Instant download Advanced bioscience and biosystems for detection and management of diabetes kishor

Page 1


Advanced Bioscience and Biosystems for Detection and Management of Diabetes Kishor Kumar Sadasivuni

Visit to download the full and correct content document: https://ebookmass.com/product/advanced-bioscience-and-biosystems-for-detection-a nd-management-of-diabetes-kishor-kumar-sadasivuni/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

3D and 4D Printing of Polymer Nanocomposite Materials: Processes, Applications, and Challenges 1st Edition Kishor Kumar Sadasivuni

https://ebookmass.com/product/3d-and-4d-printing-of-polymernanocomposite-materials-processes-applications-andchallenges-1st-edition-kishor-kumar-sadasivuni/

MXenes and their Composites: Synthesis, Properties and Potential Applications (Micro and Nano Technologies) 1st Edition Kishor Kumar Sadasivuni (Editor)

https://ebookmass.com/product/mxenes-and-their-compositessynthesis-properties-and-potential-applications-micro-and-nanotechnologies-1st-edition-kishor-kumar-sadasivuni-editor/

Predicting Heart Failure : Invasive, Non-Invasive, Machine Learning, and Artificial Intelligence Based Methods 1st Edition Kishor Kumar Sadasivuni

https://ebookmass.com/product/predicting-heart-failure-invasivenon-invasive-machine-learning-and-artificial-intelligence-basedmethods-1st-edition-kishor-kumar-sadasivuni/

Thermoelectricity and Advanced Thermoelectric Materials

Ranjan Kumar

https://ebookmass.com/product/thermoelectricity-and-advancedthermoelectric-materials-ranjan-kumar/

Differential Calculus for JEE Main and Advanced (3rd edition) Vinay Kumar

https://ebookmass.com/product/differential-calculus-for-jee-mainand-advanced-3rd-edition-vinay-kumar/

Integral Calculus for JEE Main and Advanced, 3e 3rd Edition Vinay Kumar

https://ebookmass.com/product/integral-calculus-for-jee-main-andadvanced-3e-3rd-edition-vinay-kumar/

The Diabetes Textbook: Clinical Principles, Patient Management and Public

https://ebookmass.com/product/the-diabetes-textbook-clinicalprinciples-patient-management-and-public/

Fruit Crops: Diagnosis and Management of Nutrient Constraints Anoop Kumar Srivastava

https://ebookmass.com/product/fruit-crops-diagnosis-andmanagement-of-nutrient-constraints-anoop-kumar-srivastava/

Advanced Biosensors for Virus Detection - Smart Diagnostics to Combat SARS-CoV-2 1st ed. 2022 Edition

https://ebookmass.com/product/advanced-biosensors-for-virusdetection-smart-diagnostics-to-combat-sars-cov-2-1sted-2022-edition-edited-by-raju-khan/

Kishor Kumar Sadasivuni

Abdulaziz Khalid A M Al-Ali

Rayaz A. Malik   Editors

Advanced Bioscience and Biosystems for Detection and Management of Diabetes

SpringerSeriesonBio-andNeurosystems

Volume13

SeriesEditor

NikolaKasabov ,KnowledgeEngineeringandDiscoveryResearchInstitute, AucklandUniversityofTechnology,Penrose,NewZealand

EditorialBoard

Shun-ichiAmari,MathematicalNeuroscience,RIKENBrainScienceInstitute, Wako-shi,Saitama,Japan

PaoloAvesani,NeuroinformaticsLaboratory,UniversityofTrento,Trento,Italy

LubicaBenuskova,DepartmentofComputerScience,UniversityofOtago, Dunedin,NewZealand

ChrisM.Brown,DepartmentofBiochemistry,UniversityofOtago,North Dunedin,NewZealand

RichardJ.Duro,GrupoIntegradodeIngenieria,UniversidadedaCoruna,Ferrol, Spain

PetiaGeorgieva ,DETI/IEETA,UniversityofAveiro,Aveiro,Portugal

Zeng-GuangHou,ChineseAcademyofSciences,Beijing,China

GiacomoIndiveri,InstituteNeuroinformatics,UniversityofZurichandETH Zurich,Zürich,Switzerland

IrwinKing,TheChineseUniversityofHongKong,HongKong,HongKong

RobertKozma,UniversityofMemphis,Memphis,TN,USA

AndreasKönig,UniversityofKaiserslautern,Kaiserslautern,Rheinland-Pfalz, Germany

DaniloMandic,DepartmentofElectricalandElectronicEngineering,Imperial CollegeLondon,London,UK

FrancescoMasulli,DIBRIS,UniversityofGenova,Genova,Genova,Italy

JeanPhilippeThivierge,SchoolofPsychology,UniversityofOttawa,Ottawa,ON, Canada

AllessandroE.P.Villa,UniversitedeLausanne,Lausanne,Switzerland

TheSpringerSeriesonBio-andNeurosystemspublishesfundamentalprinciplesand state-of-the-artresearchattheintersectionofbiology,neuroscience,information processingandtheengineeringsciences.Theseriescoversgeneralinformatics methodsandtechniques,togetherwiththeirusetoanswerbiologicalormedical questions.Ofinterestarebothbasicsandnewdevelopmentsontraditionalmethods suchasmachinelearning,artificialneuralnetworks,statisticalmethods,nonlinear dynamics,informationprocessingmethods,andimageandsignalprocessing.New findingsinbiologyandneuroscienceobtainedthroughinformaticsandengineering methods,topicsinsystemsbiology,medicine,neuroscienceandecology,aswell asengineeringapplicationssuchasroboticrehabilitation,healthinformation technologies,andmanymore,arealsoexamined.Themaintargetgroupincludes informaticiansandengineersinterestedinbiology,neuroscienceandmedicine,as wellasbiologistsandneuroscientistsusingcomputationalandengineeringtools. Volumespublishedintheseriesincludemonographs,editedvolumes,andselected conferenceproceedings.Bookspurposelydevotedtosupportingeducationatthe graduateandpost-graduatelevelsinbio-andneuroinformatics,computational biologyandneuroscience,systemsbiology,systemsneuroscienceandotherrelated areasareofparticularinterest.

AllbookspublishedintheseriesaresubmittedforconsiderationinWebofScience.

Moreinformationaboutthisseriesat https://link.springer.com/bookseries/15821

Editors

AdvancedBioscience andBiosystemsforDetection andManagementofDiabetes

KishorKumarSadasivuni

Editors

KishorKumarSadasivuni CenterforAdvancedMaterials

QatarUniversity Doha,Qatar

AbdulazizKhalidAMAl-Ali KINDICenterforComputationResearch Doha,Qatar

John-JohnCabibihan DepartmentofMechanicalandIndustrial Engineering

QatarUniversity Doha,Qatar

RayazA.Malik WeillCornellMedicalCollegeinQatar Doha,Qatar

ISSN2520-8535ISSN2520-8543(electronic) SpringerSeriesonBio-andNeurosystems ISBN978-3-030-99727-4ISBN978-3-030-99728-1(eBook) https://doi.org/10.1007/978-3-030-99728-1

©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2022

Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Preface

Diabetesisaseriouspublichealthissuethataffectspeopleallovertheworld.Asthe worldpopulationages,theprevalenceofthischroniccomplicatedmetabolicillness increasesatanalarmingrate.Itwillhavethegreatestinfluenceinunderdeveloped countries.Becausediabetesisachronic,complicatedmetaboliccondition,amultidisciplinaryteamofhealthprofessionalswithexperienceindiabetesmanagement shouldofferdiabetescareinconjunctionwiththepatientandfamily.Despitethefact thatdiabetesmellituswasrecentlygivenprioritystatusbytheWHO,manypublic healthplannersarestilluninformedofitsscopeanditsconsequences.Therisingincidenceoftheconditionandthelong-termexpenseoftherapyforbothpatientsand thehealthsector,aswellastheeconomiccosttonations,areallfactorstoconsider. Adultprevalenceratesrangingfrom7%to25%havebeenobservedinstudiesdone indiversecommunitiesthroughouttheregion.Furthermore,agrowingnumberof nationsarereportingtheemergenceoftype2diabetesmellitusatayoungage.The goalofincorporatingdiabetesmellitusintoprimaryhealthcareistodeveloproutine screeningmethodstoidentify,monitor,andmanagediabetes’sfrequentcomplications.Treatmentshouldjustfocusnotonlyondecreasingbloodglucoselevels,but alsoonaddressingothernoncommunicablediseaseriskfactorsincludingsmoking, dyslipidemia,obesity,inactivity,andhypertension.Notonlyisdiabetescareinshambles,butsoisourknowledgeoftheprocessesthatunderpinclinicalproblemsassociatedwiththeillness.Themajorgoalsincaringfordiabeticpatientsaretoprevent oratleastslowthedevelopmentofclinicalcomplicationssuchasmicro-vascular (eyeandkidneydisease)achievedthroughbloodsugarandbloodpressurecontrol, andmacro-vascular(coronary,cerebrovascular,andperipheralvascular)achieved throughlipids,hypertension,andsmokingcontrol.However,wedonotunderstand howincreasedbloodglucose,circulatinginsulin,andchangedbloodpressureaffect thepathophysiologyofbloodarteriesandcauseseriousorganfailure.

Asaresult,inthelackofsuchaknowledgefoundation,currenttreatmenttechniquesfocusonriskmanagement.Ifwewanttocontrolthisconditionproperly, weneedtostartmonitoringdiabetesearlyandkeepituptodate.Theearlydetectionofvariationsinbloodglucoselevelsisthefoundationofdiabeticcare.Effectivetreatment,especiallyforundetectedhypoglycemia,requirescarefulandtimely

monitoring.Bloodglucoselevelsareusuallycheckedbeforeameal,twohoursafter, andbeforebedtime.Althoughthedevelopmentofbloodglucoseself-monitoringin recentdecadeshasencourageddiabetestreatmentinthequestforeuglycemia,its cumbersomeusemayresultininsufficientdatacollectionofbloodglucose.The pattern,frequency,level,andtimingofbloodglucosechangeshavebeentracked usingcontinuousglucosemonitoring.Diabetesdiagnosisandmanagementneed precise,sensitive,consistent,quick,andattentiveglucosemonitoringfrequently. Diabetescancreatevariousvascularandneurologicalissuesthatimpactmultiple organsystemsintheshortandlongtermifnottreatedproperly.Regularcommunitybasedscreeningandpromptdiagnosisinundiagnosedpatients,sufficientpatient educationandsupport,continuousmedicaltreatment,psychologicalcounseling,and societalsupportareallrequiredtoavoidacuteconsequences.Accuratebloodglucose monitoringwhileenhancingglycaemiccontrolandpatientqualityoflifeisoneof themostdifficultelementsofdiabetesmellitustreatment.Regularmonitoringbythe doctororthepatientisnecessarytokeepthediabetespatient’shealthfromworsening.Theserecommendationsareintendedtoaidinthestandardizationofdiabetes treatmentattheelementary,secondary,andtertiarylevelsandadvisepolicymakers aspartofeffortstoenhancehealthcare.Aboveall,wemustallendeavortoimprove diabetesmellituspreventiontoreducethisincreasingburden.

Thisbookintendstoofferrecentworkcarriedontheleadingtechnologiesfor noninvasive(NI)andminimallyinvasive(MI)glucosemonitoringsensors,devices presentlyfoundinthefieldofmedicinesciences.Thetypeofframeworkusedfor accuracydeterminationandnewapproachesundertakenbyscientistshavebeen discussed.Thisbookalsomentionstheupcomingtrendstobeseenindiabeticdiagnosisandmanagementbyusingthemachinelearningandartificialintelligence.We hopeyouenjoyreadingthebookandfinditusefulwhetherthisishelpingpatients orhealthprofessionalstomanagediabeticsanditscomplicationsusingthecurrent innovativetechnologies.Thebookwillsummarizethattheinventionandreplacementofuseofnewtechnologieswiththeexistingonesforglucosedetectionarethe futurefordiabeticpatients.

Doha,QatarKishorKumarSadasivuni

John-JohnCabibihan AbdulazizKhalidAMAl-Ali RayazA.Malik

Contents

Introduction ......................................................1

KishorKumarSadasivuniandMithraGeetha

ReviewofEmergingApproachesUtilizingAlternative PhysiologicalHumanBodyFluidsinNon-orMinimallyInvasive GlucoseMonitoring ................................................9

SunghoonJang,YuWang,andAndreJang

CurrentStatusofNon-invasiveDiabetesMonitoring ..................27

SreedeviParamparambath,IshwarMarutiIslampure, T.Sabitakala,MuniRajMaurya,HajarMorsy,SwathiYempally, SureshMuthusamy,SenthilKumarRamu,SanthiyaPandiyan, RaghadAbuznad,AlaaElsafiahmed,AeshahAlruwaili, MunaIbrahim,PeterKasak,RavikumarRamluVidule, AnkanagariSrinivas,andKishorKumarSadasivuni

ANewSolutionforNon-invasiveGlucoseMeasurementBased onHeartRateVariability ..........................................55 MarjanGusev

OpticBasedTechniquesforMonitoringDiabetics ....................67

HannanehMonirinasabandFarzanehFathi

SPRAssistedDiabetesDetection ....................................91 ChoudharyArjunSunilbhai,Md.SabirAlam, KishorKumarSadasivuni,andJamilurR.Ansari

InfraredandRamanSpectroscopyAssistedDiagnosisofDiabetics .....133 NicoleM.RalbovskyandIgorK.Lednev

PhotoacousticSpectroscopyMediatedNon-invasiveDetection ofDiabetics .......................................................165 DeepakDevadigaandT.N.Ahipa vii

ElectricalBioimpedanceBasedEstimationofDiabetics ...............181 PedroBertemes-Filho

MillimeterandMicrowaveSensingTechniquesforDiagnosis ofDiabetes ........................................................199

NithushaKallingal,M.S.Sajna,MizajShabilSha,MithraGeetha, IshwarMarutiIslampure,NagendraPrasadDevarapalli, MuniRajMaurya,AsanAbdulMuthalif,SumayaAl-Madeed, RavikumarRamluVidule,AnkanagariSrinivas, andKishorKumarSadasivuni

DifferentMachineLearningAlgorithmsInvolvedinGlucose MonitoringtoPreventDiabetesComplicationsandEnhanced DiabetesMellitusManagement .....................................227 Wai-kitMingandZonglinHe

TheRoleofArtificialIntelligenceinDiabetesManagement ............243 AmineRghioui,JaimeLloret,andAbdelmajidOumnad

ArtificialIntelligenceandMachineLearningforDiabetesDecision Support ..........................................................259

JosepVehi,OmerMujahid,andIvanContreras

CommercialNon-invasiveGlucoseSensorDevicesforMonitoring Diabetes ..........................................................273

ManickamTamilselvi,PandiaRaj,RavikumarRamluVidule, andSrinivasAnkanagari

FutureDevelopmentsinInvasiveandNon-invasiveDiabetes Monitoring .......................................................293

FrédéricHarb,WilliamS.Azar,HildaE.Ghadieh,RachelNjeim, YoussefTawk,JosephCostantine,RouwaidaKanj,andAssaadA.Eid

Introduction

Abstract Effectivediabetesmanagementbeginswithbloodglucosemonitoring. Diabeticcaregoesbeyondmonitoringbloodglucoselevels.Thisincludesoverall health,includingbloodpressure,weight,cholesterollevels,sleep,mood,medications,andeye,kidney,andfoothealth.Monitoringbloodsugarisfundamentalto managingdiabetes.Microandmacrovascularcomplicationsarereducedwithregular glucosetesting.Despitetherecentdevelopmentofminimallyinvasiveglucosemonitoringtechniques,mostglucosemonitoringmethodsareinvasive,painful,timeconsuming,andexpensiveinthelongrun.Inordertoimprovethequalityoflife forpatientswithdiabetes,non-invasive,needle-free,andCGMapproachesare needed.Thepurposeofthischapteristoprovideanoverviewofdifferentchapterscoveringvariousdevicesandsensorsforinvasive,minimally-invasive,andnoninvasiveglucosemonitoringcurrentlyavailableonthemarketorindevelopment,as wellastheiraccuratereal-timeresponseandsensitivity.

Keywords Diabetesmellitus · Glucose · Monitoring · Medications · Blood pressure

Diabetesmellitus,oftenknownasdiabetes,isasetofmetabolicdiseasescharacterizedbyelevatedbloodsugarlevelsinthehumanbodyoveranextendedtime.Several differentpathogenicmechanismscausediabetes.Thesecanrangefromautoimmune destructionof β-cellsofthepancreas,resultingininsulininsufficiency,toanomalies thatresultininsulinresistance.Type1diabetes(β-celldestruction,usuallyleading toabsoluteinsulindeficiency),type2diabetes(rangingfrompredominantlyinsulin resistancewithrelativeinsulindeficiencytopredominantlyaninsulinsecretory defectwithinsulinresistance),andgestationaldiabetesmellitus(GDM-anydegree ofglucoseintolerancewithonsetduringpregnancy)arethemostcommontypes. Theglobalprevalenceofdiabeteswasprojectedtobe463millionpeoplein2019 [1].Dataindicatesthatdiabetespatientshavesurgedworldwide,withIndiabeing

K.K.Sadasivuni(B) M.Geetha CenterforAdvancedMaterials,QatarUniversity,Doha,Qatar e-mail: kishor_kumars@yahoo.com

©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2022 K.K.Sadasivunietal.(eds.), AdvancedBioscienceandBiosystemsforDetection andManagementofDiabetes,SpringerSeriesonBio-andNeurosystems13, https://doi.org/10.1007/978-3-030-99728-1_1

secondonlytoChinaregardingthenumberofpeoplewithdiabetes.Accordingto theInternationalDiabetesFoundation,thenumberofindividualsdiagnosedwith diabeteswouldriseto628.6millionin2045,accountingfor6–7%oftheglobal population[2].Diabetesratesgrowasthepopulation,obesity,physicalinactivity, andunhealthydietallrise.TheWorldHealthOrganizationandtheInternational DiabetesFederationhaveidentifieddiabetesasaseriousglobalproblem[3].

Theconventionalviewofdiabetesmellituspathophysiologyremainsthathereditarypredispositionunderpinsdiseaseprogression,withgeneticmutationsaffecting thestagesofbeta-cellactivity,insulinsecretion,contactwithtissuecells,insulin receptorsynthesis,andinsulinactioninsidecells.Theimmunesystemtargetsand killstheinsulin-producingbetacellsinthepancreasinpatientswithdiabetestype 1.Asaresult,thebody’sinsulinsynthesishalts.Type-2diabetesmellituscancause antibodiesagainstisletbeta-cellantigenstobeeliciteddirectlyincertainpeople. Inalldiabetesmellitus,diabetestype2accountsfor80%ofallcases.Becauseof beta-cellmalfunction,thisformofdiabetesiscausedbyarelativeinsulindeficit. Theseindividualshaveaverygradualprogressionofinsulininsufficiency,andthey areclassifiedashavinglatentautoimmunediabetes(LADA)withadelayedonset. Gestationaldiabetes(Type3)hasbecomeamajorpublichealthconcernduringa woman’spregnancy.Placentaproducesplacentalgrowthhormone(PGH)andproinflammatorycytokinessuchastumornecrosisfactor-alpha(TNF-)duringahealthy pregnancy.Insulinsensitivityisreducedinadiposetissue,liver,andskeletalmuscle duetothesevariables.Thisdiseasedoesnotaffectallpregnantwomen,butitdoes raisethedangersassociatedwithpregnancy.Itcanoccasionallycausedifficultiesfor babiesandcanalsoobstructthenormalbirthingprocess.However,afterthedelivery ofachild,thissyndromelargelysubsides.

Chronichyperglycemiacancauseseriousissuesinaperson’sbody,including damagetoandevenfailureoforganslikethekidneysandheart[4].Diabeticcomplicationsmightincludeblindness,renalillness,neurologicalandcirculatorydisease, limbamputations,stroke,andcardiovasculardisease[5].Patientsmayhavepolydipsia,polyuria,andpolyphagiaduetopersistenthyperglycemia.Diabeticcomplicationsmightalsoincludecardiovasculardiseaseandmortality[6].Othercomorbidities associatedwithdiabetesincludediabeticfoot,diabetesretinopathy,ketoacidosis,and neuropathy.Recentresearchhasdiscoveredastronglinkbetweenglucoselevelsand heartratevariability(HRV).Thisstrategyfocusesondiabetespatientsandalleviates theirfinancialandhealth-relatedproblems[7].Forpatients,atechnologythatmight giveanearlyidentificationofsuchproblemscouldbelife-changing.

In2017,thetotalcostofdiabetes-relatedhealthcareintheUnitedStateswas predictedtobeover$327billion.AccordingtotheMayoClinic,quittingsmokingand keepingthebloodpressureandcholesterolundercontrolaretwoofthetoptenstrategiestoavoiddiabeticproblems.Regularexerciseanddrinkingwaterastheprimary beveragearenotonthislist,buttheyareequallyvital.Diabetescanbemanagedwitha balanceddietand,eventually,insulininjections[8].Sleepdisruptionappearstohave aroleindiabetes,justasdiabetescancreateissueswithsleep.Sleepdeprivation raiseshungerhormoneghrelinandlowerssatietyhormoneleptinlevels[9].People whosufferfromsleepproblemsaremorelikelytoseekconsolationinhigh-sugar

mealsChapter“ReviewofEmergingApproachesUtilizingAlternativePhysiological HumanBodyFluidsinNon-orMinimallyInvasiveGlucoseMonitoring”.Optimizing glycemiccontrolbyreducingbloodglucoselevelshasbeenshowntoreducetherisk ofmicrovascularcomplicationsandlong-termmacrovasculardisease[10].Because Type1DMpatients’insulinproductionbybetacellsisreduced,pharmacological stimulationofinsulinsecretionorinsulinabsorptionisnolongerenoughtokeep theminaeuglycemicstate,andexternalinsulinsupplementationistheonlywayto keepthemthere.

Thebasisofdiabetesmanagementistimelyrecognitionofthevariationofblood glucoselevels.Effectivetherapy,especiallyforundiagnosedhypoglycemia,isonly feasiblewithgoodandearlymonitoring.Normally,bloodglucoselevelsaretested beforeameal,twohoursafterameal,andbeforegoingtobed[11].Althoughthe introductionofself-monitoringofbloodglucose(SMBG)hasinspireddiabetescare inrecentdecadesinthepursuitofeuglycemia,itsinconvenientusagemayresultin inadequatebloodglucosedatacollecting.Continuousglucosemonitoring(CGM) hasmonitoredthepattern,frequency,level,andtimeofbloodglucoselevelfluctuations.Diagnosisandmanagementofdiabetesneedregularglucosemonitoring thatisaccurate,sensitive,dependable,fast,andattentive.Withoutadequatecare, diabetescancausearangeofvascularandneurologicalproblemsaffectingvarious organsystemsintheshortandlongterm.Toavoidacuteeffects,regularcommunitybasedscreeningandtimelydiagnosisinundiagnosedindividuals,adequatepatient educationandsupport,ongoingmedicaltreatment,aswellaspsychologicaltherapy, andsocietalsupportareallnecessary.Oneofthemostdifficultaspectsofdiabetes mellitustherapyiscorrectlymonitoringbloodglucosewhileincreasingglycaemic controlandpatientqualityoflife.Topreventthediabeticpatient’shealthfromdeteriorating,regularmonitoringshouldbeperformedbyeitherthedoctororthepatient Chapter“CurrentStatusofNon-invasiveDiabetesMonitoring”.

Self-monitoringbloodglucoselevelsgiveaconsistent,trustworthy,andreliable methodofdetectingbloodglucoselevels.It’scriticaltomonitorglucoselevelsin diabeticpatientsfrequently[12].ThecurrentstandardofcareforDMdiagnosis isvenousplasmaglucosetesting.Currently,allhomebloodglucosemonitoring techniquesneedpiercingtheskintogetabloodsample.Becausethetreatments areinvasive,thistechniqueinhibitspatient’scooperationandhasseveredisadvantages[13].Thisinvasiveprocedureaidspatientsinidentifyingandavoidinghypoglycemiaandhyperglycemia.Variousmethodshavebeendevelopedtoassessglucose levels,includingcapacitive,coulometric,optical,enzymatic-electrochemical,and non-enzymaticelectrochemicalmethods[14].Themajorgoaloftheseinvestigations istocreatealesspainfulmethodandreduceinfectionrisk[15].

Thenon-invasivemethod,whichisarelativelynewtechnology,reliesonthe body’sglucosesignals.Iteliminatestheneedfor“fingerpricking”andallowsfor continuousbloodglucosemonitoring.Anovelmethodformeasuringglucoselevels usinganECGmonitorhasbeendevised.TheECGistransmittedtoasmartphone whereitistemporarilystoredandcalculatedheartratevariabilitycharacteristics. Thealgorithmthenestimatesahuman’scapacitytoregulateglucoselevelsusing advancedmachinelearningapproaches.Thisstrategyfocusesondiabetespatients

4K.K.SadasivuniandM.Geetha

andalleviatestheirfinancialandhealth-relatedproblemsChapter“ANewSolution forNon-invasiveGlucoseMeasurementBasedonHeartRateVariability”.

Proceduresinvolvingtheapplicationoffluorescentlighttothebodyinaspecific placeandtechniquesinvolvingtheimplantationofasensorinthesubcutaneous tissuecauseinterferencewiththeprocessfromsurroundingsignalssuchasultravioletandvisiblelight.Theprimaryrecognitionelementsutilizedintheconstructionof sensorsincludereceptors,antibodies,enzymes,nucleicacids,lectins,andmicrobes [16]Chapter“CommercialNon-invasiveGlucoseSensorDevicesforMonitoring Diabetes”.Abiosensorisatransducerthatconvertsabimolecularbindingevent capturedonthesurfaceofabio-receptorintoareadablephysicalquantity[17].The interactionoftheopticalfieldwithananalyteasadetectingelementcompletesthe optical-basedbiosensor[18].Alabelandanopticalsignalenhancer,suchasgold nanoparticles,fluorescentorluminouslabels,areusedinalabel-basedsensingtechnique.Thenewestmanufacturingprocessesandthemajorproblemsassociatedwith theuseofSPR,LSPR,SPRimaging,andPCbiosensorstodetectdiabetesbiomarkers arereviewedinChapter“OpticBasedTechniquesforMonitoringDiabetics”.

In2017,over51millionindividualsgloballyusedglucometers,withroughly 12%havingtype1diabetes,implyingtheyareforcedtotakeinsulintherapyanduse glucometerstomonitorthatmedicationbydefault.Diabeticpatientsmustpayfor constantorfrequentself-monitoringandbloodglucosetestingstrips(asmuchas$1 perstrip)orcontinuousglucosemonitoringsensors($350permonth),glucagon,and othermedications.Cardiovasculardiseaseaccountsformorethanaquarterofthe expendituresassociatedwithdiabetespatients.Regularfingerprickingorcontinuous glucosemetersandfrequenttripstocardiologistsarethemostcommontreatments fortheseproblems.Arecentlyproposedapproachaddressestheseissueswitha singlesystem.Simultaneously,thesolutionprovidesagadgetforcontinuouscardiac arrhythmiaandassessesaperson’scapacitytoregulatebloodglucoselevels.

Thefirstindicatorsseeninchildrenwithdiabetesarepro-insulinautoantibodies orinsulin(PAA/IAA).HighaffinitedIAAagainstpro-insulinwasalsolinkedtohigh IAAlevelswithHLADPB1*04.HbA1cisn’ttheprimarymethodfordiagnosing diabetes,butitdoesofferenoughinformationtodoso.Thesediseasesmaybeeasily diagnosedusingaboron-basedprobeproducedusingatargetedapproachandaids inrecognizingsugaronthecellsurface.Becauseoftheirgreatstabilityandstrong selectionratetowardsglucose,mostglucosesensorsuseglucoseoxidase(GOx). Mulyantietal.developedsoftwarethatwassemi-numericalandusedthetransfer matrixapproach.Theyalsodiscoveredthattheconcentrationofglucosehasasignificantimpactontheresonantwavelengthshift.Jamiletal.[19]showedthattheK-SPR techniquewithnano-laminatedAu–CrisextremelyeffectiveindetectingcreatinineandureaChapter“SPRAssistedDiabetesDetection”.Acousticspectroscopy isanothermethodfordetectingglucosesignalsusingopticalbeams;however,it suffersfromscatteringeffects,resultingininsensitivity.Multi-modalspectrography IC,whichcombinesimpedanceandnear-infraredmethods,mayalsobeusedtoassess glucoselevels.Inordertoremovediversesystemicnoises,newpracticesexploitindirectdielectriccharacteristicsofthetissuesurroundingtheblood.Theapplicationof theGaborfilterfortheanalysisoffacialcontourdataisanewapproachfordetecting

diabetes[20].Theconcentrationofacetoneinhumanbodiesisextremelylow(0.1–0.8ppm),howeverindiabetesmellitus,thisamountrisesto1.8–5.0ppm[21].Due toketonicspecies,notablyacetoneandaceto-aceticacid,whicharegeneratedwhen fattyacidsarebrokendown,peoplewithdiabetesmellitushaveinsulinproblem hormonesintheirbodies[22].Manyresearchershaveachievedabiosensorapproach fordiabeticdiagnosissinceexhalebreathacetoneisasimplediabetesbiomarker.

Theirradiationofasamplewithmonochromaticlightcausesmoleculesinthe sampletoscatterincidentlight,resultinginvibrationalspectroscopy.Theresulting spectrumdescribestheabsorptionoflightbythemoleculesinthesampleasafunction offrequency,measuredinwavenumbers.Thesespectracanbeusedtodistinguish betweendistinctfunctionalgroupsinamaterialChapter“InfraredandRamanSpectroscopyAssistedDiagnosisofDiabetics”.Surprisingly,thephoto-acousticapproach isatechnologythatallowsforahighlevelofsensitivitythroughouttheanalysis procedure.Itgoesthroughthebasicprinciplesofphotoacousticspectroscopyand howtheymaymonitorglucoselevelsChapter“PhotoacousticSpectroscopyMediated Non-invasiveDetectionofDiabetics”.

ElectricalbioimpedancecanbeusedinbothDCandACapplications.Georg SimonOhmdefinedtheimpedanceZinOhm’slawin1827,whereZisacomplex number.ArthurKennelly[23]wasthefirsttoexpressitintermsofareal(R)and imaginary(jX)portion,whereZ = R + jXand“j”istheimaginaryoperator.Alipid layercoverseachcell,primarilyforiontransportandprotection.Acellmembrane mayberepresentedasacapacitorconnectedtoaresistorinparallel.Rm(cellular membraneresistance)canberegardedassignificantlygreaterthanRext(resistance ofextracellularmedium)atlowerfrequenciesduetothecellmembrane’sunique isolatingcharacteristic.Thisactionpreventstheioniccurrentfrompenetratingthe cell,forcingittopassthroughtheextracellularmedia.Dependingonthefrequencyof theexcitationalternatesignal,biomatologicalmaterials,particularlytissue,exhibit variabledispersiontotheappliedelectricalfield.Thisisduetothedifferenttypesof freeionsfoundinextracellularandintracellularfluid.Theionicpotentialgenerated bytheexternalexcitationsignalwillpromotetheflowoffreeionsatlowerfrequencies,althoughthecellmembraneobstructsthisflow,resultinginahighimpedance. Ontheotherhand,higherfrequenciesallowtheioniccurrenttopassthroughthe cellmembranesandintracellularcontents,loweringtheresistanceinmostsituations Chapter“ElectricalBioimpedanceBasedEstimationofDiabetics”.

Millimeterandmicrowavesensingtechniqueshavethepotentialtodevelopa medicaldevicethatnon-invasivelymeasuresbloodglucosewithouttheneedfor fingerpricking,adropofblood,andtheuseofateststripe;thisallowsforthe leastamountofhassleandthebestwaytodealwithsamplestoexamineanddiagnosebloodglucoselevelsChapter“MillimeterandMicrowaveSensingTechniques forDiagnosisofDiabetes”.Toenhancehealthoutcomes,artificialintelligence(AI) isincreasinglybeingusedinmedicinetodiscoverpatternsincomplicatedcollectionsofclinicallygathereddataandself-monitoreddata.Machinelearning(ML) givescomputersthecapacitytolearnwithoutbeingexplicitlyprogrammedahead oftime.Clinicalknowledgeisenhancedbymachinelearningalgorithms,which havebeendemonstratedsuperiortoutilizingonlyoneindiseasetreatmentChapter

“DifferentMachineLearningAlgorithmsInvolvedinGlucoseMonitoringtoPrevent DiabetesComplicationsandEnhancedDiabetesMellitus”.Diabeticpatients,clinicians,andsmarthealthcaresystemsareallareaswhereartificialintelligencemay aidandimprovediabetestreatment.AItechnologiesondiabetesallowformore effectivedataprocessingandtoolsandgadgetstohelppatientscontroltheircondition.PatientswithdiabetesnowhavenewusesforAI,suchaspatientsurveillance, fastdecision-making,andriskprediction[24].SeveralsophisticatedArtificialIntelligencesystemshavebeenwidelyutilizedtoenableadvancedanalysesandgive tailoredmedicalhelptodiabeticpatientsChapter“TheRoleofArtificialIntelligence inDiabetesManagement”.

Withtheriseinavailabledataandprocessingcapacity,data-driventechniquesare provingtobemoreefficient.DSShasbecomemoreefficientbecauseofimprovementsinAI/MLandglucosesensortechnologies[25].AdiabeticDSSmaybe dividedintotwocategories:patientDSSandclinicalDSS(CDSS)Chapter“ArtificialIntelligenceandMachineLearningforDiabetesDecisionSupport”.Researchers havemostlyconcentratedonthemanufacturingofelectrodesurfacesinordertobuild nonenzymaticglucosesensors[26].Long-termbloodglucosecontrolindiabeticindividualshasbeendemonstratedtoextendlifeexpectancy[27].Chapter FutureDevelopmentsinInvasiveandNon-invasiveDiabetesMonitoring outlinesthenon-invasive glucosemonitorsthatareusedtomanagediabetes.Thebenefitsanddrawbacksof themostrecentcommercialremoteglucosemonitoringsystemshavebeenevaluated Chapter“FutureDevelopmentsinInvasiveandNon-invasiveDiabetesMonitoring”.

References

1.AmericanDiabetesAssociation:Diagnosisandclassificationofdiabetesmellitus.Diab.Care 37(Suppl.1),S81–S90(2014)

2.InternationalDiabetesAtlas:IDFDiabetesAtlas,8thedn(2017). https://www.diabete.qc.ca/ en/understand-diabetes/resources/getdocumentutile/IDF-DA-8e-EN-finalR3.pdf (2018)

3.Ogurtsova,K.,daRochaFernandes,J.D.,Huang,Y.,Linnenkamp,U.,Guariguata,L.,Cho, N.H.,Cavan,D.,Shaw,J.E.,Makaroff,L.E.:IDFdiabetesAtlas:globalestimatesforthe prevalenceofdiabetesfor2015and2040.DiabetesRes.Clin.Pract. 128,40–50(2017). https:// doi.org/10.1016/j.diabres.2017.03.024

4.AmericanDiabetesAssociation:Diagnosisandclassificationofdiabetesmellitus.Diab.Care 27,5–10(2004)

5.Coster,S.,Gulliford,M.C.,Seed,P.T.,Powrie,J.K.,Swaminathan,R.:Monitoringblood glucosecontrolindiabetesmellitus:asystematicreview.HealthTechnol.Assess. 4,1–93 (2000)

6.Coster,S.,Gulliford,M.,Seed,P.,Powrie,J.,Swaminathan,R.:Monitoringbloodglucose controlindiabetesmellitus:asystematicreview.HealthTechnol.Assess. 4(12),1(2000)

7.Ballinger,B.,Hsieh,J.,Singh,A.,Sohoni,N.,Wang,J.,Tison,G.H.,Marcus,G.M.,Sanchez, J.M.,Maguire,C.,Olgin,J.E.,etal.:DeepHeart:semi-supervisedsequencelearningforcardiovascularriskprediction.In:Thirty-SecondAAAIConferenceonArtificialIntelligence (2018)

8.Trabucchi,A.,Guerra,L.L.,Faccinetti,N.I.,.Iacono,R.F,Poskus,E.,Valdez,S.N.:Surface plasmonresonancerevealsadifferentpatternofproinsulinautoantibodiesconcentrationand

affinityindiabeticpatients.PLoSONE 7,e33574(2012). https://doi.org/10.1371/journal.pone. 0033574

9.Flegal,K.M.,Carroll,M.D.,Ogden,C.L.,Johnson,C.L.:Prevalenceandtrendsinobesity amongUSadults,1999–2000.JAMA 288(14),1723–1727(2002)

10.Stratton,I.M.,Adler,A.I.,Neil,H.A.W.,Matthews,D.R.,Manley,S.E.,Cull,C.A.,Hadden, D.,Turner,R.C.,Holman,R.R.:Associationofglycaemiawithmacrovascularandmicrovascularcomplicationsoftype2diabetes(UKPDS35):prospectiveobservationalstudy.BMJ 321(7258),405–412(2000)

11.Aikens,J.E.,Zivin,K.,Trivedi,R.,Piette,J.D.:Diabetesself-managementsupportusing mHealthandenhancedinformalcaregiving.JDiabetesComplications 28(2),171–176(2014)

12.Thatikayala,D.,Ponnamma,D.,Sadasivuni,K.K.,Cabibihan,J.J.,Al-Ali,A.K.,Malik,R.A., Min,B.:Progressofadvancednanomaterialsinthenon-enzymaticelectrochemicalsensingof glucoseandH2 O2 .Biosensors 10,151(2020). https://doi.org/10.3390/bios10110151

13.Newman,J.D.,Turner,A.P.F.:Homebloodglucosebiosensors:acommercialperspective. Biosens.Bioelectron. 20,2435–2453(2005)

14.Shichiri,M.,Kawamori,R.,Yamasaki,Y.,Hakui,N.,Abe,H.:Wearableartificialendocrine pancreasewithneedle-typeglucosesensor.Lancet 320(8308),1129–1131(1982). https://doi. org/10.1016/s0140-6736(82)92788-x

15.Kerner,W.,Brückel,J.:Definition,classificationanddiagnosisofdiabetesmellitus.Exp.Clin. Endocrinol.Diabetes 122(7),384–386(2014)

16.Newman,J.D.,Turner,A.P.:Biosensors:PrinciplesandPractice,vol.27,pp.147–159.Portland Press,London,UK(1992)

17.Maduraiveeran,G.,etal.:Electrochemicalsensorandbiosensorplatformsbasedonadvanced nanomaterialsforbiologicalandbiomedicalapplications.Biosens.Bioelectron. 103,113–129 (2018)

18.Jebelli,A.,etal.:RecentadvancesinsurfaceplasmonresonancebiosensorsformicroRNAs detection.Biosens.Bioelectron. 169,112599(2020)

19.Jamil,N.A.,Menon,P.S.,Shaari,S.,Mohamed,M.A.,Majlis,B.Y.:Taguchioptimizationof surfacePlasmonresonance-KretschmannbiosensorusingFDTD.In:2018IEEEInternational ConferenceonSemiconductorElectronics(ICSE),pp.65–68.IEEE,KualaLumpur. https:// doi.org/10.1109/SMELEC.2018.8481216

20.Song,K.,Ha,U.,Park,S.,Bae,J.,Yoo,H.:Animpedanceandmulti-wavelengthnear-infrared spectroscopyICfornon-invasivebloodglucoseestimation.IEEEJ.Solid-StateCircuits 50, 1025–1037(2015)

21.Rydosz,A.,Wincza,K.,Gruszczynski,S.:MicrosysteminLTCCtechnologyforthedetectionofacetoneinhealthyanddiabetesbreath.In:2016IEEEANDESCON,pp.1–4(IEEE, Arequipa,Peru,2016). https://doi.org/10.1109/ANDESCON.2016.7836200

22.Lou,J.,Wang,Y.,Tong,L.:Microfiberopticalsensors:areview.Sensors 14,5823–5844(2014). https://doi.org/10.3390/s140405823

23.Kennelly,A.E.:Impedance.Trans.Am.Inst.Electr.Eng. 10,172–232(1983)

24.Wan,S.,Liang,Y.,Zhang,Y.:Deepconvolutionalneuralnetworksfordiabeticretinopathy detectionbyimageclassification.Comput.Electr.Eng. 72,274–282(2018)

25.Dayakar,T.,VenkateswaraRao,K.,Bikshalu,K.,Malapati,V.,&Sadasivuni,K.K.:Nonenzymaticsensingofglucoseusingscreen-printedelectrodemodifiedwithnovelsynthesized CeO2 @CuOcoreshellnanostructure.Biosens.Bioelectron. 111,166–173(2018)

26.Bhakta,S.A.,Evans,E.,Benavidez,T.E.,Garcia,C.D.:Proteinadsorptionontonanomaterials forthedevelopmentofbiosensorsandanalyticaldevices:areview.Anal.Chim.Acta 872,7–25 (2015)

27.Makaram,P.,Owens,D.,Aceros,J.:Trendsinnanomaterial-basednon-invasivediabetes sensingtechnologies.Diagnostics 4(2),27–46(2014)

ReviewofEmergingApproaches

UtilizingAlternativePhysiological HumanBodyFluidsinNonorMinimallyInvasiveGlucose Monitoring

Abstract Diabetescancausevariousacuteaswellaslong-termcomplicationsin patientswithbloodsugarlevelsofover600mg/dL,suchasblindness,kidneydisease, nervousandcirculatorysystemdisease,limbamputations,stroke,andcardiovasculardisease(CVD).Frequentandregularbloodglucosemonitoringbydiabetics andphysiciansisanessentialstepinthemanagementofdiabetes.Overthelastfive decades,therehavebeennumerousattemptstodevelopviablepainless,non-orminimallyinvasivebloodglucosemonitoringtechniquestoreplaceallexistinginvasive methods,suchashomebloodglucosemonitoring,whichusuallyrequiredrawinga bloodsamplebypiercingtheskin(typically,onthefinger).Thismethodstrongly discouragesthepatients’complianceandhasseriousdrawbacksastheprocedure isinvasive,causingdiscomfort,pain,andpotentialrisksofinfectionortissue damage.Itishighlydesiredtohavealternativenon-invasivebloodglucosemonitoringtechniques.Thisreviewinvestigatestheprinciplesofthreemajoremerging generaltechnologies,namelyoptical,RadioFrequency(RF)/microwave,andelectrochemicalglucosemonitoringtechnologies.Theseglucosemonitoringtechnologies canbeclassifiedas15specifictechniquesthatusemultivariateregressionanalysestocorrelatefeebleoptical,RadioFrequency(RF)/microwave,orelectrochemicalsignalsfromvariousbodyfluidstophysiologicalglucoseconcentration.This reviewalsooffershow-toutilizeglucose-sensingtechniquestotargetvariableareas bysamplingphysiologicalhumanbodyfluidsasanalternativediagnosticmedium toblood;forexample,interstitialfluid,urine,sweat,ocularfluids,andsalivaall

S.Jang(B) Y.Wang

DepartmentofComputerEngineeringTechnology,NewYorkCityCollegeofTechnologyof CUNY,300JayStreet,Brooklyn,NY11201,USA

e-mail: sJang@citytech.cuny.edu

Y.Wang

e-mail: yWang@citytech.cuny.edu

A.Jang

DepartmentofPhysiologyandNeurobiology,UniversityofConnecticut,Storrs,CT,USA

e-mail: Andre.Jang@uconn.edu

©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2022 K.K.Sadasivunietal.(eds.), AdvancedBioscienceandBiosystemsforDetection andManagementofDiabetes,SpringerSeriesonBio-andNeurosystems13, https://doi.org/10.1007/978-3-030-99728-1_2

containtracesofbloodglucose.Thefeasibilityofadoptingtheseemergingtechnologiesinthecommercialmarketisdiscussedregardingsafety,cost-effectiveness, datamanagement,andaccuracy.

Keywords Bloodglucosemonitoring · Diabetics · Non-orminimallyinvasive · Optical · RF/Microwave · Electrochemical · Targetingareas · Physiological humanbodyfluids

1Introduction

Diabetesmellitus,commonlyreferredtoasdiabetes,isadiseaseinwhichthebody doesnotproduceorproperlyuseinsulin,causinghighbloodsugarlevelsovera prolongedperiod.Thischronicdiseaseisamongthetopleadingcausesofdeath globallythatrequirelong-termmedicalattention[1].Often,diabetescanleadto manyseriousmedicalproblems.Theseincludeblindness,kidneydisease,nervous andcirculatorysystemdisease,limbamputations,stroke,andcardiovasculardisease (CVD)[2, 3].Accordingtodatafromthe2020NationalDiabetesStatisticsReport, diabeteswastheseventhleadingcauseofdeathintheUnitedStates,andanestimated 34.2millionchildrenandadultsor10.5%oftheUnitedStatespopulation,including 7.3millionundiagnosedpeople—2.8%ofallU.S.adultshavediabetes.Theestimated directandindirectcostsofdiabetes-relatedhealthcareintheUnitedStateshaverisen toapproximately$327billionannuallyin2017from$188billionin2007,a$90 billionindirectmedicalcosts.Diabetesisadisproportionatelyexpensivedisease; intheUnitedStates,theindividualmedicalcostperpersonassociatedwithdiabetes increasedfrom$8417to$9601between2012and2017.In2017,theindividual costofhealthcarewas$16,750fordiabetes,whileabout$9600ofthisamountwas attributedtodiabetes[4, 5].

Therecentmulti-centerNIHstudieshaveindicatedthatthehealthrisksassociated withdiabetesaresignificantlyreducedwhenthebloodglucoselevelsarewelland frequentlycontrolled,indicatingthatitisprudenttomeasurethebloodglucoseas oftenasfiveorsixtimesaday.Thus,itisveryimportantthatpropermonitoringbe donebydiabeticsathomeorwork[6].Atpresent,allexistinghomebloodglucose monitoringmethodsrequiredrawingabloodsamplebypiercingtheskin(typically, onthefinger).Thismethodstronglydiscouragesapatients’complianceandhas seriousdrawbacksbecausetheproceduresareinvasive[7].

Additionally,arecentMayoClinicreportlisted10waystoavoiddiabetescomplications.Theirrecommendationsincluded:(1)Committomanagingyourdiabetes. (2)Donotsmoke.(3)Keepyourbloodpressureandcholesterolundercontrol.(4) Scheduleregularphysicalsandeyeexams.(5)Keepyourvaccinesuptodate.(6) Takecareofyourteeth.(7)Payattentiontoyourfeet.(8)Consideradailyaspirin. (9)Ifyoudrinkalcohol,dosoresponsibly.(10)Manageyourstress[8].However, notincludedinthislistarejustasimportantasregularexerciseandchoosingwater asyourprimarybeverage.

2AlternativePhysiologicalBodyFluidstoBlood

Sinceanon-invasivemethodofmonitoringbloodglucosewouldpresentmajoradvantagesoverexistinginvasivetechniques,manyresearchgroupshaveattemptedto proposenumerousattractivealternativesintermsofnon-orminimallyinvasive glucose-sensingtechniqueswithinthephysiologicalglucoseconcentrations(18–450mg/dl)inhumanblood.Theseapproacheshavedemonstratedpromisingresults throughin/exvivoandinvitroexperimental/clinicalglucoseevaluations.Through ourpreviousstudy,weattemptedtoreviewthenumberofemergingnon-orminimallyinvasivetechniquesandmethodsandprovidedacomprehensivelistinterms ofapplyingalternativephysiologicalbodyfluidsasopposedtoblood[9].

Physiologicalbodyfluidsarehighlycomplexmixturesofavariableconcentration ofcells,proteins,macromolecules,metabolites,smallmolecules,includingglucose [9, 10].Althoughbloodisthemostcommonlystudiedbodyfluidandisconsidered asthegoldstandardmediumfordetectingglucoseconcentration,otheremerging biologicalbodyfluidssuchasinterstitialfluid(IF),urine,sweat,saliva,orocular fluids,aremoreaccessibleduetothesignificantadvanceofnanotechnology.The amountofglucosecontainedinthebiologicalbodyisproportionaltoitsconcentration intheblood.Thesefluidshavebeenutilizedasattractivealternativesamplemedia fornon-invasivecontinuousmonitoring.Theglucoselevelinthesebodyfluidsis identicaltotheglucoseconcentrationinthebloodplasma.Table 1 summarizesthe comparisonandcontrastofthekeyaspects,includingglucoseconcentrationfor diabeticsandnon-diabetics,pHlevel,andtimelagofthevariousphysiologicalbody fluidsunderthecurrentreview.

Blood hasbeenthegold-standardmediumforglucosemonitoringsincemeasurementscarriedoutinthisfluidwerefirstintroducedin1953[25, 26].Bloodis

Table1 A summaryofrelevantglucoseconcentrations,timelag,andpHvaluesmeasuredin physiologicalbodyfluidsofdiabeticsandnon-diabetics

Bodyfluid Glucose concentrationfor non-diabetics (mg/dl)

Glucose concentrationfor diabetics(mg/dl)

Blood 70–130[2, 11] 36–720[2, 11, 12] 7.35–7.45[10, 12] –

Interstitialfluid 65–118[13, 14] 35.8–400[12–14] 7.20–7.40[10, 12] ~10[14, 15]

Urine 10.8–27.1[16, 17] 50.1–100[16, 18] 4.50–8.00[10, 12] ~20[16, 19]

Sweat 1.1–1.98[10, 12, 20] 0.18–18.0[10, 12, 20] 4.60–6.80[10, 12] ~20[18]

Saliva 4.14–10.3[12, 21, 22] 9.91–31.9[21–23] 6.20–7.40[10, 12] ~15[23]

Ocularfluids 1.8–9.0[18, 24] 9.01–90.1[18, 20, 24] 6.50–7.50[10, 12, 24] ~10[10, 24]

Timelagisthetimerequiredtodiffusebloodfromthecapillariestothetissues[9]

complexplasmacontainingmetabolitesandelectrolytes(sodium,potassium,chloride,calcium,bicarbonate,glucose,urea,andcreatinine)[10].Thesensorusingelectrochemical/amperometricenzymeelectrodesandtransducers,employedthenonorenzymeglucoseoxidase(GOx)andglucosedehydrogenase(GDH)utilizingthe biochemicalreaction,hasbecomethemostpopularandcommerciallyavailableblood glucosemonitoringmethodinthemarketbecauseofitssuitablesensitivity,wide selectivity,goodreproducibility,andeasymanufacturabilityatrelativelylowcost, althoughitisaninvasivemethod[26].Severalnon-invasivemethodsareusedtodetect andmonitortheglucoselevelintheblood,includingAbsorbancespectroscopysuch asNearandMidInfraredspectroscopy,Ramanspectroscopy,Photoacousticspectroscopy,Fluorescencespectrophotometry,Bio-impedancespectroscopy,Optical coherencetomography,andThermalemissionspectroscopy[27–37].

Interstitialfluid istheextracellularfluidthatfillsthespacesbetweenmostof thebody’stissuecellsandmakesupasubstantialportionoftheliquidenvironmentofthebody.Ithassignificantpotentialformedicaldiagnosticsasit closelyresemblesbloodplasmaincompositionbutcontainslessprotein[10, 38].Sincetinymolecularbiomarkersareexchangedasbiochemicalinformation betweenbloodandsubcutaneousISFthroughdiffusion,thecorrelationbetween ISFandbloodcanbeusedtoindirectlyobtainthediagnosticinformationof patients.Methodsformonitoringglucoseviatheskinhavebecomeverypopular inrecentyears,wheretheseapproacheshavebeendevelopedtocounteractthe challengesassociatedwithpatientcomplianceandinvasivemonitoring.Someof theseapproachesincludeReverseiontophoresis,Electrochemicalmethods,Electromagnetictechniques,Metabolicheatconformation,Microwaveresonator-based technique,Sonophoresis,andBio-impedancespectroscopy[39–47].

Urine isacommonlycollectedsampleforclinicalandnonclinicaltesting,especiallyduetotheeaseofcollection,usuallywithoutinvasiveprocedures.Urineis composedofinorganicsaltsandorganiccompounds,includingproteins,hormones, andawiderangeofmetabolites,includingglucose[10, 48].Itisrelatedtoapplying anenzymeandnanomaterials-basedbiosensorasimportantmethodsformonitoringglucoseconcentrationwithinthephysiologicrange,includingColorimetric biosensingutilizingEnzymaticnanomaterials,Laser-generatedphotonicnanosensor, andPhotoniccrystal-basedbiosensor[48–51].

Sweating isaprimarybiologicalroleofthermoregulation.Sweatisconsideredone ofthemostaccessiblebodyfluidsforglucosedetection.Sweatiseasilyaccessible forsamplingwithsufficientquantitiesandrapidreproductioncomparedtoallother bodyfluids.Sweatisanacidicelectrolyte-richfluid,anditsproductionisinducedby exercise,resultinginthesecretionofmetabolites,suchaslactate,glucose,alcohol, anduricacid[10, 12].Morerecentstudiessuggestadirectcorrelationbetween sweatandbloodglucoseconcentration,althoughglucoselevelsinsweatareofa muchsmallerconcentrationthanthoseinblood.Wearablesweat-basedcontinuous glucosemonitoringbiosensorsincludenon-orEnzyme-basedelectrochemicaltechniques,Opticalfiberlong-periodgrating(LPG),andElectrochemicallyenhanced

iontophoresisintegratedwithfeedbacktransdermaldrugdeliverymoduleareunder development[43–45, 52–55].

Saliva isincreasinglyrecognizedasanattractivediagnosticfluidbecauseitcanbe collectednon-invasivelywithoutemployingspecificdevicesortrainedpersonnel. Morerecentstudiesinvestigatedandconfirmedasignificantcorrelationbetween salivaryandbloodglucoselevelsindiabeticsandnon-diabetics.Salivaisacomplex mixtureof99.5%waterand0.5%electrolytes(amylase,lipase,mucin,glycoproteins,glucose,andantimicrobialenzymes)[10, 56].Salivacanbeutilizedas analternativetobloodandcanbemonitoredbyanon-invasivemeasuringsalivaryglucose.Somenon-invasivetechniquesforsalivaglucosemonitoringhave beenstudiedincludeEnzyme-basedelectrochemical/Amperometric/Colorimetric nano-biosensorandFunctionalizedcarbonnano-tubeFET/organicelectrochemical transistor[23, 43–45, 56–61].

Ocularfluids includetears,aqueoushumor,andvitreoushumor,whicharepromising fluidsbecausetheglucoseconcentrationofocularfluidsishighlycorrelatedto bloodglucose.Monitoringtheglucoseconcentrationinthefluidsisconsidered arelativelynewtechniquethatisaworthwhilealternativetoinvasivemethods forrepetitiveorcontinuousmonitoring.Ocularfluidsexcretedfromthebody asanextracellularfluidcontainglucosewater,mucin,lipids,lysozyme,lactoferrin,lipocalin,lacritin,immunoglobulins,glucose,urea,sodium,andpotassium[10, 12, 23].Researchworkingtowardsnon-invasivemonitoringmethods ofglucoseintheocularfluidsconsistsofChronoamperometrictechnique,Electrode/electrochemicallyembeddedcontactlens,CMOS/Amperometricneedle-type electrochemicalmethod,Opticalcoherencetomography(OCT),Fluorescencespectrophotometry,Ocularspectroscopy,andOpticalpolarimetry[62–68].

3EmergingNon-orMinimallyInvasiveGlucose MonitoringTechniques

Throughtheliteraturesearchforthecurrentreview,welearnedthattechniques fornon-orminimallyinvasivemonitoringglucoseviatheskinhadbecomethe mostpopularapproachinrecentyears,wherethesemethodshavebeendevelopedto counteractthechallengesassociatedwithpatientcomplianceandinvasivemonitoring [18, 27].Thedescriptionandtargetareasoftheleadingapproachesarepresentedin Table 2,mainlyclassifiedasOpticaltechnology,includingAbsorbancespectroscopy, Ramanspectroscopy,Photoacousticspectroscopy,Opticalcoherencetomography (OCT),Fluorescencespectrophotometry,Ocularspectroscopy,andMetabolicheat conformation.Theavailabilityofthenon-orminimallyinvasiveglucosemonitoring devicesinthemarketisalsoshowninTables 2, 3 and 4,respectively.Somedevices havebeenwithdrawnfromthemarketduetoinaccuracy,unreliability,inconsistency,

Summarizestheprincipleandtargetareas/bodyfluidsofthelatestspecializedapproachesintermsofemergingnon-orminimallyinvasiveglucose monitoringtechniquesaftermainlyclassifyingcategoriesasopticaltechnology

Targetareas(bodyfluids)

Fingertip,palm,forearm,innerlip,andearlobe(blood andinterstitialfluid)[ 12 , 27 , 28 ]

Description

Measurestransmittance,reflectance(includingdiffuse reflectance),andinteractionofthelightwhendirected overthesampletissuesforanalyticalpurposes. Near-infraredabsorptionspectroscopy( NIR )usesabeam oflightwith750–2500nm.Mid-infraredabsorption spectroscopy( MIR )uses2500–10,000nm,whichare focusedonthebodytodetermineglucoseconcentration withintissues.Thelightandsampletissueinteractions producemolecular-specificvibrationalinformationofthe absorptionandscatteringphenomenonintheinfrared spectraldomain[ 12 , 27 , 28 ]

Finger,arm,eye,wrist,hand(ocularfluidsandblood)

[ 27 , 29 ]

Appliesaspectroscopictechniqueusingthescattering phenomenonofmonochromaticlighttoobserve vibrationalandrotationalstateswithinmolecules.When single-wavelengthlighthitsatarget,itproducesscattered lighttravelinginalldirections.Thedegreesofscattering duetoglucosemoleculesarepurelydependentontheir concentrationlevels[ 27 , 29 ]

Finger,arm,andearlobe(bloodandinterstitialfluid) [ 12 , 30 , 69 ]

Employslaserpulseswithawavelengththatisabsorbed byaspecificmoleculeinthebodyfluidtoproduce localizedheating,dependentonthespecificheatcapacity ofthetargetedtissue,andmeasurestheeffectoflight absorptiontodetectaglucoseconcentrationinblood basedonthevelocityofultrasonicwavesgeneratedin glucosesolutionbythephotoacousticprincipal[ 30 , 69 ]

(continued)

Table2

Opticaltechnology

Specifictechnique

a,b,c

Absorbancespectroscopy

Ramanspectroscopy

b,c

Photoacousticspectroscopy

b,c

Table2 (continued)

Forearmandeye(ocular/interstitialfluidsandblood)

[ 31 , 32 ]

c Includesopticalmethodswithultrasound,impedance, andheatcapacitance.Thistechniqueappliesthe principlesoflowcoherenceinterferometrywithcoherent radiationanddeterminestheglucoseconcentration presentbydetectingthechangesofopticalcharacteristics ofbio-tissuesatmicrometerresolutions,including intensity/delayofthereflected/scatteredandtransmitted lightuponinteractionwiththesubcutaneoustissueby employinganinterferometerwithcoherentlight,witha wavelengthbetween800and1300nm[ 31 , 32 ]

Finger,abdomen,upperarm,andeye(blood, ocular/interstitialfluids)[ 33 , 34 ]

Appliestheprincipleoffluorescentlightemissionofan ultravioletlaserbeam(340–400nm)afterabsorbing radiationofadifferentenergylevelwhichcausesa wavelengthdifference.Themeasurementofthe concentrationofglucosemoleculesinthebloodis conductedutilizingasensitiveproteinandintensityof fluorescencewhichareproportional[ 33 , 34 ]

Eye(tears)[ 35 , 36 ]

Utilizesthespeciallydesignedhydrogel-baseddisposable tearglucose-sensingcontactlenses,whichchangecolor dependingontheglucoseconcentrations.The fluorescenceresponsefromthelensescanbemonitored usingsimpleexcitationandemissiondetectiondevices andservesasthetoolforbloodglucosedetectionsfrom thetears[ 35 , 36 ]

(continued)

Opticaltechnology

Opticalcoherencetomography(OCT)

Fluorescencespectrophotometry a,c

Ocularspectroscopy c

Table2 (continued)

Fingertip,earlobe,andforearm(bloodandinterstitial

fluid)[ 12 , 41 , 42 ]

Measuresphysiologicalparametersassociatedwiththe generatedquantityofmetabolicheatdissipation,blood flowrateoflocaltissue,anddegreeofbloodoxygen saturationbetweentheskinandcontactedconductor correspondingtotheglucoseconcentrationbyemploying thesystemconsistingofthermal,humidity,infrared,and opticalsensors[ 41 , 42 ]

Eye(ocularfluids)[ 67 , 68 ]

Appliesthephenomenonoftheopticalactivity,whichisa certainrotationofthepolarizedplaneoftheincidentlight (400–780nm)passingthroughtheaqueoushumorofthe eyeandglucose,knownasanopticallyactivemolecule. Whenthelightispassedthroughthecorneaandacross theanteriorchamberoftheeye,thepolarimetricsignal thatisconvertedintoatime-varyingvoltagebythe photodetectorvarieslinearlywithchangesinglucose concentration[ 67 , 68 ]

a,b,c

Opticaltechnology

Metabolicheatconformation

c

Opticalpolarimetry

a Commerciallyavailable

b Withdrawnfromthecommercialmarket

c Underdevelopment

Summarizestheprincipleandtargetareas/bodyfluidsofthelatestspecializedapproachesintermsofemergingnon-orminimallyinvasiveglucose monitoringtechniquesaftermainlyclassifyingcategoriesaselectrochemicaltechnology

Targetareas(bodyfluids)

Wrist,arm,andleg(sweatandinterstitialfluid)[ 12 , 39 , 40 ]

Table3

Electrochemicaltechnology

Description

Appliesapassageoflowelectricalcurrenttoenhance thetransportofbothchargedandpolar,neutral compoundsacrosstheskintodriveionsbetweentwo electrodesfromtheinterstitialfluidandontotheskin’s surface,wheretheycanbeanalyzedintermsofglucose concentration.Transdermalreverseiontophoresis(RI) isanon-invasivetechniquethatcansamplebodyfluids acrossintactskintoachievethepurposeofblood glucosedetection[ 39 , 40 ]

Finger,arm,andskin(blood,saliva,urine,tears, interstitialfluid,andsweat)[ 10 , 12 , 43 , 44 ]

Analyzestheglucoseoxidationthattookplaceinthe presenceofGOx,oxygen,andwatertoformgluconic acidandhydrogenperoxide.Thehydrogenperoxideis thenelectrochemicallyoxidizedattheelectrode,which convertsglucoseoxidaseactivityintoananalytical electricalsignalinproportiontoglucoseconcentration basedontherateofglucoseoxidationbydioxygen, measuredbytheformationofhydrogenperoxide. Highlyselectiveenzymaticreactionscanbeusedto diminishtheinfluenceofelectroactiveinterfering species[ 43 , 44 ]

(continued)

Specifictechnique

Reverseiontophoresis a,c

Enzymaticelectrochemicalelectrode a,c

Table3 (continued)

Finger,arm,eye,andskin(blood,saliva,urine,tears, interstitialfluid,andsweat)[ 12 , 43 , 45 ]

Usesmetal–organicframework(MOF)-based nanocompositesandprovidesanalternativetoan enzymaticmethod,whichisimpossibletoimplantinto thehumanbodyforthelongtermandinsitu monitoringsincetheimmobilizedenzymewould degradequickly.Cost-effectivenon-enzymatic amperometricglucosebiosensorswithhighsensitivity, selectivity,andstabilitycouldbecommerciallymore feasible[ 43 , 45 , 46 ]

Finger,arm,eye,urine,andskin(sweat,tears,and urine)[ 12 , 19 , 48 , 49 ]

Determinestheglucoseconcentrationwiththeaidofa colorreagent.Whenglucoseisoxidizedbyglucose oxidaseintoD-gluconicacidplushydrogenperoxide, thehydrogenperoxideisthendetectedwithahighly specificcolorimetricprobe.Inanenzymaticanalysis, thecolorreactionisprecededbyareactioncatalyzed byanenzyme[ 48 , 49 ]

Electrochemicaltechnology

Non-enzymaticamperometricelectrode a,c

Colorimetricdetection a,c

a Commerciallyavailable

b Withdrawnfromthecommercialmarket

c Underdevelopment

Summarizestheprincipleandtargetareas/bodyfluidsofthelatestspecializedapproachesintermsofemergingnon-orminimallyinvasiveglucose monitoringtechniquesaftermainlyclassifyingcategoriesasRF/microwavetechnology

Targetareas(bodyfluids)

Finger,hand,wrist,arm,andearlobe(interstitialfluidandblood) [ 12 , 70 –74 ]

Table4

Description

RF/microwavetechnology

Specifictechnique

Thumb,upperarm,wrist,andabdomen(interstitialfluidandblood)

[ 12 , 69 , 75 , 77 , 78 ]

Utilizestheinteractionbetweenelectromagneticwavesand biologicaltissuessincemicrowaves’reflection,transmission,and absorptionarecloselyrelatedtothedielectricpropertiesof tissues,wherethedielectricconstantvarieswithglucose fluctuations.Microwavescaneasilypenetratebiologicaltissuesof millimeterthickness,soglucoseconcentrationvariationinISFhas muchhighersensitivityonphaseandmagnituderesponseofthe sensorthanitsvariationsinblood[ 70 –74 ]

Microwaveresonator-based a,c

Measurestheglucose-dependentelectricalimpedancechangesas afunctionoffrequencyandprovidesproofofachangeinblood impedancewithglucoselevelfluctuations.Impedanceisrecorded asafrequencybypassingRFcurrentbetween100Hzand 100MHzacrosshumanbiologicaltissuesandskin.Theglucose moleculeismeasuredbyitsconcentration-dependentinteraction withredbloodcells[ 75 –78 ]

Bio-impedancespectroscopy a,c

Arm,wrist,andabdomen(interstitialfluidandblood)[ 12 , 69 ]

Useslow-frequency(20kHz)ultrasoundtoincreaseskin permeabilityandcausesexpansionandcontractionofgaseous inclusionsthatopenpathwaysforinterstitialfluidstotransport glucosetotheepidermis,whereitismeasuredtransdermallywith thecombinationofthelow-profilecymbalarrayandan electrochemicalglucosesensorconsistingofamperometric electrodesandanovelglucoseoxidasehydrogel.Thistechnique createsmicroporesintheskintoenabletheinterstitialfluid containingglucosetocomeoutside[ 69 , 79 ]

a,c

Sonophoresis

a Commerciallyavailable

b Withdrawnfromthecommercialmarket

c Underdevelopment

andotherissues.Meanwhile,othershaveneverbeenintroducedduetotheirunclear circumstanceissues.

ElectrochemicaltechnologyincludesReverseiontophoresis,Enzymaticelectrochemicalelectrodes,Non-Enzymaticamperometricelectrodes,andColorimetric detectionmethod,allpresentedinTable 3

RF/MicrowavedetectiontechnologyincludesMicrowaveresonator-based method,Bio-impedancespectroscopy,andSonophoresis,presentedinTable 4

4Conclusions

Thisstudyaimedtopresentandreviewthelatestspecializedapproachesinemerging non-orminimallyinvasiveglucosemonitoringtechniquesaftermainlyclassifying categoriesasoptical,electrochemical,andRF/Microwavemethods.Theseglucose monitoringmethodsconverttheweakoptical,electrochemical,orelectromagnetic signaltoglucoseconcentration.Wealsoinvestigatedthenon-orminimallyinvasive glucosemonitoringtechniqueswhichutilizevariousphysiologicalbodyfluidsasan alternativediagnosticmedium.Thesetechniqueshaveagreatpotentialformonitoringbloodglucoselevelsastheyincreaseaccuracy,selectivity,sensitivity,and reliabilityofthemeasurementthatwouldsatisfymedicalusecriteriaandmeetthe expectationasalessexpensivealternative.

Ourcurrentstudylearnedthatopticalandmicrowavemethodshaveadvantages overelectrochemicalmethodsbecausetheyofferpurelynon-invasiveandcontinuous monitoringwithoutstimulatingdiscomforttothehumanbody.However,invasiveor minimallyinvasiveelectrochemicalglucosemeterswithmoreadvancedenzyme andelectrodematerialshavesignificantlyimprovedbecausetheyareconsidered morereliableandaffordable.Electrochemicaldiagnosticdevicesareequippedwith software-basedanalyticalperformanceanddatamanagement,capableofupdating devicefeatureswithoutrecalibration,andlessexpensive.Therefore,thecurrentdominatingelectrochemicalglucosesensorsinthecommercialmarketwillnotbeeasily replacedeveniftheyareinvasiveuntilpromisingnon-invasiveglucosemeterswith themoresensitive,efficient,intelligent,robust,andreliablemeasurementsthatcan satisfymedicalusecriteriaisintroducedtothemarket.

5FutureTrends

Thisreviewcoverstheresearchprogressofthelatesttechnologiesandtheirmethods ofnon-orminimallyinvasiveglucosemonitoringwithalternativephysiologicalbody fluidssuchasinterstitialfluid,urine,sweat,ocularfluids,andsalivainsteadofblood glucoseconcentration.Considerableprogresshasbeenmadeindevelopingviable non-orminimallyinvasiveglucosesensorsinrecentyearsduetodevotedresearch effortsandtherevolutionofbiomaterials,medicine,nanotechnology,andcomputer

science.Althoughtherehavebeenmanydedicatedresearcheffortswithnumerous progressionstodevelopanon-orminimallyinvasiveglucosemonitoringsensor, therearestillseveralobstaclestoachievingacceptableglucosemonitoringbecause ofthecomplicatednatureoftheoperationandmeasurementprocess.

Throughourmorerecentsearches,wealsolearnedthatseveralnon-orminimallyinvasiveglucosemonitoringdevicesusingoptical,electrochemical,and RF/microwavetechnologieshadbeenintroducedcommerciallyinthemarket,and othersareclosetocommercializing.However,weconcludedthatthesemethods arestillfarfrombeingclinicallyreliabletomeetmarketexpectations.Theyrequire furthersystemicdevelopmentandclinicalevaluationsduetoalackofconsistency, stability,accuracy,andreliability.Theremarkableadvancesinanemergingtrendto integrateaseriesoffunctionalmodules,dataminingalgorithms,wirelesscommunications,machinelearningalgorithms,andcomputationalsignalprocessingledto significantachievementsallowingthecreationofnewhypothesesthatenabledeeper understandingandfurtherinvestigationsofnon-orminimallyinvasiveglucosemonitoringdevices.AI-drivenwearablemonitoringdevicesmaybeintroducedtothe currentmarket,makingitpossibletocollectadiverserangeofcontinuousphysiologicalsignalstoaccuratelymonitorthefollowing:glucoselevelsindiabetics, sweat,anxiety,heartrate,bloodpressure,nutrition,calorieintake,andCOVID19relatedsymptomsinadvance.Furthercontinueddevelopmentofsophisticated decisionsupporthardwareandsoftwaresystemswillyieldgreatopportunitiesto introducemorereliableandaffordablenon-invasiveglucosemonitoringsystemsin thebroadcommercialmarketformedicalusewithintheverynearfuture.

Acknowledgements WewouldliketoacknowledgetheassistanceprovidedbyEileenDengfor reviewingandeditingthismanuscript.

ConflictofInterest None.

References

1.AboutDiabetes: https://web.archive.org/web/20140331094533/ http://www.who.int/diabetes/ action_online/basics/en/.WorldHealthOrganization.Archivedfromtheoriginal http://www. who.int/diabetes/action_online/basics/en/ on31Mar2014

2.AmericanDiabetesAssociation:Diagnosisandclassificationofdiabetesmellitus.Diab.Care 27,5–10(2004)

3.Coster,S.,Gulliford,M.C.,Seed,P.T.,Powrie,J.K.,Swaminathan,R.:Monitoringblood glucosecontrolindiabetesmellitus:asystematicreview.HealthTechnol.Assess. 4,1–93 (2000)

4.U.S.DepartmentofHealthandHumanServices:Centersfordiseasecontrolandprevention. In:NationalDiabetesStatisticsReport.EstimatesofDiabetesanditsBurdenintheUnited States(2020)

5.AmericanDiabetesAssociation:EconomiccostsofdiabetesintheU.S.in2012.Diab.Care 41,917–928(2018)

6.NationalDiabetesInformation:Clearinghouse(NDIC)ReportinU.S.DepartmentofHealth andHumanServices. http://diabetes.niddk.nih.gov/dm/pubs/overview (2011)

7.Newman,J.D.,Turner,A.P.F.:Homebloodglucosebiosensors:acommercialperspective. Biosens.Bioelectron. 20,2435–2453(2005)

8.Diabetescare:10waystoavoidcomplications—Mayoclinic. https://www.mayoclinic.org/dis eases-conditions/diabetes/in-depth/diabetes-management/art-20045803

9.Jang,S.,Xu,C.:Reviewofemergingapproachesinnon-orminimallyinvasiveglucosemonitoringandtheirapplicationtophysiologicalhumanbodyfluids.Int.J.Biosens.Bioelectron. 4(1)(2018)

10.Corrie,S.J,Coffey,J.W.,Islam,J.,Markey,K.A.,Kendall,M.A.F.:Blood,sweat,andtears: developingclinicallyrelevantproteinbiosensorsforintegratedbodyfluidanalysis.Analyst 140,4350–4364. https://doi.org/10.1039/c5an00464k

11.AmericanDiabetesAssociation:January2006diabetescare.Diab.Care.29(Suppl.1),51–580 (2006)

12.BruenmD.,Delaney,C.,Florea,L.,Diamond,D.:Glucosesensingfordiabetesmonitoring: recentdevelopments.Sensors 17 (2017)

13.Stout,P.J.,Peled,N.,Erickson,B.J.,Hilgers,M.E.,Racchini,J.R.,Hoegh,T.B.:Comparison ofglucoselevelsindermalinterstitialfluidandfingercapillaryblood.DiabetesTechnol.Ther. 3,81–90(2001)

14.Fox,L.A.,Beck,R.W.,Xing,D.,Chase,H.P.,Gilliam,L.K.,Hirsch,I.,Kollman,C.,Laffel,L., Lee,J.,Ruedy,K.J.,etal.:Variationofinterstitialglucosemeasurementsassessedbycontinuous glucosemonitorsinhealthynondiabeticindividuals.Diab.Care 33,1297–1299(2010). https:// doi.org/10.2337/dc09-1971

15.Scuffi,C.,Lucarelli,F.,Valgimigli,F.:Minimizingtheimpactoftimelagvariabilityonaccuracy evaluationofcontinuousglucosemonitoringsystems.J.DiabetesSci.Technol. 6(6),1383–1391(2012)

16.Su,L.,Feng,J.,Zhou,X.,Ren,C.,Li,H.,Chen,X.:Colorimetricdetectionofurineglucose basedZnFe2 O4 magneticnanoparticles.Anal.Chem. 84,5753–5758(2012)

17.Lind,T.,Shepherd,M.,Cheyne,G.T.:Enzymaticmethodsfordeterminingglucoseinurine. Ann.Clin.Biochem. 8 (1971)

18.Makaram,P.,Owens,D.,Aceros,J.:Trendsinnanomaterial-basednon-invasivediabetes sensingtechnologies.Diagnostics 4,27–46(2014). https://doi.org/10.3390/diagnostics4 020027

19.Morris,L.R.,McGee,J.A.,Kitabchi,A.E.:Correlationbetweenplasmaandurineglucosein diabetes.Ann.Int.Med. 94(4pt1),469–471(1981)

20.Moyer,D.,Wilson,I.,Finkelshtein,B.,Wong,R.:Correlationbetweensweatglucoseandblood glucoseinsubjectswithdiabetes.DiabetesTechnol.Ther. 14,398–402(2012)

21.Gupta,S.,Sandhu,S.V.,Bansal,H.,Sharma,D.:Comparisonofsalivaryandserumglucose levelsindiabeticpatients.J.DiabetesSci.Technol. 9,91–96(2014). https://doi.org/10.1177/ 1932296814552673

22.Jurysta,C.,Bulur,N.,Oguzhan,B.,Satman,I.,Yilmaz,T.M.,Malaisse,W.J.,Sener,A.(2009). Salivaryglucoseconcentrationandexcretioninnormalanddiabeticsubjects.J.Biomed. Biotech. 6,430426

23.Zhang,W.,Du,Y.,Wang,L.:Noninvasiveglucosemonitoringusingsalivanano-biosensor. Sens.Bio-Sens.Res. 4,23–29(2015)

24.Moses,R.:Adler’sPhysiologyoftheEye,p.20(1975)

25.Clark,L.C.,Wolf,R.,Granger,D.,Taylor,Z.:Continuousrecordingofbloodoxygentensions bypolarography.J.Appl.Physiol. 6,189–193(1953)

26.Clark,L.C.,Lyons,C.:Electrodesystemsforcontinuousmonitoringincardiovascularsurgery. Ann.N.Y.Acad.Sci. 102,29–45(1962). https://doi.org/10.1111/j.1749-6632.tb13623.x

27.Haxha,X.,Jhoja,J.:Opticalbasednon-invasiveglucosemonitoringsensorprototype.IEEE Photon.J. 6805911(99)(2016).Articleavailablefrom: https://doi.org/10.1109/JPHOT.261 6491

28.Kasahara,R.,Kino,S.,Soyama,S.,Matsuura,Y.:Noninvasiveglucosemonitoringusingmidinfraredabsorptionspectroscopybasedonafewwavenumbers.Biomed.Opt.Express 289, 9(1)(2018)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Instant download Advanced bioscience and biosystems for detection and management of diabetes kishor by Education Libraries - Issuu