries,harmonicanalysis,magneticmaterials,dielectricsand dielectricloss,fieldtheory,attenuators,filternetworks, magneticallycoupledcircuits,transmissionlinetheory andtransientsandLaplacetransformsareallincluded inthissection.

SECTION5 providesashort, ‘Generalreference’ forstandardelectricalquantities-theirsymbolsand units,theGreekalphabet,commonprefixesandresistor colourcodingandohmicvalues.

Atthebeginningofeachofthe48chaptersabrief explanationastowhyitisimportanttounderstand thematerialcontainedwithinthatchapterisincluded, togetherwithalistof learningobjectives

Attheendofeachofthefirstfoursectionsofthetextis ahandyreferenceofthe mainformulae used.

Thereareanumberofinternetdownloadsfreely availabletobothstudentsandlecturers/instructorsat www.routledge.com/cw/bird;thesearelistedinthe right-handcolumnonthispage.

Itisnotpossibletoacquireathoroughunderstanding ofelectricalprinciples,circuittheoryandtechnology withoutworkingthroughalargenumberofnumerical problems.Itisforthisreasonthat Bird’sElectricalCircuitTheoryandTechnology7th Edition containsnearly 800detailedworkedproblems,togetherwithsome 1350furtherproblems(withanswersatthebackof thebook),arrangedwithin 205PracticeExercises that appeareveryfewpagesthroughoutthetext.Some 1150 linediagrams furtherenhancetheunderstandingofthe theory.

FourteenRevisionTests havebeenincluded,interspersedwithinthetexteveryfewchapters.Forexample,RevisionTest1testsunderstandingof chapters3 to 6,RevisionTest2testsunderstandingof chapters 7 to 9,RevisionTest3testsunderstandingofchapters10to14andsoon.TheseRevisionTestsdonot haveanswersgivensinceitisenvisagedthatlecturers/instructorscouldsettheRevisionTestsforstudents toattemptaspartoftheircoursestructure.Lecturers/ instructorsmayobtainacomplimentarysetofsolutions oftheRevisionTestsinthe Instructor’sSection at www.routledge.com/cw/bird

‘LearningbyExample’ isattheheartof Bird’sElectricalCircuitTheoryandTechnology7th Edition

JOHNBIRD

FormerlyRoyalNavalDefenceCollegeofMarine Engineering,HMSSultan, UniversityofPortsmouth andHighburyCollege,Portsmouth

FreeWebdownloads

Thefollowingsupportmaterialisavailablefrom http://www.routledge.com/cw/bird

ForStudents:

1.Fullsolutionstoall1350furtherquestions inthePracticeExercises

2.Asetofformulaeforeachofthefour sectionsofthetext

3.68multiplechoicequestionsforthemathematicsrevisionofchapters1and2

4.Informationon38Engineers/Scientists mentionedinthetext

ForLecturers/Instructors:

1–4.Asperstudents1–4above

5.Fullsolutionsandmarkingschemefor eachofthe14RevisionTests;also,eachtest maybedownloaded.

6.All1150illustrationsusedinthetextmay bedownloadedforuseinPowerPointpresentations

Section1 Revisionofsomebasic mathematics

Chapter1

Somemathematicsrevision

Whyitisimportanttounderstand: Somemathematicsrevision Mathematicsisavitaltoolforprofessionalandcharteredengineers.Itisusedinelectricalandelectronicengineering,inmechanicalandmanufacturingengineering,incivilandstructuralengineering, innavalarchitectureandmarineengineeringandinaeronauticalandrocketengineering.Inthesevariousbranchesofengineering,itisveryoftenmuchcheaperandsafertodesignyourartefactwiththe aidofmathematics–ratherthanthroughguesswork.‘Guesswork’maybereasonablysatisfactoryif youaredesigninganexactlysimilarartefactasonethathasalreadyprovensatisfactory;however, theclassificationsocietieswillusuallyrequireyoutoprovidethecalculationsprovingthattheartefactissafeandsound.Moreover,thesecalculationsmaynotbereadilyavailabletoyouandyoumay havetoprovidefreshcalculations,toprovethatyourartefactis‘roadworthy’.Forexample,ifyou designatallbuildingoralongbridgeby‘guesswork’,andthebuildingorbridgedonotprovetobe structurallyreliable,itcouldcostyouafortunetorectifythedeficiencies.Thiscostmaydwarfthe initialestimateyoumadetoconstructthesestructures,andcauseyoutogobankrupt.Thus,without mathematics,theprospectiveprofessionalorcharteredengineerisveryseverelydisadvantaged.Using acalculator,evaluatingformulae,manipulatingfractions,understandingandperformingcalculations withpercentages,appreciatingratiosanddirectandinverseproportion,understandingandusingthe lawsofindices,expandingequationscontainingbrackets,solvingsimpleequations,transposingformulaeandsolvingsimultaneousequationsareallimportantaspectsofearlymathematicsthatneedtobe revised.

Knowledgeofmathematicsprovidesthebasisforallengineering.

Attheendofthischapteryoushouldbeableto:

• useacalculatorandevaluateformulae

• manipulatefractions

• understandandperformcalculationswithpercentages

• appreciateratiosanddirectandinverseproportion

• understandandusethelawsofindices

• expandequationscontainingbrackets

• solvesimpleequations

• transposeformulae

• solvesimultaneousequationsintwounknowns

1.1Useofcalculatorandevaluating formulae

Inengineering,calculationsoftenneedtobeperformed. Forsimplenumbersitisusefultobeabletousementalarithmetic.However,whennumbersarelargeran electroniccalculatorneedstobeused.

Inengineeringcalculationsitisessentialtohavea scientificnotationcalculator whichwillhaveallthe necessaryfunctionsneeded,andmore.Thischapter assumesyouhavea CASIOfx-991ESPLUScalculator,orsimilar.Ifyoucanaccuratelyuseacalculator,yourconfidencewithengineeringcalculationswill improve.

Checkthatyoucanuseacalculatorinthefollowing PracticeExercise.

PracticeExercise1Useofcalculator (Answersonpage881)

1. Evaluate 378.37 298.651 + 45.64 94.562

2. Evaluate 17.35 × 34.27 41.53 ÷ 3.76 correctto3decimal places

3. Evaluate (4.527 + 3.63) (452.51 ÷ 34.75) + 0.468correct to5significantfigures

4. Evaluate52.34 (912.5 ÷ 41.46) (24.6 13.652) correctto 3decimalplaces

5. Evaluate 52.14 × 0.347 × 11.23 19.73 ÷ 3.54 correctto4 significantfigures

6. Evaluate6.852 correctto3decimalplaces

7. Evaluate (0.036)2 inengineeringform

8. Evaluate1.33

9. Evaluate (0.38)3 correctto4decimalplaces

10. Evaluate (0.018)3 inengineeringform

11. Evaluate 1 0.00725 correctto1decimalplace

12. Evaluate 1 0.065 1 2.341 correctto4significantfigures

13. Evaluate2.14

14. Evaluate (0.22)5 correctto5significant figuresinengineeringform

15. Evaluate (1.012)7 correctto4decimal places

16. Evaluate1.13 + 2.94 4.42 correctto4significantfigures

17. Evaluate √34528correctto2decimalplaces

18. Evaluate 3 √17correctto3decimalplaces

19. Evaluate 6 √2451 4 √46correctto3decimal places

Expresstheanswerstoquestions20to23inengineeringform.

20. Evaluate5 × 10 3 × 7 × 108

21. Evaluate 6 × 103 × 14 × 10 4 2 × 106

22. Evaluate 56.43 × 10 3 × 3 × 104 8.349 × 103 correctto 3decimalplaces

23. Evaluate 99 × 105 × 6.7 × 10 3 36.2 × 10 4 correctto4 significantfigures

24. Evaluate 4 5 1 3 asadecimal,correctto4 decimalplaces

25. Evaluate 2 3 1 6 + 3 7 asafraction

26. Evaluate2 5 6 + 1 5 8 asadecimal,correctto4 significantfigures

27. Evaluate5 6 7 3 1 8 asadecimal,correctto4 significantfigures

28. Evaluate 3 4 × 4 5 2 3 ÷ 4 9 asafraction

29. Evaluate8 8 9 ÷ 2 2 3 asamixednumber

30. Evaluate3 1 5 × 1 1 3 1 7 10 asadecimal, correctto3decimalplaces

31. Evaluate (4 1 5 1 2 3 ) (3 1 4 × 2 3 5 ) 2 9 asadecimal, correctto3significantfigures

Inquestions32to38,evaluatecorrectto4decimal places.

32. Evaluatesin67◦

33. Evaluatetan71◦

34. Evaluatecos63.74◦

35. Evaluatetan39.55◦ sin52.53◦

36. Evaluatesin(0.437rad)

37. Evaluatetan(5.673rad)

38. Evaluate (sin42.6◦)(tan83.2◦) cos13.8◦

Inquestions39to45,evaluatecorrectto4significantfigures.

39. 1.59π

40. 2.7(π 1)

41. π2 (√13 1)

42. 8.5e 2.5

43. 3e(2π 1)

44. √[ 5.52π 2e 2 × √26.73 ]

45.   e(2 √3) π × √8.57 

Evaluationofformulae

Thestatement y = mx + c iscalleda formula foryin termsofm,xandc. y,m,xandcarecalled symbols Whengivenvaluesofm,xandcwecanevaluatey. Therearealargenumberofformulaeusedinengineeringandinthissectionwewillinsertnumbersinplace ofsymbolstoevaluateengineeringquantities. Herearesomepracticalexamples.Checkwithyour calculatorthatyouagreewiththeworkingandanswers.

Problem1. InanelectricalcircuitthevoltageV isgivenbyOhm’slaw,i.e.V = IR.Find,correctto 4significantfigures,thevoltagewhen I = 5.36A andR = 14.76 Ω

V = IR = I × R = 5.36 × 14.76

Hence, voltageV = 79.11V,correctto4significant figures

Problem2. Velocityvisgivenbyv = u + at.If u = 9.54m/s,a = 3.67m/s2 and t = 7.82s,findv, correctto3significantfigures.

v = u + at = 9.54 + 3.67 × 7.82 = 9.54 + 28.6994 = 38.2394

Hence, velocityv = 38.2m/s,correctto3significant figures

Problem3. Thearea,A,ofacircleisgivenby A = πr2.Determinetheareacorrectto2decimal places,givenradius r = 5.23m.

A = πr2 = π(5.23)2 = π(27.3529)

Hence, area,A = 85.93m2,correctto2decimal places

Problem4. Density = mass volume .Findthedensity whenthemassis6.45kgandthevolumeis 300 × 10 6 m3

Density = mass volume = 6.45kg 300 × 10 6 m3 =21500kg/m 3

Problem5. Thepower,Pwatts,dissipatedinan electricalcircuitisgivenbytheformula P = V2 R Evaluatethepower,correctto4significantfigures, giventhat V = 230VandR = 35.63Ω

P = V2 R = (230)2 35.63 = 52900 35.63 = 1484.70390 ...

PressENGand1.48470390.. × 103 appearsonthe screen

Hence, power,P = 1485Wor1.485kWcorrectto4 significantfigures.

Problem6. Resistance,R Ω,varieswith temperatureaccordingtotheformula

R = R0(1 + αt).EvaluateR,correctto3significant figures,given R0 = 14.59, α = 0.0043andt = 80

R = R0(1 + αt) = 14.59[1 + (0.0043)(80)] = 14.59(1 + 0.344) = 14.59(1.344)

Hence, resistance,R = 19.6 Ω,correctto3significant figures

Problem7. Thecurrent,Iamperes,inana.c. circuitisgivenby:I = V √(R2 + X2) Evaluatethe current,correctto2decimalplaces,when V = 250V,R = 25.0 Ω andX = 18.0 Ω I= V √(R2+X2) = 250 √(25.02+18.02) =8.11534341

Hence, current, I = 8.12A,correctto2decimal places

NowtrythefollowingPracticeExercise

PracticeExercise2Evaluationofformulae (Answersonpage881)

1. TheareaAofarectangleisgivenbythe formulaA = l × b.Evaluatethearea,correct to2decimalplaces,when l = 12.4cmand b = 5.37cm

2. ThecircumferenceCofacircleisgivenby theformulaC = 2πr.Determinethecircumference,correctto2decimalplaces,given r = 8.40mm

3. Aformulausedinconnectionwithgasesis R = PV T .EvaluateRwhen P = 1500, V = 5 andT = 200

4. Thevelocityofabodyisgivenbyv = u + at. Theinitialvelocityuismeasuredwhentime tis15secondsandfoundtobe12m/s.Ifthe accelerationais9.81m/s2 calculatethefinal velocityv

5. CalculatethecurrentIinanelectricalcircuit,correctto3significantfigures,when

I = V/RampereswhenthevoltageVismeasuredandfoundtobe7.2VandtheresistanceRis17.7 Ω

6. Findthedistances,giventhats = 1 2 gt2.Time t = 0.032secondsandaccelerationdueto gravity g = 9.81m/s2.Givetheanswerin millimetrescorrectto3significantfigures.

7. Theenergystoredinacapacitorisgiven byE = 1 2 CV2 joules.Determinetheenergy whencapacitance C = 5 × 10 6 faradsand voltage V = 240V

8. FindtheareaAofatriangle,correctto1decimalplace,given A = 1 2 bh,whenthebase lengthbis23.42mandtheheighthis53.7m

9. ResistanceR2 isgivenbyR2 = R1(1 + αt). FindR2,correctto4significantfigures,when R1 = 220, α = 0.00027andt = 75.6

10. Density = mass volume .Findthedensity,correct to4significantfigures,whenthemass is2.462kgandthevolumeis173cm3.Give theanswerinunitsofkg/m3.Notethat 1cm3 = 10 6m3

11. EvaluateresistanceRT,correctto4significantfigures,given 1 RT = 1 R1 + 1 R2 + 1 R3 when R1 = 5.5 Ω, R2 = 7.42 Ω and R3 = 12.6 Ω

12. Thepotentialdifference,Vvolts,available atbatteryterminalsisgivenby V = E Ir.EvaluateVwhen E = 5.62,I = 0.70and R = 4.30

13. ThecurrentIamperesflowinginanumber ofcellsisgivenby I = nE R + nr .Evaluatethe current,correctto3significantfigures,when n = 36.E = 2.20,R = 2.80and r = 0.50

14. Energy,Ejoules,isgivenbytheformula E = 1 2 LI2.Evaluatetheenergywhen L = 5.5HandI = 1.2A

15. ThecurrentIamperesinana.c.circuit isgivenbyI = V √(R2 + X2) .Evaluatethe

current,correctto4significantfigures,when V = 250V,R = 11.0 Ω and X = 16.2 Ω

1.2Fractions

Anexampleofafractionis 2 3 wherethetopline,i.e.the 2,isreferredtoasthe numerator andthebottomline, i.e.the3,isreferredtoasthe denominator

A properfraction isonewherethenumeratoris smallerthanthedenominator,examplesbeing 2 3 , 1 2 , 3 8 , 5 16 ,andsoon.

An improperfraction isonewherethedenominatoris smallerthanthenumerator,examplesbeing 3 2 , 2 1 , 8 3 , 16 5 ,andsoon.

Additionoffractionsisdemonstratedinthefollowing workedproblems.

Problem8. EvaluateA,givenA = 1 2 + 1 3

Thelowestcommondenominatorofthetwodenominators2and3is6,i.e.6isthelowestnumberthatboth2 and3willdivideinto.

Then 1 2 = 3 6 and 1 3 = 2 6 i.e.both 1 2 and 1 3 havethe commondenominator,namely6.

Thetwofractionscanthereforebeaddedas:

Problem9. EvaluateA,givenA = 2

Acommondenominatorcanbeobtainedbymultiplyingthetwodenominatorstogether,i.e.thecommon denominatoris 3 × 4 = 12

Thetwofractionscannowbemadeequivalent, i.e. 2 3 = 8 12 and 3 4 = 9 12 sothattheycanbeeasilyaddedtogether,asfollows: A =

Problem10. EvaluateA,givenA = 1 6 + 2 7 + 3 2

Asuitablecommondenominatorcanbeobtainedby multiplying 6 × 7 = 42,andallthreedenominators divideexactlyinto42.

Thus, 1 6 = 7 42 , 2 7 = 12 42 and 3 2 = 63 42

Hence,A = 1 6 + 2 7 + 3 2 = 7 42 + 12 42 + 63

Problem11. DetermineAasasinglefraction, givenA = 1 x + 2 y

Acommondenominatorcanbeobtainedbymultiplying thetwodenominatorstogether,i.e.xy

Thus, 1 x = y xy and 2 y = 2x xy

Hence,A = 1 x + 2 y = y xy + 2x xy i.e. A = y + 2x xy

Notethataddition,subtraction,multiplicationanddivisionoffractionsmaybedeterminedusinga calculator

Locatethe □ □ and □ □ □ functionsonyourcalculator(thelatterfunctionisashiftfunctionfoundabove the □ □ function)andthencheckthefollowingworked problems.

Problem12. Evaluate 1 4 + 2 3 usingacalculator

(i) Press □ □ function

(ii) Typein1

(iii) Press ↓ onthecursorkeyandtypein4

(iv) 1 4 appearsonthescreen

(v) Press → onthecursorkeyandtypein+

(vi) Press □ □ function

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.