Buy ebook Quantum mechanics mathematical structure and physical structure part ii (revised 2022) thi

Page 1


Quantum Mechanics Mathematical Structure and Physical Structure Part II (Revised

2022) Third Edition John Boccio

Visit to download the full and correct content document: https://ebookmass.com/product/quantum-mechanics-mathematical-structure-and-phy sical-structure-part-ii-revised-2022-third-edition-john-boccio/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

The Historical and Physical Foundations of Quantum Mechanics

Robert Golub

https://ebookmass.com/product/the-historical-and-physicalfoundations-of-quantum-mechanics-robert-golub/

Quantum Space: Loop Quantum Gravity and the Search for the Structure of Space, Time, and the Universe Baggott

https://ebookmass.com/product/quantum-space-loop-quantum-gravityand-the-search-for-the-structure-of-space-time-and-the-universebaggott/

Introduction to Quantum Mechanics John Dirk Walecka

https://ebookmass.com/product/introduction-to-quantum-mechanicsjohn-dirk-walecka/

ELECTRON SCATTERING FOR NUCLEAR AND NUCLEON STRUCTURE

John Dirk Walecka

https://ebookmass.com/product/electron-scattering-for-nuclearand-nucleon-structure-john-dirk-walecka/

Consciousness and Quantum Mechanics 1st Edition Shan Gao (Editor)

https://ebookmass.com/product/consciousness-and-quantummechanics-1st-edition-shan-gao-editor/

Physics, Structure, and Reality Jill North

https://ebookmass.com/product/physics-structure-and-reality-jillnorth/

Quantum Mechanics 3rd Edition Nouredine Zettili

https://ebookmass.com/product/quantum-mechanics-3rd-editionnouredine-zettili/

Mechanics of Flow-Induced Sound and Vibration Volume 2_

Complex Flow-Structure Interactions 2nd Edition William

K. Blake

https://ebookmass.com/product/mechanics-of-flow-induced-soundand-vibration-volume-2_-complex-flow-structure-interactions-2ndedition-william-k-blake/

Commedia dell'Arte, its Structure and Tradition: Antonio Fava in conversation with John Rudlin John Rudlin

https://ebookmass.com/product/commedia-dellarte-its-structureand-tradition-antonio-fava-in-conversation-with-john-rudlin-johnrudlin/

QuantumMechanics

MathematicalStructure and PhysicalStructure PartII

Copyright © 2020byProfessorJohnBoccio Donotreproduceordistributecopiesofthisbookwithoutpermission.

May6,2022

Contents

9 Time-DependentPerturbationTheory683

9.1Theory................................... 683

9.1.1Whatisthephysicalmeaningofthisresult?........ 689

9.2AtomicRadiationandSelectionRules................ 702

9.2.1TheElectricDipoleApproximation............. 703

9.2.2InducedEmissionandAbsorption.............. 705

9.3ARealPhysicalProcess-Ionization................. 708

9.3.1EvaluationoftheMatrixElement.............. 710

9.4AdiabaticandSuddenApproximations................ 712

9.5Problems.................................. 720

9.5.1SquareWellPerturbedbyanElectricField......... 720

9.5.23-DimensionalOscillatorinanelectricfield......... 720

9.5.3Hydrogenindecayingpotential................ 721

9.5.42spinsinatime-dependentpotential............ 721

9.5.5AVariationalCalculationoftheDeuteronGroundState Energy............................... 721

9.5.6SuddenChange-Don’tSneeze................ 722

9.5.7AnotherSuddenChange-Cuttingthespring....... 722

9.5.8Anotherperturbedoscillator................. 722

9.5.9NuclearDecay.......................... 722

9.5.10TimeEvolutionOperator................... 723

9.5.11Two-LevelSystem........................ 723

9.5.12InstantaneousForce....................... 723

9.5.13Hydrogenbeambetweenparallelplates........... 723

9.5.14ParticleinaDeltaFunctionandanElectricField..... 724

9.5.15Nastytime-dependentpotential[complexintegrationneeded]725

9.5.16NaturalLifetimeofHydrogen................. 725

9.5.17Oscillatorinelectricfield.................... 726

9.5.18SpinDependentTransitions.................. 726

9.5.19TheDrivenHarmonicOscillator............... 727

9.5.20ANovelOne-DimensionalWell................ 728

9.5.21TheSuddenApproximation.................. 728

9.5.22TheRabiFormula........................ 729

9.5.23RabiFrequenciesinCavityQED............... 729

10 QuantumMeasurement 731

10.1BasicQuantumMechanicsReviewed................. 731

10.1.1Whereisthe“collapse”postulate?.............. 734

10.2TheMeasurementProcess....................... 735

10.2.1TheDensityOperator..................... 736

10.2.2ACrucialExampleoftheNeedfortheDensityOperator 739

10.3Theso-calledGambler’sRuinproblem-apossiblewaytogetto theirreversiblerecording........................ 746

10.3.1MathematicalProblemofthePoints............. 746

10.4Anothershortdigression-anotherwaytogettotheirreversible recording-Decoherence......................... 750

10.5Lookcloselyat“which-path”experiments.............. 751

10.6ResolvingParadoxesandUnderstandingMeasurement...... 757

10.6.1TheapparentparadoxofSchrödinger’scat........ 757

10.6.2DensityOperatortotheRescue................ 758

10.7SomeRepetitionandMoreIntricateDetails............. 763

10.7.1Rememberthestandarddiscussionfromearlier:...... 763

10.7.2TheLocalStateSolution(duetoJauch)oftheProblemof DefiniteOutcomes........................ 765

10.7.3Nowforevenmoredetailsandnewinterpretations.... 768

10.7.4Anevenmoredramaticexperiment-Experimentalnonlocalityandentanglement................... 772

10.8TheEnvironmentasMonitor...................... 785

10.8.1TheProblemofIrreversibility................. 787

10.8.2HowEnvironmentalDecoherenceCollapsesSuperpositions 789

10.8.3DecoherenceandtheMeasurementProblem........ 793

10.9LastThoughts.............................. 817

11 TheEPRArgumentandBellInequality 821

11.1HiddenvariablesandBell’sInequalities-1stTry.......... 821

11.1.1TheElectronSpin........................ 821

11.1.2CorrelationsBetweentheTwoSpins............. 822

11.1.3ASimpleHiddenVariableModel............... 825

11.2Bell’sTheoremandExperimentalResults.............. 827

11.3TheEPR(Einstein-Podolsky-Rosen)Argument-QuickOverview. 829

11.3.1TheBellInequalityagain................... 831

11.4EPRandBell-TheDetails...................... 834

11.4.1Single-PhotonInterference................... 834

11.4.2BasicFormalism......................... 849

11.5InseparablePhotons(theEPRParadox)includingsomehistory. 852

11.5.1ThePhilosophicalStakesintheDebate........... 852

11.5.2FromComotoBrussels(1927-30).............. 853

11.5.3FromBrusselstotheEPRParadox(1930-35)....... 854

11.5.4ElementaryIntroductiontotheEPRParadox....... 855

11.5.5TheEPRParadox(1935-52)................. 857

11.5.6TheBCHSHInequality(1964)................ 858

11.5.7BCHSHInequality(Bell’sinequalityinrealworld)..... 861

11.5.8TheBeginningsoftheExperimentatOrsay(1976).... 864

11.6ThePrincipleofNon-Separability................... 872

11.7AnExampleandaSolution-Bell’sTheoremwithPhotons... 874

11.8Non-Locality,EPRandBell-alasttime.............. 878

11.8.1TheBellInequalities...................... 882

11.9BayesianProbabilityinQM...................... 884

11.9.1UsingBayesianIdeasinAnalysisofExperiments..... 884

11.9.2SimpleExample......................... 886

11.9.3SimpleIdeas........................... 886

11.9.4MoreabouttheGreenberger-Horne-Zeilinger(GHZ)State 895

11.10Problems.................................. 896

11.10.1BellInequalitywithStern-Gerlach.............. 896

11.10.2Bell’sTheoremwithPhotons................. 898

11.10.3Bell’sTheoremwithNeutrons................. 899

11.10.4Greenberger-Horne-ZeilingerState.............. 899

12 IdenticalParticles901

12.1Theoreticalideas............................. 901

12.2BosonswithSpin=0.......................... 906

12.3Spin=1/2Fermions........................... 908

12.4TheN-ElectronAtom.......................... 914

12.5TheHeliumAtom............................ 920

12.6MultielectronAtoms........................... 928

12.6.1Screening............................. 930

12.6.2ShellStructure.......................... 931

12.7AngularMomentumCoupling..................... 935

12.7.1LSCoupling........................... 936

12.7.2Hund’sRules........................... 943

12.7.3JJ-Coupling........................... 944

12.8SphericalHarmonicsAdditionTheorem............... 948

12.8.1OrbitalAngularMomentum.................. 948

12.8.2TheAdditionTheorem..................... 951

12.9Problems.................................. 953

12.9.1TwoBosonsinaWell...................... 953

12.9.2TwoFermionsinaWell.................... 954

12.9.3Twospin 1/2 particles..................... 954

12.9.4HydrogenAtomCalculations................. 955

12.9.5Hund’srule............................ 956

12.9.6Russell-SaundersCouplinginMultielectronAtoms.... 956

12.9.7Magneticmomentsofprotonandneutron......... 957

12.9.8Particlesina3-Dharmonicpotential............ 958

12.9.92interactingparticles...................... 958

12.9.10LSversusJJcoupling...................... 959

12.9.11Inaharmonicpotential.................... 959

12.9.122particlesinteractingviadeltafunction.......... 959

12.9.132particlesinasquarewell................... 960

12.9.142particlesinteractingviaaharmonicpotential...... 960

12.9.15TheStructureofhelium.................... 960

13 SomeExamplesofQuantumSystems963

13.1CoherentandSqueezedStates..................... 963

13.2Electroninacircularwire....................... 968

13.3Spin-OrbitCouplinginComplexAtoms............... 972

13.4ZeemanEffectinComplexAtoms................... 975

13.4.1Method#1:PlausibilityDerivation............. 976

13.4.2Method#2:FullFormalDerivation............. 976

13.5NeutronInterferometry......................... 977

13.5.1NeutronInterferences...................... 979

13.5.2TheGravitationalEffect.................... 980

13.6ThePenningTrap............................ 982

13.6.1MotionofanElectroninaPenningTrap.......... 982

13.6.2TheTransverseMotion..................... 984

13.6.3MeasurementofElectronAnomalousMagneticMoment. 985

13.7Schrodinger’sCat............................ 986

13.7.1Schrodinger’sCat-amoredetailedpresentation..... 987

13.7.2ConstructionofaSchrodinger-CatState.......... 996

13.7.3QuantumSuperpositionVersusStatisticalMixture.... 997

13.7.4TheFragilityofaQuantumSuperposition......... 1000

13.8TheQuantumEraser.......................... 1002

13.8.1MagneticResonance...................... 1003

13.8.2RamseyFringes......................... 1005

13.8.3DetectionoftheNeutronSpinState............. 1009

13.8.4TheActualQuantumEraser................. 1011

14 SolidStatePhysics

1015

14.1CrystalStructureandSymmetry................... 1015

14.1.1SymmetryoftheCrystalSystem............... 1016

14.2BlochTheorem,theReciprocalLatticeandBrillouinZones... 1029

14.2.1TranslationOperatorsinConfigurationSpace....... 1029

14.2.2DerivationofBloch’sTheorem................ 1031

14.3Free-ElectronandWeak-BindingApproximations;1-Dimension. 1045

14.3.1TheFree-ElectronApproximation.............. 1046

14.4IntroductiontotheWeak-BindingApproximation......... 1054

14.5TheKronig-PenneyModel....................... 1065

14.5.1ExactAnalysis.......................... 1065

14.6Free-ElectronandWeak-BindingApproximations;2-Dimensions. 1072

14.6.1TheFree-ElectronApproximation.............. 1073

CONTENTS v

14.7Born-Oppenheimerdescriptionoftwoatomsinacombinedoscillatorandlatticetrap.......................... 1096

14.7.1Introduction........................... 1096

14.7.2LatticeHamiltonian....................... 1097

14.7.3Relative-andCenter-of-MassQuasi-Momenta....... 1099

14.7.4Born-OppenheimerSeparation................ 1102

14.7.5ExactandBorn-OppenheimerApproximateSolutions.. 1107

14.7.6Conclusions............................ 1115

14.8Spontaneoussymmetrybreakinginquantummechanics..... 1115

14.8.1Introduction........................... 1116

14.8.2TheHarmonicCrystal..................... 1116

14.8.3TheThinSpectrum....................... 1117

14.8.4Subtleties............................. 1120

14.8.5Discussion............................ 1121

14.9Problems.................................. 1121

14.9.1PiecewiseConstantPotentialEnergy

OneAtomperPrimitiveCell................. 1121

14.9.2PiecewiseConstantPotentialEnergy

TwoAtomsperPrimitiveCell................. 1122

14.9.3Free-ElectronEnergyBandsforaCrystalwithaPrimitive RectangularBravaisLattice.................. 1123

14.9.4Weak-BindingEnergyBandsforaCrystalwithaHexagonalBravaisLattice....................... 1123

14.9.5AWeak-BindingCalculation#1............... 1124

14.9.6Weak-BindingCalculationswithDelta-FunctionPotential Energies.............................. 1125

14.9.7Isthespectrumoftheharmoniccrystalexamplereally thin?1126

14.9.8Arethelimitsreallynoncommutativeintheharmonic crystalexample?......................... 1126

14.9.9TheBogoliubovtransformationintheharmoniccrystal example.............................. 1127

15 RelativisticWaveEquations

ElectromagneticRadiationinMatter 1129

15.1Spin0particles:Klein-GordonEquation............... 1129

15.1.1Howtofindcorrectformofrelativisticwaveequation?.. 1130

15.1.2NegativeEnergyStatesandAntiparticles.......... 1134

15.2PhysicsoftheKlein-GordonEquation................ 1137

15.3FreeParticlesasWavePackets..................... 1143

15.4BoundStateProblems.......................... 1147

15.4.1NonrelativisticLimit...................... 1150

15.5RelativisticSpin1/2Particles-TheDiracEquation........ 1151

15.5.1LorentzTransformationofSpin................ 1151

15.6TheDiracEquation........................... 1160

15.6.1NonrelativisticLimit...................... 1161

15.6.2CurrentsandContinuityEquations............. 1163

15.6.3FreeParticleSolutions..................... 1165

15.6.4MoreAboutCurrents...................... 1169

15.6.5Non-relativisticLimit...................... 1171

15.6.6TheDiracHydrogenAtom................... 1174

15.7ElectromagneticRadiationandMatter................ 1193

15.7.1InteractingwiththeClassicalRadiationField....... 1193

15.7.2RelationtoGaugeInvariance................. 1195

15.7.3Interactions............................ 1196

15.7.4InducedAbsorptionandEmission.............. 1197

15.7.5QuantizedRadiationFieldandSpontaneousEmission.. 1199

15.8Problems.................................. 1204

15.8.1DiracSpinors........................... 1204

15.8.2LorentzTransformations.................... 1205

15.8.3DiracEquationin 1 + 1 Dimensions............. 1205

15.8.4TraceIdentities......................... 1205

15.8.5Right-andLeft-HandedDiracParticles........... 1206

15.8.6GyromagneticRatiofortheElectron............ 1206

15.8.7Dirac → Schrodinger...................... 1207

15.8.8PositiveandNegativeEnergySolutions........... 1207

15.8.9HelicityOperator........................ 1207

15.8.10Non-RelativisiticLimit..................... 1207

15.8.11GyromagneticRatio....................... 1207

15.8.12Propertiesof γ5 ......................... 1208

15.8.13LorentzandParityProperties................. 1208

15.8.14ACommutator.......................... 1208

15.8.15SolutionsoftheKlein-Gordonequation........... 1208

15.8.16MatrixRepresentationofDiracMatrices.......... 1208

15.8.17WeylRepresentation...................... 1209

15.8.18TotalAngularMomentum................... 1209

15.8.19DiracFreeParticle....................... 1210

Chapter9

Time-DependentPerturbationTheory

9.1 Theory

Time-independentorstationary-stateperturbationtheory,aswedevelopedearlier,allowsustofindapproximationsfortheenergyeigenvaluesandeigenvectors incomplexphysicalsystemsthatarenotsolvableinclosedformandwherewe couldwrite ˆ H intwopartsas

Fortheseperturbationmethodstowork, ˆ V mustbe weak and time-independent

Wenowturnourattentiontothecase

where ˆ Vt is weak and time-dependent.

Examplesmightbethedecaysofanatomicsystembyphotonemissionorthe ionizationofanatombyshininglightonit.

Weassumethatatsometime t0 thesystemhasevolvedintothestate ∣ψ(0)) t ⟩, i.e.,thestate ∣ψ(0 t ⟩ satisfiesthetimeevolutionequation

Itisasolutionofthetime-dependentSchrodingerequationwithnoperturbing interactionsbefore t0 where

Attime t0 we turnon theinteractionpotential(orperturbation)sothat

Thenewstateofthesystemthensatisfies

withthe boundarycondition(initialvalue)

Aswesaid,weassumethatthefulltime-dependentSchrodingerequationcannot besolvedinclosedformandsowelookforapproximatesolutions.

Welet ˆ Vt beasmallperturbation,i.e.,weassumethereisanaturalsmall parameterin ˆ Vt (aswesawintime-independentperturbationtheory)andwe makeanexpansionofthesolutioninpowersof ˆ Vt orthissmallparameter.

Sincetheeffectof ˆ H0 willbemuchgreaterthantheeffectof ˆ Vt,mostofthetime dependencecomesfrom ˆ H0.Ifwecouldneglect ˆ Vt,thensince ˆ H0 isindependent oftime,wewouldhavethesimpletimedependence

Letusassumethatthisisstillapproximatelytrueandremovethisknowntime dependencefromthesolution.Thisshouldremovethemajorportionofthe totaltimedependencefromtheproblem.Wedothisbyassumingasolutionof theform

andthendeterminingandsolvingtheequationforthenewstatevector

(t)⟩

Substitutingthisassumptioninouroriginalequation,theequationfor ∣ψ(t)⟩ is thengivenby

Thesubstitutionhasremoved H0 fromtheequationandchangedthetimedependenceoftheperturbingpotential.Weareintheso-called interactionpicture orrepresentation where both thestatevectorsandtheoperatorsdependontime aswediscussedearlier.

Wedevelopa formalsolution byintegratingthisequationofmotionforthe statevectortoget

sothattheformalsolutionisgivenby

Thisisan integralequation for ∣ψ(t)⟩.Wesolveitasapowerseriesin ˆ Vt bythe methodofiteration

The 0th orderapproximationisfoundbyneglectingtheperturbingpotential. Weget

The 1st orderapproximationisobtainedbyinsertingthe 0th orderapproximationintothefullequation.Weget

The 2nd orderapproximationisobtainedbyinsertingthe 1st orderapproximationintothefullequation.Weget

Noticethatinallsubsequentiterationstheoperators ˆ V (t′), ˆ V (t′′), ,etc,always occurinorderofincreasingtimefromrighttoleft.

Wecanwritethegeneralresultas

where

Thecomplete,formalsolutiontotheproblemisthengivenby

sothat

thetotaltimedevelopmentoperator(9.20)

Beforedevelopingthedetailedtechniquesoftime-dependentperturbationtheory,letusspendsometimewiththeoperator ˆ U (t,t0) anddiscusssomeofits properties.

Wefirstintroducetheideaofa time-orderedproduct ofoperatorsasfollows. Thesymbol

meanstheproductoftheoperatorswheretheoperatorsarewrittenfromright toleftinorderofincreasingtimes,i.e.,

Now,wehaveusingthetime-orderedproductdefinition

andingeneral

becausethereare n! possibleorderingsofthe n termsinvolved.Thislastform isidenticaltotheexpressionfor ˆ U (t,t0) andthuswehave

Thelastexpressionisjusta convenientshorthandfortheinfinitesum.Inorder toverifythatthisisinfactasolutionof

wemustprovethat

Substituting,wehave

Inthedifferentiationwedonothavetoworryaboutthenon-commutationofthe operatorsinsidethetime-orderedproductsincethe orderisalreadyspecified

Since t iscertainlythelatesttimeinthetime-orderedproductandtherefore

alltheotheroperatorswillbeontherightof ˆ V (t) wecanpullitoutsidethe time-orderedproductandwrite

asrequired.

The mostimportantquestion (reallytheonlyquestion)thatisusuallyaskedin quantummechanicsisthefollowing:

Supposethatthesystemisinitiallyinaneigenstate ∣n⟩ of ˆ H0,i.e., ˆ H

⟩ = n

n⟩.Whatistheprobability thatthesystemwillbeobserved,aftertheperturbation hashadtimetoact,inadifferent(andthusorthogonal) eigenstateof ˆ H0,say ∣m⟩?

Alternatively,thequestionissometimesposedthisway:

Whatistheprobabilitythattheinteractioncausesthe systemtomakea transition fromthestate ∣n⟩ tothe state ∣m⟩?

Theprobabilityamplitudeforobservingthesysteminthestate

m⟩ attime t isgivenby

where

istheinitialstate.

Setting t0 = 0 forsimplicityandusingthe 1st orderapproximationfor ˆ U (t, 0) andalsousing

weget

Theprobabilityofthetransitionisthen

Thesimplestexampleiswhen Vt isnotafunctionof t,or Vt = V .Wethenhave

Ifwedefine ∆ = m n,thenwehave

forthetransitionprobability.

9.1.1 Whatisthephysicalmeaningofthisresult?

Wemustbe verycareful whenweusethewords theperturbationcausesatransition betweeneigenstatesof ˆ H0

Whatthismeansphysicallyisthatthesystemhasabsorbedfromtheperturbing field(oremittedtoit)theenergydifference ∆ = m n andthereforethesystem haschangeditsenergy.

Doesthestatementalsomeanthatthestatevectorhaschangedfromaninitial value ∣ψ(0)⟩ = ∣n⟩ toafinalvalue ∣ψ(t)⟩ = ∣m⟩?

Wecangetabetterfeelingforthecorrectanswertothisquestionbyderiving theresultinadifferentmanner.

Wehave

and

Asinourdevelopmentoftime-independentperturbationtheory,welet

where g isasmallparameter.

Thesetofeigenvectors {∣n⟩} isacompletesetandthereforewecanuseitasa basisforthespaceand,inparticular,wecanwrite

Thereasonforpullingoutthephasefactorswillbeclearshortly.

Itisclearthatif g = 0,thenthisisthecorrectgeneralsolutionwith

Thephasefactorswepulledoutrepresentthetimedependencedueto ˆ H0 and thisis,byassumption,themajortimedependenceinthesystem.

If g issmallweexpectthetimedependenceof an(t),whichisduetotheperturbationtobeweakorthat dan(t) dt issmall(9.42)

Itisinthissensethatwecanproposetouseperturbationtheoryonthesystem.

Usingtheeigenbasisexpansionwehave

Applyingthelinearfunctional ⟨m∣ fromtheleftandusingtheorthonormality relation

(9.44)

weget

where

Thisisanexactequation.Itimpliesthatthetimedependenceof an(t) isdue entirelyto ˆ Vt (becauseweexplicitlyextractedoutthedependencedueto ˆ H0). Thisistheinteractionpicturethatwehadearlier.

ExactlySolvable2-StateExample

Considera2-statesystemwith

Intheinteractionpicture,asderivedabove,wehave

or

Wecanwritetheseequationsas

Wecanfindanexactsolution.Withinitialconditions

weget

AgraphofthesefunctionsisshowninFigure9.1below.

Figure9.1:ExactSolution

Astraightforwardcalculationgives

Atresonance, ω = ω21,wehave

asshowninFigure9.2below.

Figure9.2:AtResonance

Theamplitudeasafunctionof ω isshowninFigure9.3below.

Figure9.3:Amplitudeversus ω

where ∆ = fullwidthathalfmaximum = 4δ/h.Theamplitudeispeakedat resonanceandthewidthisproportionalto δ (thestrengthoftheperturbation).

Thisperiodicallyforced 2 statesystemisabasicproblem-itdemonstratesthe fundamentalfeaturesofabsorptionandemission.

Wenowreturntothefull,generalequationsandlookforaperturbationsolution. Nowweassume(powerseries)

Substitutingandarrangingthetermsinapowerseriesin g wehave

(0) n

orlookingateachorderseparatelywehave

0th order da(0) n dt = 0 1st order ih da(1)

(r + 1)st order ih da(r+1) m dt

Notethatthecoefficients a(0) n followfromtheinitialcondition

Thesolutionproceedsasfollows: initialcondition → a(0) n a(0) n → a(1) n usingthe 1st orderequation

a(r) n → a(r+1) n usingthe (r + 1)st orderequation

Nowconsiderthefollowingexample.Weassumethat

(9.60) where

andduringthetimeinterval 0 ≤ t ≤ T aperturbation Vt isappliedtothesystem andthe an(t) changewithtime.

Finally,for t ≥ T theperturbationisturnedoffand an(t) = an(T ).

Theprobabilitythat,asaresultoftheperturbation,theenergyofthesystem becomes r,isgivenby

andas

Nowto 1st orderwehave

If ∣ψ(0)⟩ = ∣i⟩,then

Thisgives

Integratingwehave

and

whichisidenticaltoourearlierresultas

Nowletreturntoourquestion.Hasthestatechangedalso?

Intheexamplewefoundthattheperturbationproducesafinalstate ∣ψt⟩ for t ≥ T whichto 1st orderis

Thisisacoherent(definiterelativephases)superpositionofeigenvectorsof ˆ H0 Thisis NOT astationarystate.Interferenceeffectsbetweenthetermsinthe sumaredetectable.Theydonot,however,affect

∣ar(T )∣2 = probabilitythattheenergychangesto εr (9.70)

Thus,theperturbationdoesnotcausea jump fromonestationarystate ∣i⟩ of ˆ H0 toanother ∣r⟩,butinsteaditproducesanon-stationarystate.

Theconventionallanguageofquantummechanicsproducesthisambiguitybetweenthetwostatements

theenergyis r and thestateis ∣r⟩

Forthestate

itiscorrecttosay

theprobabilityoftheenergybeing r is

or

Prob(E = r

Thestate,however,is ∣ψt⟩ and NOT

Anexample

Supposeweperturbanoscillatorwithadecayingelectricfieldoftheform

To 1st order,startingwiththeinitialstate ∣n⟩ withenergy

wehave

where

Welet n = 0 (thegroundstate)forthisexample.Wethenhave

Using

weget(letting t → ∞)

andfinally,

Wenowreturntotheearliergeneralresult(9.36)wederivedfortheprobability, namely,

InFigure9.4belowweplotthisfunction.

Figure9.4:Probability(0,n)versusDelta

Theheightofthecentralpeakisproportionalto t2 andthelocationofthefirst zeroisat

= 2πh

sothatthewidthofthepeakdecreasesas 1/t.

Theformulaimpliesthatforveryshorttimes

As t → ∞,however,theprobabilityislargestforthosestateswhoseenergylies underthesharpbumpnear ∆ = 0 orthosestateswithwhoseenergyliesunder thepeakaround 0.Nowtheenergy n ≈ 0 liesunderthesharpbumpwhen

Theareaunderthebumpisproportionalto t andtherestoftheareaoscillates intimearoundzero.Thislatterfeaturemeansthatif n ≠ 0,thetransition probabilityoscillatesintimewitharepetitiontimeof

Thecase,wherewearelookingforatransitiontoasinglestate,is,thus,only validinperturbationtheoryforverysmalltime t.Otherwisetheconditionthat the

willnotbetrueandperturbationtheorybreaksdown.Wealsonotethatthe probabilitycannotgrowlargerthanoneorthat,afterawhile,thehigher-order effectsoftheperturbationwhichwehaveneglectedsofarmustbecomeimportantandpreventtheprobabilityfromexceedingone.

Theconditionthattellsuswhetheratransitionprobabilitytoastatewith anenergyappreciablydifferentthantheoriginalenergyisthesamecondition intime-independentperturbationtheorythattellswhetherthestatevector changesappreciablyfromtheunperturbedstate,namely

Physically,amoreinterestingcaseoccurswhenthestate ∣n⟩ isoneofacontinuumofenergystates,oritliesinagroupofverycloselyspacedlevels.

Inthiscaseweaskadifferentexperimentalquestion,namely,

Whatistheprobabilitythatthesystemmakes atransitiontoasmallgroupofstatesnear

n⟩ (orhasenergynear n)?

Sincetheareaunderthebumpnear ∆ = 0 or n ≈ 0 isproportionalto t,we expectthatthetransitionprobabilitytoasmallgroupofstatesnear 0 will growlinearlywith t andthus

0→n(t) t = transitionrate = Γ = constantas t → ∞ (9.88)

Quantitiesthatwemeasurearerelatedtothetransitionrateandthisresult saysthatthesemeasurementswillmakesense.

Letusnowcarryoutthisderivationindetail.

Tocalculatethistransitionratewemustsum P0→n overthegroupof final states. Weassumethat ∣⟨b

ˆ Vt

∣0⟩∣2 isrelativelyconstantoverthesmallgroupofstates near ∣n⟩ (hasaweakenergydependence).

Wethenhave

⎥ ⎦ 2 (9.89) where

n ingroup

ρ(εn) = numberofstatesperunitenergy

ρ(εn)dεn = numberofstatesintheinterval dεn

Nowinthelimit t → ∞

i.e.,ingeneral,forasequenceoffunctions

wehavethat

Therefore,

Usingthisresult,wehave

andthus

whichiscalled Fermi’sGoldenRule

Wenowconsideraperturbationthatdependsexplicitlyontime.Inparticular, supposewehaveaharmonicperturbationoftheform

and ∣ψ(t0)⟩ = ∣0⟩,wherewelet t

.The

factorisnecessarytomake themathematicaloperationsvalidinthelimit.Itisequivalentforsmall η to turningtheperturbationonslowly.Intheendwewilllet η → 0

Wehave

Thus,theprobabilityoftheenergybeing n atthetime t is

Thefirsttermcomesfromthe e iωt partof ˆ Vt (positivefrequency)andthe secondtermcomesfromthe eiωt partof ˆ Vt (negativefrequency).Thelastterm represents interferenceeffects

Since

wehave

The sin ωt and cos ωt termsarisefromtheinterferenceterm.Inthelimit η → 0 andassumingthat ∣n⟩ isinthecontinuumpartofspectrum,wehave

1. thefirsttwotermsarenotequaltozeroonlyif εn ε0 = ±hω

2. the sin ωt and cos ωt termsaveragetozeroifweassumethat Γ0→n is dP0→n(t)/dt averagedoverafewcyclesof ˆ Vt whichgivestheresult

Thepositiveandnegativefrequencypartsactindependentlyandtheinterference averagestozero.

Thus,the e iωt partproduceda ∆E > 0 process(absorption),whilethe eiωt partproduceda ∆E < 0 process(emission).

Toenhanceourunderstandingoftime-dependentperturbationtheory,welook atavariationofthisharmonicperturbation.Supposewehaveaharmonic perturbationoftheform

whichisonlyappliedforafinitetimeinterval 0 ≤ t ≤ T .Ifwestartwithenergy i inthestate ∣i⟩,thenatanytime t ≥ T

a(1) f (t) = 1st orderamplitudeforthestate ∣ψ(t)⟩ tohaveenergy εf (beinstate ∣f ⟩ ?) f ≠ i

isgivenby

(1) f (T ) = 1

(9.105) and ∣a(1) f (T )∣2 = probabilitythatthefinalenergywillbe f (9.106)

Asanexampleweconsiderspinresonance(wesolvedthisproblemexactlyearlier).

Weconsideraspin = 1/2 particleinastaticmagneticfield B0 (inthe z direction). ThissaysthattheunperturbedHamiltonianis

Thisoperatorhastheeigenvectorsandeigenvalues

Wenowperturbthesystemwithanothermagneticfield B1,whichisrotating inthe x y planewithangularvelocity ω.Thisimpliesthat

Wechoosetheinitialstatetobe

(spinupinthez-direction)(9.111)

Thefirstorderperturbationtheoryapproximationforthisresultis

andwehaveused

Whenisthefirstorderperturbationtheoryresultvalid?

Ifwecomparetheexactresultwithperturbationtheorybyexpandingtheexact resultinapowerseries,wefindthatthetworesultsagreeexactlyif

whichcorresponds B1 ≪ B0 (aslongas ω0 + ω ≠ 0).When ω0 + ω = 0 wehavea phenomenoncalledresonance.Theexactsolutiongives

andperturbationtheorygives

Thus,theresultsagreeonlyif ∣ω1T ∣ ≪ 1 oriftheperturbationonlyactsfora shorttime.

9.2 AtomicRadiationandSelectionRules

Wenowapplytime-independentperturbationtheorytotheabsorptionand emissionelectromagneticradiationbymatter.

TheHamiltonianforanelectroninanatominteractingwithandelectromagnetic fieldis

where q = e, U = thepotentialenergyfunctionthatbindstheelectronsinthe atom,and ⃗ A and ϕ arethevectorandscalarpotentialsassociatedwiththe electromagneticfield.

Thesepotentialsimplytheelectricandmagneticfields

Notethatif ⃗ A = 0,the ⃗ B = 0 and

Werewrite H as

where

ˆ H0 = ⃗ p2 op

e + U = Hamiltonianfortheatomwithnoelectromagneticfield (9.123) and

istheperturbationduetothepresenceoftheelectromagneticfield,i.e.,the term ˆ V tellsushowtheatominteractswiththeelectromagneticfield.

9.2.1 TheElectricDipoleApproximation

Thetypicalwavelengthofvisibleelectromagneticradiationis ≈ 5000 andthe typicaldimensionofanatomis ≈ afew.Thisimpliesthattheelectromagnetic fieldsareapproximatelyconstantoverthevolumeoftheatom.

InGaussianunits ∣E

B∣,buttheforcedueto B ≈ (v/c)× theforcedueto E

Thus,magneticeffectsarenegligibleinmostatomscomparedtoelectriceffects. Wethereforeassume

1. ⃗ E ≈ constantoverthevolumeoftheatom

2. ⃗ B canbeneglected

Thisistheso-calledelectricdipoleapproximation.

Inthisapproximation,wehave ⃗ A = 0 andaswesaidabove(11.121), ⃗ B = 0 and

Thislastintegralisindependentofpathsince

⃗ E = 1 c ∂B ∂t = 0 (9.126)

Sinceweareassumingthat ⃗ E ≈ constantoverthevolumeoftheatom,weget

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.