Immediate download An introduction to system modeling and control 1st edition john chiasson ebooks 2

Page 1


An Introduction to System Modeling and Control 1st Edition John Chiasson

Visit to download the full and correct content document: https://ebookmass.com/product/an-introduction-to-system-modeling-and-control-1st-e dition-john-chiasson/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Modern Spacecraft Guidance, Navigation, and Control: From System Modeling to AI and Innovative Applications

Vincenzo Pesce

https://ebookmass.com/product/modern-spacecraft-guidancenavigation-and-control-from-system-modeling-to-ai-and-innovativeapplications-vincenzo-pesce/

Power System Operation, Utilization, and Control John

Fuller

https://ebookmass.com/product/power-system-operation-utilizationand-control-john-fuller/

Solutions Manual to Introduction to Robotics Mechanics and Control Third Edition John J. Craig

https://ebookmass.com/product/solutions-manual-to-introductionto-robotics-mechanics-and-control-third-edition-john-j-craig/

An Introduction to Data-Driven Control Systems Ali Khaki-Sedigh

https://ebookmass.com/product/an-introduction-to-data-drivencontrol-systems-ali-khaki-sedigh/

An Introduction to Policing 9th Edition

John S. Dempsey

https://ebookmass.com/product/an-introduction-to-policing-9thedition-john-s-dempsey/

Introduction

to

Modeling and Simulation Mark W. Spong

https://ebookmass.com/product/introduction-to-modeling-andsimulation-mark-w-spong/

Population: An Introduction to Concepts and Issues 13th Edition John R. Weeks

https://ebookmass.com/product/population-an-introduction-toconcepts-and-issues-13th-edition-john-r-weeks/

An Introduction to English Legal History 5th Edition

John Baker

https://ebookmass.com/product/an-introduction-to-english-legalhistory-5th-edition-john-baker/

Power Electronics Step-by-Step: Design, Modeling, Simulation, and Control Weidong Xiao

https://ebookmass.com/product/power-electronics-step-by-stepdesign-modeling-simulation-and-control-weidong-xiao/

AnIntroductionto SystemModelingandControl

AnIntroductiontoSystem ModelingandControl

BoiseStateUniversity Boise,Idaho UnitedStates

Thiseditionfirstpublished2022 c 2022JohnWiley&Sons,Inc.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted, inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptas permittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableat http://www.wiley.com/go/permissions.

TherightofJohnChiassontobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisit usatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Thecontentsofthisworkareintendedtofurthergeneralscientificresearch,understanding,anddiscussiononly andarenotintendedandshouldnotberelieduponasrecommendingorpromotingscientificmethod, diagnosis,ortreatmentbyphysiciansforanyparticularpatient.Inviewofongoingresearch,equipment modifications,changesingovernmentalregulations,andtheconstantflowofinformationrelatingtotheuseof medicines,equipment,anddevices,thereaderisurgedtoreviewandevaluatetheinformationprovidedinthe packageinsertorinstructionsforeachmedicine,equipment,ordevicefor,amongotherthings,anychangesin theinstructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisherand authorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswith respecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties, includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotional statementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasa citationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorse theinformationorservicestheorganization,website,orproductmayprovideorrecommendationsitmay make.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessional services.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsult withaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmay havechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublisher norauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Chiasson,John,author.

Title:Anintroductiontosystemmodelingandcontrol/JohnChiasson. Description:Firstedition. | Hoboken,NJ:JohnWiley&Sons,Inc.,2022. | Includesbibliographicalreferencesandindex. Identifiers:LCCN2021030670(print) | LCCN2021030671(ebook) | ISBN 9781119842897(cloth) | ISBN9781119842903(adobepdf) | ISBN 9781119842910(epub)

Subjects:LCSH:Systemsengineering–Mathematics. | Mathematicalmodels. Classification:LCCTA168.C552022(print) | LCCTA168(ebook) | DDC 620.001/171–dc23

LCrecordavailableathttps://lccn.loc.gov/2021030670

LCebookrecordavailableathttps://lccn.loc.gov/2021030671

CoverDesign:Wiley

CoverImage:c ByWalterBarie

Setin10/12ptComputerModernRomanbyStraive,Chennai,India

10987654321

Prefaceix AbouttheCompanionWebsitexiv 1Introduction1

1.1Aircraft...................................1

1.2Quadrotors.................................7

1.3InvertedPendulum............................12

1.4MagneticLevitation............................13 1.5GeneralControlProblem.........................15

2LaplaceTransforms17

2.1LaplaceTransformProperties......................20

2.2PartialFractionExpansion........................24

2.3PolesandZeros..............................35

2.4PolesandPartialFractions........................36 Appendix:ExponentialFunction.....................39 Problems..................................43

3DifferentialEquationsandStability49

3.1DifferentialEquations...........................49

3.2PhasorMethodofSolution........................52

3.3FinalValueTheorem...........................57

3.4StableTransferFunctions.........................62

3.5Routh–HurwitzStabilityTest......................65 Problems..................................77

4Mass–Spring–DamperSystems89

4.1MechanicalWork.............................89

4.2ModelingMass–Spring–DamperSystems................90

4.3Simulation.................................96 Problems..................................100

5RigidBodyRotationalDynamics111

5.1MomentofInertia.............................111

5.2Newton’sLawofRotationalMotion...................112

5.3Gears....................................120

5.4RollingCylinder..............................127 Problems..................................135

6ThePhysicsoftheDCMotor149

6.1MagneticForce..............................149

viContents

6.2Single-LoopMotor.............................151

6.3Faraday’sLaw...............................155

6.4DynamicEquationsoftheDCMotor..................163

6.5OpticalEncoderModel..........................165

6.6TachometerforaDCMachine*.....................168

6.7TheMultiloopDCMotor*........................170 Problems..................................175

7BlockDiagrams185

7.1BlockDiagramforaDCMotor.....................185

7.2BlockDiagramReduction.........................187 Problems..................................197

8SystemResponses203

8.1First-OrderSystemResponse.......................203

8.2Second-OrderSystemResponse.....................205

8.3Second-OrderSystemswithZeros....................217

8.4Third-OrderSystems...........................222 Appendix:RootLocusMatlabFile...................224 Problems..................................224

9TrackingandDisturbanceRejection233

9.1Servomechanism..............................233

9.2ControlofaDCServoMotor.......................239

9.3TheoryofTrackingandDisturbanceRejection.............252

9.4InternalModelPrinciple.........................256

9.5DesignExample:PI-DControlofAircraftPitch............258

9.6ModelUncertaintyandFeedback*....................265 Problems..................................273

10PolePlacement,2DOFControllers,andInternalStability285

10.1OutputPolePlacement..........................285

10.2TwoDegreesofFreedomControllers...................298

10.3InternalStability.............................308

10.4DesignExample:2DOFControlofAircraftPitch...........316

10.5DesignExample:SatellitewithSolarPanels(CollocatedCase)....321 Appendix:OutputPolePlacement....................324 Appendix:MultinomialExpansions...................328 Appendix:Overshoot...........................329 Appendix:UnstablePole-ZeroCancellation...............335 Appendix:Undershoot..........................336 Problems..................................339

11FrequencyResponseMethods361

11.1BodeDiagrams..............................361

11.2NyquistTheory..............................383

11.3RelativeStability:GainandPhaseMargins...............402

11.4Closed-LoopBandwidth.........................409

11.5LeadandLagCompensation.......................414

11.6DoubleIntegratorControlviaLead-LagCompensation........419

11.7InvertedPendulumwithOutput Y (s)= X (s)+ + J m θ (s)....426

Appendix:BodeandNyquistPlotsinMatlab.............427 Problems..................................428

12RootLocus447

12.1AngleConditionandRootLocusRules.................449

12.2AsymptotesandTheirRealAxisIntersection..............457 12.3AnglesofDeparture............................463

12.4EffectofOpen-LoopPolesontheRootLocus.............481 12.5EffectofOpen-LoopZerosontheRootLocus.............482 12.6BreakawayPointsandtheRootLocus..................483 12.7DesignExample:SatellitewithSolarPanels(Noncollocated).....484 Problems..................................488

13InvertedPendulum,MagneticLevitation,andCartonaTrack497 13.1InvertedPendulum............................497 13.2LinearizationofNonlinearModels....................506 13.3MagneticLevitation............................510

13.4CartonaTrackSystem..........................516 Problems..................................521

14StateVariables537

14.1StatespaceForm..............................537 14.2TransferFunctiontoStatespace.....................539 14.3LaplaceTransformoftheStatespaceEquations............551 14.4FundamentalMatrixΦ..........................554 14.5SolutionoftheStatespaceEquation*..................558 14.6DiscretizationofaStatespaceModel*..................561 Problems..................................563

15StateFeedback569 15.1TwoExamples...............................569 15.2GeneralStateFeedbackTrajectoryTracking..............578 15.3MatrixInversesandtheCayley–HamiltonTheorem..........579 15.4StabilizationandStateFeedback.....................584 15.5StateFeedbackandDisturbanceRejection...............589 15.6SimilarityTransformations........................593 15.7PolePlacement..............................598 15.8AsymptoticTrackingofEquilibriumPoints...............603 15.9TrackingStepInputsviaStateFeedback................605 15.10InvertedPendulumonanInclinedTrack*................612 15.11FeedbackLinearizationControl*.....................618 Appendix:DisturbanceRejectionintheStatespace..........623 Problems..................................626

16StateEstimatorsandParameterIdentification643

16.1StateEstimators..............................643

16.2StateFeedbackandStateEstimationintheLaplaceDomain*....660

16.3Multi-OutputObserverDesignfortheInvertedPendulum*......663

16.4PropertiesofMatrixTransposeandInverse...............665

16.5Duality*..................................668

16.6ParameterIdentification.........................669 Problems..................................677

17RobustnessandSensitivityofFeedback693

17.1InvertedPendulumwithOutput x ....................694

17.2InvertedPendulumwithOutput y (t)= x(t)+ + J m θ (t)......708

17.3InvertedPendulumwithStateFeedback................711

17.4InvertedPendulumwithanIntegratorandStateFeedback......715

17.5InvertedPendulumwithStateFeedbackviaStateEstimation....717 Problems..................................720

*Sectionsmarkedwithanasteriskmaybeskippedwithoutlossofcontinuity. References727 Index731

Preface

Quitehonestly,IneverthoughtIwouldwriteabookforafirstcontrolscourse.So,what happened?Well,inmyteachingcareerIhavetaughtoutofthetextbooksbyOgata[1], Kuo[2],Franklinetal.[3],andPhillipsandHarbor[4]withlecturenotestakenfromQiu andZhou[5]andGoodwinetal.[6].IdidfindmanygreatideasinthesetextsthatIdo use.1 However,Iwasalsodisappointedthatthemodelingwasnotdoneusingfirstprinciplesofphysics,butratherthemodelwassimplystatedwithoutaderivation.Toaddress thisImadeupmyownlecturenotesonrigidbodydynamics(Chapter5),DCmotors (Chapter6),andtheinvertedpendulumandmagneticlevitationsystems(Chapter13). Irealizethatmyemphasisondetailedmodelingmaybea“bug”tosome(ratherthan a“feature”)asstudentsfinditdifficultandittakesawayfromdoingcontrol“stuff”. However,asacolleagueofmineputit,studentsdevelopimportantinsightwhenthey understandwherethedynamicmodelscomefromandanylinearization,approximation, orsimplificationusedtoobtainthem.

Itseemedtomeearlyinmycareerthatteachingthefirstcontrolscourseseemedtobe moreaboutitstechniques,i.e.,manipulatingblockdiagrams,drawingrootlocus,Bode andNyquistplots,doingtheRouth–Hurwitztest,etc.YetIthinkthecourseshouldbe aboutmakingsomephysicalsystemdowhatyouwantittodosuchashavingarobot armrotate30◦ despitetheweightoftheobjectinitsendeffector,orensureamagnetic bearingmaintainsanairgapdespitevariousloadsonit,keepingapendulumrodpointing straightup,etc.Irecallacolleaguecommentingonalecturehegaveinwhichhereferred tothestandardunityfeedbackcontrollerblockdiagram(Figure1)andtoldtheclassthat thecontroller Gc (s)wastobedesignedsothat C (s) ≈ R(s). Astudentthensimplyasked whynotjustgetridoftheblocksandset C (s)= R(s)!Itseemsthatinteachingthe firstcontrolscourseweendupmanipulatingblockdiagramssomuchandsoeasilythat studentsgetlostintheabstractionnotunderstandingwhattheyrepresent.

Controlsysteminstandardblockdiagramform.

FiguressuchasFigure2onthenextpageareincludedtohelpthestudentsremember whatablockdiagramsrepresents.

Spendingthetimetododetailedderivationsofafewmodelshelpsthestudentto understandandrememberwhatthetransferfunctionmodelsrepresent.Asimilarconfusionarisesinthemodelingofdisturbances.Whenadisturbanceisshownontheblock diagrammodel,itistypicallyplacedasinputtothephysicalsystem.Forexample,one mighthavealoadtorqueonamotor,butintheblockdiagramthisdisturbance D (s)is modeledcomingintothemotorinput,whichisavoltage(Figure1).Iexplainhowthis loadtorqueismodeledasanequivalentvoltagedisturbancewhichhasthesameeffecton

1 ToparaphrasePicasso: Goodideasareinspired,greatideasarestolen!

Figure1.

To D/A Computer I/O board From encoder

PositioncontrolofaDCmotor.

theposition/speedoftherotorastheactualloadtorque.Thissortofunderstandingseems tobelostinthestandardmanipulationsofconvertingadifferentialequationmodelinto ablockdiagrammodel.Ofcourse,somegoodlaboratoryworkcanreallyhelptoclarify theseideasaswell.

Chapter1presentsaqualitativedescriptionoftheoperationofanaircraft,aquadrotor, aninvertedpendulum,andamagneticallylevitatedsteelballtomotivatetheneedfor modelingandcontrol.

Chapter2isastandardpresentationoftheLaplacetransformtheorywithanemphasis onpartialfractionsasawaytoconnectthetimedomaintotheLaplacedomain.

Chapter3ondifferentialequationsintroducesstabilitybygivingspecialattentiontothe finalvaluetheorem(FVT).Thisisimportantasitisusedoverandoveragaintodetermineasymptotictrackingand/ordisturbancerejectionofstepinputsbyshowingthe error e(t) → 0viatheFVTlims→0 sE (s)=0.Thischapteralsoexplainshowtochecka differentialequationforstabilityusingtheRouth–Hurwitztest.

Chapters4–6aremodelingchapters.Chapter4developsmass–spring–dampersystems andusesthemtointroducesimulationusingSimulink.Chapter5presentsrigidbody dynamicsappliedtogearsandrollingmotion.Chapter6onDCmotorsusesthefirst principlesofphysicstodeveloptheequationsthatmodelaDCmotorandexplainshow bothanopticalencoderandatachometerwork.

Chapter7onblockdiagramsisprettystandard.Itisemphasizedthatablockdiagram issimplya graphical representationoftherelationshipsbetweenthevarious(Laplace transformed)variablesofaphysicalsystem.Itisshownhowtorearrangeandsimplify themusingblockdiagramreductionwhichprovidesastraightforwardandsimplewayto manipulatealltheblockdiagramsconsideredinthetextbook.

Chapter8onsystemresponsesisalsoprettystandard.Theobjectivehereistomake connectionsbetweenthes-domainandthetimedomain.

Chapter9coversPIDcontrolthatisexplainedusingtheinternalmodelprinciple.It providestheunderstandingofwhythecontrollermusthaveanintegratortorejectconstant disturbanceswiththePandDparts(typically)neededtomaketheclosed-loopsystem stable.ItisveryimportanttoleavethestudentwithanunderstandingofwhyPIDcontrol worksinsomanyapplications.

AftercoveringChapters1–9onetypicallycoversrootlocus,Bode,andNyquisttofinish theterm.Thestudentsseemedtocatchontorootlocusjustfine,buttheapproachdidn’t seemthathelpfulin designing acontroller.Thatis,onehastoproposesomeformfora controller(seeminglyoutofthinair)andthenvaryasinglegaintoseeiftheclosed-loop polescanbemovedtoalocationthatresultsinagoodresponse.Atypicalexampleisto haveanopen-loopmodeloftheform G(s)= b s(s + a) ,proposeacontrolleroftheform

Figure2.

Gc (s)= K s + z s + p , andthendoarootlocustochoosethegain K sothetwo“dominant” polesoftheclosed-loopsystemresultinadesiredresponse.However,usingthiscontroller onecanactuallyplaceallthreeclosed-looppolesarbitrarily!Therootlocusmethodis thenusuallyfollowedbyteachingBodediagrams,Nyquistplots,andNyquiststability. InmyexperienceNyquisttheoryhasalwaysbeenharderforthestudentstograsp.After allthathardworkofunderstandingNyquisttheorythedesignofacontrollerusingthe Bodediagram(lead,lag,lead–lag,etc.)toobtaindesiredgainandphasemarginsisstill atrialanderrorapproach.Further,theconnectionbetweengainandphasemarginsto systemperformance(settlingtime,overshoot,etc.)isnotsodirect.Thisleavesthestudents withoutmuchconfidenceindesigningcontrollers.

Ratherthanproceedingdirectlytorootlocus,Bode,andNyquistafterPIDcontrol,my approachistofirstcoverChapter10onoutputpoleplacementandtwodegreeoffreedom (2DOF)controllers.Startingwithatransferfunctionmodel,thesemethodsprovidea straightforwardsystematicwaytodesignanoutputfeedbackcontrollertoachievetracking anddisturbancerejectionobjectiveswhileoftenbeingabletoalsoeliminateovershootin stepresponses.

BeforeIaddedthematerialofChapter10(poleplacementand2DOFcontrollers),the firstsemestercourseendedbycoveringBodeandNyquist(Chapter11)androotlocus (Chapter12).AftercoveringChapter10thereistypicallynotenoughtimeinonesemester toalsocoverChapters11and12.Consequently,InowcoverChapter11atthebeginning ofthesecondcourse.Nyquisttheoryisfundamentaltounderstandingrobustnessand sensitivityofcontrolsystems.Usingtheunityoutputfeedbackcontrollerfortheinverted pendulumdesignedinChapter10aNyquistanalysisispresentedtoshowthattheresulting stabilitymarginsaretoosmallforthiscontrolsystemtoworkinpractice.Thepointhere isshowthatthereismoretocontrolthanjustmakingtheclosed-loopsystemstable. Chapter17elaboratesontheseideas.

Chapter12isastandardpresentationofrootlocus.Itendswithanexampleshowing howtodesignanotchfilterthatcancelsoutstableopen-looppolesclosetothe jω axis andisalsorobustwithrespecttosmallperturbationsinthelocationofthesepoles.

Chapter13derivesthedifferentialequationmodelofaninvertedpendulum,amagneticallylevitatedsteelball,andacartonatrackusingfirstprinciplesofphysics.Itisshown howtoobtainlinearmodelsoftheinvertedpendulumandthemagneticallylevitatedsteel ball,aswellashowtocontrolthemusingthemethodsofChapters9and10.

Chapter14onstatevariablesgivestheelementarylinear(matrix)algebrabackground neededforthestatefeedbacktheoryofChapter15.

Chapter15onstatefeedbackstartsoutbygivingadetailedderivationofastatetrajectorytrackingcontrollerforthecartonthetracksystem.Thisisfollowedageneral approachtostatefeedbackforlinearstatespacemodelsincludingthedevelopmentof astatespacepoleplacementalgorithm.Also,basedontheinternalmodelprinciple,a detailedpresentationofadisturbancerejectionstatespacecontrollerforaservosystem(DC motor)isgiven.Animportantgoalhereistoshowthattrajectorytrackingaccomplished bytrajectorygeneration,poleplacement,andstateestimation(Chapter16)providesa systematicprocedurefordesigningfeedbackcontrollersinthestatespace.Thisistobe comparedwiththesystematicprocedureforpoleplacementintheLaplacedomaingivenin Chapter10.

Chapter16isonstateandparameterestimation.Stateestimation(stateobserver)is presentedas“whattodo”whenonedoesn’thavefullstatemeasurements.Anobserver ispresentedthatprovidesasmoothestimateofthespeedofamotorusingtheoutput

ofanopticalencoderincomparisontothenoisyestimatefoundbydifferentiationofthe encoder’soutput.Parameterestimationvialeast-squaresisexplainedbygoingthrough thedetailedcalculationstoestimatethemodelparametersofaDCmotor.

Chapter17discussesrobustnessandsensitivity.NyquisttheoryandtheBodesensitivity integralsareusedtomakethereaderawareofthefundamentalproblemsofcontrolling systemswhoseopen-loopmodelshaverighthalf-planepoles.Specifically,therobustness andsensitivityoffourdifferentstabilizingcontrollersfortheinvertedpendulumare considered:(i)outputfeedbackofthecartposition,(ii)outputfeedbackofalinear combinationofcartpositionandpendulumrodangle,(iii)fullstatefeedback,and (iv)outputfeedbackofthecartpositionfollowedbystateestimationandstatefeedback.

SupplementaryMaterials

Thereisa solutionsmanual fortheendofchapterproblemsandasetof slides foreach chapter.Further,thereisalsoacompletesetof Matlab/Simulink files fortheexamples andproblemsthatrequirethem.Theseareallavailableonthebook’scompanionwebsite providedbyWiley.

Prerequisites

Theprerequisitesforthisbookareelementarydifferentialequations,Laplacetransforms, andafreshman/sophomorecoursein(calculus-based)physics.Chapters14,15,and 16assumesomefamiliaritywithmatrixalgebra(matrixmultiplication,determinants, inverses,etc.).

Typicalcoverageinthefirstsemestercourse

Chapter1,Allsections

Chapter2,Allsections

Chapter3,Allsectionsexceptsubsections3.51and3.52

Chapter4,Allsections

Chapter5,Sections5.1through5.3

Chapter6,Sections6.1through6.4

Chapter7,Allsections

Chapter8,Allsections

Chapter9,Sections9.1through9.4

Chapter10,Sections10.1through10.3

Possiblecoverageinasecondsemestercourse

Chapter11,Allsections

Chapter12,Allsections

Chapter13,Sections13.1,13.2,andeither13.3or13.4

Chapter14,Sections14.1through14.4

Chapter15,Sections15.1through15.8

Chapter16,Section16.1

Chapter17,Sections17.1through17.3

LogicalDependenceoftheChapters

Thelogicaldependenceofthechaptersisgiveninthefigurebelow.

Acknowledgments

IwouldliketotakethisopportunitytothankDr.UriRogersformakingseveralvaluable suggestionstoimprovethemanuscriptaswellasforpointingouttyposinitsearlier versions.Thiswasgreatlyappreciatedbytheauthor.IalsowanttothankDr.MarcBodson forhishelpfulcommentsandintroducingmetoparameteridentificationinourworkon electricmachines.EarlyinmycareerProfessorEdwardKamenwasverysupportiveofme teachingtheintroductorycontrolscourseforwhichIamverygrateful.Iamindebtedto thelateProfessorBruceFrancisforhiscommentsandkindremarksonanearlyversion ofthismanuscript.IamalsogratefultoDr.AykutSaticiforhiscrucialhelpinthefinal stagesofthiswork.Iwanttoexpressmygratitudetotheanonymousreviewersofthe manuscriptwhoprovidedmanyconstructivecomments.JohnWiley&Sonsisgratefully acknowledgedforallowingmetoreusematerialfromChapter1ofmybook Modelingand High-PerformanceControlofElectricMachines [7].MyWileyeditorBrettKurzmanand hisproductionteamofSarahLemoreandDeviIgnasihaveturnedmymanuscriptinto apublishedbook.Thankyou!Finally,IwouldliketothankthemanystudentsIhave taughtforputtingupwiththevariousversionsofthistextbookinmanuscriptform. Anycomments,criticisms,andcorrectionsaremostwelcomeandmaybesenttothe authorat chiasson@ieee.org.

JohnChiasson

AbouttheCompanionWebsite

Thisbookisaccompaniedbyacompanionwebsite.

www.wiley.com/go/chiasson/anintroductiontosystemmodelingandcontrol

Thiswebsitecontains:

Matlab/Simulink filesfortheinstructor

Matlab/Simulink filesforthestudents

Slidesforeachchapter

Solutionsmanual

Introduction

Inthischapterwesimplywanttopresentsomeexamplesofphysicalcontrolsystems. Theintenthereistoshowwhyfeedbackcontrolisnecessaryandtogivethe“bigpicture” ofwhatmustbedonetocontrolphysicalsystems.

1.1Aircraft

Figure1.1isadrawingofasimplepropellerpoweredairplane.Therearefourforceson theairplane: lift whichisprimarilyprovidedbythewings, drag whichisbasicallywind resistance, thrust whichisprovidedbythepropeller,and gravity.

Figure1.1. Thefourforcesonanaircraft.

Liftisduetothedifferenceinairpressurebetweenthetopandbottomofanairfoil.The airfoilisagenerictermthatherereferstothewings,horizontaltailortheverticaltailof theaircraft.Figure1.2onthenextpageshowsstreamlinesofairmovingpastanairfoil (wing).Theairgoingoverthetoptravelsfaster(asitgoesagreaterdistance)thanthe aironthebottomofthewing.Becauseofthisspeeddifference,itturnsoutthattheair pressureonthetopofthewingisthenlessthantheairpressureonthebottomofthewing. Theresultingupwardforceiswhatwecall lift.Wecallliftan aerodynamic force.Figure1.3 onthenextpageshowstheairflowstreamlinesacrossanairfoilinawindtunnel.

Thehorizontalcylindricalglasstube(Venturitube)inFigure1.4onthenextpageisused toexperimentallydemonstratethatairpressuredecreasesastheairspeedincreases.The originalflowofairfromtherightintheVenturitubeisforcedtoflowthroughabottleneck intoareduceddiametertube.Althoughnotobvious,atspeedsbelowsupersonic,airis

AnIntroductiontoSystemModelingandControl,FirstEdition.JohnChiasson. c 2022JohnWiley&Sons,Inc.Published2022byJohnWiley&Sons,Inc. Companionwebsite:www.wiley.com/go/chiasson/anintroductiontosystemmodelingandcontrol

Figure1.2. Aliftforceisduetotheshapeoftheairfoilthatresultsinthepressureabovetheairfoil beinglessthanthepressurebelowit.

Figure1.3. Airflowstreamlinesonawinginawindtunnel.Source:Screenshotfromhttp://www .decodedscience.com/how-does-an-airplane-fly-lift-weight-thrust-and-drag-in-action/5200.

Figure1.4. Venturitubeshowingairflowthroughabottleneckreducingthecross-sectionofthe tube.Inthissituationtheairisessentiallyincompressible.Sotheairspeedsupgoingthrough thebottleneckasthemassflowisconstant.The ∪-shapedtubebelowtheVenturitube(calleda manometer)isfilledwithwatertoshowthepressureontheleft-sideisreducedcomparedtothe pressureontheright-side.Source:ComputerGeezerandGeof[8].“Venturiflow”,https://commons .wikimedia.org/wiki/File:Venturi-Flow.png,2010,LicensedunderCCBY-SA3.0.

1.1Aircraft3 essentiallyincompressiblesohereitsdensityisthesameonbothsidesofthebottleneck.1 Thebottleneckresultsinincreasingtheairspeedasitgoesthroughit.Thatis,thesame massofairperunittimeisflowinginbothtubes(becausetheairdoesnotcompress)so itmustspeedupontheleftsideasthetubecrosssectionissmallerthere.The ∪-shaped columnsbelowtheVenturitubearefilledwithwater(calledamanometer)andshowthe experimentalfactthattheairpressureontheleftsideis less thantheairpressureonthe rightside.Asairspeedsupitspressuredrops!ThisisreferredtoasBernoulli’sprinciple. Thekeypointforairfoilsisthattheshapeofthewingcausestheairspeedonthetop ofthewingtoincreaseresultinginlowerpressureonthetopofthewingandtherefore producinglift.

TheleftsideofFigure1.5showsthecenterlineofthewingalignedwiththeairspeed v. Theairspeedissimplythespeedoftheaircraftwithrespecttotheair.Therightsideof Figure1.2showsthecenterlineofthewingatanangle α withrespecttotheairspeed. Aslongas α isnottoolarge(8to20degreesdependingontheplane),theliftforce increaseswith α.Wereferto α asthe angleofattack.

Let’sgobacktotheairplaneasshowninFigure1.6.The wings, horizontaltail,and verticaltail aregenericallyreferredtoas airfoils.The ailerons onthewings,the elevators onthehorizontaltail,andthe rudder ontheverticaltailarereferredtoas controlsurfaces

Propeller

Cock pit

Figure1.6. Theairfoilsandthecontrolsurfacesontheaircraft.

1 Anotherwaytosaythisisthattheairis not compressedgoingthroughthebottleneck.

Figure1.5. Angleofattack.

41Introduction

AsindicatedinFigure1.7,thecontrolsurfaceisconnectedbyahingetotheairfoil. Thepilotcanrotatethecontrolsurfaceaboutthehinge.AsshowninFigure1.7,ifthe controlsurfaceisrotateddown(relativetothecenterline)thentheairfoilwillpitchdown duetothe(aerodynamic)forceonthecontrolsurface.Conversely,ifthecontrolsurfaceis rotatedup,itwillcausetheairfoiltopitchup.

Control surface down causes airfoil to pitch down Airfoil

Aerodynamic force on control surface due to air flow Hinge

Control surface

Figure1.7. Controlsurfaceusedtopitchtheairfoilupordown.Withthecontrolsurfacedown,the airfoilpitchesdown.

ControlofPitchUsingtheElevators

Asafirstexampleofhowcontrolsurfacesareused,weconsidertheelevatorsonthe horizontaltail.Figure1.8showstheelevator(controlsurface)onthehorizontalwing rotatedup,whichresultsintheaircraftbeingpitchedupaboutitscenterofmass.By movingtheelevatorupordown,thepilotcancausetheaircrafttopitchupordown, respectively.

Pitch up

Usingtheelevatorstopitchtheaircraftup.

ControlofRollUsingtheAilerons

Figure1.9showstheaircraftwithitsleftailerondownanditsrightaileronisup.Theaerodynamicforcesonthetwoaileronsthencausetheairplanetorolltothepilot’sright.By adjustingtheangleoftheailerons,thepilotcanrollrightorleft.

ControlofYawUsingtheRudder

Thefinalcontrolsurfaceistherudderontheverticaltail.AsindicatedinFigure1.10,if thepilotrotatestheruddertotheright,thentheplanewillyaw(rotate)totherightand viceversa.

Elevator up
Horizontal tail
Vertical tail Rudder
Figure1.8.

Wing

Left aileron is down Roll

Wing

Usingtheaileronstorolltheaircraft.

Right aileron is up

Rudder deflection angle

Figure1.10. Usingtheruddertochangetheheadingoftheaircraft.

Figure1.9.
Yaw
Vertical tail
Rudder

ControllingtheAirplane

Thepilothasthefourinputcontrols:

(1) Theelevatortocontrolpitch.

(2) Theaileronstocontrolroll.

(3) Theruddertocontrolyaw.

(4) Anengineconnectedtoapropellertocontrolforwardthrust.

Figure1.11depictshowapilotinasmallairplanecontrolstheelevator,ailerons,and rudder.InFigure1.11thepilot’shandsareshownonthe yoke or centerstick (lookslike abitlikeacar’ssteeringwheel).Ifthepilotpullstheyoketowardhimself,theplanewill pitchupwhilealternativelypushingtheyokeawayfromhimselftheplanewillpitchdown. SeetheYouTubeanimationat[9].

Figure1.11. Pilotusingayoke,pedals,andthrottletocontroltheaircraft.Source:Courtesyof SteveKarp[9].“HowItWorksFlightControls”,October12,2013,https://www.youtube.com/ watch?v=AiTk5r-4coc.

Ifthepilotturnstheyoketotheright,theplanewillrolltotherightandconverselyif thepilotturnstheyoketothelefttheplanewillrotatetotheleft.

Figure1.11showsthepilotwitheachfootonapedal.Pushingontherightpedalthe planewillyawtotherightwhilepushingontheleftpedaltheplanewillyawtotheleft.

NotshowninFigure1.11isathrottle2 thatthepilotcanusetocontroltheenginespeed andthereforethepropellerthrust.

Theangularpositionoftheairplaneasspecifiedbyitspitch,roll,andyawisreferred toasthe attitude oftheaircraft.Thepilotusesthethrustinput(propeller)tomaintain airflowoverthewings.Ontakeoff,thepropellermustacceleratetheairplanetoaspeed suchthattheflowoftheairacrossthewingsisfastenoughtoproducethenecessary lift.Thepilotwillthenadjustthepitchangle(usingtheelevators)toobtainanangleof attackthatprovidesthenecessarylifttogettothedesiredaltitude.Duringtheclimbthe pilotmaybank(roll)andyawusingtheaileronsandrudder,respectivelytoheadoffin

2 Athrottlecontrolstheamountoffueltotheengine.

1.2Quadrotors7

thedirectionofthedestination.Atacruisingspeedatsomefixedaltitudethepropelleris primarilyproducingenoughthrusttocanceloutthedragforcesotheplanecanmaintain airspeed(andthereforetheliftforce).Thefirstaircraftrequiredalotofphysicaleffort onthepartofthepilottocontrolthemusingmechanicallinkagestomovethecontrol surfaces.However,usingtheseinputsthepilotcanmaketheairplanetakeoff,cruise,and landsafelyeventhoughtherearecrosswinds,airgusts,etc.disruptingtheplane’smotion.

AutomaticControl(Autopilot)

Thebasicideaof automaticcontrol istoreplacethehumanpilotwithanautopilot.The autopilotissimplyacomputerwithinputstoitbeingtheairspeed,theaircraftacceleration,andtheaircraftattitude(roll,pitch,andyawangles).Theautopilotobtainsthe airspeedmeasurementfroma Pitottube mountedontheoutsideoftheplane,theaccelerationfromathree-axisaccelerometersetmountedontheairplaneandtheangularrates fromathree-axisgyroscopesetalsomountedontheplane.Usingthesemeasurements,the autopilotcontinuously(typicallyeverymillisecond)determineswhatanglestherudder, elevatorsandaileronsshouldbeatinordertokeeptheplaneataproperattitudeaswell asthethrottlevaluesotheenginethrustisabletomaintaintherequiredairspeed.The autopilotsendsouttherequiredcontrolsurfacepositionstothecontrolsurfaceswhere motorsmovethesesurfacestothesecommandedvalues.Theautopilotalsosendsthe requiredthrottlevaluetotheenginewhereanothermotormaintainsthethrottleatthis value.Suchanautopilotcanmaintainlevelflightdespitewindgustsactingontheplane.

1.2Quadrotors

Figure1.12isapictureofaquadrotor,whichbasicallyconsistsoffourpropellersallin thesameplaneand90degreesapartconnectedtoamainbody.Byadjustingthespeedof eachpropelleronecancontrolthethrust(aerodynamicforce)producedbyeachpropeller. Thepropellerspeedsaremanagedbyanonboardmicroprocessorthatcontrolstheelectric motorofeachpropeller.

Figure1.12. PhotoofaParrot quadrotorinhover.Source:CourtesyofProfessorAykutSatici.

Firstlet’slookatasinglepropellerconnectedtoanelectricmotorasindicatedin Figure1.13.Forthepurposesofthisdiscussionthinkofthepropeller/motorsystemas beingonafrictionlesssurface.Thusthebottomofthemotorisfreetoslideorrotate withoutbeingstoppedbyanyfrictionfromthetable.

Conservationofangularmomentumrequires

Letthepropellerhaveamomentofinertia Jp aboutthespinaxisandthemotorhavea momentofinertial Jm aboutsameaxis.AsindicatedbythecurvedarrowsinFigure1.13, ifthepropellerrotatescounterclockwisethen ωp > 0,whileifthemotorrotatesclockwise then ωm > 0 Theangularvelocityofthepropellerisdenotedby ωp andithasangular momentum Lp = Jp ωp .Theangularvelocityofthemotorisdenotedby ωm andithas angularmomentum Lm = Jm ωm .Withnoexternalforcesactingonthemotor–propeller systemofFigure1.13,theprincipleof conservationonangularmomentum tellsusthatits totalangularmomentumisconstant,i.e. Lp + Lm =constant.Atstartupthepropelleris offandthemotorisstationarysothisconstantiszero.Afterturningonthepropellerwe mustcontinuetohave Lp + Lm =0or

Consequently,ifthepropellerisspinningcounterclockwisethemotormustspinclockwise. Typically Jp Jm so ωp ωm

Figure1.14isaschematicrepresentationofaquadrotorinflight.Theunitorthogonalvectors ˆ x e , ˆy e , ˆ z e representearth(inertial)coordinatesfixedtotheearth.3 ˆ z e points straightupfromtheearthwhile ˆ x e , ˆy e aretangenttotheearthandorthogonalto eachother.Wehave ˆ z e = ˆ x e × ˆy e so ˆ x e , ˆy e , ˆ z e formaright-handedcoordinatesystem. Let ˆ x b , ˆy b , ˆ z b beunitorthogonalvectorsattachedtothequadrotor(rigidbody)withtheir originatthecenterofmassofthequadrotor.Theunitvector ˆ x b pointstothefrontofthe quadrotor,theunitvector ˆy b pointstotheleftsideofthequadrotor,andtheunitvector ˆ z b pointsup(fromthepointofviewofthequadrotor).Notethat ˆ z b = ˆ x b × ˆy b sothat theyalsoformaright-handedcoordinatesystem. r cm isavectorfromtheoriginofthe

ˆ x e , ˆy e , ˆ z e coordinatesystemtothecenterofmassofthequadrotor,whichistheoriginof the ˆ x b , ˆy b , ˆ z b coordinatesystem.BothsetsofvectorsspanEuclidean3-space,whichwe denoteas E3

Figure1.15isaschematicofaquadrotorinhover,i.e., ˆ z b = ˆ z e withallthepropellers rotatingatthesameangularspeed ωp andthuseachproducingthesameupwardthrust (force) f where f = mg with m themassofthequadrator.NoteinFigure1.15thatthe frontandrearpropellersrotatecounterclockwise,whiletheleftandrightpropellersrotate

3 The“hat”overthevectorsistodenotethemas unit vectors.

Figure1.13.

1.2Quadrotors9

Left side of quadrotor

Front of quadrotor Thrust from propeller

Figure1.14. Quadrotorwiththeinertialandbodycoordinatesystemsshown.

Figure1.15. Ahoveringquadrotor.Thefrontandbackpropellersspincounterclockwise,whilethe leftandrightpropellersspinclockwise.

clockwise.Asaresultthetotalangularmomentum Lzb ofthefourpropellersaboutthe ˆ z b axisiszeroas

where Jzb isthemomentofinertiaofa propeller.As Lzb =0inhoverthebodyofthe quadrotormustalsohavezeroangularmomentumandthusitdoesnotrotateaboutthe ˆ z b axis.

Duetotheconstructionofthequadrotoritsthrustisalwaysinthedirectionofthe ˆ z b axis.Asaconsequence,thequadrotorbodymustberotatedtohaveacomponentofits thrustpointinthedirectionoftravel.Thisisdonebyroll,pitch,andyawmotions.

Figure1.16onthenextpageshowshowthequadrotorperformsa roll motion,thatis, rotatesaboutits ˆ x b axis.InFigure1.16 p denotestheangularvelocityofthequadrotor bodyaboutthe ˆ x b axis.Forthequadrotortorolltoitsrightthepropellerspeedonthe rightsideisdecreasedbyΔωp withaconsequentialdecreaseofΔf initsthrust,whilethe leftpropellerhasitsrotorspeedincreasedbyΔωp withanincreaseinitsthrustofΔf.

Figure1.16. Thequadrotorexecutingarollmotion.

Withthisapproachforrollingthequadrotorthetotalangularmomentum Lzb ofthefour propellersaboutthe ˆ z b axisiszeroas

Byconservationofangularmomentumthebodyofthequadrotordoesnotrotateabout the ˆ z b axisduringthisrollmotion.

Figure1.17showshowthequadrotorperformsa pitch motion,whichisarotationabout its ˆy b axis.InFigure1.17 q denotestheangularvelocityofthequadrotorbodyaboutthe ˆy b axis.Forthequadrotortopitchdownthepropellerspeedoftherearpropellerisincreased byΔωp withaconsequentialincreaseinitsthrustofΔf ,whilethefrontpropellerhas itsrotorspeeddecreasedbyΔωp withandecreaseinitsthrustofΔf. Withthiswayof pitchingthequadrotorthetotalangularmomentumofthefourpropellorsaboutthe ˆ z b axisiszeroas

Asinthecaseofarollmotion,duringapitchmaneuverthebodyofthequadrotordoes notrotateaboutthe ˆ z b axis.

Figure1.17. Thequadrotorexecutingapitchmotion.

FinallyFigure1.18showshowtogetthequadrotorbodytorotateaboutits ˆ z b axis, whichisreferredtoasa yaw motion.InFigure1.18 r denotestheangularvelocityofthe quadrotorbodyaboutthe ˆ z b axis.Forthequadrotortoyawtotheleft(counterclockwise

Figure1.18. Thequadrotorexecutingayawmotion. fromabove),thefrontandrearpropellerspeedsaredecreasedbyΔωp withaconsequential decreaseineachoftheirthrustsbyΔf ,whiletheleftandrightpropellershavetheirspeeds increasedbyΔωp withanincreaseintheirthrustsofΔf each.Incontrasttothepitch androllmotions,thetotalangularmomentumaboutthe ˆ z b axisofthefourpropellersis notzero.Specifically,theirtotalangularmomentumis

Lzb negativetellsusthatthenetangularmomentumofthepropellersisintheclockwise direction.Asangularmomentumisconserved,thebodyofthequadrotorwillrotatecounterclockwise(left).With Jb themomentofinertiaofthequadrotor body aboutthe ˆ z b axis itsangularmomentummustbe Lb = Jb r =4Jzb (Δωp )sothat Lb + Lzb =4Jzb (Δωp ) 4Jzb (Δωp )=0. Theangularvelocityofthequadrotorbodyisthen r =(4Jzb /Jb )Δ

AutomaticControl

Wecanconsidertheinputstothequadrotortobethefourpropellerspeeds.4 Typicallyaquadrotorhasaninertialmeasurementunit(IMU),whichconsistsofathreeaxis accelerometer,athreeaxisrategyro,andathreeaxismagnetometer.Thethreeaccelerometersprovidetheinertialacceleration(i.e.,theaccelerationwithrespecttotheearth)of thequadrotorinthe ˆ x b , ˆy b , ˆ z b directions.Thethreeaxisrategyrogivesangularvelocity vector(p,q,r )ofthequadrotorinthe ˆ x b , ˆy b , ˆ z b coordinatesystem.Thethreeaxismagnetometergivestheambientmagneticfield5 inthe ˆ x b , ˆy b , ˆ z b directions.UsinganIMUthere aremethodstoestimatetheorientationofthequadrotorrelativetotheearthcoordinate system(orientationof ˆ x b , ˆy b , ˆ z b withrespectto ˆ x e , ˆy e , ˆ z e )aswellasthevelocityvector ofthecenterofmassofquadrotorwithrespecttoearth.Basedonthequadrotor’sorientation,velocity,andposition,afeedbackcontroller(analgorithmonamicroprocessor) figuresouthowfasteachpropellershouldspintomakethequadrotorfollowareference trajectory.

4 Thereisan“inner”controllerthatcontrolsthepropellerspeedsbycontrollingthevoltageofthemotor connectedtothepropeller.

5 Sameastheearth’smagneticfieldiftherearenotpowerlinescloseby.

1.3InvertedPendulum

Aclassiccontrolprobleminacademiaistheinvertedpendulumonacart.Itconsistsof arodoflength whichisfreetorotateaboutapivotasshowninFigure1.19.Theidea istoapplytheappropriateforce u tothecarttokeepitunderthependulumrod,i.e.,to thekeeptherodvertical.Specifically,onecangetameasurementof θ and x (sayevery millisecond)andwantstodeterminethevalueof u (alsoeverymillisecond)thatkeeps thependulumatafixedpositionin x andkeeps θ =0.InChapter13wewillderivethe nonlineardifferentialequationsofmotionofthispendulum.Fornowwejuststatethem asfollows:

Thepointhereisthatforanyinput u(t)thesolutiontothesedifferentialequationsgives positionofthecart x(t)andtheangle θ (t)ofthependulumrod.

Figure1.19. Invertedpendulum.

Theseequationsmaylookcomplicated,butthatisonlybecausetheyare!Tosimplify themconsiderthesituationforwhich |θ | and | ˙ θ | = |dθ/dt| remainsmall.Thensin(θ ) ≈ θ, cos(θ ) ≈ 1, and

0sothatEqs.(1.7)and(1.8)canbeapproximatedbythe linear differentialequations

Inyourfirstdifferentialequationscourseyouprimarilystudied linear differentialequations. Thereasonforthisisthatweknowhowtosolvethem!Aswewillshowinlaterchapters,it isalsoknownhowto control aphysicalsystemwithalineardifferentialequationmodel.By thecontroloftheinvertedpendulumwemeanthatgiventhemeasurements x(t),θ (t)the inputvalue u(t)canbechosentokeepthependulumrodvertical.Ifthiscontrollerbased

1.4MagneticLevitation13

onthelinearmodelkeeps |θ | and | ˙ θ | small,thenthelinearmodelisavalidapproximation totheactualpendulumandthecontrollerwillalsoworkontheactualpendulum.

WecanuseLaplacetransformstoconvertlineardifferentialequationsinto algebraic equations.InChapters2and3wewilldoacomprehensivereviewofLaplacetransforms. FornowwejustnotethattheLaplacetransferfunctionmodeloftheinvertedpendulumis

ControlProblem

Thecontrolproblemistousethemeasuredvaluesof x(t)and θ (t)todeterminetheforce u(t)appliedtothecartsothatthependulumroddoesnotfall.Thecontrolalgorithmis simplyafunctionthatgivesthevalueof u(t)giventhevaluesof x(t)and θ (t).Acontroller canbedesignedusingtheabovetransferfunctionmodelortheabovedifferentialequation model.Inthefirsthalfofthebookwebasethecontroldesignonthetransferfunction model,whileinlaterchaptersofthebookadifferentialequationmodelisused.

1.4MagneticLevitation

Inthisexampleweconsideramagneticlevitationsystem.Theschematicgivenin Figure1.20showsawirewrappedaroundacylindricalcoreofironmakinganelectromagnet.

Figure1.20. Asimplemagneticlevitationsystem.

Applyingavoltage u(t)tothecoilresultsinacurrent i(t).Thiscurrentalongwiththe ironcoreproducesamagneticfieldthatextendsbelowtheelectromagnet.Thismagnetic fieldthenmagnetizesthesteelball,i.e.,makesitintoamagnet.Itturnsoutthatthe magneticforceofattractionbetweenthesteelballandtheelectromagnetisupwardand

proportionaltothesquareofthecurrentandinverselyproportionaltothesquareofthe distance.Mathematically,wewritethat Fmag = Ci2 /x2 where C isaconstant.Note inthefigurethatpositive x isdownwardand x =0correspondstothebottomofthe ironcore.

MathematicalModel

Therearecurrent-commandamplifiersthatallowonetohavetheamplifierputouta desiredcurrent.Usingsuchanamplifierwecanconsidertheinputtothemagneticlevitationsystemtobethecurrent i(t). Thedifferentialequationmodelofthismagnetic levitationsystemisthen(seeChapter13)

Here C istheforceconstant, m isthemassofthesteelball,and g istheaccelerationof gravity.Thisdifferentialequationmodelisimportantbecauseforanygiveninputcurrent i(t)tothecoil,thesolutionofthesedifferentialequationsthengivestheresponseofthe position x(t)andvelocity v (t)=˙x(t)ofthesteelball.Howeverthismodelisnonlinear. Asinthecaseoftheinvertedpendulum,wecanobtainanapproximatelinearmodel. Specifically,letthedesired(constant)positionofthesteelballbe x0 andchoosethe current i0 tomaketheball’saccelerationzero,i.e.,

WithΔx x x0 , Δ˙x ˙ x ˙ x

wewillshowinChapter13that

isavalid linear modelforΔx, Δ˙x, and u small.AfterstudyingChapter3youwillbeable toshowthatthecorrespondingLaplacetransformmodelis

Figure1.21isamagneticlevitationsystembuiltbyW.Barie[10].Itshowslightbeing shoneacrossthetopoftheballtoaphotodetectorsensor.Usingthissetuptheposition oftheballbeneaththeelectromagnetcanbefound.

ControlProblem

Basedonmeasurementsof x(t)and v (t),onewantstochoosetheinputvoltage u(t)sothe ballmaintainsafixedposition x0 belowtheelectromagnet,i.e.,itdoesnotfallnorgets suckedintothemagnet.Aproceduretochoose u(t)basedonthevaluesof x(t)and v (t) iscalledthecontrolalgorithmorcontroller.Thecontrolalgorithmisfoundusingeither thedifferentialequationmodelortheLaplacetransformmodel.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.