Get Driven rotation, self-generated flow, and momentum transport in tokamak plasmas john rice free a

Page 1


Driven Rotation, Self-Generated Flow, and Momentum Transport

Plasmas John Rice

Visit to download the full and correct content document: https://ebookmass.com/product/driven-rotation-self-generated-flow-and-momentum-tr ansport-in-tokamak-plasmas-john-rice/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Modelling of Flow and Transport in Fractal Porous Media 1st Edition Jianchao Cai (Editor)

https://ebookmass.com/product/modelling-of-flow-and-transport-infractal-porous-media-1st-edition-jianchao-cai-editor/

Waves and Wave Interaction in Plasmas 1st Edition

Prasanta Chatterjee

https://ebookmass.com/product/waves-and-wave-interaction-inplasmas-1st-edition-prasanta-chatterjee/

Rice Bran and Rice Bran Oil: Chemistry, Processing and Utilization Ling-Zhi Cheong

https://ebookmass.com/product/rice-bran-and-rice-bran-oilchemistry-processing-and-utilization-ling-zhi-cheong/

Rotary Kilns, Second Edition: Transport Phenomena and Transport Processes Boateng

https://ebookmass.com/product/rotary-kilns-second-editiontransport-phenomena-and-transport-processes-boateng/

Kappa Distributions. Theory and Applications in Plasmas 1st Edition Edition George Livadiotis (Eds.)

https://ebookmass.com/product/kappa-distributions-theory-andapplications-in-plasmas-1st-edition-edition-george-livadiotiseds/

The PA Rotation Exam Review First Edition

https://ebookmass.com/product/the-pa-rotation-exam-review-firstedition/

Market

Momentum: Theory and Practice 1. Edition Stephen Satchell

https://ebookmass.com/product/market-momentum-theory-andpractice-1-edition-stephen-satchell/

Fundamentals of Momentum, Heat, and Mass Transfer

Revised 6th Edition

https://ebookmass.com/product/fundamentals-of-momentum-heat-andmass-transfer-revised-6th-edition/

Mass Transport in Magmatic Systems Bjorn Mysen

https://ebookmass.com/product/mass-transport-in-magmatic-systemsbjorn-mysen/

Driven Rotation, Self-Generated Flow, and Momentum Transport

in Tokamak Plasmas

SpringerSeriesonAtomic,Optical, andPlasmaPhysics

Volume119

Editor-in-Chief

GordonW.F.Drake,DepartmentofPhysics,UniversityofWindsor,Windsor,ON, Canada

SeriesEditors

JamesBabb,Harvard-SmithsonianCenterforAstrophysics,Cambridge,MA,USA

AndreD.Bandrauk,FacultédesSciences,UniversitédeSherbrooke,Sherbrooke, QC,Canada

KlausBartschat,DepartmentofPhysicsandAstronomy,DrakeUniversity, DesMoines,IA,USA

CharlesJ.Joachain,FacultyofScience,UniversitéLibreBruxelles,Bruxelles, Belgium

MichaelKeidar,SchoolofEngineeringandAppliedScience,GeorgeWashington University,Washington,DC,USA

PeterLambropoulos,FORTH,UniversityofCrete,Iraklion,Crete,Greece GerdLeuchs,InstitutfürTheoretischePhysikI,UniversitätErlangen-Nürnberg, Erlangen,Germany

AlexanderVelikovich,PlasmaPhysicsDivision,UnitedStatesNavalResearch Laboratory,Washington,DC,USA

TheSpringerSeriesonAtomic,Optical,andPlasmaPhysicscoversinacomprehensivemannertheoryandexperimentintheentirefieldofatomsandmoleculesand theirinteractionwithelectromagneticradiation.Booksintheseriesprovidearich sourceofnewideasandtechniqueswithwideapplicationsinfieldssuchaschemistry,materialsscience,astrophysics,surfacescience,plasmatechnology,advanced optics,aeronomy,andengineering.Laserphysicsisaparticularconnectingtheme thathasprovidedmuchofthecontinuingimpetusfornewdevelopmentsinthefield, suchasquantumcomputationandBose-Einsteincondensation.Thepurposeofthe seriesistocoverthegapbetweenstandardundergraduatetextbooksandtheresearch literaturewithemphasisonthefundamentalideas,methods,techniques,andresults inthefield.

Moreinformationaboutthisseriesat https://link.springer.com/bookseries/

DrivenRotation, Self-GeneratedFlow,and MomentumTransportin TokamakPlasmas

JohnRice

MassachusettsInstituteofTechnology

Cambridge,MA,USA

ISSN1615-5653ISSN2197-6791(electronic)

SpringerSeriesonAtomic,Optical,andPlasmaPhysics

ISBN978-3-030-92265-8ISBN978-3-030-92266-5(eBook) https://doi.org/10.1007/978-3-030-92266-5

©SpringerNatureSwitzerlandAG2022

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Preface

Examplesofrotationcanbefoundeverywhereinnature,fromwatercirclingthe draintohurricanestospotsonJupitertoentiregalaxies.Rotationisalsoseenin hightemperatureplasmaexperiments,oftenwithnoobviouscause.Thepurpose ofthepresentstudyistodocumentandattempttounderstandtheexperimentally observedrotationintokamaks,toroidal(donutshaped)devicesusedtocontainhigh temperature(afewkeV ≈ 10sofmillionsofdegrees)plasmas.Whilethereare severalexternalmomentumsourceswhichcanbeusedtodriverotationintokamaks, spontaneous,self-generatedflow,upto ∼100km/s,isroutinelyobservedinplasmas withoutexternalmomentuminput.Furthermore,thisintrinsicrotationcanreverse directioninafractionofasecondwithoutanyobviousreason.Thepurposeof tokamakresearchistoprovideanenergysource via controlledthermonuclear fusion,andinordertoachievethisinacosteffectivemanner,itisimportant tounderstandtherichvarietyofphenomenaintokamakplasmas.Whatbetter opportunityistherethanexplainingself-generatedflow?

Theinfluenceofrotationontokamakperformancehasbeenwidelydemonstrated.Forinstancerotationcanstabilizecertaindeleteriousmagnetohydrodynamic (MHD)instabilities,andtherotationgradienthasbeenshowntosuppressturbulence,leadingtotransportbarriersandanenhancementinenergyconfinement.In thisregarditisimportanttounderstandtherotationintokamakplasmas,andtouse thisunderstandingtocontroltherotationspatialprofile.Thereareseveralrecent experimental[1–5]andtheoretical[6–10]surveysonthissubject,andthepresent goalistoupdateandexpandupontheobservationalreviews.

Toroidalvelocityprofileevolutionisgovernedbyabalancebetweenexternal torques(momentumsourcesandsinks)andthemomentumfluxgradient[4]as

wherevφ isthetoroidalvelocity,nisthedensity,mistheparticlemass, φ is themomentumfluxandSext includesexternalmomentumsourcesandsinks.There areseveralmomentumsources,e.g.directdrivefromneutralbeaminjectionorradio frequencywaves,andindirectdrivefromtheelectricfieldcreatedbyorbitshiftsand

losses.Sinksincludeneutraldampingandmagneticbraking(neo-classicaltoroidal viscosity).Sinksandindirectsourcesdependupontheambientplasmaparameters. Themagneticgeometryandsubsequentparticleorbitsmustbeconsideredsince non-ambipolaritywillgiverisetoanelectricfieldwhichentersintotheforcebalance andcollisionsmustalsobetakenintoaccount;thesearetheingredientsforneoclassicaltheory.

ThemomentumfluxisdominatedbythetoroidalReynoldsstress[11]which consistsofthreeparts:

where χφ isthemomentumdiffusivity(orviscosity),Vp isthemomentumpinch(or convection)and res istheresidualstress.Allthreeofthesetransportcoefficients canbedominatedbydifferentcompetingeffectswhichalsodependuponambient plasmaparameters.Thelattercomponent,whichisindependentofboththetoroidal velocityvφ anditsspatialgradient ∂ vφ /∂ r,hastheuniquecharacteristicthatit canfunctionasamomentumsource(andsoappearsonbothsidesoftheforce balance),withtheintrinsictorquedensitygivenby ∇· res [11]. res isgoverned byturbulencewhichisoftendrivenbyspatialgradientsofplasmaparameters. Followingasummaryofrotationvelocitymeasurementtechniques(Chap. 1)willbe anexaminationofmomentumsources(Chap. 2)andsinks(Chap. 3),comparisons withthepredictionsofneo-classicaltheory(Chap. 4),adetaileddiscussionofthe residualstressasamomentumsource(Chap. 5)andareviewofthemomentum transportcoefficients χφ ,Vp and res (Chap. 6).

Itisimportanttounderstandallaspectsofthisproblem,coveredinChaps. 2–6. Eachoftheseeffectshasadifferentplasmaparameterdependence(suchasdensity, temperature,neutraldensity,collisionality)andeachcandominateindifferent regionsofoperationalspace.Itisnecessarytoconsidermagneticgeometry,particle orbits,collisions,electricfields,MHDconstraintsthroughcurrentandpressure gradientsandtheinfluenceofturbulencethroughdensity,temperature,pressureand currentdensitygradients.Furthercomplicatingthisproblemisthatthevelocityisa vector,withdirectionandmagnitude.Thechallengeistoaccountforthismyriadof effectsinacomprehensivemanner.Thisprocesswillbesystematicallyaddressedas follows,afteradiscussionofvelocitymeasurementtechniques.

Themostcommonmethodofvelocitydetermination,fromDopplershiftsof atomictransitions,willbecoveredinSect. 1.1,withareviewofpassive(Sect. 1.1.1) andactive(Sect. 1.1.2)techniques.Directexternalmomentumsourceswillbe consideredinSect. 2.1,includingneutralbeaminjection(NBI)andvariousradio frequencyschemes(ICRF,LHandECH).InSect. 2.2,indirectrotationdrive dueto j×B forcesarisingfromradialorbitshiftsandnon-ambipolareffects, suchastoroidalmagneticfieldrippleloss,willbereviewed.Asummaryof momentumsinkswillbepresentedinChap. 3,includingneutraldamping,magnetic fieldperturbationsandneo-classicaltoroidalviscosity.InChap. 4 comparisonsof observationswithneo-classicalcalculationswillbeshown,includingbothpoloidal andtoroidalrotation.Self-generatedflowarisingfromtheresidualstresswillbe

discussedingreatdetailinChap. 5.Twogeneralcategoriesofintrinsicrotationwill beexamined,thatoccuringintheenhancedconfinementregimes(H-andI-mode) andthatinL-modeplasmas,includingthecuriousrotationreversalphenomenon (anditsconnexionwithconfinementsaturationand“non-local”heattransport cut-off).Chapter 6 willbeconcernedwithdeterminationofmomentumtransport coefficients:themomentumdiffusivity,themomentumpinchandtheresidualstress. AdiscussionofopenquestionswillbethesubjectofChap. 7.Inthefollowing,the toroidalrotationwillbewrittenasvφ orVTor whilethepoloidalrotationwillbe denotedasvθ orVPol .Amajorityofvelocitymeasurementsisofimpurityrotation, whichisoftenusedasaproxyformainionrotation.

Cambridge,MA,USAJohnRice

Acknowledgments

EnlighteninginteractionswithClementeAngioni,ManfredBitter,YannCamenen, NormanCao,JonathanCitrin,JohndeGrassie,PeterdeVries,PatrickDiamond, BasilDuval,Lars-GoranEriksson,ChiGao,MartinGreenwald,BrianGrierson, JerryHughes,KatsumiIda,AlexInce-Cushman,DavisLee,EarlMarmar,Rachael McDermott,Yong-SuNa,ArthurPeeters,YuriPodpaly,ThomasPütterich,Matt Reinke,TimothyStoltzfus-Dueck,TuomasTala,SteveWolfe,andMaikoYoshida aregratefullyacknowledged.WorksupportedatMITbyDoEContractNo.DEFC02-99ER54512.

1VelocityMeasurementsinTokamaks

1.1DopplerShiftsofAtomicTransitions

1.1.1PassiveSpectroscopy

1.1.2ActiveSpectroscopy ............................................6

1.2MHDModeRotation ...................................................9

1.3ProbeMeasurements ....................................................10

1.4MicrowaveDopplerReflectometryandScattering

1.5Comments

2MomentumSources

2.1DirectRotationDrive

2.1.1NeutralBeamInjection

2.1.2IonCyclotronRangeofFrequenciesWaves

2.1.2.1IonBernsteinWaves ..................................24

2.1.2.2ModeConversionFlowDrive

2.1.2.3FastMagnetosonicWaves

2.1.3LowerHybridWaves

2.1.4ElectronCyclotronWaves

2.1.5CompactTorusInjection

2.2IndirectRotationDrive .................................................35

2.2.1OrbitShiftj×BForces .........................................35

2.2.2IonandElectronLossDuetoToroidalMagnetic FieldRipple .....................................................39

2.2.3EdgeThermalIonOrbitLoss

2.3Comments

3MomentumSinks

3.1NeutralDamping

3.2ModeLocking,MagneticBrakingandNeo-Classical ToroidalViscosity .......................................................46

3.3EdgeLocalizedModes ..................................................51

3.4Comments ...............................................................51

4ComparisonwithNeo-ClassicalTheory

4.1PoloidalRotationvθ

4.2ToroidalRotationvφ ....................................................54

4.3PoloidalAsymmetriesinEdgeToroidalRotation

4.4Comments ...............................................................60

5IntrinsicRotationandtheResidualStress

5.1EnhancedConfinementRegimes .......................................62

5.1.1OhmicH-Modes ................................................63

5.1.2ICRFH-andI-Modes ..........................................63

5.1.3ECHH-ModesandAddingECH

5.1.4H-ModeswithLH ..............................................77

5.1.5NBIH-Modes ...................................................77

5.1.6PlasmaswithITBs ..............................................82

5.1.7Comments .......................................................83

5.2LowConfinementMode ................................................87

5.2.1MagneticConfigurations

5.2.2CurrentDrivenReversals .......................................92

5.2.3OhmicRotationReversalsandLOC/SOC

5.2.4AuxiliaryHeatedL-Mode ......................................117

5.2.5Comments .......................................................119

6MomentumTransport

6.1MomentumDiffusivity χφ

6.2MomentumPinchV

6.3ResidualStress

7DiscussionandFutureOutlook

Chapter1 VelocityMeasurementsinTokamaks

Inordertostudyrotationitisnecessaryfirsttomeasureitreliably.Thereare severaltechniquesinuseontokamakswhichwillbesummarizedanon:Doppler shiftsofatomictransitions,MHDmoderotationfromfrequencyanalysis,probe measurementsandfrommicrowavescattering.Fortheatomictransitions,the populationoftheupperlevelscaneitherbepassive(via collisionalexcitationor radiativerecombinationfromplasmaelectrons)oractive(fromchargeexchange recombinationwithinjectedneutrals).

1.1DopplerShiftsofAtomicTransitions

Themostcommonmethodofmeasuringtherotationisfromobservationofthe Dopplershiftsofatomictransitions,eitherinimpurities(intrinsicorextrinsic) orbackgroundions(hydrogen,deuteriumand/orhelium).Dependinguponthe appropriateplasmaconditions,thesemeasurementscanbemadeinthevisible,ultraviolet(UV)orx-raywavelengthranges.

1.1.1PassiveSpectroscopy

Earlyvelocitydeterminationintokamakswasfrompassivemeasurementsof intrinsicimpurityionswhoseupperlevelswerepopulatedbycollisionalexcitation.

Thefirstvelocitymeasurement,intheVUVwavelengthrange,wasfromOV (O5+ )emissionintheLT-3device[12].Similarobservationsweresubsequently madeonPLT[13, 14],TorusII[15],PDX[16],TM-4[17],JET[18],TCA[19], COMPASS-D,TEXT[20]andTCABR[21, 22].Mainionvelocitieshavealso beeninferredfromobservationsofDα lightinAUG[23].ThePLTmeasurements

©SpringerNatureSwitzerlandAG2022

J.Rice, DrivenRotation,Self-GeneratedFlow,andMomentumTransportin TokamakPlasmas,SpringerSeriesonAtomic,Optical,andPlasmaPhysics119, https://doi.org/10.1007/978-3-030-92266-5_1

Fig.1.1 Schematicofinstrumentationformeasurementofpoloidalortoroidalintensitydistributionswithsimultaneousspectralscanofanemittedline.ReprintedwithpermissionfromFig.1of [13]S.Suckeweretal.‘ToroidalPlasmaRotationinthePrincetonLargeTorusInducedbyNeutralBeamInjection’,Phys.Rev.Lett. 43,207(1979).Copyright(1979)bytheAmericanPhysical Society

[13]werefromacleverspectrometersystem,witharotatingmirrortosamplethe plasmacrosssectionandafastvibratingmirrortoscantheindividuallineshapes, alayoutoverviewofwhichisshowninFig. 1.1.Todemonstratethecapabilities ofthisspectrometer,timehistoriesoftherotationvelocityduringanNBIheated PLTplasmafromthissystemareshowninFig. 1.2.InthecoreofthisTe ∼ 2keV discharge,thetoroidalrotationreachedalevelinexcessof100km/s,asdetermined fromtheDopplershiftofaforbiddenFeXX(Fe19+ )transitionat2665Å.Neutral beampowerwasappliedbetween350and500ms.Emissionlinesfromotherions(C VandHI),whichfellinthespectralrangeofthespectrometershowlowervelocity fromtheperipheralregionsoftheplasma.Aradialvelocityprofileconcoctedfrom thesethreeseparateemissionlinesduringtheNBIphaseforthisplasmaisshown inFig. 1.3.Inthiscasethetoroidalrotationprofilewasstronglypeakednearthe plasmacenter.

OnedrawbackofusingVUVandvisibleemissionlines(whoseupperlevelsare populatedbycollisionalexcitation)isthattheyaretypicallyfromimpuritycharge statesthatexistinnarrowspatialshells,therebyonlyallowingaccesstoonelocation intheplasma.Whileitispossibletocobbletogetheracompleteradialprofileusing avarietyofdifferentimpuritiesandchargestates[13, 18](asinFig. 1.3),itwould bedesirabletoutilizeclosedshellionizationstates(He-likeorNe-like)whichexist overalargerspatialregion.AnotherlimitationofVUVandvisibletransitionsis

Fig.1.2 Timeevolutionofthetoroidalplasmavelocityinducedbytwoco-injectedneutralbeams, withtotalpower1.5MW,inplasmawithcentralelectrontemperatureTe (0) ≈ 2keVanddensity ne (0) ≈ 3–5 × 1019 /m3 .Thedifferentatomsrefertodifferentradiallocationsintheplasma. ReprintedwithpermissionfromFig.3of[13]S.Suckeweretal.‘ToroidalPlasmaRotationin thePrincetonLargeTorusInducedbyNeutral-BeamInjection’,Phys.Rev.Lett. 43,207(1979). Copyright(1979)bytheAmericanPhysicalSociety

thattheyusuallysampleregionsoftheplasmawithlowerelectrontemperature (anotableexceptionistheforbiddenFeXXtransition).Thesetwoshortcomings canbeamelioratedbyusingx-raytransitionsfromHe-likeions.Thefirstx-ray spectrometerintheJohannconfiguration[24]wasinstalledonPLTforviewingHelikeiron[25].AschematicofthissystemisshowninFig. 1.4.Suchaspectrometer requiresalargeareaberylliumwindow,acarefullybentcrystalandalinearposition sensitivedetector.Intheearlymanifestationsofthesespectrometers,varioustypes ofproportionalcounterswereemployed.Johannx-rayspectrometershavebeen usedonPDX[16],TFTR[26, 27],DIII-D[28],JET[18, 29],ToreSupra[30], FTandJIPP-TII.AnexampleofavelocitymeasurementusingtheHe-liketitanium (TiXXIorTi20+ )resonancelineat2.6097ÅfromaneutralbeamheatedTFTR plasma[26]isshowninFig. 1.5.DuringtheNBIpulsefrom2.3to2.8s,thecore toroidalvelocityreached150km/s.OnedrawbackofJohannspectrometersisthat inordertoachievehighwavelengthresolvingpower,theradiusoftheRowland circle,andhencethesystemsize,becomeslarge.Analternativeistousethevon Hamosconfiguration[31],whichallowsforacompactspectrometer.Thelayoutfor

Fig.1.3 Radialdistributionoftoroidalplasmavelocityat100–140msafterbeginningofneutral beaminjection.ReprintedwithpermissionfromFig.4of[13]S.Suckeweretal.‘ToroidalPlasma RotationinthePrincetonLargeTorusInducedbyNeutral-BeamInjection’,Phys.Rev.Lett. 43, 207(1979).Copyright(1979)bytheAmericanPhysicalSociety

thevonHamossystemofAlcatorC[32]isshowninFig. 1.6.Thecylindricallybent crystalisflatinthedispersiveplaneandunliketheJohannsystem,anentranceslit isrequiredforspatiallyextendedsources.ThisallowsforasmallareaBewindow. VonHamostypespectrometershavealsobeenimplementedonAlcatorC-Mod[33] andanexampleofDopplershiftedspectra[34]fromH-likeAr17+ (extrinsically introduced)andNe-likeMo32+ (intrinsic)isshowninFig. 1.7.Thesespectrawere

Fig.1.4 QuartzcrystalspectrometerintheJohannconfiguration.X-raysemittedfromtheshaded areaoftheplasmapassthroughaberylliumwindowintoaheliumfilledtubeandareBragg reflectedbythecrystalontothepositionsensitivedetector.Photonsofdifferentenergiesare focussedtodifferentdetectorpoints.ReprintedwithpermissionfromFig.1of[25]M.Bitteretal. ‘Doppler-BroadeningMeasurementsofX-RayLinesforDeterminationoftheIonTemperaturein TokamakPlasmas’,Phys.Rev.Lett. 42,304(1979).Copyright(1979)bytheAmericanPhysical Society fromtwoOhmicL-modedischargeswiththeplasmacurrentinoppositedirections andexhibitcounter-currentrotationwithmagnitudesof ∼40km/s.

Whileitispossibletoobtainspatialvelocityprofilesbyutilizinganarrayof theindividualspectrometersjustdescribed[33, 35, 36],amoreelegantapproach istouseaspatiallyimagingsystem.Thiscanbeachievedwithasphericallybent crystalintheJohannconfiguration[37, 38]andaschematicofaspectrometersystem isshowninFig. 1.8.Thisarrangementrequiresa2Dx-raydetector:onedirection fordispersion(meridionalplane)andtheotherforspatialimaging(sagittalplane). SuchasystemhasbeenimplementedonAlcatorC-Mod[39]andthelayoutis showninFig. 1.9.Thereareactuallytwospectrometersinthesamehousing,one forviewingHe-likeargonandtheotherforH-like.TheHe-likeargonsystemhas completeup/downcoverageoftheplasmacrosssection,asseeninthebottomframe. Measurementswiththissystemarechordaveraged,soatomographicinversion

Fig.1.5 ToroidalplasmarotationvelocitiesfrommeasurementsoftheDopplershiftoftheTiXXI Kα line.LeftandrightscalesontheordinategivethecenterpositionoftheTiXXIKα lineandthe wavelengthshiftandtoroidalplasmarotationvelocity,respectively,relativetothecenterposition intheOhmicheatingphase.ReprintedfromFig.13of[26]M.Bitteretal.‘Satellitespectrafor heliumliketitanium.II’,Phys.Rev.A 32,3011(1985).Copyright(1985)bytheAmericanPhysical Society

processmustbeusedtodeterminethetruevelocityprofile[39, 40].Thevelocity profileevolution[39]ofanICRFheatedH-modeplasmafromC-Modobtained withthisspectrometerisshowninFig. 1.10.Ascanbeseen,duringtheOhmic phasebefore0.7s,thecorerotationisdirectedcounter-current,becomesweaklycocurrentfollowingapplicationofICRFheatingafter0.7s,andisstronglyco-current duringtheH-modephasefrom1.32to1.52s.SimilarimagingJohannspectrometers havebeeninstalledonKSTAR[41],LHD[42],EAST[43]andW7-X[44],andare beingconsideredforITERandSPARC.

1.1.2ActiveSpectroscopy

TheprevioussectionreviewedvelocitymeasurementsfromDopplershiftsofemissionlinespopulatedpassivelybycollisionalexcitationorradiativerecombination fromplasmaelectrons.Anothertechniqueistoutilizetransitionspopulatedby chargeexchangerecombination(CXR)withneutralhydrogenisotopesprovided byactiveneutralbeaminjection(NBI).Advantagesofthismethodarethatthis canprovideaspatiallylocalizedmeasurement(wheretheneutralbeamintersects

Fig.1.6 SchematicofthedispersivecharacteristicsofthevonHamoscrystalspectrometerused. FromFig.2of[32]E.Källneetal.‘HighResolutionX-RaySpectroscopyDiagnosticsofHigh TemperaturePlasmas’,Phys.Scr. 31,551(1985).©IOPPublishing.Reproducedwithpermission. Allrightsreserved

thespectrometersightline)andthatmanytransitionspopulatedthiswayareinthe visiblewavelengthregion,whichallowstheuseofvisiblespectrometers(novacuum required)andfiberoptics.Disadvantagesofthistechniquearethatneutralbeams constituteastrongmomentumsource(andperturbthevelocitybeingmeasured)and thatunfoldingthelineshapetodeterminetheDopplershiftduetothedesiredplasma rotationcanbecomplicated(forexampleduetoenergydependentatomiccross sectiondistortions[45, 46],seeFig. 1.13).AgoodreviewofCXRspectroscopy maybefoundin[47].

EarlyobservationsofCXRpopulation via NBIwerefromH-likeoxygeninT-10 [48]andORMAK[49],andH-likeheliuminPDX[50].Thefirstvelocitymeasurementsusingthistechnique[51]intheUVspectralrangewerefromORMAK usingtheexperimentallayoutshowninFig. 1.11.Thespectrometersystemisvery similartothatshowninFig. 1.1;however,thereissomespatiallocalizationsince CXemissioncanonlyoccurwherethebeamcrossesthespectrometerlineofsight. TheobservedvelocitydeterminedfromthisinstrumentforH-likeOVIII(O7+ )in theUVspectralrangeduetoCXRpopulationfromneutralH/Dinthen = 1level agreesverywellwiththepassivelymeasuredHe-likeNeIX(Ne8+ ),ascanbeseen inFig. 1.12.CXRspectroscopy(CXRS)withNBI(eitherfromheatingordiagnostic beams)wassoonadaptedontokamaksaroundtheworldincludingDoubletIII[52–54],PDX[55],DITE[56],ISX-B[57, 58],ASDEX[59],JET[60]andJIPPTII [61],andisnowthestandardvelocityprofilemeasurementtechnique.Onedrawback withthismethodisthatitrequiresNBI,sothestudyofintrinsicrotationistricky.

Fig.1.7 Thex-rayspectraoftheAr17+ Lyα doubletandofthe2p6 -(2p5 )3/2 4d5/2 transitionin Mo32+ forcounter-clockwise(CCW)Ip (bluedashedcurve)andclockwise(CW)Ip (solidred curve)discharges.TheLyα 1 wavelengthatrestof3731.1mÅisshownbythethinverticalline. ReproducedfromFig.2of[34]J.E.Riceetal.‘X-rayobservationsofcentraltoroidalrotationin ohmicAlcatorC-Modplasmas’,Nucl.Fusion 37,421(1997),withthepermissionoftheIAEA

Awidelyusedtechniqueistoutilizebeamblips,shortdurationpulses,tominimize theinputtorque.

MostapplicationsofCXRSuseintrinsic(carbonfromwallsorboronfrom wallcoating)orinjected(e.g. neon)impuritieswhichyieldstheimpurityrotation (andtemperature).ModernsystemsutilizeCXRfromexcitedneutralhydrogen/deuteriuminthen = 2level,whichpopulatehighn(and l)levels(forexample n = 8inC5+ )whichcascadedowninthevisiblespectralregion.Theimpurity rotationcanbedifferentfromthatofbackgroundions,anditisofinteresttomeasure themainionvelocitydirectly.Thefirstmeasurementsofbackgroundionrotation wereobtainedinDIII-Dheliumplasmas[62].Observationsofmainionrotation inD2 plasmashavealsobeenrealizedinASDEXUpgrade[63].Agoodreviewof importantissuesandcomplicationsofCXRSinhydrogenisotopesmaybefoundin [64].AnexampleofastateoftheartCXRSspectrumofDα isshowninFig. 1.13 whichdemonstratescontributionsfromvariouseffectswithandwithoutNBIina DIII-DH-modeplasma[65].Acomparisonofedgerotationprofilesdetermined fromcarbonanddeuteriumCXRSusingthissamesystemisshowninFig. 1.14 foraDIII-DH-modeplasma[66].Clearlythereisasubstantialdifferencebetween

Fig.1.8 Illustrationofthefocussingpropertiesofsphericallybentcrystals.Reproducedfrom Fig.1of[37]M.Bitteretal.‘Numericalstudiesoftheimagingpropertiesofdoublyfocussing crystalsandtheirapplicationtoITER’,Rev.Sci.Instrum. 66,530(1995),withthepermissionof AIPPublishing

impurityandbackgroundionrotationnearthelastclosedfluxsurface(LCFS),as canbeseeninpanel(d).ThereisanincreaseintheimpurityrotationinthecocurrentdirectionoutsideoftheLCFS;thistopicwillbeexploredinChap. 4 on neo-classicaleffects.

1.2MHDModeRotation

Anothermethodofmeasuringthevelocityistoexaminetherotationfrequencyof n = 1pre-andpost-cursorstosawtoothoscillationsusingmagneticpickupcoilsor softx-rayarrays.ThistechniquewasfirstemployedonPLT[16, 67]andhasbeen usedsubsequentlyonISX-B[58],JET[68]andAlcatorC-Mod[35, 36, 69–71].An exampleofthevelocityattheq = 1surfacefromsawtoothpost-cursorscomparedto neighboringx-rayDopplermeasurementsforaC-ModH-modedischargeisshown inFig. 1.15 [35, 36].Whiletherotationofn = 1MHDmodesrelativetoionrotation issubjecttointerpretation[72],theinferredvelocityatthesawtoothinversionradius (r/a ∼ 0.2)fitsnicelybetweentheimpurityrotationatr/a = 0.0andr/a = 0.3 measuredbyDopplershiftsofx-raylines.

Fig.1.9 Topview(a)andsideview(b)ofthespectrometerasinstalledonAlcatorC-Mod. ReproducedfromFig.1of[39]A.Ince-Cushmanetal.‘Spatiallyresolvedhighresolutionxrayspectroscopyformagneticallyconfinedfusionplasmas’,Rev.Sci.Instrum. 79,10E302(2008), withthepermissionofAIPPublishing

1.3ProbeMeasurements

ItispossibletoutilizeLangmuirprobepairstoinfertherotationvelocity[73] inthescrapeofflayer(SOL)oftokamakplasmas[74–77].Thelayoutofseveral probesystemsonC-ModisshowninFig. 1.16 [74].TheEASTandWEST tungstenelectrodes,whichareembeddedinanelectricallyfloatingmolybdenum body,sampleplasmafromoppositedirectionsalongthesamefieldline,forming aMachprobepairinwhichtheparallelMachnumbercanbeestimatedfrom theratioofionsaturationcurrentdensities,M = 0.43JEAST /JWEST [73].By fittingpositive-andnegative-goingI-VcharacteristicsfromtheEASTandWEST electrodes,electrondensities,temperaturesandparallelMachnumbersalongthe probe’strajectoryareobtainedevery0.25ms(correspondingto ∼0.25mmofprobe travel).TheNORTHandSOUTHtungstenelectrodeswereoperatedinafloating voltagemode.Theverticalscanningprobeisofsimilarconstructionandisoperated inthesamemanner.ScanningLangmuir-Machprobemeasurementshaveuncovered clearevidenceofstrongballooning-liketransportandassociatedtransportdriven

Fig.1.10 ContourplotshowingtherotationprofileevolvingduringanICRFheatedplasma. Thelineaverageddensity,centralelectrontemperatureandRFheatingpowerarealsoshown. ReproducedfromFig.6of[39]A.Ince-Cushmanetal.‘Spatiallyresolvedhighresolutionx-ray spectroscopyformagneticallyconfinedfusionplasmas’,Rev.Sci.Instrum. 79,10E302(2008), withthepermissionofAIPPublishing

plasmaflowalongfieldlinesintheinnerhighfieldsideSOL.Acompilationof crossfieldplasmaprofiles,includingflowmeasurements,intheinnerandouter SOLregionsforuppersinglenull(USN),doublenull(DN)andlowersinglenull (LSN)equilibriaisshowninFig. 1.17 [75].Thereisaclearchangeinsignofthe innerSOLflowingoingfromUSNtoLSNwhilethekineticprofilesremainthe same.Thisdependenceofrotationonthemagneticequilibriumwillbediscussedin detailinSect. 5.2.1

1.4MicrowaveDopplerReflectometryandScattering

TheDopplershiftsofmicrowavesmayalsobeusedtodeterminerotationvelocities [78–80].InDopplerreflectometrytheantennatiltangle θt inducesaDoppler frequencyshiftfD =u⊥ 2sinθt /λ0 inthemeasuredspectrumwhichisdirectly proportionaltotherotationvelocityu⊥ = vExB + vph oftheturbulencemovingin theplasma.Figure 1.18 showsaschematicoftheASDEXUpgrade(AUG)Doppler reflectometerdiagnosticalongwithapoloidalcrosssectionofatypicalLSNplasma

Fig.1.11 Experimentalarrangementformeasuringplasmarotationfromvacuumultravioletlines. Thelaserablationapparatusforinjectingtestimpuritiesisalsoshown.ReproducedfromFig.1of [51]R.C.IslerandL.E.Murray,‘Plasmarotationmeasurementsusingspectrallinesfromcharge transferreactions’,Appl.Phys.Lett. 42,355(1984),withthepermissionofAIPPublishing

[80].Fulldetailsofthediagnosticcanbefoundin[79].Examplesofedgevelocity profilesobtainedwiththissystemforseveralAUGOhmicdischargeswithvarious electrondensitiesandplasmascurrentsareshowninFig. 1.19 [80].Theprofile displaystheusualpeakstructureneartheseparatrixforallcases,buttheinterior rotationswitchesfromtheelectrondriftdirectiontotheiondriftdirectionasthe densityisincreasedforthe0.8MAcases.Thisrotationreversalwillbediscussedin detailinSect. 5.2.3

AnothermethodofvelocitydeterminationreliesoncollectiveThomsonscattering(CTS)ofmicrowaves.Thistechniquehasbeenusedtomeasurethebackground iontemperature[81–83]andmayalsoprovidetherotationvelocity[84, 85].An exampleofthetimehistoryoftherotationvelocitydeterminedbyCTSinanAUG

Fig.1.12 ToroidalrotationvelocitiesmeasuredfromchargeexchangeexcitedlineofOVIIIand fromelectronexcitedlinesofOVIIandNeIX.ReproducedfromFig.3of[51]R.C.IslerandL.E. Murray,‘Plasmarotationmeasurementsusingspectrallinesfromchargetransferreactions’,Appl. Phys.Lett. 42,355(1984),withthepermissionofAIPPublishing

Fig.1.13 (a)BackgroundsubtractedspectrumandfittothespectrumwiththeNBIonandNBI offspectrainset.(b)Residualfromthefitweightedbytheuncertaintyofthemeasuredspectrumat eachpixelbasedonphotonstatistics,darknoise,andreadoutnoise.ReproducedfromFig.3of[65] S.R.Haskeyetal.‘Activespectroscopymeasurementsofthedeuteriumtemperature,rotation,and densityfromthecoretoscrapeofflayerontheDIII-Dtokamak’,Rev.Sci.Instrum. 89,10D110 (2018),withthepermissionofAIPPublishing

discharge,comparedtotheCXRSresult,isshowninFig. 1.20.Ascanbeseen,the valuesfromthetwomeasurementsareinexcellentagreement.

1.5Comments

Withtheimprovedtimeresolutioninhighthroughput2Dx-rayarrays,soontobe below1ms,itwillbepossibletomeasurefluctuationsinthecoretoroidalvelocity. ThiswillenabledirectmeasurementintheplasmacoreoftheReynoldsstress, whichisproportionaltothefluctuatingvelocityfields ˜ vr ˜ vφ .TheReynoldsstress intheplasmaboundaryregionhasbeenobserveddirectlyusingprobes[76, 77].

Fig.1.14 H-modepedestalprofilesfromThomsonscattering,impurity,andmainionCXRS. Carbonanddeuteriumrotationfrequencyprofilesareshowninpanel(d).ReproducedfromFig.4 of[66]B.A.Griersonetal.‘Highresolutionmain-ionchargeexchangespectroscopyintheDIII-D H-modepedestal’,Rev.Sci.Instrum. 87,11E545(2016),withthepermissionofAIPPublishing

Fig.1.15 Theplasmastoredenergy(top),impuritytoroidalrotationvelocityatthreeradii(red dots,greenasterisksandpurplediamondsforr/a = 0.0,0.3and0.6,respectively)andmagnetic perturbationrotation(×s)atthesawtoothinversionradius(r/a ∼ 0.2),andtheedgeDα brightness (bottom)foranICRFheatedELM-freeH-modedischarge.ReprintedwithpermissionfromFig.2 of[35]W.D.Leeetal.‘ObservationofAnomalousMomentumTransportinTokamakPlasmas withNoMomentumInput’,Phys.Rev.Lett. 91,205003(2003).Copyright(2003)bytheAmerican PhysicalSociety

Inner Scanning Probe

Electrode, Flush to Probe Body

Coil

Inner Scanning Probe

Top Views of Rotating Probe

Outer Scanning Probe

Axis of Pyramid 19 mm dia.

Outer Scanning Probe

Vertical Scanning Probe

North Flux Surface Probe Body

Electrodes, Flush to Pyramid Magnetic Field

View of Electrodes Along Axis of

Fig.1.16 ScanningLangmuir-Machprobesareusedtoinfersimultaneouslyplasmaprofilesand parallelflowsatthreelocationsintheSOLofAlcatorC-Mod,includingthehighfieldside(inner scanningprobe).Atypicallowersinglenullplasmaequilibriumisshown.ReproducedfromFig.1 of[74]B.LaBombardetal.‘Transport-drivenScrape-Off-Layerflowsandtheboundaryconditions imposedatthemagneticseparatrixinatokamakplasma’,Nucl.Fusion 44,1047(2004),withthe permissionoftheIAEA

Fig.1.17 Scrapeofflayerprofileandflowdataobtainedfromtheinnerandouterscanningprobes. Thefluxsurfacecoordinate ρ isthedistanceintotheSOL,mappedtotheoutermidplane.Shaded regionsindicatewherefieldlinesmaycontactlimitersurfaces.Positivevelocitiescorrespondto flowintheco-currentdirection.Thedashedlinesonthelowerleftpanelshowthemagnitudeof thelocalplasmasoundspeedcs fordeuteriumplasmawithTi =Te .ReproducedfromFig.2of [75]B.LaBombardetal.‘Transport-drivenscrape-offlayerflowsandthex-pointdependenceof theL-HpowerthresholdinAlcatorC-Mod’,Phys.Plasmas 12,056111(2005),withthepermission ofAIPPublishing

Core: ρ < 0.85

Inside pedestal ∇T > ∇n

Mostly Electrostatic ITG, TEM, ETG turb.

(Microtearing: finite β)

Transition: (edge-core)

Pedestal region

∇T dominant

Velocity shear

Edge: 0.85 < ρ < 1

∇P dominant

Electromagnetic Drift-wave turbulence

Scrape-off-layer: ρ > 1

Open field lines, ∇n

Interchange/flute-type turb.

Fig.1.18 PoloidalcrosssectionofatypicalAUGdischargewithaschematicoftheDoppler reflectometer.ReproducedfromFig.1of[80]G.D.Conwayetal.‘Observationsoncoreturbulence transitionsinASDEXUpgradeusingDopplerreflectometry’,Nucl.Fusion 46,S799(2006),with thepermissionoftheIAEA

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.