Mathematical techniques in finance: an introduction (wiley finance) amir sadr download pdf

Page 1


Sadr

Visit to download the full and correct content document: https://ebookmass.com/product/mathematical-techniques-in-finance-an-introduction-w iley-finance-amir-sadr/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Foundations of Finance (Pearson Series in Finance)

https://ebookmass.com/product/foundations-of-finance-pearsonseries-in-finance/ 978-1285429649 Principles of Finance (Finance Titles in the Brigham Family)

https://ebookmass.com/product/978-1285429649-principles-offinance-finance-titles-in-the-brigham-family/

eTextbook 978-0133507676 Fundamentals of Corporate Finance (Pearson Series in Finance)

https://ebookmass.com/product/etextbook-978-0133507676fundamentals-of-corporate-finance-pearson-series-in-finance/

eTextbook 978-0133507690 Principles of Managerial Finance (Pearson Series in Finance)

https://ebookmass.com/product/etextbook-978-0133507690principles-of-managerial-finance-pearson-series-in-finance/

Water Risk Modeling: Developing Risk-Return Management Techniques in Finance and Beyond Dieter Gramlich

https://ebookmass.com/product/water-risk-modeling-developingrisk-return-management-techniques-in-finance-and-beyond-dietergramlich/

eTextbook 978-0132743464 Multinational Business Finance (13th Edition) (Pearson Series in Finance)

https://ebookmass.com/product/etextbook-978-0132743464multinational-business-finance-13th-edition-pearson-series-infinance/

Python for Finance: Mastering Data-Driven Finance 2nd Edition

https://ebookmass.com/product/python-for-finance-mastering-datadriven-finance-2nd-edition/

Disruptive Technology in Banking and Finance: An International Perspective on FinTech Timothy King

https://ebookmass.com/product/disruptive-technology-in-bankingand-finance-an-international-perspective-on-fintech-timothy-king/

Guide to Local Government Finance in California

https://ebookmass.com/product/guide-to-local-government-financein-california/

Mathematical Techniques inFinance

Foundedin1807,JohnWiley&SonsistheoldestindependentpublishingcompanyintheUnitedStates.WithofficesinNorthAmerica,Europe, AustraliaandAsia,Wileyisgloballycommittedtodevelopingandmarketingprintandelectronicproductsandservicesforourcustomers’professional andpersonalknowledgeandunderstanding.

TheWileyFinanceseriescontainsbookswrittenspecificallyforfinance andinvestmentprofessionalsaswellassophisticatedindividualinvestors andtheirfinancialadvisors.Booktopicsrangefromportfoliomanagement toe-commerce,riskmanagement,financialengineering,valuationandfinancialinstrumentanalysis,aswellasmuchmore.

Foralistofavailabletitles,visitourWebsiteatwww.WileyFinance .com.

Mathematical Techniques inFinance

AnIntroduction

AMIRSADR

Copyright©2022byJohnWiley&Sons,Inc.Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.

PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans,electronic,mechanical,photocopying,recording,scanning,or otherwise,exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyright Act,withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthrough paymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222 RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)646-8600,orontheweb atwww.copyright.com.RequeststothePublisherforpermissionshouldbeaddressedtothe PermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030, (201)748-6011,fax(201)748-6008.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorshaveusedtheir besteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswithrespectto theaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimall warranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitness foraparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives, writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatan organization,website,orproductisreferredtointhisworkasacitationand/orpotential sourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe informationorservicestheorganization,website,orproductmayprovideor recommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisheris notengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedherein maynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhere appropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhave changedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthe publishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages, includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,please contactourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outside theUnitedStatesat(317)572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsin printmaynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts, visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationData:

Names:Sadr,Amir,author.

Title:Mathematicaltechniquesinfinance:anintroduction/AmirSadr.

Description:Hoboken,NewJersey:JohnWiley&Sons,Inc.,[2022] | Series:Wileyfinanceseries | Includesindex.

Identifiers:LCCN2022000565(print) | LCCN2022000566(ebook) | ISBN 9781119838401(cloth) | ISBN9781119838425(adobepdf) | ISBN 9781119838418(epub)

Subjects:LCSH:Finance–Mathematicalmodels.

Classification:LCCHG106.S232022(print) | LCCHG106(ebook) | DDC 332.01/5195–dc23/eng/20220112

LCrecordavailableathttps://lccn.loc.gov/2022000565

LCebookrecordavailableathttps://lccn.loc.gov/2022000566

CoverDesign:Wiley

CoverImage:©StationaryTraveller/Getty

Tomystudents

5.2.1Probability-FreePricing

5.2.2NoArbitrage

5.2.3Risk-Neutrality

5.3.1Self-Financing,DynamicHedging

5.3.2IteratedExpectation

5.4.1Risk-NeutralValuation

6.2Black-Scholes-MertonCallFormula145

6.2.1Put-CallParity

6.2.2Black’sFormula:OptionsonForwards

6.4.1GreeksFormulas

6.4.2GammaversusTheta

6.4.3Delta,GammaversusTime

6.5.1Black-Scholes-MertonPDE

6.5.2CallFormulaandHeatEquation

6.6CRRBinomialModel165

6.6.1CRRGreeks

6.7.1AmericanCallOptions

6.7.2BackwardInduction

CHAPTER7

7.1.1ZeroCurve

7.1.2ForwardRateCurve

7.2.1SwapValuation

7.2.2Swap

7.2.3DiscountingtheForwards

7.2.4SwapRateasAverageForwardRate

7.3.1Black’sNormalModel

7.3.2CapsandFloors

7.4.1MoneyMarketAccount,ShortRate

7.4.2ShortRateModels

7.4.3MeanReversion,VasicekandHull-White

7.4.4ShortRateLatticeModel

7.4.5PureSecurities

Preface

Financeasadistinctfieldfromeconomicsisgenerallydefinedasthescience orstudyofthemanagementoffunds.Thecreationofcredit,savings, investments,bankinginstitutions,financialmarketsandproducts,andrisk managementallfallunderthepurviewoffinance.Theunifyingthemesin financearetime,risk,andmoney.

Mathematicalorquantitativefinanceistheapplicationofmathematicstothesecoreareas.Whilesimplearithmeticwasenoughforaccounting andkeepingledgersanddouble-entrybookkeeping,LouisBachelier’sdoctoralthesis, Théoriedelaspéculation andpublishedin1900,usedBrownian motiontostudystockprices,andiswidelyrecognizedasthebeginningof quantitativefinance.Sincethen,theuseofincreasinglysophisticatedand specializedmathematicshascreatedthemodernfieldofquantitativefinance encompassinginvestmenttheory,assetpricing,derivatives,financialdata science,andtheemergingareaofcryptoassetsandDecentralizedFinance (DeFi).

BACKGROUND

Thisbookisthecollectionofmylecturenotesforanelectiveseniorlevel undergraduatecourseonmathematicsoffinanceatNYUCourant.The mostlyseniorandsomefirstyeargraduatestudentscomefromdifferent majorswithanevendistributionofmathematics,engineering,economics, andbusinessmajors.Theprerequisitesforthebookarethesameasthe onesforthecourse:basiccalculus,probability,andlinearalgebra.Thegoal ofthebookistointroducethemathematicaltechniquesusedindifferent areasoffinanceandhighlighttheirusagebydrawingfromactualmarkets andproducts.

BOOKSTRUCTURE

Asimpledefinitionoffinancewouldbethestudyofmoney;quantitative financecouldbethoughtofasthe mathematicsofmoney.Whilereductiveandsimplistic,thisbookusesthismetaphorand followsthemoney

acrossdifferentmarketstomotivateandintroduceconceptsandmathematicaltechniques.

Bonds

InChapter2,westartwiththebasicbuildingblocksofinterestratesandtime valueofmoneytopriceanddiscountfuturecashflowsforfixedincomeand bondmarkets.Theconceptofcompoundinterestanditslimitascontinuous compoundingisthefirstforayintomathematicsoffinance.Couponbonds makeregularinterestpayments,andweintroducetheGeometricseriesto derivetheclassicbondprice-yieldformula.

Asthereisgenerallynoclosedformformulaforimpliedcalculations suchasimpliedyieldorvolatilitygivenabondoroptionprice,these calculationsrequirenumericalroot-solvingmethodsandwepresentthe Newton-Raphsonmethodandthemorerobustandpopularbisection method.

Theconceptofriskisintroducedbyconsideringthebondpricesensitivitytointerestrates.TheTaylorseriesexpansionofafunctionprovides thefirstandsecondordersensitivitiesleadingtodurationandconvexityfor bondsinChapter2,anddeltaandgammaforoptionsinChapter6.Similar firstandsecondordermeasuresarethebasisofthemean-variancetheoryof portfolioselectioninChapter3.

IntheUnitedStates,householdsholdthelargestamountofnetworth, followedbyfirms,whiletheU.S.governmentrunsanegativebalanceand isindebt.Mostofconsumerfinanceassetsandliabilitiesareintheformof levelpayhomemortgage,student,andautoloans.Theseproductscanstill betackledbytheapplicationoftheGeometricseries,andwecancalculate variousmeasuressuchasaveragelifeandtimetopayagivenfractionofthe loanviatheseformulas.Alargepartofconsumerhomemortgageloansare securitizedasmortgage-backedsecuritiesbycompaniesoriginallysetupby theU.S.governmenttopromotehomeownershipandstudentloans.The footprintofthesegiantsinthefinancialmarketsislargeandisthemain driverofstructuredfinance.Weintroducetoolsandtechniquestoquantify thenegativeconvexityriskduetoprepaymentsforthesemarkets.

Whiletheanalyticalprice-yieldformulaforbonds,loans,and mortgage-backedsecuritiescanprovidepricingandriskmeasuresforsingle productsinisolation,avarietyofbondsandfixedincomeproductstrade simultaneouslyinmarketsgivingrisetodifferentyieldandspreadcurves. Weintroducethebootstrapandinterpolationmethodstohandleyields curvesandoverlappingcashflowsofmultipleinstrumentsinaconsistent manner.

Stocks,Investments

InChapter3,wefocusoninvestmentsandtheinterplaybetweenrisk-free andriskyassets.WepresenttheSt.Petersburgparadoxtomotivatethe conceptofutilityandtohighlighttheproblemofinvestmentchoice, ranking,anddecision-makingunderuncertainty.Weintroducetheconcept ofrisk-preferenceandshowthepersonalistnatureofrankingofrandom payoffs.Wepresentutilitytheoryanditsaxioms,certainty-equivalentlotteries,anddifferentmeasuresofrisk-preference(risk-taking,risk-aversion, risk-neutrality)ascharacterizedbytheutilityfunction.Utilityfunctions representingdifferentclassesofArrow-Prattmeasures(CARA,CRRA, HARA)areintroducedanddiscussed.

Themean-variancetheoryofportfolioselectiondrawsfromthe techniquesofconstrainedandconvexoptimization,andwediscussand showthemethodofLagrangemultipliersinvariouscalculationssuchas theminimum-varianceportfolio,minimum-variancefrontier,andtangency (market)portfolio.TheseminalCAPMformularelatingtheexcessreturn ofanassettothatofthemarketportfolioisderivedbyusingthechainrule andpropertiesofthehyperbolaoffeasibleportfolios.

Movingfromequilibriumresults,wenextintroducestatisticaltechniquessuchasregression,factormodels,andPCAtofindcommondriversof assetreturnsandstatisticalmeasuressuchasthealphaandbetaofportfolio performance.Tradingstrategiessuchaspairstradingandmean-reversion tradesarebasedonthesemethods.Weconcludebyshowingtheuseof recurrenceequationsandoptimizationtechniquesforriskandmoney managementleadingtothegambler’sruinformulaandKelly’sratio.

Forwards,Futures

InChapter4,weintroducetheforwardcontractasthegatewayproductto morecomplicatedcontingentclaimsandoptionsandderivatives.Thebasic cash-and-carryargumentshowsthemethodofstaticreplicationandarbitragepricing.Thismethodisusedtocomputeforwardpricesinequities withdiscretedividendsordividendyields,forwardexchangerateviacoveredinterestparity,andforwardratesininterestratemarkets.

Risk-NeutralOptionPricing

Chapter5presentsthebuildingblocksofthemodernrisk-neutralpricing framework.Startingwithasimpleone-stepbinomialmodel,wefleshout thefulldetailsofthereplicationofacontingentclaimviatheunderlying

assetandaloanandshowthatacontingentclaim’sreplicationpricecan becomputedbytakingexpectationsinarisk-neutralsetting.Thisbasic buildingblockisextendedtomultiplestepsthroughdynamichedgingofa self-financingreplicatingportfolio,leadingtomartingalerelativepricesand thefundamentaltheoremsofassetpricingforcompleteandarbitrage-free economies.

OptionPricing

InChapter6,weusetherisk-neutralframeworktoderivetheBlackScholes-Merton(BSM)optionpricingformulabymodelingassetreturns asthecontinuous-timelimitofarandomwalk,thatisaBrownianmotion withrisk-adjusteddrift.WerecoverandinvestigatetheunderlyingreplicatingportfoliobyconsideringtheoptionGreeks:delta,gamma,theta. TheinterplaybetweentheseisshownbyapplyingtheIto’slemmatothe diffusionprocessdrivinganunderlyingassetanditsderivative,leadingto theBSMpartialdifferentialequationanditssolutionviamethodsfromthe classicalboundaryvalueheatequations.

WediscusstheCox-Ross-Rubinstein(CRR)modelasapopularand practicalcomputationalmethodforpricingoptionsthatcanalsobeused tocomputethepriceofoptionswithearlyexercisefeaturesviathebackwardinductionalgorithmfromdynamicprogramming.Forpath-dependent optionssuchasbarrieroraveragingoptions,wepresentnumericalmodels suchastheMonteCarlosimulationmodelsandvariancereductiontechniques.

InterestRateDerivatives

Chapter7introducesinterestrateswapsandtheirderivativesusedin structuredfinance.Aplainvanillaswapcanbepricedviaastaticreplication argumentfromabootstrappeddiscountfactorcurve.Inpractice,simple Europeanoptionsonswapsandinterestrateproductsarepricedand risk-managedviathenormalversionofBlack’sformulaforfutures.We introducethismodelundertherisk-neutralpricingframeworkandshow thepricingofthemainstreamcap/floors,Europeanswaptions,andCMS products.Forcomplexderivatives,oneneedsamodelfortheevolution ofmultiplematurityzero-couponbondsinarisk-neutralframework.We presentthepopularHull-Whitemean-revertingmodelfortheshortrate andshowthetypicalimplementationmethodsandtechniques,suchas theforwardinductionmethodforyieldcurveinversion.Weshowthe pricingofBermudanswaptionsviatheselatticemodels.Weconcludeour discussionbypresentingmethodsforcalculatinginterestratecurverisk andVaR.

ExercisesandPythonProjects

Theend-of-chapterexercisesarebasedonreal-worldmarketsandproducts anddelvedeeperintosomefinancialproductsandhighlightthedetailsof applyingthetechniquestothem.Allexercisescanbesolvedbyusinga spreadsheetpackagelikeExcel.ThePythonprojectsarelongerproblems andcanbedonebysmallgroupsofstudentsasatermproject.

Itismyhopethatbytheendofthisbook,readershaveobtainedagood toolkitofmathematicaltechniques,methods,andmodelsusedinfinancial marketsandproducts,andtheirinterestispiquedforadeeperjourneyinto quantitativefinance.

NewYork,NewYork December2021

—AmirSadr

OnelearnsbyteachingandIhavelearnedmuchfrommystudentsatNYU. Manythankstoallofmystudentsovertheyearswhohaveaskedgood questionsandkeptmeonmytoes.

ThankstomyeditorsatJohnWiley&Sons:BillFalloon,PurviPatel, SamanthaEnders,JulieKerr,andSelvakumaranRajendiranforpatiently walkingmethroughthisprojectandcorrectingmymanytypos.Allremainingerrorsaremine,andIwelcomeanycorrections,suggestions,andcommentssenttoasadr@panalytix.com.

AmirSadr receivedhisPhDfromCornellUniversitywithhisthesisworkon theFoundationsofProbabilityTheory.AfterworkingatAT&TBellLaboratories,hestartedhisWallStreetcareeratMorganStanley,initiallyasa VicePresidentinquantitativemodelinganddevelopmentofexoticinterest ratemodels,andlaterasanexoticstrader.HefoundedPanalytix,Inc.,to developfinancialsoftwareforpricingandriskmanagementofinterestrate derivatives.HewasaManagingDirectorforproprietarytradingatGreenwichCapital,SeniorTraderinchargeofCADexoticsandUSDinflation tradingatHSBC,theCOOofBrevanHowardU.S.AssetManagementin theUnitedStates,andco-founderofYieldCurveTrading,afixedincome proprietarytradingfirm.HeiscurrentlyapartneratCorePointPartners andisfocusedoncryptoandDeFi.

Acronyms

bpbasispoints,1%of1%,0.0001

FV futurevalue

IRRinternalrateofreturn

PnLprofitandloss

PV presentvalue

YTMyieldtomaturity

p.a.perannum

DF, D(T ) discountfactor,today’svalueunitpaymentatfuture date T

D(t , T ) dicountfactorat t forunitpaymentat T > t

r interestrate

rm compoundinginterestratewith m compoundingsper year y yield

APRannualpercentagerate–statedinterestratewithoutany compoundings

APYannualpecentageyield–yieldofadeposittakingcompoundingsintoconsideration:1 + APY =(1A PR∕m)m for m compoundingsperyear

CFcashflow

C couponrate

P, P(C, y, N , m) priceofan N -yearbondwithcouponrate C,paid m times peryear,withyield y w accrualfractionbetween2datesaccordingtosomeday countbasis

PClean cleanpriceofabond = Price accruedinterest

PZ (y, N , M) priceofan N -yearzero-couponbondwithyield y, m compoundingsperyear

PA (C, y, N , m) priceofan N -yearannuitywithannuityrateof C,paid m timesperyear,withyield y

PBill (y, T ) priceof T -maturityTreasuryBillwithdiscountyield y PV01presentvaluechangeduetoan”01”bpchangeinyield

PVBPpresentvaluechangeduetoa1bpchangeincoupon, presentvalueofa1bpannuity

Bn balanceofalevelpayloanafter n periods

Pn , In principalandinterestpaymentsofalevelpayloaninthe nthperiod

PL (C, y, N , m) priceof N -yearlevelpayloanwithloanrateof C,paid m timesperyear,withyield y

ALaveragelife

B′ n balanceofalevelpayloanafter n periodswithprepayments

P′ n , I ′ n principalandinterestpaymentsofalevelpayloanwithin the nthperiodwithprepayments

SMMsinglemonthlymortalityrate

CPRconstantprepaymentratio

s, sn periodicprepaymentspeed

U (x) utilityofwealth x

X ≺ Y lottery Y ispreferredto X

cX certainty-equivalentofrandompayoff X, U (cX )= E[U (X)]

��A ,��R absoluteriskpremium,relativeriskpremium

V , VP , Vi value,valueofaportfolio,valueof ithasset

Qi , Pi quantity,price

wi weightof ithassetinaportfolio, ∑i wi = 1

RA returnofanassetoveraperiod t : RA = A(t )∕A(0)− 1. Canbedividedby t togiverateofreturn

RA ∼(��A ,��A ) asset A’sreturn,withmean �� andstandarddeviation ��A

��,�� ,C meanvector,standarddeviationvector,andcovariance matrixofassetreturns

R0 returnofarisk-freeasset

M, RM marketportfolio,returnofthemarketportfolio

��X betaofanasset X, Cov(RX , RM )∕�� 2 M

̂ x empiricalestimateof x

x arithmeticaverageof n samplesof x,1∕n ∑n i=1 xi

T forwarddate,futuredate

FA (t , T ) forwardvalueofasset A attime t forforwarddate T

VFA (t , T , K) t -valueofaforwardagreementonasset A forforward date T andprice K

f (t , [T1 , T2 ]) simple(noncompounding)forwardratethatcanbe lockedat t forforwarddepositperiod [T1 , T2 ].Thefirst termmaybeomittedwhen t = 0.

fc (t , [T1 , T2 ]) continuouslycompoundingforwardratethatcanbe lockedat t forforwarddepositperiod [T1 , T2 ].Thefirst termmaybeomittedwhen t = 0.

FXforeigncurrencyexchangerate

rd , rf domesticandforeigninterestratesforforwardexchange ratecalculations

FX (t , T ) the T -forwardexchangeratethatcanbelockedat t

A0 , A(0) today’svalueofanasset A

C0 , C(0) today’svalueofacontingentclaim C

�� genericrandomsamplepath

M(t ), M(t ,��) valueofamoney-marketaccountattime t alongsample path ��

N (��,�� 2 ) normalorGaussianrandomvariablewithmean �� and variance �� 2

LN (��,�� 2 ) lognormalrandomvariablewhoselogis N (��,�� 2 )

CDFcumulativeditributionfunction

pdfprobabilitydensityfunction

pmfprobabilitymassfunction

N (x) cumulativedistributionfunctionofastandard(N (0,1)) normalrandomvariable, N (x)= 1 √2�� ∫ x −∞ e u2 ∕2 du

N ′ (x) probabilitydensityfunctionofastandardnormalrandomvariable, N ′ (x)= 1 √2�� e x2 ∕2

BMBrownianmotion

B(t ), B(t ,��)

Brownianmotionattime t alongsamplepath ��

�� proportional,lognormalvolatility

ATM,ATMFat-the-moneyspot,at-the-moneyforward

�� (x) Dirac’sdeltafunction, ∫ f (x)�� (x a)dx = f (a)

��N absolute,normalizedvolatility

CMSconstantmaturityswaprate

AD, AD(ti , j) Arrow-Debreuprice,today’spriceofunitpayoffatstate j onfuturedate ti

i.i.d.independentandidenticallydistributed

Mathematical Techniques inFinance

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Mathematical techniques in finance: an introduction (wiley finance) amir sadr download pdf by Education Libraries - Issuu