Flow batteries: from fundamentals to applications christina roth 2024 scribd download

Page 1


Flow Batteries: From Fundamentals to Applications Christina Roth

Visit to download the full and correct content document: https://ebookmass.com/product/flow-batteries-from-fundamentals-to-applications-chri stina-roth/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Thermal Energy Storage: From Fundamentals to Applications

Alexandra Soh

https://ebookmass.com/product/thermal-energy-storage-fromfundamentals-to-applications-alexandra-soh/

Electrochemical Power Sources: Fundamentals, Systems, and Applications: Metal-Air Batteries: Present and Perspectives

Hajime Arai

https://ebookmass.com/product/electrochemical-power-sourcesfundamentals-systems-and-applications-metal-air-batteriespresent-and-perspectives-hajime-arai/

Ferroic materials for smart systems from fundamentals to device applications Dai

https://ebookmass.com/product/ferroic-materials-for-smartsystems-from-fundamentals-to-device-applications-dai/

Zinc Batteries: Basics, Developments, and Applications

https://ebookmass.com/product/zinc-batteries-basics-developmentsand-applications-rajender-boddula/

Rechargeable

Batteries: History, Progress, and Applications Rajender Boddula

https://ebookmass.com/product/rechargeable-batteries-historyprogress-and-applications-rajender-boddula/

Fundamentals of Body MRI 2nd Edition Christopher G. Roth

https://ebookmass.com/product/fundamentals-of-body-mri-2ndedition-christopher-g-roth/

Fundamentals of Body MRI 2nd Edition Edition Christopher Roth

https://ebookmass.com/product/fundamentals-of-body-mri-2ndedition-edition-christopher-roth/

Lithium-Sulfur Batteries: Materials, Challengess and Applications Gupta R.K.

https://ebookmass.com/product/lithium-sulfur-batteries-materialschallengess-and-applications-gupta-r-k/

Photocatalysts and Electrocatalysts in Water

Remediation: From Fundamentals to Full Scale Applications Prasenjit Bhunia

https://ebookmass.com/product/photocatalysts-andelectrocatalysts-in-water-remediation-from-fundamentals-to-fullscale-applications-prasenjit-bhunia/

FlowBatteries

FlowBatteries

FromFundamentalstoApplications

Volume1

FlowBatteries

FromFundamentalstoApplications

Volume2

FlowBatteries

FromFundamentalstoApplications

Volume3

Editors

Prof.Dr.ChristinaRoth UniversityBayreuth ElectrochemicalProcessEngineering Universitätsstraße30 95448Bayreuth Germany

Adj.Assoc.Prof.(UNSW)Dr.JensNoack Fraunhofer-InstituteforChemical Technology AppliedElectrochemistry Joseph-von-Fraunhofer-Str.7 76327Pfinztal Germany

UniversityofNewSouthWales MechanicalandManufacturing Engineering 2052Sydney Australia

Prof.Dr.MariaSkyllas-Kazacos UniversityofNewSouthWales SchoolofChemicalEngineering 2052Sydney Australia

CoverImages:CourtesyofJensNoack; ©Mimadeo/Shutterstock

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie;detailedbibliographicdataareavailable ontheInternetat <http://dnb.d-nb.de>

©2023WILEY-VCHGmbH,Boschstraße12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyothermeans–nortransmittedortranslatedintoamachine languagewithoutwrittenpermissionfromthe publishers.Registerednames,trademarks,etc. usedinthisbook,evenwhennotspecifically markedassuch,arenottobeconsidered unprotectedbylaw.

PrintISBN: 978-3-527-35171-8

ePDFISBN: 978-3-527-83278-1

ePubISBN: 978-3-527-83277-4

oBookISBN: 978-3-527-83276-7

Typesetting Straive,Chennai,India

Editors

Prof.Dr.ChristinaRoth UniversityBayreuth ElectrochemicalProcessEngineering Universitätsstraße30 95448Bayreuth Germany

Adj.Assoc.Prof.(UNSW)Dr.JensNoack Fraunhofer-InstituteforChemical Technology AppliedElectrochemistry Joseph-von-Fraunhofer-Str.7 76327Pfinztal Germany

UniversityofNewSouthWales MechanicalandManufacturing Engineering 2052Sydney Australia

Prof.Dr.MariaSkyllas-Kazacos UniversityofNewSouthWales SchoolofChemicalEngineering 2052Sydney Australia

CoverImages:CourtesyofJensNoack; ©Mimadeo/Shutterstock

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie;detailedbibliographicdataareavailable ontheInternetat <http://dnb.d-nb.de>

©2023WILEY-VCHGmbH,Boschstraße12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyothermeans–nortransmittedortranslatedintoamachine languagewithoutwrittenpermissionfromthe publishers.Registerednames,trademarks,etc. usedinthisbook,evenwhennotspecifically markedassuch,arenottobeconsidered unprotectedbylaw.

PrintISBN: 978-3-527-35172-5

ePDFISBN: 978-3-527-83278-1

ePubISBN: 978-3-527-83277-4

oBookISBN: 978-3-527-83276-7

Typesetting Straive,Chennai,India

Editors

Prof.Dr.ChristinaRoth UniversityBayreuth ElectrochemicalProcessEngineering Universitätsstraße30 95448Bayreuth Germany

Adj.Assoc.Prof.(UNSW)Dr.JensNoack Fraunhofer-InstituteforChemical Technology AppliedElectrochemistry Joseph-von-Fraunhofer-Str.7 76327Pfinztal Germany

UniversityofNewSouthWales MechanicalandManufacturing Engineering 2052Sydney Australia

Prof.Dr.MariaSkyllas-Kazacos UniversityofNewSouthWales SchoolofChemicalEngineering 2052Sydney Australia

CoverImages:CourtesyofJensNoack; ©Mimadeo/Shutterstock

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie;detailedbibliographicdataareavailable ontheInternetat <http://dnb.d-nb.de>

©2023WILEY-VCHGmbH,Boschstraße12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyothermeans–nortransmittedortranslatedintoamachine languagewithoutwrittenpermissionfromthe publishers.Registerednames,trademarks,etc. usedinthisbook,evenwhennotspecifically markedassuch,arenottobeconsidered unprotectedbylaw.

PrintISBN: 978-3-527-35201-2

ePDFISBN: 978-3-527-83278-1

ePubISBN: 978-3-527-83277-4

oBookISBN: 978-3-527-83276-7

Typesetting Straive,Chennai,India

Contents

Volume1

Foreword xxi

Preface xxiii

AbouttheEditors xxvii

PartIFundamentals 1

1TheNeedforStationaryEnergyStorage 3

AnthonyPrice

1.1PowerSystems 3

1.1.1TheRoleofElectricityinEnergySupply 3

1.1.2TheDevelopmentofDCandACPowerSystems 4

1.1.3TheEarlyUseofEnergyStorageonPowerSystems 4

1.1.4CentralisedandDistributedGeneration 4

1.1.5PowerSystemInfrastructure 5

1.1.6OtherTypesofElectricityGenerationandSystemControl 7

1.2TheNeedforElectricityStorage 8

1.2.1OperationofaModernPowerNetwork–TheRequirementfor OperationalStability 8

1.2.2RequirementsforStorageandtheUseofAlternativeTechnologies,such asDemand-SideResponse,Interconnectors,andFlexibleGeneration 8

1.2.3OptimisationofPowerNetworksforTechnicalPerformance,Economic Efficiency,andSustainability–TheEnergyTrilemma 10

1.3ChangesinElectricityNetworkOperation:InterconnectedSystems, Microgrids,andStandaloneSystems 12

1.3.1TheGrowthinRenewableEnergyGeneration 12

1.3.2TheOverlapBetweenStationaryStorageandTransportableandMobile Applications 12

1.4TheParametersforStorage:ShortTerm,SmallScaletoLongTerm,Long Duration,andLarge-ScaleStorage 14

1.4.1StationaryStorageApplications 14

1.5TheNeedforLonger-DurationEnergyStorage 16

1.5.1MarketEstimates 17

1.6EnergyStorageTypes 18

1.6.1Pumped-HydroEnergyStorage 18

1.6.2AlternativestoPumped-HydroStorage 19

1.6.3CompressedAirEnergyStorage 19

1.6.4TheHydrogenCycle 20

1.7BatteryEnergyStorageTechnologies 20

1.7.1FlowBatteries 20

1.7.2FlowBatteryAncillarySystems 21

1.7.2.1AdvantagesandBenefits 22

1.8TheDeploymentofFlowBatteryandEnergyStorage 22

1.9AFutureOutlook 24

References 26

2HistoryofFlowBatteries 29

JensNoack,MariaSkyllas-Kazacos,LarryThaller,GerdTomazic, BjornJonshagen,andPatrickMorrissey

2.1EarlyDevelopments(1884–1963) 29

2.2Fe/CrFBs(1974–mid-2010s) 32

2.3Zinc/BromineFBs(1977–mid2010s) 34

2.41977–1981 35

2.5Vanadium-BasedFlowBatteries(1980s–2010) 37

2.6RegenesysPolysulphide/BromideFlowBattery(1984–Early2000s) 42

2.7OtherFlow-BatteryChemistries2000–2020 44

2.8OrganicFlowBatteries 46

2.9AdvancedFlow-BatteryConcepts 47

2.10Perspective 47 References 48

3GeneralElectrochemicalFundamentalsofBatteries 53

RudolfHolze

3.1Introduction 53

3.2Thermodynamics 55

3.3Kinetics 61

3.4PracticalAspectsandConsequences 66 Acknowledgments 66 References 67

4GeneralAspectsandFundamentalsofFlowBatteries 69

LuisF.Arenas,FrankC.Walsh,andCarlosPoncedeLeón

4.1Introduction 69

4.2TheFlowBattery 71

4.3MainComponentsofaFBEnergyStorageSystem 75

4.4AdvantagesandEnvironmentalBenefits 77

4.5TypesofFB 79

4.6FieldsofApplication 84

4.7IdealCharacteristicsofaFB 85

4.8EngineeringAspectsofFBs 86

4.9FluidFlowAspectsofFBs 87

4.10TypicalFiguresofMerit 90

4.11Conclusions 92 Acknowledgments 93 Abbreviations 94

ListofSymbolsandSubscripts 94 GreekLetters 95 References 95

5Redox-mediatedProcesses 99

DanickReynard,MahdiMoghaddam,CedrikWiberg,SilverSepp, PekkaPeljo,andHubertH.Girault

5.1FundamentalTheoryonRedox-mediatedProcesses 99

5.2Redox-mediatedProcesses:VariousApplicationsforFlowBatteries 101

5.2.1Dual-flowCircuitFlowBattery 101

5.2.2SolidBoosters 106

5.2.2.1ThermodynamicsofSolidBoosters:Equilibrium 109

5.2.2.2KineticsofSolidBoosters 113

5.2.2.3SystemDesign 113

5.3Conclusion 115 References 116

6MembranesforFlowBatteries 121

GiovanniCrivellaro,ChuanyuSun,GioelePagot,EnricoNegro,KetiVezzù, FrancescaLorandi,andVitoDiNoto

6.1Introduction 121

6.2MembraneCharacteristics 123

6.2.1Ion-ExchangeCapacity(IEC) 124

6.2.2WaterUptake(WU),SwellingRatio(SR),andWaterTransport 125

6.2.3IonicConductivity(�� ) 126

6.2.4PermselectivityofChemicalSpecies 128

6.2.5ChemicalStability 129

6.2.6ThermalandMechanicalStability 130

6.2.7CostoftheIEMs 130

6.3ClassificationofMembranes 131

6.3.1Cation-ExchangeMembranes(CEMs) 132

6.3.1.1PerfluorinatedMembranes 132

6.3.1.2Non-perfluorinatedMembranes 134

6.3.2Anion-ExchangeMembranes(AEMs) 137

6.3.3AmphotericIon-ExchangeMembranes(AIEMs) 139

6.3.4HybridMembranes(HMs) 140

6.3.4.1HybridInorganic–OrganicIEMs 141

6.3.4.2OrganicPolymerBlendsasIEMs 142

6.3.5PorousMembranes 143

6.4Conclusions 144 References 146

7StandardsforFlowBatteries 155 JensNoack

7.1Introduction 155

7.2ADefinitionofFlowBatteries 156

7.3InternationalStandardsforFlowBatteries 159

7.3.1StandardsoftheInternationalElectrotechnicalCommission(IEC) 160

7.3.2StandardsoftheInstituteofElectricalandElectronicsEngineers 166

7.4OtherNationalandInternationalStandards,aswellasOther Documents 168

7.5ChineseNationalStandards 171

7.6Conclusions 174 Abbreviations 174 References 174

8SafetyConsiderationsoftheVanadiumFlowBattery 175 AdamH.Whitehead

8.1RegulatoryFramework 175

8.2ThermalHazards 177

8.3ChemicalHazards 178

8.4ElectricalHazards 180

8.5OtherConsiderations 187

8.6Summary&Outlook 187 References 188

9AStudentWorkshopinSustainableEnergyTechnology:The PrinciplesandPracticeofaRechargeableFlowBattery 193 C.T.JohnLow,CarlosPoncedeLeón,RichardG.A.Wills,andFrankC.Walsh

9.1Introduction 193

9.2LaboratoryExperiment 193

9.2.1Chemicals 194

9.2.2MaterialsforConstruction 194

9.3ResultsandDiscussion 195

9.3.1PreparationoftheFlowBattery 195

9.3.2ElectrochemicalReactionsinaSolubleLead–AcidFlowBattery 196

9.3.3EffectofCurrentDensityonCellVoltage 198

9.4AssessmentofHazards 199

9.5TeachingAssessmentandLearningOutcomes 199

9.6Conclusions 200

SupplementaryMaterials 200

Acknowledgments 200

Appendix:SupplementaryInformationforStudents 200

9.AChemicalsandMaterialsfortheSolubleLeadFlowBattery 200

9.BExperimentalProcedure 201

9.CTypesofFlowBattery 202

9.DComponentsofCellVoltage 202

9.ECharacteristicsofaFlowBattery 204

9.FTheEfficiencyofaFlowBattery 205

9.GNomenclature 205

9.HSupplementaryMaterialsfortheInstructor 206 References 209

PartIICharacterizationofFlowBatteriesand Materials 213

10CharacterizationMethodsinFlowBatteries:AGeneral Overview 215

ChristinaRothandMarcusGebhard

10.1GeneralOverview 215

10.1.1PhysicochemicalMethodsinGeneral 215

10.1.2CharacterizationTechniquesforRedox-FlowBatteries 218

10.1.2.1PhysicochemicalCharacterization 218

10.1.2.2ElectrochemicalCharacterization 221

10.1.2.3GeneralObservations 224

10.1.3FurtherOutlineofPartII 224 Acknowledgments 225 References 225

11ElectrochemicalMethods 229

JonathanSchneider,TimTichter,andChristinaRoth

11.1FundamentalDefinitions 229

11.2CyclicVoltammetry 231

11.2.1MeasuringCyclicVoltammetry 231

11.2.2InterpretingCVandLSVatPlanarElectrodes–TheRandles–Šev ˇ cík Relations 233

11.2.3StrategiesforSimulatingCyclicVoltammetry 235

11.2.4TheDiffusionDomainApproximationApproachforFelt Electrodes 237

11.2.5TheReal-SpaceSimulationApproach 240

11.2.6RemarksonCyclicVoltammetry 242

11.3ElectrochemicalImpedanceSpectroscopy 245

11.3.1PrinciplesandAdvantagesofElectrochemicalImpedance Spectroscopy 245

11.3.2InterpretingElectrochemicalImpedanceSpectroscopy 246

11.3.3ImpedanceofMacrohomogeneousPorousElectrodes–ThePaasch Model 248

11.3.4TheNormalizationMethod 248

11.3.5TheDistributionofRelaxationTimes(DRT)Analysis 249

11.3.6Characteristicsofa“GoodImpedance”–TheKramers–Kronig Relations 251

11.3.7AdvancedElectroanalyticalTechniques 252

11.3.7.1HydrodynamicVoltammetry–TheRotatingRing-DiscElectrode (RRDE) 253

11.3.7.2AlternatingCurrentCyclicVoltammetry(ACCV) 254 References 255

12RadiographyandTomography 263 RoswithaZeis

12.1WorkingPrinciple 263

12.1.1MorphologyofElectrodeMaterials 263

12.1.2VisualizingtheFlowandElectrolyteDistributioninthePorous Electrode 267

12.1.2.1InjectionofElectrolyteIntotheCarbonElectrode(NoPotential Control) 268

12.1.2.2ElectrolyteFlowintheCarbonElectrode(CellPotentialApplied) 274

12.2Outlook 276 References 276

13CharacterizationofCarbonMaterials 281 MichaelBron,JuliaMelke,andMatthiasSteimecke

13.1Introduction 281

13.2StructureofCarbonMaterials 283

13.2.1RamanSpectroscopy 283

13.3X-rayPowderDiffraction(XRD) 286

13.4SurfaceChemistryofCarbonMaterials 288

13.5FunctionalizationofCarbons 288

13.5.1ThermalMethods 290

13.5.1.1TPD 291

13.5.1.2TPR/TPO 292

13.5.1.3TG/TGA 292

13.6X-rayPhotoelectronSpectroscopy(XPS) 293

13.7InfraredSpectroscopy 296

13.8ImagingTechniques 297

13.9SurfaceAreaDeterminationandPorosity 298

13.10ConclusionandPerspectives 299

References 300

14CharacterizationofMembranesforFlowBatteries 307

JochenKerres,NicoMans,andHenningKrieg

14.1Introduction 307

14.2ExsituCharacterizationMethodsforMembranes 307

14.2.1Ion-ExchangeCapacityofIonomerMembranes 307

14.2.2IonConductivityofIonogenicGroupsinMembranes 310

14.2.3IonPermeabilityoftheIon-ExchangeMembranes 311

14.2.4MembraneWeightLoss 311

14.2.5MolecularWeight(Degradation)ofIonomersandIonomer Membranes 313

14.2.6DeterminationoftheThermalStabilityoftheMembranes 314

14.2.7SpectroscopicalMembraneCharacterization 315

14.2.8DeterminationofMechanicalMembraneProperties 317

14.2.9MicroscopicalMembraneCharacterization 317

14.2.10WaterTransferBehavior 318

14.3InsituCharacterizationMethodsforMembranes 319

14.3.1Charge/DischargeCycles 319

14.3.1.1Current,Voltage,andEnergyEfficiency 320

14.3.1.2DischargeCapacityandCapacityRetention 324

14.3.2Open-CircuitVoltage 326

14.3.3ElectrochemicalImpedanceSpectroscopy(EIS) 327

14.3.4InsituMembranePermeabilityEstimation 328

14.4Summary 329 References 329

PartIIIModelingandSimulation 333

15QuantumMechanicalModelingofFlowBattery Materials 335 PiotrdeSilva

15.1Introduction 335

15.2FundamentalConceptsofMolecularQuantumMechanics 337

15.3DensityFunctionalTheory 339

15.4ComputationalElectrochemistryattheAtomisticScale 343

15.5ApplicationstoFBMaterials 348 References 351

16MesoscaleModelingandSimulationforFlowBatteries 355 JiaYuandAlejandroA.Franco

16.1MesoscaleModelingIntroduction 355

16.2MesoscaleModelingofElectrochemicalKinetics 356

16.2.1ElectronTransferProcess 356

16.3MesoscaleModelingofElectrifiedInterfaces:MonteCarlo Methods 360

16.3.1KineticMonteCarloMethod 360

16.3.1.1MethodologyofKineticMonteCarloMethod 360

16.3.1.2KMCApplicationsinFBandPorousElectrodeSystems 361

16.3.2GrandCanonicalMonteCarloMethod 362

16.4MesoscaleModelingofTransport:DissipativeParticlesDynamicsand DiscreteElementMethod 364

16.4.1MethodologyofDissipativeParticlesDynamics 364

16.4.2DPDApplicationstoFBs 366

16.4.3DiscreteElementMethod 366

16.5LatticeBoltzmannMethod 367

16.5.1MethodologyofLatticeBoltzmannMethod 367

16.5.2LBMApplicationtoFBs 369

16.6ConclusionandPerspectives 372 References 373

17ContinuumModellingandSimulationofFlowBatteries 379 JakubK.Włodarczyk,GaëlMourouga,RomanP.Schärer,and JürgenO.Schumacher

17.1Introduction 379

17.2AnEngineer’sApproachtoCell-scaleModelling 383

17.2.1IntegratingBatteriesinElectricGrids 383

17.2.2BatteryPerformanceModels 383

17.2.2.1OhmicResistance 385

17.2.2.2InfluenceoftheStateofCharge 385

17.2.2.3OverpotentialsandMassTransportProblems 385

17.2.3SystemEfficiencyModelling 387

17.2.3.1PumpingLosses 387

17.2.3.2CoulombicEfficiency 387

17.2.3.3Round-tripEfficiency 388

17.2.4LifetimeModels 388

17.2.4.1PracticalandTheoreticalCapacity 388

17.2.4.2CapacityFadeThroughMembraneTransport 389

17.2.4.3Degradation 390

17.2.5TowardsFlow-BatteryFundamentals 390

17.3FundamentalsofFlowBatteries:AThermodynamicPerspective 390

17.3.1ModellingtheOpen-CircuitVoltage 391

Example17.1:OCPPredictionsinHydrogen-BromineSystem 393

17.3.2NonequilibriumThermodynamics 396

17.3.2.1GeneralBalanceLaws 396

17.3.2.2ConstitutiveRelations 397

17.3.2.3ConcentratedElectrolyteSolutions 397

17.3.2.4GeneralisedNernst–PlanckModels 398

17.3.2.5TransportThroughMembranes 399

17.4MultiscaleModellingofPorousElectrodes 400

17.4.1ElectrochemicalInterfaceModels 400

17.4.2PorousElectrodeModelling 401

17.5DiscussionandConclusions 403 References 404

18Pore-scaleModelingofFlowBatteries 413

AmadeusWolf,SusanneKespe,andHermannNirschl ListofSymbols 413

18.1Introduction 414

18.2MicrostructureCharacterization 415

18.2.1ReconstructionofExperimentally-GainedImages 416

18.2.2StochasticMicrostructureGeneration 418

18.2.3StructuredElectrodes 419

18.3Theory 419

18.3.1FluidTransport 420

18.3.2SpeciesTransport 420

18.3.3ElectrochemicalReaction 421

18.3.4ChargeTransport 422

18.3.5BoundaryandInitialConditions 423

18.3.5.1BoundaryConditionsforFluidTransport 423

18.3.5.2BoundaryConditionsforSpeciesTransport 423

18.3.5.3BoundaryConditionsforChargeTransport 423

Contents

18.3.6ComputationalDetails 424

18.4NumericalMethods 424

18.4.1FiniteVolumeMethod 424

18.4.2Taylor–GalerkinFiniteElementMethods 425

18.4.3LatticeBoltzmannMethod 425

18.5ValidationoftheNumericalModel 425

18.6SimulationStudy 426

18.6.1NumericalInvestigationsonStructuredElectrodes 426

18.6.1.1EffectofDifferentInitialConcentrations 427

18.6.1.2EffectofElectrodeActiveSurfaceArea 427

18.6.2NumericalInvestigationsonReconstructedMicrostructure 430

18.7Pore-scaleModelingExamples 434

18.7.1PoreNetworkModels 434

18.7.2MultiphaseReactiveTransportModel 435

18.7.3ModelforDeterminationoftheMassTransferCoefficient 436

18.7.4Three-dimensionalPore-scaleLatticeBoltzmannModel 437

18.8Conclusion 437

Acknowledgment 438 References 439

19DynamicModellingofVanadiumFlowBatteriesforSystem MonitoringandControl 443

JieBaoandYitaoYan

19.1DynamicModellingofVFB 444

19.1.1DynamicStackMassBalanceModel 444

19.1.1.1MassBalanceDuringNormalOperation 445

19.1.1.2Self-dischargeDuringStandby 448

19.1.2DynamicStackThermalModel 450

19.1.3SimulationStudyonVFB 452

19.2BatterySystemMonitoringandControl 456

19.2.1ElectrolyteFlowrateControl 457

19.2.2PowerFlowControl 458 Nomenclature 459 References 460

20Techno-economicModellingandEvaluationofFlow Batteries 463

ChristineMinkeandThomasTurek

20.1Introduction 463

20.2GoalandScopeDefinitionofTechno-economicAssessment 463

20.2.1RethinkingGoalDefinition 464

20.2.2RethinkingScopeDefinition 466

20.2.2.1TechnicalSystemDefinition 466

20.2.2.2EconomicSystemDefinition 468

20.3MethodologyofTechno-economicModelling 468

20.3.1Multi-levelModellingofFB 468

20.3.1.1ElectrochemicalLevel 469

20.3.1.2ComponentLevel 470

20.3.1.3System-Level 471

20.3.2EconomicModellingMethods 472

20.3.2.1CapitalCosts 472

20.3.2.2TotalCostofStorage 473

20.4DataBasisandQuality 474

20.4.1InputData 475

20.4.2PrimaryandSecondaryData 475

20.4.3Uncertainty 476

20.5Meta-analysisofTechno-economicModellingandEvaluation Studies 476

20.5.1ReviewandClassificationofTechno-economicModelling Approaches 477

20.5.1.1GoalandScopeDefinitionsinLiterature 477

20.5.1.2Techno-economicModellingandDatainLiterature 478

20.5.2ResultsofTechno-economicEvaluationinLiterature 480

20.5.2.1CostStructureofVFB 480

20.5.2.2CapitalCostsofVFB 480

20.5.2.3LCOSofVFB 481

20.6Conclusions 482 References 483

21MachineLearningforFBElectrolyteScreening 487

Laura-SophieBerg,JanHamaekers,andAstridMaass

21.1Introduction 487

21.2Data-DrivenModels 489

21.2.1TrainingData 490

21.2.2ComputedDataSets 490

21.2.2.1ExperimentalDataSets 491

21.2.3RepresentationandFeatures 491

21.2.4Machine-LearningTechniques 493

21.3FBApplication 494

21.3.1StandardPotential 494

21.3.2Solubility 496

21.4ConclusionandOutlook 499

Acknowledgement 500 References 500

Volume2

Foreword xvii

Preface xix

AbouttheEditors xxiii

PartIVVanadiumFlowBatteries 507

22TheHistoryoftheUNSWAll-VanadiumFlowBattery Development 509 MariaSkyllas-Kazacos

23VanadiumElectrolytesandRelatedElectrochemical Reactions 539 NataliyaV.Roznyatovskaya,KarstenPinkwart,andJensTübke

24ElectrodesforVanadiumFlowBatteries(VFBs) 563 D.N.Buckley,A.Bourke,N.Dalton,M.AlhajjiSafi,D.Oboroceanu, V.Sasikumar,andR.P.Lynch

25MembranesforVanadiumFlowBatteries 589 PurnaChandraGhimire,ArjunBhattaraj,NyuntWai,andTutiMarianaLim

26AdvancedFlowfieldArchitectureforVanadiumFlow Batteries 607 YasserAshrafGandomi,D.Aaron,andM.M.Mench

27State-of-ChargeMonitoringforVanadiumRedoxFlow Batteries 627 YifengLi

28Rebalancing/RegenerationofVanadiumFlowBatteries 641 NicolaPoli,AndreaTrovò,andMassimoGuarnieri

29LifeCycleAnalysisofVanadiumFlowBatteries 659 CarmenM.Fernández-Marchante,MaríaMillán,andJustoLobato

30Next-GenerationVanadiumFlowBatteries 673

ChrisMenictasandMariaSkyllas-Kazacos

31AsymmetricVanadium-basedAqueousFlowBatteries 689

SoowhanKim,LitaoYan,andWeiWang

PartVOtherImportantInorganicFlowBattery Technologies 709

32Zn/BrBattery–EarlyResearchandDevelopment 711 GerdTomazic

33Iron–ChromiumFlowBattery 741

HuanZhangandChuanyuSun

34AnOverviewofthePolysulfide/BromineFlowBattery 765 PatrickMorrissey

35Fe/FeFlowBattery 791

RobertF.Savinell,NicholasSinclair,XiaochenShen,JuliaSong,and JesseS.Wainright

36Zinc–CeriumandRelatedCerium-BasedFlowBatteries: ProgressandChallenges 819

LuisF.Arenas,FrankC.Walsh,andCarlosPoncedeLeón

37UndividedCopper–LeadDioxideFlowBatteryBasedon SolubleCopperandLeadinAqueousMethanesulphonic Acid 837

R.C.Tangirala,F.C.Walsh,andC.PoncedeLeón

38All-copperFlowBatteries 855

LauraSanz,WouterD.Badenhorst,GiampaoloLacarbonara, LuigiFaggiano,DavidLloyd,PerttiKauranen,CatiaArbizzani,and LasseMurtomäki

39Hydrogen-BasedFlowBatteries 875

DouglasI.KushnerandAdamZ.Weber

Volume3

Foreword xvii

Preface xix

AbouttheEditors xxiii

PartVIOrganicFlowBatteries 895

40AqueousOrganicFlowBatteries 897

YanJing,RoyG.Gordon,andMichaelJ.Aziz

41MetalCoordinationComplexesforFlowBatteries 923

BenjaminD.Silcox,CurtM.Wong,XiaoliangWei,ChristoSevov,and LeviT.Thompson

42OrganicRedoxFlowBatteries:Lithium-Ion-basedFBs 951

FeifeiZhangandQingWang

43NonaqueousMetal-FreeFlowBatteries 975

KathrynToghillandCraigArmstrong

44PolymericFlowBatteries 1007

OliverNolte,MartinD.Hager,andUlrichS.Schubert

PartVIIIndustrialandCommercializationAspectsofFlow Batteries 1025

45InverterInterfacingandGridBehaviour 1027

JohnFletcherandJiachengLi

46Flow-BatterySystemTopologiesandGridConnection 1041

ThomasLüth,ThorstenSeipp,andDavidKienbaum

47VanadiumFBESsinstalledbySumitomoElectric Industries,Ltd 1055

ToshioShigematsuandToshikazuShibata

48IndustrialApplicationsofFlowBatteries 1079

PavelMardilovichandMartinHarrer

49ApplicationsofVFBinRongkePower 1099 HuaminZhang

50Metal-FreeFlowBatteriesBasedonTEMPO 1115

TobiasJanoschkaandOlafConrad

51CommercializationofAll-IronRedoxFlow-Battery Systems 1127

JuliaSong

52ApplicationofHydrogen–BromineFlowBatteries:Technical Paper 1145 WiebrandKoutandYohanesA.Hugo

53SomeNotesonZinc/BromineFlowBatteries 1153 BjornHage

54MobileApplicationsoftheZBB 1171 GerdTomazic

Index 1201

Contents

Volume1

Foreword xxi

Preface xxiii

AbouttheEditors xxvii

PartIFundamentals 1

1TheNeedforStationaryEnergyStorage 3 AnthonyPrice

2HistoryofFlowBatteries 29 JensNoack,MariaSkyllas-Kazacos,LarryThaller,GerdTomazic, BjornJonshagen,andPatrickMorrissey

3GeneralElectrochemicalFundamentalsofBatteries 53 RudolfHolze

4GeneralAspectsandFundamentalsofFlowBatteries 69 LuisF.Arenas,FrankC.Walsh,andCarlosPoncedeLeón

5Redox-mediatedProcesses 99 DanickReynard,MahdiMoghaddam,CedrikWiberg,SilverSepp, PekkaPeljo,andHubertH.Girault

6MembranesforFlowBatteries 121 GiovanniCrivellaro,ChuanyuSun,GioelePagot,EnricoNegro,KetiVezzù, FrancescaLorandi,andVitoDiNoto

7StandardsforFlowBatteries 155 JensNoack

8SafetyConsiderationsoftheVanadiumFlowBattery 175 AdamH.Whitehead

9AStudentWorkshopinSustainableEnergyTechnology:The PrinciplesandPracticeofaRechargeableFlowBattery 193 C.T.JohnLow,CarlosPoncedeLeón,RichardG.A.Wills,and FrankC.Walsh

PartIICharacterizationofFlowBatteriesand Materials 213

10CharacterizationMethodsinFlowBatteries:AGeneral Overview 215

ChristinaRothandMarcusGebhard

11ElectrochemicalMethods 229

JonathanSchneider,TimTichter,andChristinaRoth

12RadiographyandTomography 263 RoswithaZeis

13CharacterizationofCarbonMaterials 281 MichaelBron,JuliaMelke,andMatthiasSteimecke

14CharacterizationofMembranesforFlowBatteries 307 JochenKerres,NicoMans,andHenningKrieg

PartIIIModelingandSimulation 333

15QuantumMechanicalModelingofFlowBattery Materials 335 PiotrdeSilva

16MesoscaleModelingandSimulationforFlowBatteries 355 JiaYuandAlejandroA.Franco

17ContinuumModellingandSimulationofFlowBatteries 379 JakubK.Włodarczyk,GaëlMourouga,RomanP.Schärer,and JürgenO.Schumacher

18Pore-scaleModelingofFlowBatteries 413

AmadeusWolf,SusanneKespe,andHermannNirschl

19DynamicModellingofVanadiumFlowBatteriesforSystem MonitoringandControl 443

JieBaoandYitaoYan

20Techno-economicModellingandEvaluationofFlow Batteries 463

ChristineMinkeandThomasTurek

21MachineLearningforFBElectrolyteScreening 487

Laura-SophieBerg,JanHamaekers,andAstridMaass

Volume2

Foreword xvii

Preface xix

AbouttheEditors xxiii

PartIVVanadiumFlowBatteries 507

22TheHistoryoftheUNSWAll-VanadiumFlowBattery Development 509

MariaSkyllas-Kazacos

22.1Introduction 509

22.2InitialElectrolyteStudiesatUNSWandFirstAll-VanadiumRedoxCell Patent 509

22.3FirstLicence 512

22.4Low-CostElectrolyteProcessBreakthrough 512

22.5FurtherLicencingandEarlyFieldTrialsandDemonstrations 513

22.6SaleofUNSWVFBPatents 516

22.7UNSWVanadiumFlowCellResearchHighlights 518

22.7.1ElectrolyteCharacterisationandOptimisation 519

22.7.2ElectrodeMaterialScreeningandDevelopment 523

22.7.3ElectrocatalysisofGraphiteElectrodesforIncreasedCell Performance 524

22.7.4ElectrodeSubstrateMaterialsandBipolarElectrodeDevelopment 525

22.7.5MembraneScreening,Evaluation,andModification 527

22.7.6StudiesofWaterTransferProcessesAcrossIonExchangeMembranesin theVFB 528

22.7.7FlowRateControlandBatteryManagement 529

22.8Summary 531 References 531

23VanadiumElectrolytesandRelatedElectrochemical Reactions 539

NataliyaV.Roznyatovskaya,KarstenPinkwart,andJensTübke

23.1ElectrolyteComposition 539

23.1.1VanadiumSpeciation 542

23.2PhysicochemicalPropertiesofVFBElectrolytes 544

23.3ElectrochemicalReactionsinVFB 547

23.4TypesofVFBElectrolyteDegradationandMitigationStrategies 550

23.5ElectrolyteProduction 554

23.6Summary 559 References 559

24ElectrodesforVanadiumFlowBatteries(VFBs) 563

D.N.Buckley,A.Bourke,N.Dalton,M.AlhajjiSafi,D.Oboroceanu, V.Sasikumar,andR.P.Lynch

24.1Introduction 563

24.2ElectrodeRequirementsandMaterials 563

24.2.1CarbonandGraphiteFelts 564

24.2.2CarbonPapers 565

24.2.3NovelElectrodeMaterials 566

24.2.4BipolarPlates 567

24.2.5ThermalandChemicalPretreatmentsofElectrodes 567

24.3ElectrodeKineticsandMechanismoftheVII /VIII andVIV /VV Redox Reactions 568

24.3.1StudiesofElectrodeKineticsonCarboninConventional Three-ElectrodeCells 570

24.3.2EffectsofElectrochemicalPretreatmentonElectrodeKinetics 571

24.3.3OtherStudiesofElectrochemicalandThermalPretreatment 575

24.3.4MechanismsofReactionsandSurfaceProcesses 576

24.4EffectsofElectrodesontheLong-TermPerformanceofVFBs 578

24.4.1SideReactionsatVFBElectrodes 578

24.4.2CarbonCorrosion 579

24.4.3DegradationofElectrodePerformance 580

24.5Summary 581 References 582

25MembranesforVanadiumFlowBatteries 589 PurnaChandraGhimire,ArjunBhattaraj,NyuntWai,andTutiMarianaLim

25.1Introduction 589

25.2MembranesforVanadiumFlowBattery 590

25.2.1NomenclaturesandTypesofMembranes 590

25.2.1.1Cation-ExchangeMembrane(CEM) 590

25.2.1.2AnionExchangeMembrane(AEM) 593

25.2.1.3Amphoteric-IonExchangeMembranes(AIEM) 594

25.2.1.4NonionicPorousMembrane 595

25.2.2MembranePreparationMethods 596

25.2.2.1CastingMethod 596

25.2.2.2ExtrusionProcess 596

25.2.2.3GraftPolymerization 597

25.2.2.4Layer-to-LayerSelf-AssembledMethod 597

25.2.3MembraneCharacteristicsandMeasurement 597

25.2.3.1IonExchangeCapacity(IEC) 597

25.2.3.2WaterUptake(WU)andSwellingRatio(SR) 597

25.2.3.3WaterTransportMeasurement 598

25.2.3.4Area-SpecificResistance 598

25.2.3.5IonPermeabilityMeasurement 598

25.2.3.6ChemicalStability 599

25.2.4PerformanceinFlowBatteries 599

25.3RecentDevelopmentsandFutureDirections 600

25.4Conclusions 601 Acknowledgment 602 References 602

26AdvancedFlowfieldArchitectureforVanadiumFlow Batteries 607

YasserAshrafGandomi,D.Aaron,andM.M.Mench

26.1Introduction 607

26.1.1PriorEffortsinElectrochemicalReactorDesignforVRFBs 610

26.1.2Cell-BasedPerformanceofVRFBs:EnergyEfficiencyComparison 615

26.2PrinciplesofReactorDesign 615

26.2.1HighPerformance 616

26.2.2CapacityRetention 619

26.2.3EnhancedElectrolyteUtilization(HigherDepthof Charge/Discharge) 620

26.2.4LowerParasiticLosses 622

26.3Outlook 623

References 625

27State-of-ChargeMonitoringforVanadiumRedoxFlow Batteries 627

YifengLi

27.1Introduction 627

27.2SOCMonitoringBasedonElectrolyteProperties 628

27.2.1Open-CircuitPotential 628

x Contents

27.2.2Half-cellPotential 630

27.2.3ElectrolyteConductivity 632

27.2.4ElectrolyteDensityandViscosity 634

27.2.5SpectroscopicMethods 634

27.2.6UltrasonicMethods 635

27.3Model-BasedSOCEstimation 636

27.3.1CoulombCounting 636

27.3.2StateObserver-BasedEstimation 637

27.4Summary 637

References 638

28Rebalancing/RegenerationofVanadiumFlowBatteries 641

NicolaPoli,AndreaTrovò,andMassimoGuarnieri

28.1Introduction 641

28.2ElectrolyteImbalance 642

28.3RebalancingProcesses 647

28.3.1PhysicalRegenerationProcess 647

28.3.2ChemicalRegenerationProcess 649

28.3.3ElectrochemicalRegenerationProcess 650

28.4Summary 653

References 654

29LifeCycleAnalysisofVanadiumFlowBatteries 659

CarmenM.Fernández-Marchante,MaríaMillán,andJustoLobato

29.1Introduction 659

29.2TheLCAMethodology 660

29.3DefinitionofBoundariesfortheVFB 661

29.4LCAofVFB 663

29.5ComparisonwithOtherBatteries 664

29.6Conclusions 669 References 669

30Next-GenerationVanadiumFlowBatteries 673

ChrisMenictasandMariaSkyllas-Kazacos

30.1Introduction 673

30.2Generation1All-VanadiumFlowBattery 675

30.3Generation2VanadiumBromideFlowBattery 678

30.4Generation3VFBwithH2 SO4 andHCIMixedAcidElectrolyte 681

30.5Generation4VanadiumOxygenFuelCell 682

30.6Conclusion 685 References 685

31AsymmetricVanadium-basedAqueousFlowBatteries 689 SoowhanKim,LitaoYan,andWeiWang

31.1Introduction 689

31.2V–FeFlowBattery 690

31.2.1V–FeElectrolyte 691

31.2.2Low-costHydrocarbonMembranes 693

31.3V–H2 FlowBattery 694

31.3.1ElectrodeforV–H2 FBs 698

31.3.2AdvantagesofV–H2 FB 698

31.4V–CeFB 700

31.5V–MnandV–CoFBs 702

31.6Summary 704 References 705

PartVOtherImportantInorganicFlowBattery Technologies 709

32Zn/BrBattery–EarlyResearchandDevelopment 711 GerdTomazic

32.1Introduction 711

32.2Exxon-Zn/Br-DesignatProjectStartin1983 712

32.2.1TheBipolarStack 713

32.2.2StackAssembly 715

32.2.2.1PreparingforShuntCurrentProtection.StepC 716

32.2.2.2StackSealing(StepD) 718

32.2.2.3TheStackingProcedure 718

32.2.3ReservoirandPeriphery 720

32.2.4MainProblemsEncountered 721

32.2.4.1WarpageofStackComponents 721

32.2.4.2InternalandExternalLeakage 722

32.2.4.3ShuntCurrentProtection 723

32.2.4.4Collector 723

32.3DesignDevelopmentatSEA 723

32.3.1ElectrodeDevelopment 723

32.3.2SeparatorDevelopment 723

32.3.3CollectorDevelopment 724

32.3.4StackWeldingDevelopment 724

32.3.5DevelopmentofElectrolyteLoopPeriphery 728

32.3.5.1StackConnector 730

32.3.6HandlingofShuntCurrent 730

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.