Full download Quantum mechanics mathematical structure and physical structure part ii (revised 2022)

Page 1


QuantumMechanicsMathematicalStructureand PhysicalStructurePartII(Revised2022)Third EditionJohnBoccio

https://ebookmass.com/product/quantum-mechanicsmathematical-structure-and-physical-structure-part-iirevised-2022-third-edition-john-boccio/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

The Historical and Physical Foundations of Quantum Mechanics Robert Golub

https://ebookmass.com/product/the-historical-and-physical-foundationsof-quantum-mechanics-robert-golub/

ebookmass.com

Quantum Space: Loop Quantum Gravity and the Search for the Structure of Space, Time, and the Universe Baggott

https://ebookmass.com/product/quantum-space-loop-quantum-gravity-andthe-search-for-the-structure-of-space-time-and-the-universe-baggott/

ebookmass.com

Introduction to Quantum Mechanics John Dirk Walecka

https://ebookmass.com/product/introduction-to-quantum-mechanics-johndirk-walecka/

ebookmass.com

Building Enterprise IoT Solutions with Eclipse IoT Technologies: An Open Source Approach to Edge Computing 1st Edition Frédéric Desbiens

https://ebookmass.com/product/building-enterprise-iot-solutions-witheclipse-iot-technologies-an-open-source-approach-to-edgecomputing-1st-edition-frederic-desbiens/ ebookmass.com

Highland Legend Kathryn Le Veque

https://ebookmass.com/product/highland-legend-kathryn-le-veque-2/

ebookmass.com

Beautiful Beast : 2 Fairy Tales Reimagined By Blue (Beautiful Beast and His Cinder) Blue Saffire & Gombar Cover Design

https://ebookmass.com/product/beautiful-beast-2-fairy-talesreimagined-by-blue-beautiful-beast-and-his-cinder-blue-saffire-gombarcover-design/ ebookmass.com

Handbook of Industrial Organization Kate Ho

https://ebookmass.com/product/handbook-of-industrial-organizationkate-ho/

ebookmass.com

Principles and Practice of Physics, 2nd Edition Eric Mazur

https://ebookmass.com/product/principles-and-practice-of-physics-2ndedition-eric-mazur/

ebookmass.com

The Soulmate: A Novel Sally Hepworth

https://ebookmass.com/product/the-soulmate-a-novel-sally-hepworth/

ebookmass.com

https://ebookmass.com/product/reapers-reward-the-arcana-packchronicles-book-9-emilia-hartley/

ebookmass.com

QuantumMechanics

MathematicalStructure and PhysicalStructure PartII

Copyright © 2020byProfessorJohnBoccio Donotreproduceordistributecopiesofthisbookwithoutpermission.

May6,2022

Contents

9 Time-DependentPerturbationTheory683

9.1Theory................................... 683

9.1.1Whatisthephysicalmeaningofthisresult?........ 689

9.2AtomicRadiationandSelectionRules................ 702

9.2.1TheElectricDipoleApproximation............. 703

9.2.2InducedEmissionandAbsorption.............. 705

9.3ARealPhysicalProcess-Ionization................. 708

9.3.1EvaluationoftheMatrixElement.............. 710

9.4AdiabaticandSuddenApproximations................ 712

9.5Problems.................................. 720

9.5.1SquareWellPerturbedbyanElectricField......... 720

9.5.23-DimensionalOscillatorinanelectricfield......... 720

9.5.3Hydrogenindecayingpotential................ 721

9.5.42spinsinatime-dependentpotential............ 721

9.5.5AVariationalCalculationoftheDeuteronGroundState Energy............................... 721

9.5.6SuddenChange-Don’tSneeze................ 722

9.5.7AnotherSuddenChange-Cuttingthespring....... 722

9.5.8Anotherperturbedoscillator................. 722

9.5.9NuclearDecay.......................... 722

9.5.10TimeEvolutionOperator................... 723

9.5.11Two-LevelSystem........................ 723

9.5.12InstantaneousForce....................... 723

9.5.13Hydrogenbeambetweenparallelplates........... 723

9.5.14ParticleinaDeltaFunctionandanElectricField..... 724

9.5.15Nastytime-dependentpotential[complexintegrationneeded]725

9.5.16NaturalLifetimeofHydrogen................. 725

9.5.17Oscillatorinelectricfield.................... 726

9.5.18SpinDependentTransitions.................. 726

9.5.19TheDrivenHarmonicOscillator............... 727

9.5.20ANovelOne-DimensionalWell................ 728

9.5.21TheSuddenApproximation.................. 728

9.5.22TheRabiFormula........................ 729

9.5.23RabiFrequenciesinCavityQED............... 729

10 QuantumMeasurement 731

10.1BasicQuantumMechanicsReviewed................. 731

10.1.1Whereisthe“collapse”postulate?.............. 734

10.2TheMeasurementProcess....................... 735

10.2.1TheDensityOperator..................... 736

10.2.2ACrucialExampleoftheNeedfortheDensityOperator 739

10.3Theso-calledGambler’sRuinproblem-apossiblewaytogetto theirreversiblerecording........................ 746

10.3.1MathematicalProblemofthePoints............. 746

10.4Anothershortdigression-anotherwaytogettotheirreversible recording-Decoherence......................... 750

10.5Lookcloselyat“which-path”experiments.............. 751

10.6ResolvingParadoxesandUnderstandingMeasurement...... 757

10.6.1TheapparentparadoxofSchrödinger’scat........ 757

10.6.2DensityOperatortotheRescue................ 758

10.7SomeRepetitionandMoreIntricateDetails............. 763

10.7.1Rememberthestandarddiscussionfromearlier:...... 763

10.7.2TheLocalStateSolution(duetoJauch)oftheProblemof DefiniteOutcomes........................ 765

10.7.3Nowforevenmoredetailsandnewinterpretations.... 768

10.7.4Anevenmoredramaticexperiment-Experimentalnonlocalityandentanglement................... 772

10.8TheEnvironmentasMonitor...................... 785

10.8.1TheProblemofIrreversibility................. 787

10.8.2HowEnvironmentalDecoherenceCollapsesSuperpositions 789

10.8.3DecoherenceandtheMeasurementProblem........ 793

10.9LastThoughts.............................. 817

11 TheEPRArgumentandBellInequality 821

11.1HiddenvariablesandBell’sInequalities-1stTry.......... 821

11.1.1TheElectronSpin........................ 821

11.1.2CorrelationsBetweentheTwoSpins............. 822

11.1.3ASimpleHiddenVariableModel............... 825

11.2Bell’sTheoremandExperimentalResults.............. 827

11.3TheEPR(Einstein-Podolsky-Rosen)Argument-QuickOverview. 829

11.3.1TheBellInequalityagain................... 831

11.4EPRandBell-TheDetails...................... 834

11.4.1Single-PhotonInterference................... 834

11.4.2BasicFormalism......................... 849

11.5InseparablePhotons(theEPRParadox)includingsomehistory. 852

11.5.1ThePhilosophicalStakesintheDebate........... 852

11.5.2FromComotoBrussels(1927-30).............. 853

11.5.3FromBrusselstotheEPRParadox(1930-35)....... 854

11.5.4ElementaryIntroductiontotheEPRParadox....... 855

11.5.5TheEPRParadox(1935-52)................. 857

11.5.6TheBCHSHInequality(1964)................ 858

11.5.7BCHSHInequality(Bell’sinequalityinrealworld)..... 861

11.5.8TheBeginningsoftheExperimentatOrsay(1976).... 864

11.6ThePrincipleofNon-Separability................... 872

11.7AnExampleandaSolution-Bell’sTheoremwithPhotons... 874

11.8Non-Locality,EPRandBell-alasttime.............. 878

11.8.1TheBellInequalities...................... 882

11.9BayesianProbabilityinQM...................... 884

11.9.1UsingBayesianIdeasinAnalysisofExperiments..... 884

11.9.2SimpleExample......................... 886

11.9.3SimpleIdeas........................... 886

11.9.4MoreabouttheGreenberger-Horne-Zeilinger(GHZ)State 895

11.10Problems.................................. 896

11.10.1BellInequalitywithStern-Gerlach.............. 896

11.10.2Bell’sTheoremwithPhotons................. 898

11.10.3Bell’sTheoremwithNeutrons................. 899

11.10.4Greenberger-Horne-ZeilingerState.............. 899

12 IdenticalParticles901

12.1Theoreticalideas............................. 901

12.2BosonswithSpin=0.......................... 906

12.3Spin=1/2Fermions........................... 908

12.4TheN-ElectronAtom.......................... 914

12.5TheHeliumAtom............................ 920

12.6MultielectronAtoms........................... 928

12.6.1Screening............................. 930

12.6.2ShellStructure.......................... 931

12.7AngularMomentumCoupling..................... 935

12.7.1LSCoupling........................... 936

12.7.2Hund’sRules........................... 943

12.7.3JJ-Coupling........................... 944

12.8SphericalHarmonicsAdditionTheorem............... 948

12.8.1OrbitalAngularMomentum.................. 948

12.8.2TheAdditionTheorem..................... 951

12.9Problems.................................. 953

12.9.1TwoBosonsinaWell...................... 953

12.9.2TwoFermionsinaWell.................... 954

12.9.3Twospin 1/2 particles..................... 954

12.9.4HydrogenAtomCalculations................. 955

12.9.5Hund’srule............................ 956

12.9.6Russell-SaundersCouplinginMultielectronAtoms.... 956

12.9.7Magneticmomentsofprotonandneutron......... 957

12.9.8Particlesina3-Dharmonicpotential............ 958

12.9.92interactingparticles...................... 958

12.9.10LSversusJJcoupling...................... 959

12.9.11Inaharmonicpotential.................... 959

12.9.122particlesinteractingviadeltafunction.......... 959

12.9.132particlesinasquarewell................... 960

12.9.142particlesinteractingviaaharmonicpotential...... 960

12.9.15TheStructureofhelium.................... 960

13 SomeExamplesofQuantumSystems963

13.1CoherentandSqueezedStates..................... 963

13.2Electroninacircularwire....................... 968

13.3Spin-OrbitCouplinginComplexAtoms............... 972

13.4ZeemanEffectinComplexAtoms................... 975

13.4.1Method#1:PlausibilityDerivation............. 976

13.4.2Method#2:FullFormalDerivation............. 976

13.5NeutronInterferometry......................... 977

13.5.1NeutronInterferences...................... 979

13.5.2TheGravitationalEffect.................... 980

13.6ThePenningTrap............................ 982

13.6.1MotionofanElectroninaPenningTrap.......... 982

13.6.2TheTransverseMotion..................... 984

13.6.3MeasurementofElectronAnomalousMagneticMoment. 985

13.7Schrodinger’sCat............................ 986

13.7.1Schrodinger’sCat-amoredetailedpresentation..... 987

13.7.2ConstructionofaSchrodinger-CatState.......... 996

13.7.3QuantumSuperpositionVersusStatisticalMixture.... 997

13.7.4TheFragilityofaQuantumSuperposition......... 1000

13.8TheQuantumEraser.......................... 1002

13.8.1MagneticResonance...................... 1003

13.8.2RamseyFringes......................... 1005

13.8.3DetectionoftheNeutronSpinState............. 1009

13.8.4TheActualQuantumEraser................. 1011

14 SolidStatePhysics

1015

14.1CrystalStructureandSymmetry................... 1015

14.1.1SymmetryoftheCrystalSystem............... 1016

14.2BlochTheorem,theReciprocalLatticeandBrillouinZones... 1029

14.2.1TranslationOperatorsinConfigurationSpace....... 1029

14.2.2DerivationofBloch’sTheorem................ 1031

14.3Free-ElectronandWeak-BindingApproximations;1-Dimension. 1045

14.3.1TheFree-ElectronApproximation.............. 1046

14.4IntroductiontotheWeak-BindingApproximation......... 1054

14.5TheKronig-PenneyModel....................... 1065

14.5.1ExactAnalysis.......................... 1065

14.6Free-ElectronandWeak-BindingApproximations;2-Dimensions. 1072

14.6.1TheFree-ElectronApproximation.............. 1073

CONTENTS v

14.7Born-Oppenheimerdescriptionoftwoatomsinacombinedoscillatorandlatticetrap.......................... 1096

14.7.1Introduction........................... 1096

14.7.2LatticeHamiltonian....................... 1097

14.7.3Relative-andCenter-of-MassQuasi-Momenta....... 1099

14.7.4Born-OppenheimerSeparation................ 1102

14.7.5ExactandBorn-OppenheimerApproximateSolutions.. 1107

14.7.6Conclusions............................ 1115

14.8Spontaneoussymmetrybreakinginquantummechanics..... 1115

14.8.1Introduction........................... 1116

14.8.2TheHarmonicCrystal..................... 1116

14.8.3TheThinSpectrum....................... 1117

14.8.4Subtleties............................. 1120

14.8.5Discussion............................ 1121

14.9Problems.................................. 1121

14.9.1PiecewiseConstantPotentialEnergy

OneAtomperPrimitiveCell................. 1121

14.9.2PiecewiseConstantPotentialEnergy

TwoAtomsperPrimitiveCell................. 1122

14.9.3Free-ElectronEnergyBandsforaCrystalwithaPrimitive RectangularBravaisLattice.................. 1123

14.9.4Weak-BindingEnergyBandsforaCrystalwithaHexagonalBravaisLattice....................... 1123

14.9.5AWeak-BindingCalculation#1............... 1124

14.9.6Weak-BindingCalculationswithDelta-FunctionPotential Energies.............................. 1125

14.9.7Isthespectrumoftheharmoniccrystalexamplereally thin?1126

14.9.8Arethelimitsreallynoncommutativeintheharmonic crystalexample?......................... 1126

14.9.9TheBogoliubovtransformationintheharmoniccrystal example.............................. 1127

15 RelativisticWaveEquations

ElectromagneticRadiationinMatter 1129

15.1Spin0particles:Klein-GordonEquation............... 1129

15.1.1Howtofindcorrectformofrelativisticwaveequation?.. 1130

15.1.2NegativeEnergyStatesandAntiparticles.......... 1134

15.2PhysicsoftheKlein-GordonEquation................ 1137

15.3FreeParticlesasWavePackets..................... 1143

15.4BoundStateProblems.......................... 1147

15.4.1NonrelativisticLimit...................... 1150

15.5RelativisticSpin1/2Particles-TheDiracEquation........ 1151

15.5.1LorentzTransformationofSpin................ 1151

15.6TheDiracEquation........................... 1160

15.6.1NonrelativisticLimit...................... 1161

15.6.2CurrentsandContinuityEquations............. 1163

15.6.3FreeParticleSolutions..................... 1165

15.6.4MoreAboutCurrents...................... 1169

15.6.5Non-relativisticLimit...................... 1171

15.6.6TheDiracHydrogenAtom................... 1174

15.7ElectromagneticRadiationandMatter................ 1193

15.7.1InteractingwiththeClassicalRadiationField....... 1193

15.7.2RelationtoGaugeInvariance................. 1195

15.7.3Interactions............................ 1196

15.7.4InducedAbsorptionandEmission.............. 1197

15.7.5QuantizedRadiationFieldandSpontaneousEmission.. 1199

15.8Problems.................................. 1204

15.8.1DiracSpinors........................... 1204

15.8.2LorentzTransformations.................... 1205

15.8.3DiracEquationin 1 + 1 Dimensions............. 1205

15.8.4TraceIdentities......................... 1205

15.8.5Right-andLeft-HandedDiracParticles........... 1206

15.8.6GyromagneticRatiofortheElectron............ 1206

15.8.7Dirac → Schrodinger...................... 1207

15.8.8PositiveandNegativeEnergySolutions........... 1207

15.8.9HelicityOperator........................ 1207

15.8.10Non-RelativisiticLimit..................... 1207

15.8.11GyromagneticRatio....................... 1207

15.8.12Propertiesof γ5 ......................... 1208

15.8.13LorentzandParityProperties................. 1208

15.8.14ACommutator.......................... 1208

15.8.15SolutionsoftheKlein-Gordonequation........... 1208

15.8.16MatrixRepresentationofDiracMatrices.......... 1208

15.8.17WeylRepresentation...................... 1209

15.8.18TotalAngularMomentum................... 1209

15.8.19DiracFreeParticle....................... 1210

Chapter9

Time-DependentPerturbationTheory

9.1 Theory

Time-independentorstationary-stateperturbationtheory,aswedevelopedearlier,allowsustofindapproximationsfortheenergyeigenvaluesandeigenvectors incomplexphysicalsystemsthatarenotsolvableinclosedformandwherewe couldwrite ˆ H intwopartsas

Fortheseperturbationmethodstowork, ˆ V mustbe weak and time-independent

Wenowturnourattentiontothecase

where ˆ Vt is weak and time-dependent.

Examplesmightbethedecaysofanatomicsystembyphotonemissionorthe ionizationofanatombyshininglightonit.

Weassumethatatsometime t0 thesystemhasevolvedintothestate ∣ψ(0)) t ⟩, i.e.,thestate ∣ψ(0 t ⟩ satisfiesthetimeevolutionequation

Itisasolutionofthetime-dependentSchrodingerequationwithnoperturbing interactionsbefore t0 where

Attime t0 we turnon theinteractionpotential(orperturbation)sothat

Thenewstateofthesystemthensatisfies

withthe boundarycondition(initialvalue)

Aswesaid,weassumethatthefulltime-dependentSchrodingerequationcannot besolvedinclosedformandsowelookforapproximatesolutions.

Welet ˆ Vt beasmallperturbation,i.e.,weassumethereisanaturalsmall parameterin ˆ Vt (aswesawintime-independentperturbationtheory)andwe makeanexpansionofthesolutioninpowersof ˆ Vt orthissmallparameter.

Sincetheeffectof ˆ H0 willbemuchgreaterthantheeffectof ˆ Vt,mostofthetime dependencecomesfrom ˆ H0.Ifwecouldneglect ˆ Vt,thensince ˆ H0 isindependent oftime,wewouldhavethesimpletimedependence

Letusassumethatthisisstillapproximatelytrueandremovethisknowntime dependencefromthesolution.Thisshouldremovethemajorportionofthe totaltimedependencefromtheproblem.Wedothisbyassumingasolutionof theform

andthendeterminingandsolvingtheequationforthenewstatevector

(t)⟩

Substitutingthisassumptioninouroriginalequation,theequationfor ∣ψ(t)⟩ is thengivenby

Thesubstitutionhasremoved H0 fromtheequationandchangedthetimedependenceoftheperturbingpotential.Weareintheso-called interactionpicture orrepresentation where both thestatevectorsandtheoperatorsdependontime aswediscussedearlier.

Wedevelopa formalsolution byintegratingthisequationofmotionforthe statevectortoget

sothattheformalsolutionisgivenby

Thisisan integralequation for ∣ψ(t)⟩.Wesolveitasapowerseriesin ˆ Vt bythe methodofiteration

The 0th orderapproximationisfoundbyneglectingtheperturbingpotential. Weget

The 1st orderapproximationisobtainedbyinsertingthe 0th orderapproximationintothefullequation.Weget

The 2nd orderapproximationisobtainedbyinsertingthe 1st orderapproximationintothefullequation.Weget

Noticethatinallsubsequentiterationstheoperators ˆ V (t′), ˆ V (t′′), ,etc,always occurinorderofincreasingtimefromrighttoleft.

Wecanwritethegeneralresultas

where

Thecomplete,formalsolutiontotheproblemisthengivenby

sothat

thetotaltimedevelopmentoperator(9.20)

Beforedevelopingthedetailedtechniquesoftime-dependentperturbationtheory,letusspendsometimewiththeoperator ˆ U (t,t0) anddiscusssomeofits properties.

Wefirstintroducetheideaofa time-orderedproduct ofoperatorsasfollows. Thesymbol

meanstheproductoftheoperatorswheretheoperatorsarewrittenfromright toleftinorderofincreasingtimes,i.e.,

Now,wehaveusingthetime-orderedproductdefinition

andingeneral

becausethereare n! possibleorderingsofthe n termsinvolved.Thislastform isidenticaltotheexpressionfor ˆ U (t,t0) andthuswehave

Thelastexpressionisjusta convenientshorthandfortheinfinitesum.Inorder toverifythatthisisinfactasolutionof

wemustprovethat

Substituting,wehave

Inthedifferentiationwedonothavetoworryaboutthenon-commutationofthe operatorsinsidethetime-orderedproductsincethe orderisalreadyspecified

Since t iscertainlythelatesttimeinthetime-orderedproductandtherefore

alltheotheroperatorswillbeontherightof ˆ V (t) wecanpullitoutsidethe time-orderedproductandwrite

asrequired.

The mostimportantquestion (reallytheonlyquestion)thatisusuallyaskedin quantummechanicsisthefollowing:

Supposethatthesystemisinitiallyinaneigenstate ∣n⟩ of ˆ H0,i.e., ˆ H

⟩ = n

n⟩.Whatistheprobability thatthesystemwillbeobserved,aftertheperturbation hashadtimetoact,inadifferent(andthusorthogonal) eigenstateof ˆ H0,say ∣m⟩?

Alternatively,thequestionissometimesposedthisway:

Whatistheprobabilitythattheinteractioncausesthe systemtomakea transition fromthestate ∣n⟩ tothe state ∣m⟩?

Theprobabilityamplitudeforobservingthesysteminthestate

m⟩ attime t isgivenby

where

istheinitialstate.

Setting t0 = 0 forsimplicityandusingthe 1st orderapproximationfor ˆ U (t, 0) andalsousing

weget

Theprobabilityofthetransitionisthen

Thesimplestexampleiswhen Vt isnotafunctionof t,or Vt = V .Wethenhave

Ifwedefine ∆ = m n,thenwehave

forthetransitionprobability.

9.1.1 Whatisthephysicalmeaningofthisresult?

Wemustbe verycareful whenweusethewords theperturbationcausesatransition betweeneigenstatesof ˆ H0

Whatthismeansphysicallyisthatthesystemhasabsorbedfromtheperturbing field(oremittedtoit)theenergydifference ∆ = m n andthereforethesystem haschangeditsenergy.

Doesthestatementalsomeanthatthestatevectorhaschangedfromaninitial value ∣ψ(0)⟩ = ∣n⟩ toafinalvalue ∣ψ(t)⟩ = ∣m⟩?

Wecangetabetterfeelingforthecorrectanswertothisquestionbyderiving theresultinadifferentmanner.

Wehave

and

Asinourdevelopmentoftime-independentperturbationtheory,welet

where g isasmallparameter.

Thesetofeigenvectors {∣n⟩} isacompletesetandthereforewecanuseitasa basisforthespaceand,inparticular,wecanwrite

Thereasonforpullingoutthephasefactorswillbeclearshortly.

Itisclearthatif g = 0,thenthisisthecorrectgeneralsolutionwith

Thephasefactorswepulledoutrepresentthetimedependencedueto ˆ H0 and thisis,byassumption,themajortimedependenceinthesystem.

If g issmallweexpectthetimedependenceof an(t),whichisduetotheperturbationtobeweakorthat dan(t) dt issmall(9.42)

Itisinthissensethatwecanproposetouseperturbationtheoryonthesystem.

Usingtheeigenbasisexpansionwehave

Applyingthelinearfunctional ⟨m∣ fromtheleftandusingtheorthonormality relation

(9.44)

weget

where

Thisisanexactequation.Itimpliesthatthetimedependenceof an(t) isdue entirelyto ˆ Vt (becauseweexplicitlyextractedoutthedependencedueto ˆ H0). Thisistheinteractionpicturethatwehadearlier.

ExactlySolvable2-StateExample

Considera2-statesystemwith

Intheinteractionpicture,asderivedabove,wehave

or

Wecanwritetheseequationsas

Wecanfindanexactsolution.Withinitialconditions

weget

AgraphofthesefunctionsisshowninFigure9.1below.

Figure9.1:ExactSolution

Astraightforwardcalculationgives

Atresonance, ω = ω21,wehave

asshowninFigure9.2below.

Figure9.2:AtResonance

Theamplitudeasafunctionof ω isshowninFigure9.3below.

Figure9.3:Amplitudeversus ω

where ∆ = fullwidthathalfmaximum = 4δ/h.Theamplitudeispeakedat resonanceandthewidthisproportionalto δ (thestrengthoftheperturbation).

Thisperiodicallyforced 2 statesystemisabasicproblem-itdemonstratesthe fundamentalfeaturesofabsorptionandemission.

Wenowreturntothefull,generalequationsandlookforaperturbationsolution. Nowweassume(powerseries)

Substitutingandarrangingthetermsinapowerseriesin g wehave

(0) n

orlookingateachorderseparatelywehave

0th order da(0) n dt = 0 1st order ih da(1)

(r + 1)st order ih da(r+1) m dt

Notethatthecoefficients a(0) n followfromtheinitialcondition

Thesolutionproceedsasfollows: initialcondition → a(0) n a(0) n → a(1) n usingthe 1st orderequation

a(r) n → a(r+1) n usingthe (r + 1)st orderequation

Nowconsiderthefollowingexample.Weassumethat

(9.60) where

andduringthetimeinterval 0 ≤ t ≤ T aperturbation Vt isappliedtothesystem andthe an(t) changewithtime.

Finally,for t ≥ T theperturbationisturnedoffand an(t) = an(T ).

Theprobabilitythat,asaresultoftheperturbation,theenergyofthesystem becomes r,isgivenby

andas

Nowto 1st orderwehave

If ∣ψ(0)⟩ = ∣i⟩,then

Thisgives

Integratingwehave

and

whichisidenticaltoourearlierresultas

Nowletreturntoourquestion.Hasthestatechangedalso?

Intheexamplewefoundthattheperturbationproducesafinalstate ∣ψt⟩ for t ≥ T whichto 1st orderis

Thisisacoherent(definiterelativephases)superpositionofeigenvectorsof ˆ H0 Thisis NOT astationarystate.Interferenceeffectsbetweenthetermsinthe sumaredetectable.Theydonot,however,affect

∣ar(T )∣2 = probabilitythattheenergychangesto εr (9.70)

Thus,theperturbationdoesnotcausea jump fromonestationarystate ∣i⟩ of ˆ H0 toanother ∣r⟩,butinsteaditproducesanon-stationarystate.

Theconventionallanguageofquantummechanicsproducesthisambiguitybetweenthetwostatements

theenergyis r and thestateis ∣r⟩

Forthestate

itiscorrecttosay

theprobabilityoftheenergybeing r is

or

Prob(E = r

Thestate,however,is ∣ψt⟩ and NOT

Anexample

Supposeweperturbanoscillatorwithadecayingelectricfieldoftheform

To 1st order,startingwiththeinitialstate ∣n⟩ withenergy

wehave

where

Welet n = 0 (thegroundstate)forthisexample.Wethenhave

Using

weget(letting t → ∞)

andfinally,

Wenowreturntotheearliergeneralresult(9.36)wederivedfortheprobability, namely,

InFigure9.4belowweplotthisfunction.

Figure9.4:Probability(0,n)versusDelta

Theheightofthecentralpeakisproportionalto t2 andthelocationofthefirst zeroisat

= 2πh

sothatthewidthofthepeakdecreasesas 1/t.

Theformulaimpliesthatforveryshorttimes

As t → ∞,however,theprobabilityislargestforthosestateswhoseenergylies underthesharpbumpnear ∆ = 0 orthosestateswithwhoseenergyliesunder thepeakaround 0.Nowtheenergy n ≈ 0 liesunderthesharpbumpwhen

Theareaunderthebumpisproportionalto t andtherestoftheareaoscillates intimearoundzero.Thislatterfeaturemeansthatif n ≠ 0,thetransition probabilityoscillatesintimewitharepetitiontimeof

Thecase,wherewearelookingforatransitiontoasinglestate,is,thus,only validinperturbationtheoryforverysmalltime t.Otherwisetheconditionthat the

willnotbetrueandperturbationtheorybreaksdown.Wealsonotethatthe probabilitycannotgrowlargerthanoneorthat,afterawhile,thehigher-order effectsoftheperturbationwhichwehaveneglectedsofarmustbecomeimportantandpreventtheprobabilityfromexceedingone.

Theconditionthattellsuswhetheratransitionprobabilitytoastatewith anenergyappreciablydifferentthantheoriginalenergyisthesamecondition intime-independentperturbationtheorythattellswhetherthestatevector changesappreciablyfromtheunperturbedstate,namely

Physically,amoreinterestingcaseoccurswhenthestate ∣n⟩ isoneofacontinuumofenergystates,oritliesinagroupofverycloselyspacedlevels.

Inthiscaseweaskadifferentexperimentalquestion,namely,

Whatistheprobabilitythatthesystemmakes atransitiontoasmallgroupofstatesnear

n⟩ (orhasenergynear n)?

Sincetheareaunderthebumpnear ∆ = 0 or n ≈ 0 isproportionalto t,we expectthatthetransitionprobabilitytoasmallgroupofstatesnear 0 will growlinearlywith t andthus

0→n(t) t = transitionrate = Γ = constantas t → ∞ (9.88)

Quantitiesthatwemeasurearerelatedtothetransitionrateandthisresult saysthatthesemeasurementswillmakesense.

Letusnowcarryoutthisderivationindetail.

Tocalculatethistransitionratewemustsum P0→n overthegroupof final states. Weassumethat ∣⟨b

ˆ Vt

∣0⟩∣2 isrelativelyconstantoverthesmallgroupofstates near ∣n⟩ (hasaweakenergydependence).

Wethenhave

⎥ ⎦ 2 (9.89) where

n ingroup

ρ(εn) = numberofstatesperunitenergy

ρ(εn)dεn = numberofstatesintheinterval dεn

Nowinthelimit t → ∞

i.e.,ingeneral,forasequenceoffunctions

wehavethat

Therefore,

Usingthisresult,wehave

andthus

whichiscalled Fermi’sGoldenRule

Wenowconsideraperturbationthatdependsexplicitlyontime.Inparticular, supposewehaveaharmonicperturbationoftheform

and ∣ψ(t0)⟩ = ∣0⟩,wherewelet t

.The

factorisnecessarytomake themathematicaloperationsvalidinthelimit.Itisequivalentforsmall η to turningtheperturbationonslowly.Intheendwewilllet η → 0

Wehave

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Full download Quantum mechanics mathematical structure and physical structure part ii (revised 2022) by Education Libraries - Issuu