Download ebooks file A comparison process for mouse pairs john r. steel all chapters

Page 1


https://ebookmass.com/product/a-comparison-process-formouse-pairs-john-r-steel/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Town Mouse and Country Mouse (Penguin Young Readers, Level 1) 1st Edition Arlene Wong

https://ebookmass.com/product/town-mouse-and-country-mouse-penguinyoung-readers-level-1-1st-edition-arlene-wong/

ebookmass.com

Random Process Analysis With R Marco Bittelli

https://ebookmass.com/product/random-process-analysis-with-r-marcobittelli/

ebookmass.com

Extraction Techniques for Environmental Analysis John R. Dean

https://ebookmass.com/product/extraction-techniques-for-environmentalanalysis-john-r-dean/

ebookmass.com

Simultaneous Mass Transfer and Chemical Reactions in Engineering Science: Solution Methods and Chemical Engineering Applications Bertram K.C. Chan

https://ebookmass.com/product/simultaneous-mass-transfer-and-chemicalreactions-in-engineering-science-solution-methods-and-chemicalengineering-applications-bertram-k-c-chan/

ebookmass.com

A Cowboy of Legend Linda Broday

https://ebookmass.com/product/a-cowboy-of-legend-linda-broday/

ebookmass.com

Charmed (The Enchanted Kingdom Chronicles Book 2) Camille Peters

https://ebookmass.com/product/charmed-the-enchanted-kingdomchronicles-book-2-camille-peters/

ebookmass.com

Digital Theatre: The Making and Meaning of Live Mediated Performance, US & UK 1990-2020 1st ed. Edition Nadja Masura

https://ebookmass.com/product/digital-theatre-the-making-and-meaningof-live-mediated-performance-us-uk-1990-2020-1st-ed-edition-nadjamasura/

ebookmass.com

Conversion to Islam in the Premodern Age: A Sourcebook Nimrod Hurvitz

https://ebookmass.com/product/conversion-to-islam-in-the-premodernage-a-sourcebook-nimrod-hurvitz/

ebookmass.com

Limited Edition Husband: A Fake Marriage MM Standalone Sports Romance (Winner Takes All Book 4) L. Blakely

https://ebookmass.com/product/limited-edition-husband-a-fake-marriagemm-standalone-sports-romance-winner-takes-all-book-4-l-blakely/

ebookmass.com

Focus on Middle East respiratory syndrome coronavirus (MERS-CoV) A.

https://ebookmass.com/product/focus-on-middle-east-respiratorysyndrome-coronavirus-mers-cov-a-bleibtreu/

ebookmass.com

CHAPTER 1.INTRODUCTION .........................................1

1.1.Largecardinalsandtheconsistencystrengthhierarchy.........1

1.2.Innermodeltheory.........................................3

1.3.Miceanditerationstrategies.................................5

1.4.HODinmodelsofdeterminacy..............................6

1.5.Leastbranchhodpairs......................................8

1.6.Comparisonandthemousepairorder........................9

1.7.Hodpaircapturing.........................................12

1.8.Constructingmousepairs...................................13

1.9.Thecomparisonargument...................................15

1.10.Planofthebook............................................17

CHAPTER 2.PRELIMINARIES ........................................19

2.1.Extendersandultrapowers..................................19

2.2.Pureextenderpremice......................................21

2.3.Projectaandcores..........................................24

2.4.Elementarityofmaps.......................................33

2.5. rΣk cofinalityandnearelementarity..........................40

2.6.Iterationtreesonpremice...................................49

2.7.Iterationstrategies..........................................55

2.8.Comparisonandgenericityiterations.........................62

2.9.Coarsestructure............................................65

CHAPTER 3.BACKGROUND-INDUCEDITERATIONSTRATEGIES ........71

3.1.Fullbackgroundextenderconstructions......................72

3.2.Resurrectionmaps.........................................78

3.3.AShiftLemmaforconversionstages.........................81

3.4.Conversionsystems........................................85

3.5.Inducediterationstrategies..................................92

3.6.Internalconsistencyforiterationstrategies....................93

3.7.Measurableprojecta........................................95

3.8.Projectawithmeasurablecofinality..........................99

CHAPTER 4.MOREMICEANDITERATIONTREES .....................103

4.1.Micewithprojectum-freespaces.............................104

4.2.Othersoundnesspatterns....................................112

4.3.Elementarityforpremouseembeddings.......................115

4.4.Plustrees..................................................129

4.5.Copymaps,liftedtrees,andlevelsofelementarity.............136

4.6.Iterationstrategiesandcomparison...........................149

4.7.PFSconstructionsandtheirresurrectionmaps.................154

4.8.Conversionsystemsandinducedstrategies....................158

4.9.Backgroundsforplusextenders..............................170

4.10.SolidityinPFSconstructions................................178

4.11.TheBicephalusLemma.....................................199

CHAPTER 5.SOMEPROPERTIESOFINDUCEDSTRATEGIES .............203

5.1.Copyingcommuteswithconversion..........................203

5.2.Positionalityandstrategycoherence..........................208

5.3.Pullbackconsistency........................................211

5.4.Internalliftconsistency.....................................215

5.5.Areductionto λ -separatedtrees.............................219

CHAPTER 6.NORMALIZINGSTACKSOFITERATIONTREES ............221

6.1.Normalizingtreesoflength2................................222

6.2.Normalizing T F ........................................231

6.3.Theextendertree V ext ......................................245

6.4.Treeembeddings...........................................246

6.5.Normalizing T U ..........................................251

6.6.Thebranchesof W (T , U ) ...................................266

6.7.Quasi-normalizingstacksofplustrees........................278

6.8.Copyingcommuteswithnormalization.......................284

6.9.Normalizinglongerstacks..................................290

CHAPTER 7.STRATEGIESTHATCONDENSEANDNORMALIZEWELL ...293

7.1.Thedefinitions.............................................294

7.2.Coarse Γ-Woodinsand Γ-universality........................302

7.3.Stronguniqueiterabilityfrom UBH ..........................307

7.4.Finestrategiesthatnormalizewell...........................317

7.5.Finestrategiesthatcondensewell............................329

7.6.Pureextenderpairs.........................................336

CHAPTER 8.COMPARINGITERATIONSTRATEGIES ....................345

8.1.Iteratingintoabackgroundedpremouse......................346

8.2.Extendingtreeembeddings..................................351

8.3.Resurrectionembeddingsasbranchembeddings...............357

8.4.Iteratingintoabackgroundedstrategy........................360

CHAPTER 9.FINESTRUCTUREFORTHELEASTBRANCHHIERARCHY ..391

9.1.Leastbranchpremice.......................................392

9.2.Leastbranchhodpairs......................................398

9.3.MousepairsandtheDodd-JensenLemma....................400

9.4.Backgroundconstructions...................................405

9.5.Comparisonandthehodpairorder...........................413

9.6.Theexistenceofcores......................................418

CHAPTER 10.PHALANXITERATIONINTOACONSTRUCTION ..........443

10.1.TheBicephalusLemma.....................................443

10.2.ThePseudo-premouseLemma...............................451

10.3.ProofofLemma9.6.5......................................464

10.4.Somesuccessfulbackgroundconstructions...................483

10.5. UBH holdsinhodmice.....................................486

CHAPTER 11.HOD INTHEDERIVEDMODELOFAHODMOUSE .......499

11.1.Genericinterpretability.....................................499 11.2.Mouselimits...............................................501

11.3.HODasamouselimit......................................504

11.4.HODmicesatisfy V = K ...................................513

11.5.Furtherresults.............................................518

PREFACE

Thisbookbeganlifeasalongresearcharticletitled Normalizingiterationtrees andcomparingiterationstrategies.Ifoundthemainideasbehindthecomparison processthatmotivatesitinSpring2015,andcirculatedahandwrittenmanuscript shortlyafterward.IcirculatedapreliminaryformofthepresentbookinApril2016, andhaverevisedandexpandeditmanytimessincethen,asvarioussignificant gapsanderrorsshowedup.Thelastmajorrevisionstookplacein2020-2021.1

Beyondmakingthebookcorrect,oneofmygoalshasbeentomakeitaccessible. Iwasencouragedherebythefactthatthenewdefinitionsandresultsareactually quiteelementary.Theyrestonthetheoryof Finestructureanditerationtrees (FSIT),andcanbeseenascompletingthattheoryinacertainway.Thecomparison theoremforpureextendermicethatisattheheartofFSITisdeficient,inthathow twomicecomparedependsonwhichiterationstrategiesarechosentocompare them.Hereweremedythatdefect,bydevelopingamethodforcomparingthe strategies.Theresultisacomparisontheoremfor mousepairs paralleltotheFSIT comparisontheoremforpureextendermice.Wethenusethecomparisonprocess underlyingthattheoremtodevelopafinestructuretheoryfor strategymice parallel tothefinestructuretheoryforpureextendermiceofFSIT.

Therearepointsatwhichdescriptivesettheoryunderdeterminacyhypotheses becomesrelevant.Atthesepoints,itwouldhelptohavereadthelatersectionsof [65].However,IhaveincludedenoughmaterialthatthereaderfamiliarwithFSIT butshakyondeterminacyshouldbeabletofollowtheexposition.Ourworkhere ismotivatedbytheproblemofanalyzingordinaldefinabilityinmodelsofAxiom ofDeterminacy,buttheprerequisiteforfollowingmostofitisjustinnermodel theoryatthelevelofFSIT.

1Thisisapre-publicationcopyonly.Thefinal,publishedversionofthebookcanbepurchased throughCambridgeUniversityPressandotherstandarddistributionchannels.Thisprepublicationcopy ismadeavailableforpersonaluseonlyandmustnotbesoldorre-distributed.

INTRODUCTION

Inthisbookweshalldevelopageneralcomparisonprocessforiterationstrategies, andshowhowtheprocesscanbeusedtoanalyzeordinaldefinabilityinmodels oftheAxiomofDeterminacy.Inthisintroduction,welookatthecontextand motivationforthetechnicalresultstocome.

Webeginwithabroadoverviewof innermodeltheory,thesubjecttowhichthis bookbelongs.Eventuallywereachanoutlineoftheideasandresultsthatarenew here.Thejourneyisorganizedsothatthetechnicalbackgroundneededtofollow alongincreasesasweproceed.

1.1.Largecardinalsandtheconsistencystrengthhierarchy

Strongaxiomsofinfinity,orastheyaremoreoftencalled,largecardinalhypotheses,playacentralroleinsettheory.Thereareatleasttworeasons.

First,largecardinalhypothesescanbeusedtodecideinanaturalwaymany questionswhichcannotbedecidedonthebasisof ZFC (thecommonlyaccepted systemofaxiomsforsettheory,andhenceallofmathematics).Manysuch questionscomefrom descriptivesettheory,thetheoryofsimplydefinablesetsof realnumbers.Forexample,thehypothesisthatthereareinfinitelymanyWoodin cardinalsyieldsasystematicanddetailedtheoryofthe projective setsofreals,those thataredefinableinthelanguageofsecondorderarithmeticfromrealparameters. ZFC byitselfyieldssuchatheoryatonlythesimplestlevelsofsecondorder definability.

Second,largecardinalhypothesesprovideawayoforganizingandsurveying allpossiblenaturalextensionsof ZFC.Thisisduetothefollowingremarkable phenomenon:foranynaturalextension T of ZFC whichsettheoristshavestudied, thereseemstobeanextension S of ZFC axiomatizedbylargecardinalhypotheses suchthattheconsistencyof T isprovably(in ZFC)equivalenttothatof S.The consistencystrengthsofthelargecardinalhypothesesarelinearlyordered,and usuallyeasytocompare.Thusallnaturalextensionsof ZFC seemtofallinto

ahierarchylinearlyorderedbyconsistencystrength,andcalibratedbythelarge cardinalhypotheses.2

Thesetwoaspectsoflargecardinalhypothesesareconnected,inthattheconsistencystrengthorderonnaturaltheoriescorrespondstotheinclusionorderon thesetoftheir“sufficientlyabsolute”consequences.Forexample,if S and T arenaturaltheoriesextending ZFC,and S hasconsistencystrengthlessthanor equaltothatof T ,thenthearithmeticconsequencesof S areincludedinthose of T .Ifinaddition, S and T haveconsistencystrengthatleastthatof“thereare infinitelymanyWoodincardinals”,thentheconsequencesof S inthelanguageof secondorderarithmeticareincludedinthoseof T .Thispatternpersistsatstill higherconsistencystrengths,withstillmorelogicallycomplicatedconsequences aboutrealsandsetsofrealsbeingbroughtintoauniformorder.Thisbeautifuland suggestivephenomenonhasapracticaldimensionaswell:onewaytodevelopthe absoluteconsequencesofastrongtheory T istocomputeaconsistencystrength lowerbound S for T intermsoflargecardinalhypotheses,andthenworkinthe theory S.Foroneofmanyexamples,theProperForcingAxiom(PFA)yieldsa canonicalinnermodelwithinfinitelymanyWoodincardinalsthatiscorrectfor statementsinthelanguageofsecondorderarithmetic,andtherefore PFA implies allconsequencesoftheexistenceofinfinitelymanyWoodincardinalsthatcanbe statedinthelanguageofsecondorderarithmetic.

Onecanthinkoftheconsistencystrengthofatheoryasthedegreetowhich itiscommittedtotheexistenceofthehigherinfinite.Largecardinalhypotheses maketheircommitmentsexplicitly:theysimplysayoutrightthattheinfinitiesin questionexist.Itisthereforeusuallyeasytocomparetheirconsistencystrengths. Othernaturaltheoriesoftenhavetheircommitmentstotheexistenceoftheinfinite wellhidden.Nevertheless,settheoristshavedevelopedmethodswherebythese commitmentscanbebroughttothesurface,andcompared.Thesemethodshave revealedtheremarkablephenomenondescribedinthelastparagraph,thatnatural theoriesappeartobewellorderedbythedegreestowhichtheyarecommittedto theinfinite,andthatthisdegreeofcommitmentcorrespondsexactlytothepower ofthetheorytodecidequestionsaboutconcreteobjects,likenaturalnumbers,real numbers,orsetsofrealnumbers.

Weshouldemphasizethattheparagraphsabovedescribeageneralpatternof existingtheorems.Therearemanyexamplesofnaturaltheorieswhoseconsistency strengthshavenotyetbeencomputed,andperhapsthey,orsomenaturaltheory yettobefound,willprovidecounterexamplestothepatterndescribedabove. Thepervasivenessofthepatternwhereweknowhowtocompareconsistency strengthsisevidencethatthiswillnothappen.3 Thetwomethodswherebyset

2Let con(T ) besomenaturalformalizationoftheassertionthat T isconsistent.Theconsistency strengthorderisgivenby: S ≤con T iff ZFC provescon(T ) → con(S)

3Thepatternextendstoweaksubtheoriesof ZFC aswell.Thisbookisconcernedonlywith theorieshavingverystrongcommitmentstoinfinity,andsoweshallignoresubtheoriesof ZFC,butthe linearityoftheconsistencystrengthsbelowthatof ZFC isevidenceoflinearityhigherup.

theoristscompareconsistencystrengths,forcingandinnermodeltheory,seemto leadinevitablytothepattern.Inparticular,thewellorderofnaturalconsistency strengthsseemstocorrespondtotheinclusionorderoncanonicalminimalinner modelsforlargecardinalhypotheses.Forcingandinnermodeltheoryseem sufficientlygeneraltocompareallnaturalconsistencystrengths,butatthemoment, thisisjustinformedspeculation.Soonereasonableapproachtounderstanding thegeneralpatternofconsistencystrengthsistodevelopourcomparisonmethods further.Inparticular,innermodeltheoryisingreatneedoffurtherdevelopment, astherearequiteimportantconsistencystrengthsthatitdoesnotyetreach.

1.2.Innermodeltheory

Theinnermodelprogramattemptstoassociatetoeachlargecardinalhypothesis H acanonicalminimaluniverseofsets MH (an innermodel)inwhich H istrue. Thestronger H is,thelarger MH willbe;thatis, G ≤con H ifandonlyif MG ⊆ MH Someofourdeepestunderstandingoflargecardinalhypothesescomesfromthe innermodelprogram.

Theinnermodelswehavesofarconstructedhaveaninternalstructurewhich admitsasystematic,detailedanalysis,a finestructuretheory ofthesortpioneered byRonaldJensenaround1970([16]).Thusbeingabletoconstruct MH givesus averygoodideaastowhatauniversesatisfying H mightlooklike.Innermodel theorytherebyprovidesevidenceoftheconsistencyofthelargecardinalhypotheses towhichitapplies.(Theauthorbelievesthatthiswillsomedayincludeallthe largecardinalhypothesescurrentlystudied.)Sinceforcingseemstoreduceany consistencyquestiontotheconsistencyquestionforsomelargecardinalhypothesis, itisimportanttohaveevidencethatthelargecardinalhypothesesthemselvesare consistent!Noevidenceismoreconvincingthananinnermodeltheoryforthe hypothesisinquestion.

Thesmallestofthecanonicalinnermodelsistheuniverse L ofconstructiblesets, isolatedbyKurtG¨odel([14])inhis1937proofthat CH isconsistentwith ZFC.It wasnotuntilthemid1960’sthatJ.SilverandK.Kunen([57],[23])developedthe theoryofacanonicalinnermodelgoingproperlybeyond L,byconstructing MH for H = “thereisameasurablecardinal”.4 Sincethen,progressivelylarger MH forprogressivelystronger H havebeenconstructedandstudiedindetail.(Seefor example[7],[27],and[28].)Atthemoment,wehaveagoodtheoryofcanonical innermodelssatisfying“thereisaWoodincardinal”,andevenslightlystronger hypotheses.(See[26],[30],and[61],forexample.)Oneofthemostimportantopen problemsinsettheoryistoextendthistheorysignificantlyfurther,withperhaps

4ZFC isofcoursetooweak,consistency-wise,toprovethatthereissuchamodel.Silverand Kunenworkedinthetheory ZFC+ “thereisameasurablecardinal”.Inthemid1970s,Doddand Jensendevelopedgeneralmethodsforconstructingthecanonicalinnermodelwithameasurableunder awideassortmentofhypotheses.See[7].

themostwell-knowntargetbeingmodelssatisfying“thereisasupercompact cardinal”.

Innermodeltheoryisacrucialtoolincalibratingconsistencystrengths:inorder toprovethat H ≤con T ,where H isalargecardinalhypothesis,onegenerally constructsacanonicalinnermodelof H insideanarbitrarymodelof T .Because wedonothaveafullinnermodeltheoryveryfarpastWoodincardinals,welack themeanstoprovemanywell-knownconjecturesoftheform H ≤con T ,where H issignificantlystrongerthan“thereisaWoodincardinal”.Broadlyspeaking,there aregreatdefectsinourunderstandingoftheconsistencystrengthhierarchybeyond Woodincardinals.

Innermodeltheoryisalsoacrucialtoolindevelopingtheconsequencesforreal numbersoflargecardinalhypotheses.Indeed,thebasicsofinnermodeltheory forWoodincardinalswerediscoveredin1985-86byD.A.Martinandtheauthor, atroughlythesametimetheydiscoveredtheirproofofProjectiveDeterminacy, or PD.(Martin,Moschovakis,andothershadshowninthe1960’sand70’sthat PD decidesinanaturalwayalltheclassicalquestionsaboutprojectivesetsleft undecidedby ZFC alone.)Thissimultaneousdiscoverywasnotanaccident,as thefundamentalnewtoolinbothcontextswasthesame: iterationtrees,andthe iterationstrategies whichproducethem.Sincethen,progressininnermodeltheory hasgivenusadeeperunderstandingofpuredescriptivesettheory,andthemeans tosolvesomeoldproblemsinthatfield.

Thefundamentalopenproblemofinnermodeltheoryistoextendthetheoryto modelssatisfyingstrongerlargecardinalhypotheses.“Thereisasupercompact cardinal”isanoldandstillquitechallengingtarget.Oneverywellknowntest questionhereiswhether (ZFC+“thereisasupercompactcardinal”) ≤con ZFC + PFA.Theanswerisalmostcertainlyyes,andtheproofalmostcertainlyinvolves aninnermodeltheorythatisfiringonallcylinders.5 Thatkindofinnermodel theorywehavenowonlyatthelevelofmanyWoodincardinals,butsignificant partsofthetheorydoexistalreadyatmuchhigherlevels.6

5Aparallel,andstillolder,questioniswhether(ZFC +“thereisasupercompactcardinal”) ≤con ZFC+ “thereisastronglycompactcardinal”.

6J.Baumgartnershowedintheearly1980sthat ZFC + PFA ≤con ZFC+“thereisasupercompact cardinal”.SupercompactsarefarbeyondWoodincardinals,inthesensethattherearemanyinteresting consistencystrengthsstrictlybetweenthetwo,andinthesensethatconstructingcanonicalinner modelsforsupercompactspresentssignificantnewdifficulties.Manysettheoreticprincipleshave beenshownconsistentrelativetotheexistenceof(sometimesmany)supercompactcardinals,so inner-model-theoreticevidenceoftheirconsistencywouldbevaluable.

1.3.Miceanditerationstrategies

Thecanonicalinnermodelsweseekareoftencalled mice.Therearetwo principalvarieties,thepureextendermiceandthestrategymice.7

Apureextenderpremouseisamodeloftheform Lα [E] where E isacoherent sequenceofextenders.Hereanextenderisasystemofultrafilterscodingan elementaryembedding,andcoherencemeansroughlythattheextendersappearin orderofstrength,withoutleavinggaps.ThesenotionswereintroducedbyMitchell inthe1970s8,andtheyhavebeenafoundationforworkininnermodeltheory sincethen.

Inthisbook,weshallassumethatourpremicehavenolongextendersontheir coherentsequences.9 Suchpremicecanmodelsuperstrong,andevensubcompact, cardinals.Theycannotmodel κ +-supercompactness.Longextendersleadtoan additionalsetofdifficulties.

An iterationstrategy isawinningstrategyforplayer II intheiterationgame.For anypremouse M,theiterationgameon M isatwoplayergameoflength ω1 + 1 10 Inthisgame,theplayersconstructatreeofmodelssuchthateachsuccessivenode onthetreeisobtainedbyanultrapowerofamodelthatalreadyexistsinthetree. I istheplayerthatdescribeshowtoconstructthisultrapower.Hechoosesan extender E fromthesequenceofthelastmodel N constructedsofar,thenchooses anothermodel P inthetreeandtakestheultrapowerof P by E.Iftheultrapoweris ill-foundedthenplayer I wins;otherwisetheresultingultrapoweristhenextnode onthetree.Player II movesatlimitstages λ bychoosingabranchofthetreethat hasbeenvisitedcofinallyoftenbelow λ ,andissuchthatthedirectlimitofthe embeddingsalongthebranchiswell-founded.Ifhefailstodoso,heloses.IfII managestostayinthecategoryofwellfoundedmodelsthroughall ω1 + 1 moves, thenhewins.Awinningstrategyfor II inthisgameiscalledan iterationstrategy for M,and M issaidtobe iterable justincasethereisaniterationstrategyforit. Iterablepureextenderpremicearecalled pureextendermice

Pureextendermicearecanonicalobjects;forexample,anyrealnumberbelongingtosuchamouseisordinaldefinable.Letussaythatapremouse M is pointwise definable ifeveryelementof M isdefinableover M.Foranyaxiomatizabletheory T ,theminimalmousesatisfying T ispointwisedefinable.Thecanonicityofpure extendermiceisduetotheiriterability,which,viathefundamental Comparison Lemma,impliesthatthepointwisedefinablepureextendermicearewellordered byinclusion.Thisisthe mouseorder onpointwisedefinablepureextendermice.

7Strategymicearesometimescalled hodmice,becauseoftheirroleinanalyzingthehereditarily ordinaldefinablesetsinmodelsoftheAxiomofDeterminacy.

8See[27]and[28].

9Anextenderisshortifallitscomponentultrafiltersconcentrateonthecriticalpoint.Otherwise,it islong.

10Iterationgamesofotherlengthsarealsoimportant,butthislengthiscrucial,soweshallfocuson it.

Theconsistencystrengthof T isdeterminedbytheminimalmouse M havinga genericextensionsatisfying T ,andthustheconsistencystrengthorderonnatural T ismirroredinthemouseorder.However,inthecaseofthemouseorder,we have proved thatwehaveawellorder;whatwecannotyetdoistienatural T at highconsistencystrengthstoit.Asweclimbthemouseorder,themicebecome correct(reflectwhatistrueinthefulluniverseofsets)athigherandhigherlevels oflogicalcomplexity.

Iterationstrategiesforpointwisedefinablepureextendermicearealsocanonicalobjects;forexample,apointwisedefinablemousehasexactlyoneiteration strategy.11 Theexistenceofiterationstrategiesisattheheartofthefundamental problemofinnermodeltheory,andforapointwisedefinable M,toprovethe existenceofaniterationstrategyistodefineit.Inpractice,itseemsnecessary togiveadefinitioninthesimplestpossiblelogicalform.Aswegohigherinthe mouseorder,thelogicalcomplexityofiterationstrategiesmustincrease,inaway thatkeepspacewiththecorrectnessofthemicetheyidentify.

Ourmostpowerful,all-purposemethodforconstructingiterationstrategiesis the coremodelinductionmethod.Becauseiterationstrategiesmustactontrees oflength ω1,theyarenotcodedbysetsofreals.Nevertheless,thefragmentof theiterationstrategyforacountablemousethatactsoncountableiterationtrees is codedbyasetofreals.Ifthissethappenstobeabsolutelydefinable(thatis, UniversallyBaire)thenthestrategycanbeextendedtoactonuncountableiteration treesinauniqueway.Thereisnootherwayknowntoconstructiterationstrategies actingonuncountabletrees.Thus,havinganabsolutelydefinableiterationstrategy forcountabletreesistantamounttohavingafulliterationstrategy.Thekey ideainthecoremodelinductionistousetheconceptsofdescriptivesettheory, underdeterminacyhypotheses,toidentifyanextrelevantlevelofcorrectnessand definabilityforsetsofreals,atargetlevelatwhichthenextiterationstrategyshould bedefinable.

Absolutedefinabilityleadstodeterminacy.Thusatreasonablyclosedlimitsteps inacoremodelinduction,onehasamodel M of AD + V = L(P(R)) thatcontains therestrictionstocountabletreesoftheiterationstrategiesalreadyconstructed. UnderstandingthestructureofHODM isimportantforgoingfurther.

1.4. HOD inmodelsofdeterminacy

HOD istheclassofallhereditarilyordinaldefinablesets.Itisamodelof ZFC12 , butbeyondthat, ZFC doesnotdecideitsbasictheory,andthesameistrueof ZFC augmentedbyanyoftheknownlargecardinalhypotheses.Theproblemisthat thedefinitionsonehasallowedarenotsufficientlyabsolute.Incontrast,thetheory

11ThisfollowsfromTheorem4.11of[65],andthefactthatanyiterationstrategyforapointwise definable M hastheWeakDodd-Jensenpropertywithrespecttoallenumerationsof M

12See[31].

of HOD indeterminacymodelsiswell-determined,notsubjecttothevagariesof forcing.13

Thestudyof HOD inmodelsof AD hasalonghistory.Thereadershould see[67]forasurveyofthishistory. HOD wasstudiedbypurelydescriptiveset theoreticmethodsinthelate70sand80s,andpartialresultsonbasicquestions suchaswhether HOD |= GCH wereobtainedthen.Itwasknownthenthatinner modeltheory,ifonlyonecoulddevelopitinsufficientgenerality,wouldberelevant tocharacterizingtherealsin HOD.Itwasknownthat HODM iscloseto M in variousways;forexample,if M |= AD+ + V = L(P(R))14,then M canberealized asasymmetricforcingextensionof HODM ,sothatthefirstordertheoryof M is partofthefirstordertheoryofitsHOD. 15

Justhowrelevantinnermodeltheoryistothestudyof HOD inmodelsof AD becameclearin1994,whentheauthorshowedthatifthereare ω Woodincardinals withameasurableabovethemall,then HODL(R) upto θ L(R) isapureextender mouse.16(See[60].)Shortlyafterward,thisresultwasimprovedbyHughWoodin, whoreduceditshypothesisto ADL(R),andidentifiedthefull HODL(R) asamodel oftheform L[M, Σ],where M isapureextenderpremouse,and Σ isapartial iterationstrategyfor M. HODL(R) isthusanewtypeofmouse,sometimescalled a strategymouse,sometimescalleda hodmouse.See[77]foranaccountofthis work.

Sincethemid-1990s,therehasbeenagreatdealofworkdevotedtoextending theseresultstomodelsofdeterminacybeyond L(R).Woodinanalyzed HOD in modelsof AD+ belowtheminimalmodelof ADR finestructurally,andSargsyan extendedtheanalysisfurther,firsttodeterminacymodelsbelow ADR + “θ is regular”(see[37]and[38]),andmorerecently,tomodelsofstillstrongerformsof determinacy. 17 Partofthemotivationforthisworkisthatitseemstobeessential inthecoremodelinduction:ingeneral,thenextiterationstrategyseemstobea strategyforahodmouse,notforapureextendermouse.Thisideacomesfrom workofWoodinandKetchersidaround2000.(See[21]and[47].)

13Wemeanheredeterminacymodelsoftheform M = L(Γ, R),where Γ isaproperinitialsegment oftheuniversallyBairesets.IftherearearbitrarilylargeWoodincardinals,thenforanysentence ϕ , whether ϕ istrueinallsuch HODM isabsoluteundersetforcing.ThisfollowseasilyfromWoodin’s theoremonthegenericabsolutenessof (Σ2 1)uB statements.See[64,Theorem5.1].

14AD+ isatechnicalstrengtheningof AD.Itisnotknownwhether AD ⇒ AD+ ,butinevery modelof AD constructedsofar, AD+ alsoholds.Inparticular,themodelsof AD thatarerelevantin thecoremodelinductionsatisfy AD+

15ThisisatheoremofWoodinfromtheearly1980s.Cf.[67].

16Inadeterminacycontext, θ denotestheleastordinalthatisnotthesurjectiveimageofthereals.

17See[39].Partofthisworkwasdoneincollaborationwiththeauthor;see[68],[74],and[69].The determinacyprinciplesdealtwithhereareallweakerthanaWoodinlimitofWoodincardinals.

1.5.Leastbranchhodpairs

Thestrategymiceusedintheworkjustdescribedhavetheform M = L[E, Σ], where E isacoherentsequenceofextenders,and Σ isaniterationstrategyfor M

Thestrategyinformationisfedintothemodel M slowly,inawaythatisdictated inpartbythedeterminacymodelwhose HOD isbeinganalyzed.Onesaysthatthe hierarchyof M is rigidlylayered,or extenderbiased.Theobject (M, Σ) iscalleda rigidlylayered(extenderbiased) hodpair.

Perhapsthemainmotivationfortheextenderbiasedhierarchyisthatitmakesit possibletoproveacomparisontheorem.Thereisnoinnermodeltheorywithout suchatheorem.Comparingstrategymicenecessarilyinvolvescomparingiteration strategies,andcomparingiterationstrategiesissignificantlymoredifficultthan comparingextendersequences.Rigidlayeringletsoneavoidthedifficulties inherentinthegeneralstrategycomparisonproblem,whileprovingcomparisonfor aclassofstrategymiceadequatetoanalyze HOD intheminimalmodelof ADR + “θ isregular”,andsomewhatbeyond.Thekeyisthatinthisregion, HOD doesnot havecardinalsthatarestrongpastaWoodincardinal.

Unfortunately,rigidlayeringdoesnotseemtohelpincomparingstrategymice thathavecardinalsthatarestrongpastaWoodin.Moreover,ithasseriouscosts. Thedefinitionof“hodpremouse”becomesverycomplicated,andindeeditisnot clearhowtoextendthedefinitionofrigidlylayeredhodpairsmuchpastthatgiven in[39].Thedefinitionof“rigidlylayeredhodpremouse”isnotuniform,inthatthe extentofextenderbiasdependsonthedeterminacymodelwhose HOD isbeing analyzed.Finestructure,andinparticularcondensation,becomemoreawkward. Forexample,itisnottrueingeneralthatthepointwisedefinablehullofalevelof M isalevelof M.(Theproblemisthatthehullwillnotgenerallybesufficiently extenderbiased.)

Themorenaivenotionofhodpremousewouldabandonextenderbias,and simplyaddtheleastmissingpieceofstrategyinformationatessentiallyevery stage.ThiswasoriginallysuggestedbyWoodin.18 Thefocusofthisbookisa generalcomparisontheoremforiterationstrategiesthatmakesitpossibletouse thisapproach,atleastintherealmofshortextenders.Theresultingpremiceare called leastbranchpremice (lpm’s),andthepairs (M, Σ) arecalled leastbranch hodpairs (lbrhodpairs).Combiningresultsofthisbookand[73],onehas THEOREM 1.5.1([73]). Assume AD++ “thereisan (ω1, ω1) iterationstrategy forapureextenderpremousewithalongextenderonitssequence”;then (1) forany Γ ⊆ P(R) suchthat L(Γ, R) |= ADR+ “thereisno (ω1, ω1) iteration strategyforapureextenderpremousewithalongextenderonitssequence”, HODL(Γ,R) isaleastbranchpremouse,and

18Therearesomefine-structuralproblemswiththeprecisemethodforinsertingstrategyinformation originallysuggestedbyWoodin.Themethodforstrategyinsertionthatiscorrectindetailisdueto SchlutzenbergandTrang.Cf.[56].

(2) thereisa Γ ⊆ P(R) suchthat L(Γ, R) |= ADR+ “thereisno (ω1, ω1) iterationstrategyforapureextenderpremousewithalongextenderonits sequence”,and HODL(Γ,R) |= “thereisasubcompactcardinal”.

Ofcourse,onewouldliketoremovethemouseexistencehypothesisof1.5.1, andproveitsconclusionunder AD+ alone.Findingawaytodothisisone manifestationofthelongstandingiterabilityproblemwehavediscussedabove. Althoughwedonotyetknowhowtodothis,thetheoremdoesmakeithighlylikely thatinmodelsof ADR thathavenotreachedaniterationstrategyforapureextender premousewithalongextender, HOD isaleastbranchpremouse.Italsomakesit verylikelythattherearesuch HOD’swithsubcompactcardinals.Subcompactness isoneofthestrongestlargecardinalpropertiesthatcanberepresentedwithshort extenders.19

AlthoughweshallnotproveTheorem1.5.1here,weshallproveanapproximationtoitthatmakesthesamepoints.ThatapproximationisTheorem11.3.13 below.

Leastbranchpremicehaveafinestructuremuchclosertothatofpureextender modelsthanthatofrigidlylayeredhodpremice.Inthisbookwedevelopthe basics,includingthesolidityanduniversalityofstandardparameters,andaformof condensation.In[76],theauthorandN.Tranghaveprovedasharpercondensation theorem,whosepureextenderversionwasusedheavilyintheSchimmerlingZemanwork([44])on inpureextendermice.Itseemslikelythattherestofthe Schimmerling-Zemanworkextendsaswell.

Thusleastbranchhodpairsgiveusagoodtheoryof HOD intheshortextender realm,providedthereareenoughsuchpairs.20 Below,weformulateaconjecture thatwecall HodPairCapturing,or HPC,thatmakesprecisethestatementthat thereareenoughleastbranchhodpairs. HPC isthemainopenprobleminthe theorytowhichthisbookcontributes.

1.6.Comparisonandthemousepairorder

Letusfirstsaymoreaboutthenatureofleastbranchhodpairs (M, Σ).There arefourrequirementson Σ inthedefinition:stronghullcondensation,quasinormalizingwell,internalliftconsistency,andpushforwardconsistency.Weshall describetheserequirementsinformally,omittingsomeofthefinepoints,andgive thefulldefinitionslater.

Recallthataniterationtreeonapremouse M is normal ifftheextenders EW α usedin W havelengthsincreasingwith α ,andeach EW α isappliedtothelongest

19Untilnow,therewasnoverystrongevidencethatthe HOD ofadeterminacymodelcouldsatisfy thattherearecardinalsthatarestrongpastaWoodincardinal.

20Atleastinthecasethatthebackgrounddeterminacymodelsatisfies ADR + V = L(P(R)).Some formofextenderbiasmaybeappropriateinothercases.

possibleinitialsegmentoftheearliestpossiblemodelin W.Fortechnicalreasons weneedtoconsideraslightweakeningofthelength-increasingrequirement;we calltheresultingtrees quasi-normal.Ouriterationstrategieswillactonfinite stacks ofquasi-normaltrees,thatis,sequences s = T0,..., Tn suchthatforall k ≤ n 1, Tk+1 isaquasi-normaltreeonsomeinitialsegmentofthelastmodelin Tk .Wewrite M∞(s) forthelastmodelof Tn,ifthereisone.

DEFINITION 1.6.1. Let Σ beaniterationstrategyforapremouse P. (1) (Tailstrategy)If s isastackby Σ and Q ✂ M∞(s),then Σs,Q isthestrategyfor Q givenby: Σs,Q(t)= Σ(s Q, t ). 21 (2) (Pullbackstrategy)If π : N → P iselementary,then Σπ isthestrategyfor N givenby: Σπ (s)= Σ(π s),where π s istheliftof s by π toastackon P

In(2),elementaritymustbeunderstoodfinestructurally;ourconventionisthat everypremouse P hasadegreeofsoundnessattachedtoit,andelementaritymeans elementarityatthatquantifierlevel.

Perhapsthemostimportantregularitypropertyofiterationstrategiesis strong hullcondensation.Todefineitweneedthenotionofa treeembedding Φ : T→U , where T and U arenormaltreesonthesame M.Theideaofcourseisthat Φ should preserveacertainamountoftheiterationtreestructure,butsomecareisneededin spellingoutexactlyhowmuch. Φ isdeterminedbyamap u :lh(T ) → lh(U ) and maps πα : MT α →MU u(α ) havingvariousproperties.See §6.4.

DEFINITION 1.6.2. Let Σ beaniterationstrategyforapremouse M;then Σ has stronghullcondensation iffwhenever s isastackofnormaltreesby Σ and N ✂ M∞(s),and U isanormaltreeon N by Σs,N ,and Φ : T→U isatreeembedding, withassociatedmaps πα : MT α →MU u(α ),then

(a) T isby Σs,N ,and (b) forall α < lh(T ), Σs N,T α +1 =(Σs N,U u(α )+1 )πα

Stronghullcondensationisastrongerversionofthehullcondensationproperty isolatedbySargsyanin[37].

Thesecondimportantpropertyisquasi-normalizingwell.Givenan M-stack T , U withlastmodel N suchthat T and U arenormal,shufflingtheextenders of U into T inaminimalwayproducesanormaltree W = W (T , U ).If U has alastmodel R,wegetnearlyelementarymap π : N → R.Wecall W (T , U ) the embeddingnormalization of T , U .Theideaissimple,buttherearemany technicaldetails.22 Itprovesusefultoconsideraslightlylessminimalshuffling V (T , U ) thatwecallthe quasi-normalization of T , U .Evenif T and U are normal, V (T , U ) maynotbelength-increasing,butitisnearlyso.Thereader shouldseeChapter6forfulldefinitions.

21Forpremice Q and R, Q ✂ R iffthehierarchyof Q isaninitialsegmentofthatof R

22MuchofthegeneraltheoryofnormalizationwasdevelopedindependentlybySchlutzenberg.See [54].Seealso[19]and[58].

DEFINITION 1.6.3. Let Σ beaniterationstrategyforapremouse M.Wesay that Σ quasi-normalizeswell iffwhenever s isan M-stackby Σ,and T , U isa 2-stackby Σs suchthat T and U arenormaltreeshavinglastmodels,then

(a) V (T , U ) isby Σs,and (b) letting V = V (T , U ) and π : MU ∞ →MV ∞ bethemapgeneratedbyquasinormalization,wehavethat Σs T ,U =(Σs V )π .

Thefinalbasicregularitypropertyofiterationstrategiesforpureextender premiceis internalliftconsistency.Supposethat s isastackby Σ and P ✂ Q ✂ M∞(s).Stacks t on P canbeliftedtostacks t + on Q inanaturalway.Wesaythat Σ isinternallyliftconsistentiffforallsuch s, P, and Q, Σs,P(t)= Σs,Q(t +).See §5.4.

Forpairs (M, Σ) suchthat M isastrategymouse,werequirealsothatthe internalstrategypredicateof M beconsistentwith Σ.Moregenerally,letting ˙ Σ bethepredicatesymbolusedtorecordstrategyinformation,wesaythat (M, Σ) is pushforwardconsistent iffwhenever s isastackby Σ and N ✂ M∞(s),then ΣN ⊆ Σs,N If M isapureextenderpremouse,and Σ isastrategyfor M thathasstronghull condensation,quasi-normalizeswell,andisinternallyliftconsistent,thenwecall (M, Σ) a pureextenderpair.If M isaleastbranchpremouse,and Σ isastrategy for M thathasstronghullcondensation,quasi-normalizeswell,isinternallylift consistentandpushforwardconsistent,thenwecall (M, Σ) a leastbranchhodpair. Apairofoneofthetwotypesisa mousepair.

If (M, Σ) isamousepair,and s isastackby Σ withlastmodel N,thenwecall (N, Σs) an iterateof (M, Σ).Ifthebranch M-to-N of s doesnotdrop,wecallita non-droppingiterate.Inthatcase,wehaveaniterationmap is : M → N.Letus write

(M, Σ) ✂ (R, Λ) iff M ✂ R and Σ = ΛM .

Wehavenohopeofshowinganythingaboutmousepairs (M, Σ) unlesswe assumeabsolutedefinabiltyfortheiterationstrategy.Hereweassume Σ hasscope HC,i.e.that M iscountableand Σ isdefinedonfinitestacksofcountabletrees, andweassumethatweareinamodelof AD+ . 23 Thefollowingisthemainnew resultofthebook.

THEOREM 1.6.4. (ComparisonLemma)Assume AD+,andlet (P, Σ) and (Q, Ψ) bestronglystable24 mousepairswithscope HC ofthesamekind;thenthereare iterates (R, Λ) of (P, Σ) and (S, Ω) of (Q, Ψ),obtainedbynormaltrees T and U , suchthateither (1) (R, Λ) ✂ (S, Ω) andP-to-Rdoesnotdrop,or

23Onecouldrequirethattheybedefinedoncountablestacks.

24Strongstabilityisamildfinestructuralrequirement.Onecanavoiditbyslightlycomplicating thenotionof iterate.See4.4.5and4.6.12.

(2) (S, Ω) ✂ (R, Λ) andQ-to-Sdoesnotdrop.

Evenforpureextenderpairs,thistheoremisnew,becauseoftheagreement betweentailstrategiesitrequires.Infact,itisnoeasiertoprovethetheoremfor pureextenderpairsthanitistoproveitforleastbranchhodpairs.Theproofin bothcasesisthesame,anditmakesuseofthepropertiesoftheiterationstrategies wehaveisolatedinthedefinitionofmousepair.

WorkinginthecategoryofmousepairsenablesustostateageneralDodd-Jensen lemma.Letussay π : (P, Σ) → (Q, Ψ) iselementaryiff π iselementaryfrom P to Q,and Σ = Ψπ .Weshallshowthatanelementarysubmodelofamousepairisa mousepair,andthattheiterationmapsassociatedtonon-droppingiterationsofa mousepairareelementary.25

THEOREM 1.6.5(Dodd-Jensenlemma). Let (P, Σ) beamousepair,and (Q, Ψ) beaniterateof (P, Σ) viathestack s.Suppose π : (P, Σ) → (Q, Ψ) iselementary; thensdoesnotdrop,andforallordinals η ∈ P,is(η ) ≤ π (η ).

TheproofisjusttheusualDodd-Jensenproof;thepointisjustthatthelanguage ofmousepairsenablesustoformulatethetheoreminitspropergenerality.There isnoneedtorestricttomicewithuniqueiterationstrategies,asisusuallydone. Similarly,wecandefinethemouseorderinitspropergenerality,withoutrestrictingtomicewithuniqueiterationstrategies.If (P, Σ) and (Q, Ψ) arepairsof thesametype,then (P, Σ) ≤∗ (Q, Ψ) iff (P, Σ) canbeelementarilyembeddedinto aniterateof (Q, Ψ).TheComparisonandDodd-Jensentheoremsimplythat ≤∗ is aprewellorderoneachtype.

1.7.Hodpaircapturing

Leastbranchhodpairscanbeusedtoanalyze HOD inmodelsof AD+,provided thatthereareenoughsuchpairs.

DEFINITION 1.7.1(AD+). (a) HodPairCapturing (HPC) istheassertion: foreverySuslin-co-Suslinset A,thereisaleastbranchhodpair (P, Σ) such that A isdefinablefromparametersover (HC, ∈, Σ). (b) L[E] capturing (LEC) istheassertion:foreverySuslin-co-Suslinset A,there isapureextenderpair (P, Σ) suchthat A isdefinablefromparametersover (HC, ∈, Σ)

Anequivalent(under AD+)formulationwouldbethatthesetsofrealscoding strategiesofthetypeinquestion,undersomenaturalmapoftherealsonto HC, areWadgecofinalintheSuslin-co-Suslinsetsofreals.TherestrictiontoSuslinco-Suslinsets A isnecessary,for AD+ impliesthatif (P, Σ) isapairofoneofthe

25Neitherisobvious.Thatiterationmapsareelementaryisapropertyoftheiterationstrategy knownaspullbackconsistency.Itfollowsfromstronghullcondensation.

twotypes,thenthecodesetof Σ isSuslinandco-Suslin.Thisisthemainresultof [73],whereitisalsoshownthattheSuslinrepresentationconstructedisofoptimal logicalcomplexity.

Remark 1.7.2. HPC isacousinofSargsyan’s GenerationofFullPointclasses. See[37]and[38], §6.1.

Assuming AD+ , LEC isequivalenttothewellknownMouseCapturing:for reals x and y, x isordinaldefinablefrom y iff x isinapureextendermouseover y.Thisequivalenceisshownin[63].(SeeespeciallyTheorem16.6.)Weshow inTheorem10.4.3belowthatunder AD+ , LEC implies HPC.Wedonotknow whether HPC implies LEC.

Granted ADR and HPC,wehaveenoughhodpairstoanalyzeHOD.

THEOREM 1.7.3([73]). Assume ADR and HPC;then Vθ ∩ HOD istheuniverse ofaleastbranchpremouse.

Sometechniquesdevelopedin[59]and[73]areneededtoprovethetheorem,so weshallnotproveithere.

Thenaturalconjectureisthat LEC and HPC holdinallmodelsof AD+ thathave notreachedaniterationstrategyforapremousewithalongextender.Becauseour capturingmicehaveonlyshortextendersontheirsequences, LEC and HPC cannot holdinlargermodelsof AD+

DEFINITION 1.7.4. NLE (“Nolongextenders”)istheassertion:thereisno countable, ω1 + 1-iterablepureextenderpremouse M suchthatthereisalong extenderonthe M-sequence.

CONJECTURE 1.7.5. Assume AD+ and NLE;then LEC

CONJECTURE 1.7.6. Assume AD+ and NLE;then HPC.

Asweremarkedabove,1.7.5implies1.7.6.Conjecture1.7.5isequivalentto aslightstrengtheningoftheusualMouseSetConjecture MSC.(Thehypothesis of MSC isthatthereisnoiterationstrategyforapureextenderpremousewitha superstrong,whichisslightlystrongerthan NLE.) MSC hasbeenacentraltarget forinnermodeltheoristsforalongtime.

1.8.Constructingmousepairs

Thebasicsourceformousepairsisabackgroundconstruction.Inthesimplest case,suchaconstruction C buildspairs (Mν ,k , Ων ,k ) inductively,puttingextenders onthe Mν ,k -sequencethatarerestrictionsofniceextendersin V .Theiteration strategy Ων ,k isinducedbyaniterationstrategyfor V ,andifweareconstructing strategypremice,therelevantinformationabout Ων ,k isinsertedinto Mν ,k atthe

appropriatepoints. Mν ,k+1 isthecoreof Mν ,k .Theconstructionbreaksdownif thestandardparameterof Mν ,k behavespoorly,sothatthereisnocore.

Thereisofcoursemoretosayhere,andweshalldosolaterinthebook.For now,letusnotethatthebackgrounduniverseforsuchaconstructionshouldbea modelof ZFC thathaslotsofextenders,andyetknowshowtoiterateitself.Inthe AD+ context,thefollowingtheoremofWoodinapplies.26

THEOREM 1.8.1(Woodin). Assume AD+,andlet Γ beagoodpointclasssuch thatallsetsin Γ areSuslinandco-Suslin;thenforanyreal x thereisacoarse Γ-Woodinpair (N, Σ) suchthatx ∈ N.

Here,roughlyspeaking, N isacountabletransitivemodelof ZFC withaWoodin cardinalandatermforauniversal Γ set,and Σ isaniterationstrategyfor N that movesthistermcorrectly,andissuchthat Σ ∩ N isdefinableover N.SeeDefinition 7.2.3.

ThefollowingisessentiallyTheorem10.4.1tofollow.Ittooisoneofthemain newresultsofthebook.

THEOREM 1.8.2. Assume AD+,andlet (N, Σ) beacoarse Γ-Woodinpair.Let C bealeastbranchconstructionin N;then C doesnotbreakdown.Moreover,each ofitslevels (MC ν ,k , ΩC ν ,k ) isaleastbranchhodpairin N,andextendscanonically toaleastbranchhodpairinV.

Backgroundconstructionsofthesortdescribedinthistheoremhaveanimportant roletoplayinourcomparisonprocess.Assume AD+,andlet (M, Ω) and (N, Σ) bemousepairsofthesametype.Wecompare (M, Ω) with (N, Σ) byputting M and N intoacommon Γ-Woodinuniverse N∗,where Σ and Ω arein Γ ∩ ˇ Γ.We theniterate (M, Σ) and (N, Ω) intolevelsofafullbackgroundconstruction(ofthe appropriatetype)of N∗.Herearesomedefinitionsencapsulatingthemethod.

DEFINITION 1.8.3. Let (M, Σ) and (N, Ω) bemousepairsofthesametype; then

(a) (M, Σ) iteratespast (N, Ω) iffthereisa λ -separatediterationtree T by Σ on M whoselastpairis (N, Ω)

(b) (M, Σ) iteratesto (N, Ω) iffthereisa λ -separated T asin(a)suchthatthe branch M-to-N of T doesnotdrop.

(c) (M, Σ) iteratesstrictlypast (N, Ω) iffititeratespast (N, Ω),butnotto (N, Ω). λ -separationisasmallstrengtheningofnormalitythatisdefinedin4.4.8.One reasonthatitisimportantisthatif T is λ -separatedand U isanormaltreeon MT ∞ ,then W (T , U )= V (T , U ).Thatis,embeddingnormalizationcoincideswith quasi-normalizationinthiscase.

DEFINITION 1.8.4(AD+). Let (P, Σ) beamousepair;then (*)(P, Σ) isthe followingassertion:Let (N, Ψ) beanycoarse Γ-Woodinpairsuchthat P ∈ HCN∗ ,

26See[22],and[66,Lemma3.13].

and Σ ∈ Γ ∩ ˇ Γ.Let C beabackgroundconstructiondonein N∗ oftheappropriate type,andlet (R, Φ) bealevelof C.Supposethat (P, Σ) iteratesstrictlypastall levelsof C thatarestrictlyearlierthan (R, Φ);then (P, Σ) iteratespast (R, Φ).

If (M, Ω) isamousepair,and N isaninitialsegmentof M,thenwewrite ΩN fortheiterationstrategyfortreeson N thatisinducedby Ω.Wecanunpackthe conclusionof1.8.4asfollows:supposethecomparisonof P with R hasproduced anormaltree T on P withlastmodel Q,with T by Σ,and S isaninitialsegment ofboth Q and R;then ΣT ,S = ΦS.Thustheleastdisagreementbetween Q and R isanextenderdisagreement.Moreover,if E on Q and F on R aretheextenders involvedinit,then F = ∅.

Weshallshow(cf.Theorems8.4.3and9.5.6below)

THEOREM 1.8.5. Assume AD+;then (*)(P, Σ) holds,forallstronglystable mousepairs (P, Σ).

Thistheoremletsuscomparetwo(ormore)mousepairsofthesametype indirectly,bycomparingthemtothelevelsofanappropriateconstruction,done ina Γ-Woodinmodel,wherebothstrategiesarein Γ ∩ ˇ Γ.Onecanshowusingthe Woodinnessthat C reachesnon-droppingiteratesofbothpairs27.Thisgivesusa stage (M, Ω) of C suchthatoneofthepairsiteratestoit,whiletheotheriterates pastit.

1.9.Thecomparisonargument

Inwhatfollows,weshallgivefairlycompleteproofsofthetheoremsabove. Thebookislong,partlybecausewewantedtomakeitaccessible,andpartly becauseweshallbeforcedtorevisethebasicdefinitionsof[30]and[81]invarious ways,sothereisalimittowhatwecansimplyquote.Inaddition,theneed tocomparestrategiesaddsalayerofcomplexitytotheproofsofthemainfine structuraltheoremsaboutstrategymice.Nevertheless,themainnewideasbehind thestrategy-comparisonprocessitselfarereasonablysimple.Wedescribethem now.

Thefirststepistofocusonproving (*)(P, Σ).Thatis,ratherthandirectly comparingtwostrategies,weiteratethembothintoacommonbackgroundconstructionanditsstrategy.Inthecomparison-of-micecontext,thismethodgoes backtoKunen([23]),andwasfurtherdevelopedbyMitchell,Baldwin([5]),and theauthor.28 WoodinandSargsyanhadusedthemethodforstrategycomparison inthehodmousecontext.Allthesecomparisonscouldbereplacedbydirect comparisonsofthetwomiceorstrategiesinvolved,butinthegeneralcaseof comparisonofstrategies,thereareseriousadvantagestotheindirectapproach.

27See8.1.4.

28Inunpublished1985notestitled“Largecardinalsand ∆1 3 wellorders”.

Thereisnoneedtodecidewhattodoifoneencountersastrategydisagreement, becauseoneisprovingthatthatneverhappens.Thecomparisonprocessisjustthe usualoneofcomparingleastextenderdisagreements.Insteadofthedualproblems ofdesigningaprocessandprovingitterminates,onehasagivenprocess,and knowswhyitshouldterminate:nostrategydisagreementsshowup.Theproblem isjusttoshowthis.Theseadvantagesledtheauthortofocus,since2009,ontrying toprove (*)(P, Σ).

ThemainnewideathatmakesthispossibleismotivatedbySargsyan’sproofin [37]thatif Σ hasbranchcondensation,then (*)(P, Σ) holds.29Branchcondensation istoostrongtoholdonce P hasextendersoverlappingWoodincardinals;we cannotconcludethat Σ(T )= b fromhavingmerelyrealized MT b intoa Σ-iterate of P.Weneedsomekindofrealizationoftheentirephalanx Φ(T b) inorderto concludethat Σ(T )= b.Thisleadstoaweakeningofbranchcondensationthat onemightcall“phalanxcondensation”,inwhichoneasksforafamilyofbranchcondensation-likerealizationshavingsomenaturalagreementwithoneanother. Phalanxcondensationisstillstrongenoughtoimply (*)(P, Σ),andmightwell betrueingeneralforbackground-inducedstrategies.Unfortunately,Sargsyan’s constructionofstrategieswithbranchcondensationdoesnotseemtoyieldphalanx condensationinthemoregeneralcase.Foronething,itinvolvescomparison arguments,andinthegeneralcase,thislookslikeaviciouscircle.Itwasduring oneoftheauthor’smanyattemptstobreakintothiscirclethatherealizedthat certainpropertiesrelatedtophalanxcondensation,namelynormalizingwelland stronghullcondensation,couldbeobtaineddirectlyforbackground-induced strategies,andthatthesepropertiessufficefor (*)(P, Σ)

Letusexplainthislastpartbriefly.Supposethatweareinthecontextof Theorem1.8.5.Wehaveapremouse P withiterationstrategy Σ thatnormalizes wellandhasstronghullcondensation.Wehave N apremouseoccuringinthe fullybackgroundedconstructionof N∗,where P ∈ HCN∗ and N∗ captures Σ.We compare P with N byiteratingawaytheleastextenderdisagreement.Ithas beenknownsince1985thatonly P willmove.Wemustprovethatnostrategy disagreementshowsup.

Supposewehaveproduceda λ -separatediterationtree T on P withlastmodel Q,that Q|α = N|α ,andthat U isanormaltreeon R = Q|α = N|α oflimitlength playedbyboth ΣT ,R (thetailof Σ)and ΩR,where Ω isthe N∗-inducedstrategyfor N.Wewishtoshowthat ΣT ,R(U )= ΩR(U ).Because Σ isinternallyliftconsistent, wecanreducetothecasethat Q = R.

Let b = ΩR(U ).Wemustsee b = ΣT ,R(U ),thatis,that b = Σ( T , U ).Since T is λ -separated,embeddingnormalizationcoincideswithquasi-normalization.

29Roughly,aniterationstrategy Σ for M has branchcondensation iffwhenever T isaniterationtree oflimitlengthby Σ, b isacofinalbranchof T withassociatediterationmap ib : M → MT b , π : M → N isaniterationmapby Σ,andthereisa k : MT b → N suchthat π = k ◦ ib ,then Σ(T )= b.See[37]for moredetail.

Letusconsider

Wc = W (T , U c)= V (T , U c)

forarbitrarycofinalbranches c of U .Weshallsee:

(1) ΣT ,R(U )= c iff Wc isby Σ.The ⇒ directionfollowsatoncefromthefact that Σ quasi-normalizeswell,andthe ⇐ directionisprovedin §6.6.

(2) Letting i∗ b : N∗ → N∗ b comefromlifting iU b to N∗ viatheiteration-strategy constructionof[30],thereisatreeembeddingof Wb into i∗ b(T ).Thisisthe keystepintheproof.ItiscarriedoutinChapter8.

(3) i∗ b(Σ) ⊆ Σ because Σ wascapturedby N∗,so i∗ b(T ) isby Σ.

(4) Thus Wb isby Σ,because Σ hasstronghullcondensation.

(5) Soby(1), ΣT ,R(U )= b.

Hereisadiagramofthesituation:

IGURE 1.9.1.Proofof (*)(P, Σ). Wb isapsuedo-hullof i∗ b(T ).

1.10.Planofthebook

Chapters2and3collectandorganizesomestandarddefinitionsandresultsfrom innermodeltheory.Thebookisaimedatpeoplewhohavealreadyencountered

thismaterial,via[30],[65],or[81]forexample,butthesechapterswillserveasa bridgetotherestofthebook.

In §3.6weexplainwhythisstandardtheoryisnotcompletelyadequatetothe problemofcomparingiterationstrategies.Roughlyspeaking,theproblemisthat theinducediterationstrategiesforthelevelsofabackgroundconstructionarenot connectedsufficientlywelltotheiterationstrategyforthebackgrounduniverse. §3.7and §3.8analyzeoneofthetwosourcesofthisshortfall,andChapter4 removesbothofthem.Thisinvolvesrevisingthenotionsof premouse and iteration tree slightly,andre-provingthestandardfinestructuralresultsinthenewsetting.

Chapter5showsthatthenewdefinitionsleadtobackground-inducediteration strategiesthatarebetterbehavedinseveralways.Chapters6and7pushfurtherin thisdirection,leadingultimatelytoTheorem7.6.2,whichsaysthatpureextender backgroundconstructions,doneinanappropriatelyiterablebackgrounduniverse, producepureextenderpairs.

InChapter8weprovethemaincomparisontheoremforpureextenderpairs, Theorem8.4.3.Weshalladapttheproofof8.4.3toleastbranchhodpairsand tophalanxcomparisonsinChapters9and10,butthemainstepsallshowupin thissimplersituation,sowehavebegunwithit.Whenweusetheproofagainin Chapters9and10,weshallcondenselongstretchesbypointingtotheproofof 8.4.3.

Chapters9and10usethestrategy-comparisonprocesstodevelopthetheory ofleastbranchhodpairs.Chapter11usesthistheorytoanalyze HOD incertain modelsof ADR,andconcludeswithadiscussionoffurtherresultsthathavebeen provedbythemethodswedevelophere.

PRELIMINARIES

Innermodeltheorydealswithcanonicalobjects,butinnermodeltheoristshave presentedtheminvariousways.Theconventionsweusehereare,forthemost part,fairlycommon.Forbasicfinestructuralnotionssuchasprojecta,cores, standardparameters,fineultrapowers,anddegreesofelementarity,weshallstay closetoMitchell-Steel[30]andthepaper[49]bySchindlerandZeman.We shalluseJensenindexingforthesequencesofextendersfromwhichpremiceare constructed;seeforexampleZeman’sbook[81].InChapter4weshallmodifythe notionofpremouseslightly,byenlargingthestandardparametersandassociated cores.Untilwegettothatpoint,ournotionofpremouseisjustthestandardone determinedbytheconventionsof[30],[49],and[81].30

Mostofourterminologytodowithiterationtreesanditerationstrategiestraces backtoMartin-Steel[26]andMitchell-Steel[30],andisbynowprettystandard. Wedoneedtoconsidercarefullyiterationstrategiesdefinedonawiderclassof iterationtreesthaniscommon,andsothereissomelessfamiliarterminology definedinsections2.6and2.7.

2.1.Extendersandultrapowers

Ournotationforextendersisstandard.

DEFINITION 2.1.1. Let M betransitiveandrudimentarilyclosed;then E = Ea | a ∈ [θ ]<ω isa (κ , θ )-extenderover M withspaces µa | a ∈ [θ ]<ω ifand onlyif

(1) Each Ea isan (M, κ )-completeultrafilterover P([µa]|a|) ∩ M,with µa being theleast µ suchthat [µ ]|a| ∈ Ea.

(2) (Compatibility)For a ⊆ b and X ∈ M, X ∈ Ea ⇐⇒ X ab ∈ Eb

(3) (Uniformity) µ{κ } = κ

(4) (Normality)If f ∈ M and f (u) < max(u) for Ea a.e. u,thenthereisa β < max(a) suchthatfor Ea∪{β } a.e. u, f a,a∪{β }(u)= u{β },a∪{β } .

30Thenotionofpremousein[81],anditsrelatedfinestructure,originateinJensen’smanuscripts [17]and[18].

Theunexplainednotationherecanbefoundin[49, §8].Weshalloftenidentify E withthebinaryrelation (a, X ) ∈ E iff X ∈ Ea.Onecanalsoidentifyitwith theothersection-functionofthisbinaryrelation,whichisessentiallythefunction X → iM E (X ) ∩ θ .Wecall θ the length of E,andwrite θ = lh(E).The spaceof E is

sp(E)= sup{µa | a ∈ [lh(E)]<ω }.

The domainof E isthefamilyofsetsitmeasures,thatis, dom(E)= {Y |∃(a, X ) ∈

E(Y = X ∨ Y =[µa]|a| X )}.If M isapremouseofsomekind,wealsowrite M|η = dom(E),where η isleastsuchthat ∀(a, X ) ∈ E(X ∈ M|η ).Byacceptability, η = sup({µ +,M a | a ∈ [θ ]<ω }).Weshallfurtherabusenotationbywriting η = dom(E) when M isdeterminedbycontext.

Thecriticalpointofa (κ , θ )-extenderis κ ,andweuseeither crit(E) or κE to denoteit.Givenanextender E over M,weformthe Σ0 ultrapower

Ult0(M, E)= {[a, f ]M E | a ∈ [lh(E)]<ω and f ∈ M}, asin[49,8.4].Our M willalwaysberudimentarilyclosedandsatisfytheAxiom ofChoice,sowehaveLos’theoremfor Σ0 formulae,andthecanonicalembedding

iM E : M → Ult0(M, E) iscofinaland Σ0 elementary,andhence Σ1 elementary.By(1)and(3), κE = crit(iM E ).Bynormality, a =[a, id]M E ,so lh(E) isincludedinthe(alwaystransitivized)wellfoundedpartofUlt0(M, E).Moregenerally,

[a, f ]M E = iM E ( f )(a)

If X ⊆ lh(E),then E X = {(a,Y ) ∈ E | a ⊆ X } E X hasthepropertiesofan extender,exceptpossiblynormality,sowecanform Ult0(M, E X ),andthereisa naturalfactorembedding τ :Ult0(M, E X ) → Ult0(M, E) givenby τ ([a, f ]M E X )=[a, f ]M E

Inthecasethat X = ν > κE isanordinal, E ν isanextender,and τ ν isthe identity.Wesay ν isa generatorof E iff ν isthecriticalpointof τ ,thatis, ν =[a, f ]M E whenever f ∈ M and a ⊆ ν .Let

ν (E)= sup({ν + 1 | ν isageneratorof E }).

So ν (E) ≤ lh(E),and E isequivalentto E ν (E),inthatthetwoproducethesame ultrapower.

Wewrite

λ (E)= λE = iM E (κE ).

Notethatalthough E maybeanextenderovermorethanone M, sp(E), κE , lh(E), dom(E), ν (E),and λ (E) dependonlyon E itself.If N isanothertransitive, rudimentarilyclosedset,and P(µa) ∩ N = P(µa) ∩ M forall a ∈ [lh(E)]<ω ,then E isalsoanextenderover N;moreover iM E agreeswith iN E on dom(E).However, iM E and iN E maydisagreebeyondthat.Wesay E is short iff ν (E) ≤ λ (E).Itiseasyto

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Download ebooks file A comparison process for mouse pairs john r. steel all chapters by Education Libraries - Issuu