Mathematics for computer graphics (undergraduate topics in computer science), 6th edition 2022 john

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/mathematics-for-computer-graphics-undergraduate-to pics-in-computer-science-6th-edition-2022-john-vince/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Calculus for Computer Graphics, 3rd Edition John Vince

https://ebookmass.com/product/calculus-for-computer-graphics-3rdedition-john-vince/

Foundation Mathematics for Computer Science: A Visual Approach 3rd Edition John Vince

https://ebookmass.com/product/foundation-mathematics-forcomputer-science-a-visual-approach-3rd-edition-john-vince/

Mathematics and Computer Science, Volume 1 Sharmistha Ghosh

https://ebookmass.com/product/mathematics-and-computer-sciencevolume-1-sharmistha-ghosh/

Quaternions for Computer Graphics

https://ebookmass.com/product/quaternions-for-computer-graphics-c

Computer Science Illuminated

https://ebookmass.com/product/computer-science-illuminated/

Computer graphics with Open GL. 4th Edition Donald D. Hearn

https://ebookmass.com/product/computer-graphics-with-open-gl-4thedition-donald-d-hearn/

(eTextbook PDF) for Mathematical Structures for Computer Science 7th Edition

https://ebookmass.com/product/etextbook-pdf-for-mathematicalstructures-for-computer-science-7th-edition/

The Complete Guide to Blender Graphics: Computer Modeling and Animation: Volume1 9th Edition John M. Blain

https://ebookmass.com/product/the-complete-guide-to-blendergraphics-computer-modeling-and-animation-volume1-9th-editionjohn-m-blain/

5 Steps to a 5: AP Computer Science A 2022 Dean R. Johnson

https://ebookmass.com/product/5-steps-to-a-5-ap-computerscience-a-2022-dean-r-johnson/

UndergraduateTopicsinComputer Science

SeriesEditor

IanMackie,UniversityofSussex,Brighton,UK

AdvisoryEditors

SamsonAbramsky ,DepartmentofComputerScience,UniversityofOxford, Oxford,UK

ChrisHankin ,DepartmentofComputing,ImperialCollegeLondon,London,UK

MikeHinchey ,Lero–TheIrishSoftwareResearchCentre,Universityof Limerick,Limerick,Ireland

DexterC.Kozen,DepartmentofComputerScience,CornellUniversity,Ithaca, NY,USA

AndrewPitts ,DepartmentofComputerScienceandTechnology,Universityof Cambridge,Cambridge,UK

HanneRiisNielson ,DepartmentofAppliedMathematicsandComputerScience, TechnicalUniversityofDenmark,KongensLyngby,Denmark

StevenS.Skiena,DepartmentofComputerScience,StonyBrookUniversity,Stony Brook,NY,USA

IainStewart ,DepartmentofComputerScience,DurhamUniversity,Durham, UK

‘UndergraduateTopicsinComputerScience’(UTiCS)delivershigh-quality instructionalcontentforundergraduatesstudyinginallareasofcomputingand informationscience.Fromcorefoundationalandtheoreticalmaterialtofinal-year topicsandapplications,UTiCSbookstakeafresh,concise,andmodernapproach andareidealforself-studyorforaone-ortwo-semestercourse.Thetextsareall authoredbyestablishedexpertsintheirfields,reviewedbyaninternationaladvisory board,andcontainnumerousexamplesandproblems,manyofwhichincludefully workedsolutions.

TheUTiCSconceptreliesonhigh-quality,concisebooksinsoftbackformat,and generallyamaximumof275–300pages.Forundergraduatetextbooksthatare likelytobelonger,moreexpository,Springercontinuestoofferthehighlyregarded TextsinComputerScienceseries,towhichwereferpotentialauthors.

JohnVince MathematicsforComputer Graphics

SixthEdition

ISSN1863-7310ISSN2197-1781(electronic)

UndergraduateTopicsinComputerScience

ISBN978-1-4471-7519-3ISBN978-1-4471-7520-9(eBook) https://doi.org/10.1007/978-1-4471-7520-9

1st –5th editions:©Springer-VerlagLondonLtd.2001,2006,2010,2014,2017

6th edition:©Springer-VerlagLondonLtd.,partofSpringerNature2022

Theauthor(s)has/haveassertedtheirright(s)tobeidentifiedastheauthor(s)ofthisworkinaccordance withtheCopyright,DesignsandPatentsAct1988.

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringer-VerlagLondonLtd.partofSpringer Nature.

Theregisteredcompanyaddressis:TheCampus,4CrinanStreet,London,N19XW,UnitedKingdom

Thisbookisdedicatedtomywife,Heidi.

Preface

ThefirsteditionofthisbookbeganlifeaspartofSpringer’s Essential seriesand containedtenchaptersandapproximately220pages.Thissixthandlasteditionhas twentychaptersandapproximately600pages.Overtheinterveningeditions,Ihave revisedandextendedpreviousdescriptionsandintroducednewchaptersonsubjects thatIbelievearerelevanttocomputergraphics,suchasdifferentialcalculusand interpolation,andnewsubjectsthatIhadtolearnabout,suchasquaternionsand geometricalgebra.Hopefully,thiseditionexploresenoughmathematicalideasto satisfymostpeopleworkingincomputergraphics.

AlthoughthefirsteditionofthisbookwasproducedonahumblePCusingWORD, subsequenteditionswereproducedonanAppleiMacusingLATEX.Irecommendto anybuddingauthorsthattheyshouldlearnLATEXanduseSpringer’stemplatesto createtheirfirstmanuscript.Furthermore,today’scomputersaresofastthatIoften compiletheentirebookforthesakeofchangingasinglecharacter—itonlytakes5 or6seconds!

Ihaveusedcolourinthetexttoemphasisethepatternsbehindcertainnumbers andintheillustrationstoclarifythemathematics.

Itisextremelydifficulttoensurethattherearenospellingmistakes,missing brackets,spuriouspunctuationmarksand,aboveall,mathematicalerrors.Itruly havedonemybesttocorrectthetextandassociatedequations,butifIhavemissed some,thenIapologisenow.

Inallofmybooks,Itrytomentionthenamesofimportantmathematicians associatedwithaninventionordiscoveryandtheperiodoverwhichtheywerealive. Inthisbook,Imention50suchpeople,andtherelevantdatesareattachedtothefirst citation.

WhilstwritingthisbookIhaveborneinmindwhatitwaslikeformewhenI wasstudyingdifferentareasofmathematicsforthefirsttime.Inspiteofreadingand rereadinganexplanationseveraltimes,itcouldtakedaysbefore‘thepennydropped’ andaconceptbecameapparent.Hopefully,thereaderwillfindthefollowingexplanationsusefulindevelopingtheirunderstandingofthesespecificareasofmathematics andenjoythesoundofvariouspenniesdropping!

IwouldliketothankHelenDesmond,EditorforComputerScience,forallowing metogiveupholidaysandhobbiesinordertocompleteanotherbook!

Breinton,UK May2022

2.6.1TheArithmeticofPositiveandNegative

2.7.1CommutativeLaw.............................10

2.7.2AssociativeLaw...............................10

2.7.3DistributiveLaw..............................11

2.8TheBaseofaNumberSystem............................11

2.8.1Background..................................11 2.8.2OctalNumbers................................12 2.8.3BinaryNumbers...............................13 2.8.4HexadecimalNumbers.........................13 2.8.5AddingBinaryNumbers........................16

2.8.6SubtractingBinaryNumbers....................18

4.4TheTrigonometricRatios................................53

4.9.1Double-AngleIdentities........................61

4.9.2Multiple-AngleIdentities.......................62 4.9.3Half-AngleIdentities...........................63

5CoordinateSystems

5.5.12DPolygons..................................67

5.5.2AreaofaShape...............................67

5.6TheoremofPythagorasin2D.............................68 5.73DCartesianCoordinates................................69

5.7.1TheoremofPythagorasin3D...................70 5.8PolarCoordinates.......................................70

5.9SphericalPolarCoordinates..............................71

5.10CylindricalCoordinates..................................72

5.11Summary..............................................73

5.12WorkedExamples.......................................73

5.12.1AreaofaShape...............................73

5.12.2DistanceBetweenTwoPoints...................73

5.12.3PolarCoordinates.............................74

5.12.4SphericalPolarCoordinates.....................74 5.12.5CylindricalCoordinates........................75

6Determinants

6.2LinearEquationswithTwoVariables.......................78

6.3LinearEquationswithThreeVariables.....................81

6.3.1Sarrus’sRule.................................88

6.4MathematicalNotation...................................88

6.4.1Matrix.......................................88

6.4.2OrderofaDeterminant.........................89

6.4.3ValueofaDeterminant.........................89

6.4.4PropertiesofDeterminants......................91

6.5Summary..............................................91

6.6WorkedExamples.......................................92

6.6.1DeterminantExpansion.........................92

6.6.2ComplexDeterminant..........................92

6.6.3SimpleExpansion.............................93

6.6.4SimultaneousEquations........................93

7Vectors .......................................................95

7.1Introduction............................................95

7.2Background............................................95

7.32DVectors.............................................96

7.3.1VectorNotation...............................96

7.3.2GraphicalRepresentationofVectors..............97

7.3.3MagnitudeofaVector..........................98

7.43DVectors.............................................99

7.4.1VectorManipulation...........................100

7.4.2ScalingaVector...............................100

7.4.3VectorAdditionandSubtraction.................101

7.4.4PositionVectors...............................102

7.4.5UnitVectors..................................102

7.4.6CartesianVectors..............................103

7.4.7Products.....................................103

7.4.8ScalarProduct................................104

7.4.9TheDotProductinLightingCalculations.........105

7.4.10TheScalarProductinBack-FaceDetection........106

7.4.11TheVectorProduct............................107

7.4.12TheRight-HandRule..........................112

7.5DerivingaUnitNormalVectorforaTriangle...............112

7.6SurfaceAreas...........................................113

7.6.1Calculating2DAreas..........................114

7.7Summary..............................................114

7.8WorkedExamples.......................................115

7.8.1PositionVector................................115

7.8.2UnitVector...................................115

7.8.3VectorMagnitude.............................115

7.8.4AngleBetweenTwoVectors....................116

7.8.5VectorProduct................................116 References....................................................117

8.3MatrixNotation.........................................122

8.3.1MatrixDimensionorOrder.....................122

8.3.2SquareMatrix.................................122

8.3.3ColumnVector................................123

8.3.4RowVector...................................123

8.3.5NullMatrix...................................123

8.3.6UnitMatrix...................................123

8.3.7Trace........................................124

8.3.8DeterminantofaMatrix........................125

8.3.9Transpose....................................125

8.3.10SymmetricMatrix.............................126

8.3.11AntisymmetricMatrix..........................128

8.4MatrixAdditionandSubtraction..........................130

8.4.1ScalarMultiplication...........................130

8.5MatrixProducts.........................................130

8.5.1RowandColumnVectors.......................131

8.5.2RowVectorandaMatrix.......................131

8.5.3MatrixandaColumnVector....................132

8.5.4SquareMatrices...............................133

8.5.5RectangularMatrices..........................134

8.6InverseMatrix..........................................134

8.6.1InvertingaPairofMatrices.....................141

8.7OrthogonalMatrix......................................141

8.8DiagonalMatrix........................................142

8.9Summary..............................................143

8.10WorkedExamples.......................................143

8.10.1MatrixInversion...............................143

8.10.2IdentityMatrix................................144

8.10.3SolvingTwoEquationsUsingMatrices...........144

8.10.4SolvingThreeEquationsUsingMatrices..........145

8.10.5SolvingTwoComplexEquations................146

8.10.6SolvingThreeComplexEquations...............147

8.10.7SolvingTwoComplexEquations................148

8.10.8SolvingThreeComplexEquations...............149

9ComplexNumbers ............................................151

9.1Introduction............................................151

9.2DefinitionofaComplexNumber..........................151

9.2.1AdditionandSubtractionofComplexNumbers....152

9.2.2MultiplyingaComplexNumberbyaScalar.......153

9.2.3ProductofComplexNumbers...................153

9.2.4SquareofaComplexNumber...................154

9.2.5NormofaComplexNumber....................154

9.2.6ComplexConjugateofaComplexNumber........154

9.2.7QuotientofComplexNumbers..................155

9.2.8InverseofaComplexNumber...................156

9.2.9Square-Rootof ±i .............................156

9.3OrderedPairs...........................................158

9.3.1AdditionandSubtractionofOrderedPairs........158

9.3.2MultiplyinganOrderedPairbyaScalar..........159

9.3.3ProductofOrderedPairs.......................159

9.3.4SquareofanOrderedPair......................160

9.3.5NormofanOrderedPair.......................161

9.3.6ComplexConjugateofanOrderedPair...........161

9.3.7QuotientofanOrderedPair.....................161

9.3.8InverseofanOrderedPair......................162

9.3.9Square-Rootof ±i .............................163

9.4MatrixRepresentationofaComplexNumber...............164

9.4.1AddingandSubtractingComplexNumbers.......165

9.4.2ProductofTwoComplexNumbers...............166

9.4.3NormSquaredofaComplexNumber............166

9.4.4ComplexConjugateofaComplexNumber........167

9.4.5InverseofaComplexNumber...................167

9.4.6QuotientofaComplexNumber..................168

9.4.7Square-Rootof ±i .............................169 9.5Summary..............................................170

9.6WorkedExamples.......................................170

9.6.1AddingandSubtractingComplexNumbers.......170

9.6.2ProductofComplexNumbers...................171

9.6.3MultiplyingaComplexNumberby i .............172

9.6.4TheNormofaComplexNumber................173

9.6.5TheComplexConjugateofaComplexNumber....173

9.6.6TheQuotientofTwoComplexNumbers..........174

9.6.7DivideaComplexNumberby i ..................175

9.6.8DivideaComplexNumberby i ................176

9.6.9TheInverseofaComplexNumber...............177

9.6.10TheInverseof i ...............................178

9.6.11TheInverseof i

10.3.1Translation...................................182

10.3.2Scaling.......................................182

10.3.3Reflection....................................183

10.4TransformsasMatrices..................................184

10.4.1SystemsofNotation...........................184

10.5HomogeneousCoordinates...............................184

11.20.1AddingandSubtractingQuaternions.............256

11.20.2NormofaQuaternion..........................257

11.20.3Unit-normQuaternions.........................257

11.20.4QuaternionProduct............................257 11.20.5SquareofaQuaternion.........................258 11.20.6InverseofaQuaternion.........................258

12.4QuaternionsinMatrixForm..............................271

12.8.1SummaryofDefinitions........................281

14.9SurfacePatches.........................................319

14.9.1PlanarSurfacePatch...........................319

14.9.2QuadraticBézierSurfacePatch..................320

14.9.3CubicBézierSurfacePatch.....................322 14.10Summary..............................................324

15AnalyticGeometry ............................................325

15.1Introduction............................................325

15.2Background............................................325

15.2.1Angles.......................................325

15.2.2InterceptTheorems............................326

15.2.3GoldenSection................................327

15.2.4Triangles.....................................327

15.2.5CentreofGravityofaTriangle..................328

15.2.6IsoscelesTriangle.............................328

15.2.7EquilateralTriangle............................329

15.2.8RightTriangle................................329

15.2.9TheoremofThales.............................329

15.2.10TheoremofPythagoras.........................329

15.2.11Quadrilateral..................................330

15.2.12Trapezoid....................................330 15.2.13Parallelogram.................................331

15.2.14Rhombus.....................................331

15.2.15RegularPolygon..............................332

15.2.16Circle........................................332

15.32DAnalyticGeometry...................................334

15.3.1EquationofaStraightLine.....................334

15.3.2TheHessianNormalForm......................335

15.3.3SpacePartitioning.............................337

15.3.4TheHessianNormalFormfromTwoPoints.......337

15.4IntersectionPoints.......................................338

15.4.1IntersectingStraightLines......................338

15.4.2IntersectingLineSegments.....................339

15.5PointInsideaTriangle...................................341

15.5.1AreaofaTriangle.............................341

15.5.2HessianNormalForm..........................343

15.6IntersectionofaCirclewithaStraightLine.................345 15.73DGeometry...........................................347

15.7.1EquationofaStraightLine.....................347

15.7.2IntersectingTwoStraightLines..................348

15.8EquationofaPlane......................................351

15.8.1CartesianFormofthePlaneEquation............351

15.8.2GeneralFormofthePlaneEquation..............353

15.8.3ParametricFormofthePlaneEquation...........354

15.8.4ConvertingfromtheParametrictotheGeneral

17.18TheRelationshipBetweenQuaternionsandBivectors........421

17.19ReflectionsandRotations................................422

17.19.12DReflections................................422

17.19.23DReflections................................423

17.19.32DRotations..................................424

17.20Rotors.................................................426

18Calculus:Derivatives ..........................................437 18.1Introduction............................................437 18.2Background............................................437 18.3SmallNumericalQuantities...............................437 18.4EquationsandLimits....................................439 18.4.1QuadraticFunction............................439

18.4.2CubicEquation................................440

18.4.3FunctionsandLimits...........................442

18.4.4GraphicalInterpretationoftheDerivative.........444

18.4.5DerivativesandDifferentials....................445

18.4.6IntegrationandAntiderivatives..................445

18.5FunctionTypes.........................................447

18.6DifferentiatingGroupsofFunctions........................448

18.6.1SumsofFunctions.............................448

18.6.2FunctionofaFunction.........................450

18.6.3FunctionProducts.............................454

18.6.4FunctionQuotients............................458

18.7DifferentiatingImplicitFunctions.........................460

18.8DifferentiatingExponentialandLogarithmicFunctions.......463

18.8.1ExponentialFunctions.........................463

18.8.2LogarithmicFunctions.........................465

18.9DifferentiatingTrigonometricFunctions....................467

18.9.1Differentiatingtan.............................467

18.9.2Differentiatingcsc.............................468

18.9.3Differentiatingsec.............................469

18.9.4Differentiatingcot.............................470

18.9.5Differentiatingarcsin,arccosandarctan..........470

18.9.6Differentiatingarccsc,arcsecandarccot..........471

18.10DifferentiatingHyperbolicFunctions.......................472

18.10.1Differentiatingsinh,coshandtanh...............474

18.11HigherDerivatives......................................475

18.12HigherDerivativesofaPolynomial........................475

18.13IdentifyingaLocalMaximumorMinimum.................477

18.14PartialDerivatives.......................................480

18.14.1VisualisingPartialDerivatives...................483

18.14.2MixedPartialDerivatives.......................485

18.15ChainRule.............................................486

18.16TotalDerivative.........................................488

18.17Summary..............................................489 Reference.....................................................490

19Calculus:Integration ..........................................491

19.1Introduction............................................491

19.2IndefiniteIntegral.......................................491

19.3IntegrationTechniques...................................492

19.3.1ContinuousFunctions..........................492

19.3.2DifficultFunctions.............................493

19.3.3TrigonometricIdentities........................493

19.3.4ExponentNotation.............................495

19.3.5CompletingtheSquare.........................497

19.3.6TheIntegrandContainsaDerivative..............498

19.3.7ConvertingtheIntegrandintoaSeries ofFractions...................................500

19.3.8IntegrationbyParts............................501

19.3.9IntegrationbySubstitution......................505

19.3.10PartialFractions...............................510

19.4AreaUnderaGraph.....................................512

19.5CalculatingAreas.......................................513

19.6PositiveandNegativeAreas..............................521

19.7AreaBetweenTwoFunctions.............................523

19.8Areaswiththey-Axis....................................524

19.9AreawithParametricFunctions...........................525

19.10TheRiemannSum......................................527

19.11Summary..............................................529

20WorkedExamples .............................................531

20.1Introduction............................................531

20.2AreaofRegularPolygon.................................531

20.3AreaofAnyPolygon....................................532

20.4DihedralAngleofaDodecahedron........................533

20.5VectorNormaltoaTriangle..............................534

20.6AreaofaTriangleUsingVectors..........................535

20.7GeneralFormoftheLineEquationfromTwoPoints.........535

20.8AngleBetweenTwoStraightLines........................536

20.9TestifThreePointsLieonaStraightLine..................537 20.10PositionandDistanceoftheNearestPointonaLine toaPoint..............................................538

Chapter1 Introduction

1.1MathematicsforComputerGraphics

Computergraphicscontainsmanyareasofspecialismsuchasdatavisualisation,computeranimation,filmspecialeffects,computergamesandvirtualreality.Fortunately, noteveryoneworkingincomputergraphicsrequiresaknowledgeofmathematics, butthosethatdo,oftenlookforabookthatintroducesthemtosomebasicideas ofmathematics,withoutturningthemintomathematicians.Thisistheobjectiveof thisbook.OverthefollowingchaptersIintroducethereadertosomeusefulmathematicaltopicsthatwillhelpthemunderstandthesoftwaretheyworkwith,andhow tosolveawidevarietyofgeometricandalgebraicproblems.Thesetopicsinclude numberssystems,algebra,trigonometry,2Dand3Dgeometry,vectors,equations, matrices,complexnumbers,determinants,transforms,quaternions,interpolation, curves,patchesandcalculus.Ihavewrittenaboutsomeofthesetopicstoagreater levelofdetailinotherbooks,whichyoumaybeinterestedinexploring.

1.2UnderstandingMathematics

Oneoftheproblemswithmathematicsisitsincrediblebreadthanddepth.Itembraces everythingfromgeometry,calculus,topology,statistics,complexfunctionstonumbertheoryandpropositionalcalculus.Allofthesesubjectscanbestudiedsuperficiallyortoamind-numbingcomplexity.Fortunately,nooneisrequiredtounderstand everything,whichiswhymathematicianstendtospecialiseinoneortwoareasand developaspecialistknowledge.Ifit’sanycomfort,evenEinsteinaskedfriendsand colleaguestoexplainbranchesofmathematicstohelphimwithhistheories.

©Springer-VerlagLondonLtd.,partofSpringerNature2022

J.Vince, MathematicsforComputerGraphics,UndergraduateTopics inComputerScience, https://doi.org/10.1007/978-1-4471-7520-9_1

1.3WhatMakesMathematicsDifficult?

‘Whatmakesmathematicsdifficult?’isadifficultquestiontoanswer,butonethat hastobeaskedandanswered.Therearemanyanswerstothisquestion,andIbelieve thatproblemsbeginwithmathematicalnotationandhowtoreadit;howtoanalyse aproblemandexpressasolutionusingmathematicalstatements.Unlikelearninga foreignlanguage—whichIfindverydifficult—mathematicsisalanguagethatneeds tobelearnedbydiscoveringfactsandbuildinguponthemtodiscovernewfacts. Consequently,agoodmemoryisalwaysanadvantage,aswellasasenseoflogic.

Mathematicscanbedifficultforanyone,includingmathematicians.Forexample, whentheideaof √ 1wasoriginallyproposed,itwascriticisedandlookeddown uponbymathematicians,mainlybecauseitspurposewasnotfullyunderstood.Eventually,ittransformedtheentiremathematicallandscape,includingphysics.Similarly, whentheGermanmathematicianGeorgCantor(1845–1919),publishedhispapers onsettheoryandtransfinitesets,somemathematicianshoundedhiminadisgraceful manner.TheGermanmathematicianLeopoldKronecker(1823–1891),calledCantor a‘scientificcharlatan’,a‘renegade’,anda‘corrupterofyouth’,anddideverything tohinderCantor’sacademiccareer[1].Similarly,theFrenchmathematicianand physicistHenriPoincaré(1854–1912),calledCantor’sideasa‘gravedisease’[2], whilsttheAustrian-BritishphilosopherandlogicianLudwigWittgenstein(1889–1951),complainedthatmathematicsis‘riddenthroughandthroughwiththeperniciousidiomsofsettheory’[3].Howwrongtheyallwere.Today,settheoryisa majorbranchofmathematicsandhasfounditswayintoeverymathcurriculum.So don’tbesurprisedtodiscoverthatsomemathematicalideasareinitiallydifficultto understand—youareingoodcompany.

1.4BackgroundtoThisBook

DuringmyworkinglifeincomputeranimationIcameacrossawiderangeofstudents withanequallywiderangeofmathematicalknowledge.Somestudentspossesseda rudimentarybackgroundinmathematics,whileothershadbeentaughtcalculusand supportingsubjects.Teachingsuchacohortthemathematicsofcomputergraphics wasachallenge,tosaytheleast,butsomehowIdid.Bytheendofathree-year undergraduatecoursetheywerecompetentprogrammersandcouldprogramawide varietyofmathematicaltechniques.Thefirst-editionofthisbookemployedmuchof myteachingmaterialandhasbeenrevisedandextended.

1.5HowtoUseThisBook

Initially,I’drecommendtoanyreadertostartatthebeginningandstartreading chaptersonsubjectswithwhichtheyarefamiliar.Oneneverknowswhatmaybe

learntfromreadingaboutafamiliarsubjectbyanon-mathematician.Forthose readerswithagoodbackgroundinmathematics,shouldquickreadchapterson topicscoveredelse-where,andsettledownonnewtopics.Howeveryouapproach thisbook,Isincerelyhopethatyoudiscoversomethingnewthatincreasesyour knowledgeofthesubject.

1.6SymbolsandNotation

Oneofthereasonswhymanypeoplefindmathematicsinaccessibleisduetoits symbolsandnotation.Let’slookatsymbolsfirst.TheEnglishalphabetpossessesa reasonablerangeoffamiliarcharactershapes:

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z whichfindtheirwayintoeverybranchofmathematicsandphysics,andpermitus towriteequationssuchas

and

Itisimportantthatwhenweseeanequation,weareabletoreaditaspartofthe text.Inthecaseof E = mc 2 ,thisisreadas‘ E equals m , c squared’,where E stands forenergy, m formass, c thespeedoflight,whichismultipliedbyitself.Inthe caseof A = π r 2 ,thisisreadas‘ A equalspi, r squared’,where A standsforarea, π theratioofacircle’scircumferencetoitsdiameter,and r thecircle’sradius.Greek symbols,whichhappentolookniceandimpressive,havealsofoundtheirwayinto manyequations,andoftendisrupttheflowofreading,simplybecausewedon’t knowtheirEnglishnames.Forexample,theEnglishtheoreticalphysicistPaulDirac (1902–1984),derivedanequationforamovingelectronusingthesymbols αi and β ,whichare4 × 4matrices,where

andisreadas

‘thesumoftheproductsalpha-i beta,andbetaalpha-i ,equalszero.’ Althoughwedonotcomeacrossmovingelectronsinthisbook,wedohavetobe familiarwiththefollowingGreeksymbols:

γ gamma o omicron

delta

pi epsilon

zeta

eta

theta

iota

kappa

lambda

mu

rho

sigma

tau

upsilon

phi

chi

psi

omega andsomeupper-casesymbols: Γ Gamma Sigma

Delta

Upsilon

Theta Phi Λ Lambda Psi

Xi Omega

Pi

Beingabletoreadanequationdoesnotmeanthatweunderstandit—butwearea littlecloserthanjustbeingabletostareatajumbleofsymbols!Therefore,infuture, whenIintroduceanewmathematicalobject,Iwilltellyouhowitshouldberead.

References

1.DaubenJW(1979)GeorgCantorhismathematicsandphilosophyoftheinfinite.Princeton UniversityPress,Princeton

2.DaubenJW(2004)GeorgCantorandthebattlefortransfinitesettheory(PDF).In:Proceedings ofthe9thACMSconference(WestmontCollege,SantaBarbara,Calif.),pp1–22

3.RodychV(2007)Wittgenstein’sphilosophyofmathematics.In:ZaltaEN(ed)TheStanford encyclopediaofphilosophy.MetaphysicsResearchLab,StanfordUniversity

Chapter2 Numbers

2.1Introduction

Thischapterrevisessomebasicideasaboutcountingandnumbersystems,andhow theyareemployedinthecontextofmathematicsforcomputergraphics.Omitthis chapter,ifyouarefamiliarwiththesubject.

2.2Background

Overthecenturiesmathematicianshaverealisedthatinordertoprogress,theymust giveprecisedefinitionstotheirdiscoveries,ideasandconcepts,sothattheycan bebuiltuponandreferencedbynewmathematicalinventions.Intheeventofany newdiscovery,theserrrdefinitionshavetobeoccasionallychangedorextended.For example,onceuponatimeintegers,rationalandirrationalnumbers,satisfiedallthe needsofmathematicians,untilimaginaryquantitieswereinvented.Today,complex numbershavehelpedshapethecurrentnumbersystemhierarchy.Consequently, theremustbecleardefinitionsfornumbers,andtheoperatorsthatactuponthem. Therefore,weneedtoidentifythetypesofnumbersthatexist,whattheyareused for,andanyproblemsthatarisewhentheyarestoredinacomputer.

2.3Counting

Ourbrain’svisualcortexpossessessomeincredibleimageprocessingfeatures.For example,childrenknowinstinctivelywhentheyaregivenlesssweetsthananother child,andadultsknowinstinctivelywhentheyareshort-changedbyaParisiantaxi driver,ordrivenaroundtheArcdeTriumphseveraltimes,onthewaytotheairport! Intuitively,wecanassesshowmanydonkeysareinafieldwithoutcountingthem,

©Springer-VerlagLondonLtd.,partofSpringerNature2022

J.Vince, MathematicsforComputerGraphics,UndergraduateTopics inComputerScience, https://doi.org/10.1007/978-1-4471-7520-9_2

andgenerally,weseemtoknowwithinasecondortwo,whethertherearejustafew, dozens,orhundredsofsomething.Butwhenaccuracyisrequired,onecan’tbeat counting.Butwhatiscounting?

Wellnormally,wearetaughttocountbyourparentsbymemorisingfirst,the countingwords‘one,two,three,four,five,six,seven,eight,nine,ten,..’andsecond, associatingthemwithourfingers,sothatwhenaskedtocountthenumberofdonkeys inapicturebook,eachdonkeyisassociatedwithacountingword.Wheneach donkeyhasbeenidentified,thenumberofdonkeysequalsthelastwordmentioned. However,thisstillassumesthatweknowthemeaningof‘one,two,three,four,..’ etc.Memorisingthesecountingwordsisonlypartoftheproblem—gettingthemin thecorrectsequenceistherealchallenge.Theincorrectsequence‘one,two,five, three,nine,four,..’etc.,introducesanelementofrandomnessintoanycalculation, butpracticemakesperfect,andit’susefultomasterthecorrectsequencebeforegoing touniversity!

2.4SetsofNumbers

A set isacollectionofarbitraryobjectscalledits elements or members.Forexample, eachsystemofnumberbelongstoasetwithgivenaname,suchas N forthenatural numbers, R forrealnumbers,and Q forrationalnumbers.Whenwewanttoindicate thatsomethingiswhole,realorrational,etc.,weusethenotation: n ∈ N

whichreads‘n isamemberof(∈)theset N’,i.e. n isawholenumber.Similarly:

∈ R

standsfor‘ x isarealnumber.’

A well-orderedset possessesauniqueorder,suchasthenaturalnumbers N. Therefore,if P isthewell-orderedsetofprimenumbersand N isthewell-ordered setofnaturalnumbers,wecanwrite:

P ={2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,... } N ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,... }

Bypairingtheprimenumbersin P withthenumbersin N,wehave:

andwecanreasonthat2isthe1stprime,and3isthe2ndprime,etc.However,we stillhavetodeclarewhatwemeanby1, 2, 3, 4, 5,... etc.,andwithoutgettingtoo philosophical,Iliketheideaofdefiningthemasfollows.Theword‘one’,represented

2.4SetsofNumbers7 by1,standsfor‘oneness’ofanything:onefinger,onehouse,onetree,onedonkey, etc.Theword‘two’,representedby2,is‘onemorethanone’.Theword‘three’, representedby3,is‘onemorethantwo’,andsoon.

Wearenowinapositiontoassociatesomemathematicalnotationwithournumbersbyintroducingthe + and = signs.Weknowthat + meansadd,butitalsocan standfor‘more’.Wealsoknowthat = meansequal,anditcanalsostandfor‘isthe sameas’.Thusthestatement:

= 1 + 1

isreadas‘twoisthesameasonemorethanone.’

Wecanalsowrite:

whichisreadas‘threeisthesameasonemorethantwo.’Butaswealreadyhavea definitionfor2,wecanwrite

Developingthisidea,andincludingsomeextracombinations,wehave:

= 1 + 1

andcanbecontinuedwithoutlimit.Thesenumbers,1,2,3,4,5,6,etc.,arecalled naturalnumbers,andaretheset N

2.5Zero

Theconceptofzerohasawell-documentedhistory,whichshowsthatithasbeenused bydifferentculturesoveraperiodoftwo-thousandyearsormore.ItwastheIndian mathematicianandastronomerBrahmagupta(598-c.–670),whoarguedthatzero wasjustasvalidasanynaturalnumber,withthedefinition: theresultofsubtracting anynumberfromitself.However,eventoday,thereisnouniversalagreementasto whetherzerobelongstotheset N,consequently,theset N0 standsforthesetof naturalnumbersincludingzero.

Intoday’spositionaldecimalsystem,whichisa placevaluesystem,thedigit 0isaplaceholder.Forexample,203standsfor:twohundreds,notensandthree units.Although0 ∈ N0 ,itdoeshavespecialpropertiesthatdistinguishitfromother membersoftheset,andBrahmaguptaalsogaverulesshowingthisinteraction.

If x ∈ N0 ,thenthefollowingrulesapply:

addition: x + 0 = x

subtraction: x 0 = x

multiplication: x × 0 = 0 × x = 0

division:0/ x = 0

undefineddivision: x /0.

Theexpression0/0iscalledan indeterminateform,asitispossibletoshowthat underdifferentconditions,especiallylimitingconditions,itcanequalanything.So forthemoment,wewillavoidusingituntilwecovercalculus.

2.6NegativeNumbers

Whennegativenumberswerefirstproposed,theywerenotacceptedwithopenarms, asitwasdifficulttovisualise 5ofsomething.Forinstance,ifthereare5donkeys inafield,andtheyareallstolentomakesalami,thefieldisnowempty,andthere isnothingwecandointhearithmeticofdonkeystocreateafieldof 5donkeys. However,inappliedmathematics,numbershavetorepresentallsortsofquantities suchastemperature,displacement,angularrotation,speed,acceleration,etc.,and wealsoneedtoincorporateideassuchasleftandright,upanddown,beforeand after,forwardsandbackwards,etc.Fortunately,negativenumbersareperfectfor representingalloftheabovequantitiesandideas.

Considertheexpression4 x ,where x ∈ N0 .When x takesoncertainvalues, wehave

andunlessweintroducenegativenumbers,weareunabletoexpresstheresultof 4 5.Consequently,negativenumbersarevisualisedasshowninFig. 2.1,where the numberline showsnegativenumberstotheleftofthenaturalnumbers,which are positive,althoughthe + signisomittedforclarity.

Movingfromlefttoright,thenumberlineprovidesanumericalcontinuum fromlargenegativenumbers,throughzero,towardslargepositivenumbers.Inany

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.