Instant download Machine learning algorithms for signal and image processing suman lata tripathi pdf

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/machine-learning-algorithms-for-signal-and-image-pr ocessing-suman-lata-tripathi/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Machine Learning for Signal Processing: Data Science, Algorithms, and Computational Statistics Max A. Little

https://ebookmass.com/product/machine-learning-for-signalprocessing-data-science-algorithms-and-computational-statisticsmax-a-little/

Digital VLSI Design and Simulation with Verilog Suman Lata Tripathi

https://ebookmass.com/product/digital-vlsi-design-and-simulationwith-verilog-suman-lata-tripathi/

Green Energy: Solar Energy, Photovoltaics, and Smart Cities Suman Lata Tripathi

https://ebookmass.com/product/green-energy-solar-energyphotovoltaics-and-smart-cities-suman-lata-tripathi/

Introduction to algorithms for data mining and machine learning Yang

https://ebookmass.com/product/introduction-to-algorithms-fordata-mining-and-machine-learning-yang/

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms,

https://ebookmass.com/product/fundamentals-of-machine-learningfor-predictive-data-analytics-algorithms/

Methods and techniques for fire detection : signal, image and video processing perspectives 1st Edition Çetin

https://ebookmass.com/product/methods-and-techniques-for-firedetection-signal-image-and-video-processing-perspectives-1stedition-cetin/

Signal processing for multistatic radar systems: adaptive waveform selection, optimal geometries and pseudolinear tracking algorithms Do■ançay

https://ebookmass.com/product/signal-processing-for-multistaticradar-systems-adaptive-waveform-selection-optimal-geometries-andpseudolinear-tracking-algorithms-dogancay/

Introduction to Algorithms for Data Mining and Machine Learning Xin-She Yang

https://ebookmass.com/product/introduction-to-algorithms-fordata-mining-and-machine-learning-xin-she-yang/

Machine Intelligence, Big Data Analytics, and IoT in Image Processing Ashok Kumar

https://ebookmass.com/product/machine-intelligence-big-dataanalytics-and-iot-in-image-processing-ashok-kumar/

IEEEPress

445HoesLane

Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktssonAndreasMolischDiomidisSpinellis

AnjanBoseSaeidNahavandiAhmetMuratTekalp

AdamDrobot

Peter(Yong)Lian

JeffreyReed ThomasRobertazzi

MachineLearningAlgorithmsforSignalandImageProcessing

Editedby

DeepikaGhai

LovelyProfessionalUniversity,IN

SumanLataTripathi

LovelyProfessionalUniversity,IN

SobhitSaxena

LovelyProfessionalUniversity,IN

ManashChanda

MeghnadSahaInstituteofTechnology,IN

MamounAlazab

CharlesDarwinUniversity,AS

Copyright©2023byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic, mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection107or108ofthe1976UnitedStates CopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriate per-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)750-4470,or onthewebatwww.copyright.com.RequeststothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment, JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/ go/permission.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons,Inc.and/oritsaffiliatesinthe UnitedStatesandothercountriesandmaynotbeusedwithoutwrittenpermission.Allothertrademarksarethepropertyoftheir respectiveowners.JohnWiley&Sons,Inc.isnotassociatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthisbook,they makenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisbookandspecifically disclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedby salesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.You shouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernortheauthorshallbeliableforanylossofprofitorany othercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.Further,readersshould beawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread. Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomerCareDepartment withintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailableinelectronic formats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationDataAppliedfor:

HardbackISBN:9781119861829

CoverDesign:Wiley

CoverImage:©Ryzhi/Shutterstock

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Contents

EditorBiography xix

ListofContributors xxi

Preface xxix

Acknowledgments xxxi

SectionIMachineLearningandDeepLearningTechniquesforImageProcessing 1

1ImageFeaturesinMachineLearning 3 AnterpreetK.BediandRameshK.Sunkaria

1.1Introduction 3

1.2FeatureVector 4

1.3Lower-LevelImageFeatures 5

1.3.1Color 5

1.3.1.1ColorHistogram 5

1.3.1.2ColorMoments 6

1.3.1.3ColorCoherenceVector 6

1.3.1.4ColorCorrelogram 6

1.3.2Texture 6

1.3.2.1SignalProcessing-BasedFeatures 6

1.3.2.2StructuralFeatures 7

1.3.2.3Model-BasedFeatures 7

1.3.2.4StatisticalFeatures 7

1.3.3Shape 15

1.3.3.1ShapeFeaturesBasedonBoundary 15

1.3.3.2ShapeFeaturesBasedonRegion 16

1.4Conclusion 16 References 16

2ImageSegmentationandClassificationUsingDeepLearning 19 AbhisekRayandMaheshkumarH.Kolekar

2.1Introduction 19

2.2ImageSegmentation 20

2.2.1TypesofDL-BasedSegmentation 20

2.2.1.1InstanceSegmentationUsingDeepLearning 20

2.2.1.2SemanticSegmentationUsingDeepLearning 20

2.2.2AdvantagesandApplicationsofDL-BasedSegmentation 21

2.2.3TypesandLiteratureSurveyRelatedtoDL-BasedSegmentation 21

2.2.3.1FullyConvolutionModel 21

2.2.3.2CNNwithGraphicalModel 21

2.2.3.3DilatedConvolutionModel 22

2.2.3.4Encoder–DecoderModel 22

2.2.3.5R-CNNBasedModel 23

2.2.3.6MultiscalePyramidBasedModel 24

2.2.3.7RNNBasedModel 25

2.2.3.8GenerativeAdversarialNetwork(GAN)BasedModel 25

2.2.3.9SegmentationModelBasedonAttentionMechanism 26

2.3ImageClassification 27

2.3.1TypesandSchemesinImageClassification 27

2.3.2TypesandLiteratureSurveyRelatedtoDL-BasedImageClassification 28

2.3.2.1CNNBasedImageClassification 28

2.3.2.2CNN–RNNBasedImageClassification 30

2.3.2.3Auto-encoderBasedImageClassification 31

2.3.2.4GANBasedImageClassification 31

2.4Conclusion 32 References 32

3DeepLearningBasedSyntheticApertureRadarImageClassification 37 J.AnilRajandSumamM.Idicula

3.1Introduction 37

3.2LiteratureReview 38

3.3DatasetDescription 38

3.4Methodology 39

3.5ExperimentalResultsandDiscussions 41

3.6Conclusion 43 References 43

4DesignPerspectivesofMulti-taskDeep-LearningModelsandApplications 45 YeshwantSingh,AnupamBiswas,AngshumanBora,DebashishMalakar,SubhamChakraborty,and SumanBera

4.1Introduction 45

4.2DeepLearning 46

4.2.1Feed-ForwardNeuralNetwork 47

4.2.2ConvolutionNeuralNetwork 47

4.2.2.1ConvolutionLayer 47

4.2.2.2PoolingLayer 48

4.2.3RecurrentNeuralNetwork 48

4.3Multi-taskDeep-LearningModels 48

4.3.1ClassificationModels 48

4.3.1.1Multi-attributeRecognitionModelsUsingJointLearningofFeatures 48

4.3.1.2Multi-taskFacialAttributesClassificationModelUsingFeatureFusion 50

4.3.2PredictionModels 50

4.3.2.1Multi-taskingonTime-SeriesData 50

4.3.2.2Multi-stepForecastingonMultivariateTimeSeriesUsingSplitLayers 51

4.3.3MixedModels 52

4.4DesignandImplementation 52

4.4.1Multi-taskLearningMethodsusedforDeepLearning 52

4.4.1.1HardParameterSharing 52

4.4.1.2SoftParameterSharing 53

4.4.2VariousDesignofMulti-taskLearning 53

4.4.2.1DeepRelationshipNetworks 53

4.4.2.2FullyAdaptiveFeatureSharing 54

4.4.2.3Cross-stitchNetworks 54

4.4.2.4WeightingLosseswithUncertainty 54

4.4.2.5TensorFactorizationforMTL–SluiceNetworks 54

4.4.2.6JointMany-TaskModel 55

4.4.3CommonProblemswithDesignandImplementation 55

4.4.3.1CombiningLosses 55

4.4.3.2TuningLearningRates 57

4.4.3.3UsingEstimatesasFeatures 57

4.5Applications 57

4.5.1ImageDomain 57

4.5.2TextDomain 58

4.5.3Others 59

4.6EvaluationofMulti-taskModels 59

4.7ConclusionandFutureDirections 60

Acknowledgment 61

References 61

5ImageReconstructionUsingDeepLearning 65

AneetaChristopher,R.HariKishan,andP.V.Sudeep

5.1Introduction 65

5.2DL-IRMethods 67

5.2.1DL-MMSEMethodsforIRTasks 67

5.2.1.1DL-MMSEMethodsUsingAEs 67

5.2.1.2DL-MMSEMethodsUsingCNNs 68

5.2.2MAPBasedDL-IRMethods 72

5.2.3OtherDL-SRMethods 75

5.2.3.1SupervisedSRTechniques 75

5.2.3.2UnsupervisedSRTechniques 77

5.2.4OtherDL-IRTasks 77

5.3DL-BasedMedicalImageReconstruction 78

5.4Conclusion 81

Acknowledgment 81 References 81

6MachineandDeep-LearningTechniquesforImageSuper-Resolution 89

AshishKumar,SachinSrivastava,andPratikChattopadhyay

6.1Introduction 89

6.1.1Motivation 90

6.1.2ApplicationsofImageSuper-Resolution 90

6.1.2.1SatelliteImaging 91

6.1.2.2MedicalDiagnosis 91

6.1.2.3Surveillance 92

6.1.2.4VideoEnhancement 92

6.1.3MajorContributionsandOrganizationoftheChapter 92

6.2TraditionalUpsamplingApproaches 93

6.2.1NearestNeighborInterpolation 93

6.2.2BilinearInterpolation 93

6.2.3BicubicInterpolation 93

6.3PrimitiveMachine-Learning-BasedApproaches 94

6.3.1FrequencyDomain 94

6.3.1.1FastFourierTransform 95

6.3.1.2WaveletTransform 95

6.3.2SpatialDomain 96

6.3.2.1IterativeBackProjection 96

6.3.2.2MaximumLikelihoodEstimation 96

6.3.2.3MaximumAPosteriori(MAP)Estimation 97

6.3.2.4Self-Similarity-BasedApproach 98

6.3.2.5Learning-BasedApproach 98

6.3.2.6Sparse-BasedApproach 98

6.4ModernDeep-Learning-BasedApproaches 98

6.4.1Upsampling-BasedClassification 98

6.4.2Network-BasedClassification 100

6.4.2.1LinearNetworks 100

6.4.2.2ResidualNetworks 100

6.4.2.3RecursiveNetworks 101

6.4.2.4ProgressiveReconstructionNetworks 102

6.4.2.5DenselyConnectedNetworks 103

6.4.2.6Attention-BasedNetworks 103

6.4.2.7GAN-BasedNetworks 104

6.4.3DiscussiononDifferentTypesofLossFunctions 105

6.4.3.1PixelLoss 105

6.4.3.2ContentLoss 106

6.4.3.3TextureLoss 106

6.4.3.4AdversarialLoss 106

6.5PerformanceMetricsandComparativeStudyofExistingTechniques 107

6.5.1ObjectiveEvaluation 107

6.5.1.1PeakSignal-to-NoiseRatio(PSNR) 107

6.5.1.2StructuralSimilarityIndexMeasure(SSIM) 108

6.5.2SubjectiveEvaluation 108

6.5.3Datasets 108

6.5.3.1TrainingDataset 108

6.5.3.2TestingDataset 109

6.5.4EvaluationResults 109

6.6SummaryandDiscussions 110 References 111

SectionIIMachineLearningandDeepLearningTechniquesforTextandSpeech Processing 115

7MachineandDeep-LearningTechniquesforTextandSpeechProcessing 117

7.1TextProcessing 117

7.1.1AutomaticTexttoImageGenerationorVice-VersaUsingMachineandDeepLearning 117

7.1.2AutomaticImageCaptionGenerationUsingMachineandDeepLearning 118

7.1.3ManipuriHandwrittenScriptRecognitionUsingMachineandDeepLearning 119

7.1.4NaturalLanguageProcessingUsingMachineandDeepLearning 122

7.2SpeechProcessing 122

7.2.1SmartSignLanguageRecognitionSystemforDeafPeopleUsingDeepLearning 122

7.2.2SmartTextReaderforBlindPeopleUsingMachineandDeepLearning 123

7.2.3TheRoleofDeepLearningParadigminBuildingtheAcousticComponentsofanAutomaticSpeech RecognitionSystem 125

7.3Conclusion 126 References 126

8ManipuriHandwrittenScriptRecognitionUsingMachineandDeepLearning 129 PalungbamR.Chanu

8.1Introduction 129

8.2LiteratureSurvey 130

8.3ProposedWork 131

8.4ExperimentalResultsandDiscussions 132

8.5Conclusion 136 References 136

9ComparisonofDifferentTextExtractionTechniquesforComplexColorImages 139 DeepikaGhaiandNeeluJain

9.1Introduction 139

9.2RelatedWork 140

9.3Edge-BasedandCC-BasedMethods 143

9.3.1Edge-BasedMethodIntroducedbyLiuandSamarabandu[17] 143

9.3.2CC-BasedMethodFormulatedbyGllavataetal.[36] 143

9.4ProposedMethodology 146

9.5ExperimentalResultsandDiscussion 150

9.5.1SampleTestResults 151

9.5.2ComparisonofProposedMethodwithExistingState-of-the-ArtMethods 153

9.6Conclusions 157 Acknowledgment 157 References 157

10SmartTextReaderSystemforPeoplewhoareBlindUsingMachineandDeepLearning 161 ZobeirRaisi,MohamedA.Naiel,GeorgesYounes,PaulFieguth,andJohnZelek

10.1Introduction 161

10.2LiteratureReview 163

10.2.1SmartTextReaderSystemforBlindPeople 163

x Contents

10.2.1.1TextDetection 164

10.2.1.2TextRecognition 168

10.3ExperimentalResults 173

10.3.1Datasets 174

10.3.1.1MJSynth 174

10.3.1.2SynthText 175

10.3.1.3ICDAR03 175

10.3.1.4ICDAR13 175

10.3.1.5ICDAR15 175

10.3.1.6COCO-Text 176

10.3.1.7SVT 176

10.3.1.8SVT-P 176

10.3.1.9IIIT5K-Words 176

10.3.1.10CUT80 176

10.3.2EvaluationMetrics 176

10.3.2.1Detection 176

10.3.2.2Recognition 177

10.3.3EvaluationofTextDetectionTechniques 177

10.3.3.1QuantitativeResults 177

10.3.3.2QualitativeResults 177

10.3.3.3Discussion 179

10.3.4EvaluationofTextRecognitionTechniques 181

10.3.4.1QuantitativeResults 181

10.3.4.2QualitativeResults 181

10.3.4.3Discussion 184

10.3.5OpenInvestigationsforSceneTextDetectionandRecognition 186

10.3.5.1TrainingDatasets 186

10.3.5.2RicherAnnotations 186

10.3.5.3NovelFeatureExtractors 188

10.3.5.4OcclusionHandling 188

10.3.5.5ComplexFontsandSpecialCharacters 188

10.4ConclusionsandRecommendedFutureWork 188 Acknowledgments 189 References 189

11Machine-LearningTechniquesforDeafPeople 201

YoginiD.BoroleandRoshaniRaut

11.1Introduction 201

11.2LiteratureSurvey 202

11.3Objectives 203

11.4ProposedCalculationDepiction 203

11.4.1ReferenceSystem 203

11.5ResourcesandStrategies 206

11.5.1Equipment/Programming 206

11.5.2Topics 206

11.5.3HandlingConditionsandImprovements 207

11.5.4UtilizedConvention 207

11.6Assessment 207

11.7OutcomesandConversations 208

11.8DiscourseCoherence 208

11.9Conclusion 214

References 214

12DesignandDevelopmentofChatbotBasedonReinforcementLearning 219 HemlataM.Jadhav,AltafMulani,andMakarandM.Jadhav

12.1Introduction 219

12.2StudentGuideUsingChatbot 221

12.3ImplementationofChatbotSystem 221

12.3.1Data-FlowDiagram 222

12.3.2Use-CaseDiagram 222

12.3.2.1AttheAdminEnd 223

12.3.2.2AtUserEndforStudent/Parent 223

12.3.3ClassDiagram 223

12.3.4SequenceDiagram 224

12.3.5ActivityDiagram 224

12.3.6StateDiagram 225

12.4DevelopmentofAlgorithmsUsedinChatbotSystem 226

12.4.1StopWordRemovalAlgorithm 226

12.4.2StringSimilarityAlgorithm 226

12.4.3Q-LearningAlgorithm 227

12.5Conclusion 227

References 228

13DNNBasedSpeechQualityEnhancementandMulti-speakerSeparationforAutomatic SpeechRecognitionSystem 231 RamyaandSivaSakthi

13.1Introduction 231

13.2DeepLearning 231

13.2.1RecurrentNeuralNetwork 232

13.2.2LongShort-TermMemory(LSTM)Networks 233

13.2.3ConvolutionalNeuralNetwork 233

13.3SpeechEnhancementandSeparation 234

13.4SpeechEnhancementAlgorithms 234

13.4.1BasicPrinciplesofSpectralSubtraction 234

13.4.1.1SpectralSubtractionUsingOver-Subtraction 235

13.4.1.2NonlinearSpectralSubtraction 235

13.4.2StatisticalModelBasedMethods 236

13.4.2.1Maximum-LikelihoodEstimators 236

13.4.2.2MinimumMeanSquareError(MMSE)Estimator 236

13.4.3SubspaceAlgorithms 237

13.4.3.1DefinitionofSVD 237

13.4.3.2SubspaceDecompositionMethod 238

13.4.3.3EigenValueDecomposition 238

13.5SpeechSeparationAlgorithms 238

13.5.1ClassicalSpeechSeparationAlgorithms 238

13.5.2HarmonicModels 239

13.5.3ComputationalAuditorySceneAnalysis 239

13.5.4Non-negativeMatrixFactorization(NMF) 240

13.5.5GenerativeModels 240

13.6DeepLearningBasedSpeechEnhancement 240

13.6.1MaskApproximation 241

13.6.1.1ComplexIdealRatioMask 241

13.6.1.2IdealBinaryMask 242

13.6.2SignalApproximation 242

13.7DeepLearningBasedSpeechSeparation 242

13.7.1LabelPermutationProblem(LPP) 243

13.7.2DeepClustering 243

13.8ResultsandDiscussions 243

13.9Conclusion 244

References 244

14DesignandDevelopmentofReal-TimeMusicTranscriptionUsingDigitalSignal Processing 247

ThummalaReddychakradharGoud,KonetiChandraSekhar,GannamaniSriram,GadamsettiNarasimha Deva,VuyyuruPrashanth,DeepikaGhai,andSandeepKumar

14.1Introduction 247

14.2RelatedWork 247

14.3MotivationoftheProposedWork 248

14.4MathematicalExpressionsofSignalProcessing 249

14.5ProposedMethodology 250

14.5.1ReadingandVisualization 250

14.5.2SignalProcessing 250

14.5.3MIDIConversion 250

14.5.4FeatureExtraction 253

14.5.5ImageProcessing 254

14.5.6KeyExtraction 256

14.6ExperimentalResultsandDiscussions 257

14.6.1BenchmarkDatabase 257

14.6.2EvaluationParameters 257

14.6.3PerformanceEvaluation 258

14.7Conclusion 260

References 261

SectionIIIApplicationsofSignalandImageProcessingwithMachineLearningandDeep LearningTechniques 263

15RoleofMachineLearninginWristPulseAnalysis 265

SachinKumar,Pooja,SanjeevKumar,andKaranVeer

15.1Introduction 265

15.2Machine-LearningTechniques 267

15.2.1Regression 268

15.2.2Classification 268

15.2.3Clustering 268

15.2.4DimensionalityReduction 269

15.2.5EnsembleMethods 269

15.2.6ArtificialNeuralNetworksandDeepLearning 269

15.2.7ReinforcementLearning 269

15.3PerformanceAnalysisofMLAlgorithms 270

15.4RoleoftheMachineandDeepLearninginWristPulseSignalAnalysis(WPA) 270

15.4.1SupervisedMachineLearninginWPA 270

15.4.2UnsupervisedMachineLearningandReinforcementMachineLearninginWPA 271

15.4.3DeepLearninginWPA 271

15.5DiscussionandConclusion 272 References 274

16AnExplainableConvolutionalNeuralNetwork-BasedMethodforSkin-LesionClassification fromDermoscopicImages 279 BiswarupGanguly,DebangshuDey,andSugataMunshi

16.1Introduction 279

16.1.1Background,Motivation,andLiterature 279

16.1.2MajorContributions 281

16.2MethodsandMaterials 282

16.2.1Pixel-WiseDecomposition 282

16.2.2Layer-WiseRelevanceBack-Propagation 282

16.3ExplainableDeep-Learning(x -DL)FrameworkforDermoscopicImageClassification 283

16.3.1DatasetsandImagePreprocessing 283

16.3.2StructureofConvolutionalNeuralNetwork(CNN) 283

16.3.3TrainingDetailsandSystemImplementation 285

16.4ExperimentalResultsandDiscussion 285

16.4.1AnalysisofLearntSkin-LesionPatternsfrom x -DL 285

16.4.2AblationAnalysisConsideringRegularizationFactor 286

16.4.3ComparativeStudywithOtherCNNModules 287

16.4.4Discussion 289

16.5Conclusion 289 Acknowledgments 289 References 289

17FutureofMachineLearning(ML)andDeepLearning(DL)inHealthcareMonitoring System 293

KanakKumar,KaustavChaudhury,andSumanLataTripathi

17.1Introduction 293

17.1.1ML/DLAlgorithmsforOptimization 294

17.1.2Pre-processingMethods 295

17.2PerformanceAnalysisParameters 299

17.3ObjectivesandMotivation 300

17.4ExistingML/DLTechniquesforHealthcareMonitoringandDiseaseDiagnosis 300

17.5ProposedModel/MethodsforHealthcareMonitoringSystemUsingML/DL 303

17.5.1CaseStudy-I:BreastCancer 304

17.6ExperimentalResultsandDiscussion 305

17.6.1CaseStudy-II:Diabetes 306

17.7Conclusions 310

17.8FutureScope 310 References 311

18UsageofAIandWearableIoTDevicesforHealthcareData:AStudy 315 SwarupNandi,MadhusudhanMishra,andSwanirbharMajumder

18.1Introduction 315

18.2LiteratureReview 315

18.3AI-BasedWearableDevices 316

18.3.1Cloud-AssistedAgent-BasedSmartEnvironment 317

18.3.2ImprovedBayesianConvolutionNetwork 317

18.3.3EDL 317

18.4ActivitiesofWearableDevicesinHealthcareSystem 320

18.4.1Women’sHealthfocusedAVASensor 320

18.4.2AliveCor–PersonalEKG 320

18.4.3TempTraq 321

18.4.4BioScarf 322

18.4.5Blinq–WearableRings 322

18.4.6SmartSleepWearable 323

18.4.7BioPatch 323

18.4.8SmartGlasses 324

18.4.9SmartHearingAids 324

18.4.10WirelessPatientMonitoring 325

18.4.11WearableFitnessTracker 325

18.4.12SmartHealthWatch 326

18.4.13WearableECGMonitors 326

18.4.14WearableBloodPressureMonitors 327

18.4.15Biosensors 327

18.5BarrierstoWearable’sAdoption 329

18.5.1Cost 329

18.5.2Designation 329

18.5.3AbsenceofInitiativeUseCase 329

18.5.4LackofaKillerApp 329

18.5.5LimitedFunctionality 329

18.6WearableDevicesConsumers 329

18.7RecentTrendsinWearableTechnology 334

18.7.1WearablesinHealthcare 334

18.7.2WearablesinIndustry 335

18.7.3WearablesinRobotics 335

18.7.4WearablesinDefense 335

18.7.5WearablesinSport 335

18.7.6WearableinCPS 336

18.8Conclusion 336 References 336

19ImpactofIoTinBiomedicalApplicationsUsingMachineandDeepLearning 339 RehabA.Rayan,ImranZafar,HusamRajab,MuhammadAsimM.Zubair,MudasirMaqbool,and SamrinaHussain

19.1Introduction 339

19.1.1ArtificialIntelligenceandMachineLearning 340

19.2HistoryofDLandML 340

19.3MethodsofMLandDLAlgorithmsandClassification 341

19.3.1DeepLearningArchitectures 342

19.3.1.1AutoEncoders 342

19.3.1.2DeepMultilayerPerceptron 342

19.3.1.3DeepAuto-encoders 342

19.3.1.4RestrictedBoltzmannMachineandDeepBeliefNetworks 343

19.3.1.5ConvolutionalNeuralNetworks 343

19.3.2FindingsofAppliedMLandDLTechniques 347

19.4MLandDLApplicationsinBiomedicine 347

19.5DiscussionsofIoT-BasedMLandDLCaseStudiesinBiomedicalSystems 350

19.6OpportunitiesandChallenges 352

19.6.1FutureInsights 353

19.6.2Conclusions 354 References 354

20WirelessCommunicationsUsingMachineLearningandDeepLearning 361 HimanshuPriyadarshi,KulwantSingh,andAshishShrivastava

20.1Introduction 361

20.1.1IRS-EnabledWireless-CommunicationSystems 364

20.2ContributionsofIntelligentReflectingSurfaces(IRS)inWireless-Communication Systems 364

20.2.1IRSAsSignalReflectorinWireless-CommunicationSystem 364

20.2.2IRSAsSignalTransmitterinWireless-CommunicationSystem 365

20.2.3IRSAsSignalReceiverinWireless-CommunicationSystem 365

20.3MeritsofIRS-AidedWireless-CommunicationSystemsforPerformanceEnhancement 365

20.3.1EnhancementintheChannelCapacity 365

20.3.2SavingsontheTransmitPowerofBaseStationinIRS-AidedWireless-Communication System 365

20.3.3ProtectionAgainstEavesdroppingandHighConfidentialityRate 365

20.4IssuesinCollaborationBetweenActiveandPassiveBeamforming 366

20.4.1OverheadonAlgorithmsDuetoTimeandSpaceComplexity 366

20.4.2LackofChannelInformation 366

20.4.3SimplifyingAssumptionsLeadtoUnrealisticSystemModeling 366

20.5ScopeofMachineLearningforIRS-EnabledWireless-Communication Systems 366

20.5.1PathwayAssessmentforCommunicationChannelandSignalDiagnostics 367

20.5.2MachineLearningforPassiveBeamforming 367

20.5.3PreventionofDenialofServiceAttacksandStealthinCommunications 368

20.6Summary 369

Acknowledgment 369 References 369

21ApplicationsofMachineLearningandDeepLearninginSmartAgriculture 371 RanganathanKrishnamoorthy,RanganathanThiagarajan,ShanmugamPadmapriya,IndiranMohan, SundaramArun,andThangarajuDineshkumar

21.1Introduction 371

21.1.1MajorContributionsofSmartAgriculture 371

21.2ConceptofMachineLearning 372

21.2.1TypesofMachineLearning 372

21.2.1.1SupervisedLearning 373

21.2.1.2UnsupervisedLearning 380

21.2.1.3ReinforcementLearning 381

21.3ConceptofDeepLearning 382

21.3.1TypesofDeepLearning 382

21.3.1.1BackPropagation 383

21.3.1.2CNNinAgriculture 383

21.3.1.3RNNinAgriculture 383

21.3.1.4GANinAgriculture 384

21.4SmartAgriculture 384

21.4.1SmartFarming 384

21.4.2PrecisionFarming 385

21.5ComputationMethods 386

21.6SecurityAspectsandIssues 386

21.7ApplicationDomainsinAgriculture 386

21.8CaseStudy 387

21.9AgroSmartCity 387

21.10ConceptofApplicationofMLandDLinSmartAgriculture 388

21.10.1PredictionofPlantDisease 388

21.10.2LocustPrediction 389

21.10.3PlantClassification 389

21.10.4LivestockFarming 389

21.10.5SmartIrrigationSystem 390

21.10.6PestControlPrediction 391

21.10.7SoilManagement 391

21.10.8CropQualityandItsManagement 392

21.10.9WeedProtection 393

21.10.10YieldPrediction 393

21.11ResultsandDiscussion 393

21.12Conclusion 394 References 394

22StructuralDamagePredictionfromEarthquakesUsingDeepLearning 397 ShagunSharma,GhanapriyaSingh,SmitaKaloni,RanjeetP.Rai,andSidhantYadav

22.1Introduction 397

22.2LiteratureReview 398

22.3ProposedMethodology 399

22.3.1Deep-LearningModels 400

22.4ProposedMethodologyforDeep-LearningModels 400

22.4.1One-DimensionalConvolutionalNeuralNetwork(1DCNNs) 400

22.4.2Two-DimensionalConvolutionalNeuralNetwork(2DCNNs) 402

22.4.3LongShort-TermMemoryNetwork(LSTMs) 404

22.5ExperimentalResultsandDiscussions 405

22.5.1Dataset 405

22.5.2ResultsandDiscussions 405

22.6Conclusion 406 References 406

23Machine-LearningandDeep-LearningTechniquesinSocialSciences 409 HutashanV.BhagatandManminderSingh

23.1Introduction 409

23.1.1MachineLearning 409

23.1.2DeepLearning 411

23.1.3SocialDataAnalysis 411

23.1.4Machine-LearningProcess 412

23.1.5Machine-LearningTerminology 413

23.2Machine-LearningandDeep-LearningTechniques 414

23.2.1SupervisedLearningTechniques 414

23.2.2UnsupervisedLearningTechniques 415

23.2.3ReinforcementLearningTechniques 415

23.2.4Deep-LearningTechniques 415

23.3SocialSciencesApplicationsUsingMachine-LearningandDeep-LearningTechniques 416

23.3.1Education 416

23.3.2Economics 417

23.3.3Marketing 418

23.3.4MiscellaneousApplications 420

23.4Conclusion 421 References 421

24GreenEnergyUsingMachineandDeepLearning 429

R.SenthilKumar,S.Saravanan,P.Pandiyan,K.P.Suresh,andP.Leninpugalhanthi

24.1Introduction 429

24.1.1SolarEnergy 430

24.1.1.1Photovoltaic(PV)Cell 430

24.1.2WindEnergy 432

24.1.2.1WindEnergyConversionSystem(WECS) 433

24.1.2.2BasicEquationofWindPower 433

24.1.2.3WindEnergySiteSelection 433

24.1.3Hydropower 434

24.1.3.1WorkingPrincipleofHydropowerPlant 434

24.2MLAlgorithmsforGreenEnergy 435

24.2.1ForecastingRenewable-EnergyGenerationUsingML 435

24.2.1.1Solar-EnergyGeneration 435

24.2.1.2WindPowerGeneration 435

24.2.1.3HydroPowerGeneration 436

24.3ManagingRenewable-EnergyIntegrationwithSmartGrid 437

24.3.1Supply–DemandBalancing 437

24.3.2GridManagementandOperations 437

24.3.3Grid-DataManagement 438

24.4DLModelsforRenewableEnergy 438

24.4.1SolarEnergy 439

24.4.2EnergyfromtheWind 439

24.4.3TechniquesofDL 439

24.4.3.1ConvolutionalNeuralNetwork(CNN) 439

24.4.3.2RestrictedBoltzmannMachine(RBM) 440

24.4.3.3Auto-Encoder 441

24.5Conclusion 442 References 442

25LightDeepCNNApproachforMulti-LabelPathologyClassificationUsingFrontalChest X-Ray 445 SouidAbdelbaki,SoufieneB.Othman,FarisAlmalki,andHediSakli

25.1Introduction 445

25.2RelatedWork 446

25.3MaterialsandMethod 447

25.3.1MobileNetV2 447

25.3.2ModelArchitecture 448

25.4ProposedMethodology 449

25.4.1DatasetPreparationandPreprocessing 449

25.5ResultandDiscussions 452

25.6Conclusion 455 References 455

Index 459

EditorBiography

Dr.DeepikaGhai receivedherPh.DintheareaofsignalandimageprocessingfromPunjabEngineeringCollege, Chandigarh.ShereceivedherM.TechinVLSIDesign&CADfromThaparUniversity,Patiala,andB.Techin electronicsandcommunicationsengineeringfromRayatInstituteofEngineeringandTechnology,Ropar.Sheisan AssistantProfessoratLovelyProfessionalUniversitywithmorethan8years’academicexperience.Shereceived theDr.C.B.GuptaAwardin2021atLovelyProfessionalUniversity.Shehaspublishedmorethan30research papersinrefereedjournalsandconferences.Shehasworkedasasessionchair,conferencesteeringcommittee member,editorialboardmember,andreviewerininternational/nationalIEEEjournalsandconferences.Shehas alsopublishededitedbook“HealthInformaticsandTechnologicalSolutionsforCoronavirus(COVID-19)”inCRC Taylor&Francis.SheisassociatedasalifememberoftheIndianScienceCongress.Herareaofexpertiseincludes signalandimageprocessing,biomedicalsignalandimageprocessing,andVLSIsignalprocessing.

Dr.SumanLataTripathi receivedherPh.D.intheareaofmicroelectronicsandVLSIfromMNNIT,Allahabad. ShereceivedherM.TechinelectronicsengineeringfromUPTechnicalUniversity,Lucknow,andB.TechinelectricalengineeringfromPurvanchalUniversity,Jaunpur.In2022shehasworkedasaremotepost-docresearcher atNottinghamTrentUniversity,London,UK.SheisaProfessoratLovelyProfessionalUniversityandhasmore than19years’academicexperience.Shehaspublishedmorethan72researchpapersinrefereedIEEE,Springer, Elsevier,andIOPsciencejournalsandconferences.Shehasalsobeenawarded13Indianpatentsand2copyrights.Shehasorganizedseveralworkshops,summerinternships,andexpertlecturesforstudents.Shehasworked asasessionchair,conferencesteeringcommitteemember,editorialboardmember,andpeerreviewerininternational/nationalIEEE,Springer,Wileyjournalsandconferences,etc.Shereceivedthe“ResearchExcellence Award”in2019and“ResearchAppreciationAward”in2020,2021atLovelyProfessionalUniversity,India.She receivedthebestpaperatIEEEICICS-2018.Shehaseditedandauthoredmorethan15booksindifferentareas ofelectronicsandelectricalengineering.ShehaseditedworksforElsevier,CRCTaylorandFrancis,Wiley-IEEE Press,NovaScience,AppleAcademicPress,etc.Sheisalsoworkingasabookserieseditorfor“SmartEngineering Systems”andaconferenceserieseditorfor“ConferenceProceedingsSeriesonIntelligentSystemsforEngineering Designs”withCRCPress.Sheistheguesteditorofaspecialissuein“CurrentMedicalImaging”BenthamScience. Sheisaseniormember,IEEE,fellowatIETE,andlifememberatISCandiscontinuouslyinvolvedindifferent professionalactivitiesalongwithacademicwork.Herareaofexpertiseincludesmicroelectronicsdevicemodeling andcharacterization,lowpowerVLSIcircuitdesign,VLSIdesignoftesting,andadvancedFETdesignforIoT, embeddedsystemdesign,reconfigurablearchitecturewithFPGAs,andbiomedicalapplications.

Dr.SobhitSaxena receivedhisPh.D.fromIITRoorkeeintheareaofnanotechnology.HedidhisM.Techin VLSIandB.E.inelectronicsandcommunicationengineering.Hisareaofexpertiseincludesnanomaterialsynthesisandcharacterization,electrochemicalanalysisandmodeling,andsimulationofCNT-basedinterconnectsfor VLSIcircuits.HehasdesignedanewhybridsystemofLi-ionbatteriesandsupercapacitorsforenergystorageapplications.HeworkedasaSEM(scanningelectronmicroscopy)operatorforfouryearsagainstMHRDfellowship. Hehasavastteachingexperienceofmorethan14yearsinvariouscollegesanduniversities.Currently,heis

workingasanAssociateProfessorintheSchoolofElectronicsandElectricalEngineering,LovelyProfessional University.Hehasbeenawardedthe“PerfectAward”fourtimesinconsecutiveyearsforachieving100%result. Hehaspublishedmorethan10researchpapersinSCI/Scopusindexedjournalsandabout20papersinreputed internationalconferences/non-indexedjournals.Hehasfiledthreepatents,publishedaneditedbook“Advanced VLSIDesignandTestabilityIssues”withCRCPress,andtwobookchapters.Hehasalsopublishedoneauthored book, DigitalVLSIDesignandSimulationwithVerilog,withWiley.HeisanIEEEmemberandarevieweratvariousrefereedSCI/Scopusindexedjournalsandconferenceproceedings.Healsohasindustrialexposureintwo differentcompaniesrelatedtomanufacturing(PCB)andbroadbandcommunication.

Dr.ManashChanda graduatedinelectronicsandcommunicationengineeringfromKalyaniGovt.EngineeringCollegein2005.HeobtainedhisM.TechdegreeinVLSIandmicroelectronicsfromJadavpurUniversity.He completedhisPh.DinengineeringfromETCEDept.,JadavpurUniversity,in2018.Atpresent,heisworkingas anAssistantProfessorintheDepartmentofECE,MeghnadSahaInstituteofTechnology,sinceFebruary2006. HeisamemberofIEEEandiscurrentlyamemberofIEEEElectronDeviceSocietyandSolidStateCircuitSociety.Dr.Chandaistheco-founderofIEEEStudentBranchandEDMSITStudentBranchChapter.Atpresent, heistheChapterAdvisorofEDMeghnadSahaInstituteofTechnologyStudentBranchChapter.Also,heisthe ViceChairmanofEDKolkataChapter.HeservedastheSecretaryofIEEEEDMSITSBCfromJanuary2018to December2019.Hehaspublishedmorethan65refereedresearchpapersandconferenceproceedings.Hiscurrent researchinterestspansaroundthestudyofanalyticalmodelingofsub100-nmMOSFETsandnanodevicesconsideringquantummechanicaleffects,low-powerVLSIdesigns,SPICEmodelingofnanoscaledevices,memory designs,etc.HehaspublishedpapersinrefereedinternationaljournalsofreputedpublisherslikeIEEE,Elsevier, IET,Springer,Wiley,tonameafew.Heisthereviewerofmanyreputedinternationaljournalsandconferences likeIEEETCAS,IEEETVLSI,IEEETED,SolidStateCircuits(Elsevier),JournalofComputationalElectronics (Springer),InternationalJournalofNumericalModeling:ElectronicNetworks,DevicesandFields(Wiley),InternationalJournalofElectronics(TaylorandFrancis),etc.HeistherecipientofUniversityGoldmedalinM.Tech fromJadavpurUniversityin2008.OneofhisprojectswasselectedintheTop10VLSIprojectdesigncategory (includingB.TechandM.Tech)alloverINDIA,organizedbyCADENCEDESIGNCONTEST,BANGALORE, Indiain2010.

Dr.MamounAlazab isanassociateprofessorattheCollegeofEngineering,IT,andEnvironment,andthe InauguralDirectoroftheNTAcademicCentreforCyberSecurityandInnovation(ACCI)atCharlesDarwinUniversity,Australia.Heisacyber-securityresearcherandpractitionerwithindustryandacademicexperience.His researchismultidisciplinaryandfocusesoncybersecurityanddigitalforensicsofcomputersystemswithafocus oncybercrimedetectionandprevention.Hehaspublishedmorethan300researchpapers(>90%inQ1andin thetop10%ofjournalarticles,andmorethan100inIEEE/ACMTransactions)and15authored/editedbooks.He receivedseveralawardsincludingtheNTYoungTallPoppy(2021)fromtheAustralianInstituteofPolicyandScience(AIPS),IEEEOutstandingLeadershipAward(2020),theCDUCollegeofEngineering,ITandEnvironment ExceptionalResearcherAwardin(2020)and(2021),and4BestResearchPaperAwards.Heisrankedintop2%of world’sscientistsinthesubfielddisciplineofArtificialIntelligence(AI)andNetworking&Telecommunications (StanfordUniversity).Hewasrankedinthetop10%of30kcybersecurityauthorsofalltime.ProfessorAlazab wasnamedinthe2022ClarivateAnalyticsWebofSciencelistofHighlyCitedResearchers,whichrecognizeshim asoneoftheworld’smostinfluentialresearchersofthepastdecadethroughthepublicationofmultiplehighly citedpapersthatrankinthetop1%bycitationsforfieldandyearinWebofScience.Hedeliveredmorethan120 keynotespeeches,chaired56nationaleventsandmorethan90internationalevents;onprogramcommitteesfor 200conferences.HeservesastheAssociateEditorof IEEETransactionsonComputationalSocialSystems, IEEE TransactionsonNetworkandServiceManagement (TNSM), ACMDigitalThreats:ResearchandPractice,Complex &IntelligentSystems.

ListofContributors

SouidAbdelbaki DepartmentofElectricalEngineering MACSResearchLaboratoryRL16ES22 NationalEngineeringSchoolofGabes GabesUniversity Gabes Tunisia

FarisAlmalki DepartmentofComputerEngineering CollegeofComputersandInformationTechnology

TaifUniversity

Taif KingdomofSaudiArabia

J.AnilRaj DepartmentofElectronicsandCommunication MuthootInstituteofTechnologyandScience

Kochi Kerala India and DepartmentofComputerScience CochinUniversityofScienceandtechnology

Kochi Kerala India

SundaramArun DepartmentofElectronicsandCommunication Engineering JerusalemCollegeofEngineering Chennai India

AnterpreetK.Bedi DepartmentofElectricalandInstrumentation Engineering ThaparinstituteofEngineeringandTechnology

Patiala Punjab India

SumanBera DepartmentofComputerScienceandEngineering NationalInstituteofTechnology

Silchar Assam India

HutashanV.Bhagat DepartmentofComputerScienceandEngineering SantLongowalInstituteofEngineeringand Technology

Longowal

Sangrur India

AnupamBiswas

DepartmentofComputerScienceandEngineering NationalInstituteofTechnology

Silchar Assam

India

AngshumanBora DepartmentofComputerScienceandEngineering NationalInstituteofTechnology

Silchar Assam

India

YoginiD.Borole DepartmentofE&TCEngineering GHRaisoniCollegeofEngineeringandManagement SPPUPuneUniversity

Pune India

SubhamChakraborty DepartmentofComputerScienceandEngineering NationalInstituteofTechnology

Silchar Assam

India

KonetiChandraSekhar SchoolofElectronicsandElectricalEngineering LovelyProfessionalUniversity Phagwara

Punjab

India

PratikChattopadhyay DepartmentofComputerScienceandEngineering IndianInstituteofTechnology(BanarasHindu University)

Varanasi

India

PalungbamR.Chanu ElectronicsandCommunicationEngineering NITNagaland Chumukedima

Nagaland

KaustavChaudhury ElectronicsandCommunicationEngineering HeritageInstituteofTechnology Anandapur

Kolkata

India

AneetaChristopher DepartmentofElectronicsandCommunication Engineering NationalInstituteofTechnologyCalicut

Calicut

Kerala

India

DebangshuDey DepartmentofElectricalEngineering JadavpurUniversity

Kolkata

WestBengal

India

ThangarajuDineshkumar DepartmentofElectronicsandCommunication Engineering KongunaduCollegeofEngineeringandTechnology

Trichy

India

PaulFieguth VisionImageProcessingLab DepartmentofSystemsDesignEngineering UniversityofWaterloo

Waterloo Canada

BiswarupGanguly DepartmentofElectricalEngineering MeghnadSahaInstituteofTechnology MaulanaAbulKalamAzadUniversityofTechnology WestBengal

India

DeepikaGhai

SchoolofElectronicsandElectricalEngineering

LovelyProfessionalUniversity Phagwara

Punjab

India

R.HariKishan

DepartmentofElectronicsandCommunication Engineering

NationalInstituteofTechnologyCalicut

Calicut

Kerala India

SamrinaHussain DepartmentofDrugDesignandPharmacology UniversityofCopenhagen

Denmark

SumamM.Idicula

DepartmentofArtificialIntelligenceandDataScience

MuthootInstituteofTechnologyandScience

Kochi

Kerala India

HemlataM.Jadhav

ElectronicsandTelecommunicationDepartment

MarathwadaMitraMandal’sCollegeofEngineering

Pune

India

MakarandM.Jadhav

ElectronicsandTelecommunicationDepartment

NBNSinhgadSchoolofEngineering

Pune

India

NeeluJain

ElectronicsandCommunicationEngineering Department

PunjabEngineeringCollege(DeemedtobeUniversity) Chandigarh

India

SmitaKaloni DepartmentofCivilEngineering NationalInstituteofTechnology

Uttarakhand

India

MaheshkumarH.Kolekar DepartmentofElectricalEngineering IndianInstituteofTechnology

Patna

Bihar

India

RanganathanKrishnamoorthy CentrefornonlinearSystems ChennaiInstituteofTechnology

Chennai

India

AshishKumar DepartmentofComputerScienceandEngineering IndianInstituteofTechnology(BanarasHindu University)

Varanasi

India

KanakKumar

ElectronicsEngineeringDepartment IEEEMember,IndianInstituteofTechnology (BanarasHinduUniversity)

Varanasi

India

SachinKumar DepartmentofInstrumentationandControl Engineering

DrBRAmbedkarNationalInstituteofTechnology Jalandhar

India

SandeepKumar DepartmentofElectronicsandCommunications SreyasInstituteofEngineeringandTechnology

Hyderabad

Telangana

India

xxiv ListofContributors

SanjeevKumar DepartmentofBioMedicalApplications(BMA) CentralScientificInstrumentsOrganisation (CSIO)-CSIR Chandigarh

India

P.Leninpugalhanthi DepartmentofEEE SriKrishnaCollegeofTechnology Coimbatore TamilNadu

India

SwanirbharMajumder DepartmentofInformationTechnology TripuraUniversity Agartala

Tripura

India

DebashishMalakar DepartmentofComputerScienceandEngineering NationalInstituteofTechnology Silchar Assam

India

MudasirMaqbool DepartmentofPharmaceuticalSciences UniversityofKashmir

Hazratbal

Srinagar

India

MadhusudhanMishra DepartmentofECE NERIST

Nirjuli ArunachalPradesh

India

IndiranMohan DepartmentofComputerscienceandEngineering PrathyushaEngineeringCollege

Chennai India

AltafMulani ElectronicsandTelecommunicationDepartment SKNSCOE Pandharpur

India

SugataMunshi DepartmentofElectricalEngineering JadavpurUniversity

Kolkata

WestBengal

India

SwarupNandi DepartmentofInformationTechnology TripuraUniversity

Agartala

Tripura

India

MohamedA.Naiel VisionImageProcessingLab DepartmentofSystemsDesignEngineering UniversityofWaterloo

Waterloo Canada

GadamsettiNarasimhaDeva SchoolofElectronicsandElectricalEngineering LovelyProfessionalUniversity

Phagwara

Punjab

India

SoufieneB.Othman DepartmentofTelecom,PRINCELaboratory Research,IsitCom,HammamSousse,HigherInstitute ofComputerScienceandCommunicationTechniques UniversityofSousse

Sousse

Tunisia

ShanmugamPadmapriya DepartmentofComputerScienceEngineering LoyolaInstituteofTechnology

Chennai India

P.Pandiyan DepartmentofEEE

KPRInstituteofEngineeringandTechnology Coimbatore TamilNadu

India

Pooja DepartmentofInstrumentationandControl Engineering

DrBRAmbedkarNationalInstituteofTechnology Jalandhar,India

DasariL.Prasanna DepartmentofElectronicsandCommunication Engineering LovelyProfessionalUniversity Phagwara

Punjab India

VuyyuruPrashanth

SchoolofElectronicsandElectricalEngineering LovelyProfessionalUniversity Phagwara

Punjab

India

HimanshuPriyadarshi DepartmentofElectricalEngineering ManipalUniversityJaipur Jaipur

India

RanjeetP.Rai DepartmentofElectronicsEngineering NationalInstituteofTechnology Uttarakhand

India

ZobeirRaisi VisionImageProcessingLab DepartmentofSystemsDesignEngineering UniversityofWaterloo

Waterloo

Canada

ListofContributors

HusamRajab DepartmentofTelecommunicationsandMedia Informatics BudapestUniversityofTechnologyandEconomics

Budapest

Hungary

Ramya DepartmentofElectronicsandCommunication Engineering

SriRamakrishnaEngineeringCollege AnnaUniversity(Autonomous) Coimbatore

India

RoshaniRaut DepartmentofInformationTechnology PimpriChinchwadCollegeofEngineering

Pune

India

AbhisekRay DepartmentofElectricalEngineering IndianInstituteofTechnology Patna

Bihar

India

RehabA.Rayan DepartmentofEpidemiology HighInstituteofPublicHealth

AlexandriaUniversity

Alexandria

Egypt

ThummalaReddychakradharGoud SchoolofElectronicsandElectricalEngineering LovelyProfessionalUniversity Phagwara

Punjab

India

ListofContributors

HediSakli

DepartmentofElectricalEngineering MACSResearchLaboratoryRL16ES22 NationalEngineeringSchoolofGabes GabesUniversity Gabes

Tunisia and EITAConsulting5RueduChantdesoiseaux Montesson France

S.Saravanan DepartmentofEEE SriKrishnaCollegeofTechnology Coimbatore

TamilNadu

India

R.SenthilKumar DepartmentofEEE SriKrishnaCollegeofTechnology Coimbatore

TamilNadu

India

ShagunSharma DepartmentofElectronicsEngineering NationalInstituteofTechnology Uttarakhand

India

AshishShrivastava FacultyofEngineeringandTechnology ShriVishwakarmaSkillUniversity Gurgaon

India

GhanapriyaSingh DepartmentofElectronicsEngineering NationalInstituteofTechnology Uttarakhand

India

KulwantSingh DepartmentofElectronicsandCommunication Engineering ManipalUniversityJaipur Jaipur

India

ManminderSingh DepartmentofComputerScienceandEngineering SantLongowalInstituteofEngineeringand Technology

Longowal Sangrur

India

YeshwantSingh DepartmentofComputerScienceandEngineering NationalInstituteofTechnology

Silchar Assam

India

SivaSakthi DepartmentofBiomedicalEngineering SriRamakrishnaEngineeringCollege AnnaUniversity(Autonomous) Coimbatore

India

GannamaniSriram SchoolofElectronicsandElectricalEngineering LovelyProfessionalUniversity Phagwara Punjab

India

SachinSrivastava DepartmentofComputerScienceandEngineering IndianInstituteofTechnology(BanarasHindu University)

Varanasi India

P.V.Sudeep

DepartmentofElectronicsandCommunication Engineering

NationalInstituteofTechnologyCalicut Calicut

Kerala India

RameshK.Sunkaria DepartmentofElectronics&Communication Engineering

DrBRAmbedkarNationalInstituteofTechnology Jalandhar

Punjab India

K.P.Suresh DepartmentofEEE

SriKrishnaCollegeofTechnology Coimbatore TamilNadu

India

RanganathanThiagarajan DepartmentofInformationTechnology PrathyushaEngineeringCollege

Chennai

India

SumanLataTripathi SchoolofElectronics&ElectricalEngineering LovelyProfessionalUniversity Phagwara

Punjab

India

KaranVeer DepartmentofInstrumentationandControl Engineering

DrBRAmbedkarNationalInstituteofTechnology Jalandhar

India

SidhantYadav DepartmentofElectronicsEngineering NationalInstituteofTechnology Uttarakhand

India

GeorgesYounes

VisionImageProcessingLab DepartmentofSystemsDesignEngineering UniversityofWaterloo

Waterloo

Canada

ImranZafar DepartmentofBioinformaticsandComputational Biology

VirtualUniversityofPakistan

Lahore

Punjab

Pakistan

JohnZelek VisionImageProcessingLab DepartmentofSystemsDesignEngineering UniversityofWaterloo

Waterloo

Canada

MuhammadAsimM.Zubair DepartmentofPharmaceutics

TheIslamiaUniversityofBahawalpur

Pakistan

Preface

Machinelearning(ML)algorithmsforsignalandimageprocessingaidthereaderindesigninganddeveloping real-worldapplicationstoanswersocietalandindustrialneedsusingadvancesinMLtoaidandenhancespeech signalprocessing,imageprocessing,computervision,biomedicalsignalprocessing,textprocessing,etc.Itincludes signalprocessingtechniquesappliedforpre-processing,featureextraction,sourceseparation,ordatadecompositionstoachieveMLtasks.ItwilladvancethecurrentunderstandingofvariousMLanddeeplearning(DL) techniquesintermsoftheirabilitytoimproveupontheexistingsolutionswithaccuracy,precisionrate,recall rate,processingtime,orotherwise.Whatismostimportantisthatitaimstobridgethegapamongtheclosely relatedfieldsofinformationprocessing,includingML,DL,digitalsignalprocessing(DSP),statistics,kerneltheory,andothers.Italsoaimstobridgethegapbetweenacademicians,researchers,andindustriestoprovidenew technologicalsolutionsforhealthcare,speechrecognition,objectdetectionandclassification,etc.Itwillimprove uponthecurrentunderstandingaboutdatacollectionanddatapre-processingofsignalsandimagesforvarious applications,implementationofsuitableMLandDLtechniquesforavarietyofsignalsandimages,aswellas possiblecollaborationtoensuresuccessfuldesignaccordingtoindustrystandardsbyworkinginateam.Itwill behelpfulforresearchersanddesignerstofindoutkeyparametersforfutureworkinthisarea.Theresearchers workingonMLandDLtechniquescancorrelatetheirworkwithreal-lifeapplicationsofsmartsignlanguage recognitionsystem,healthcare,smartblindreadersystem,text-to-imagegeneration,orviceversa.

ThebookwillbeofinteresttobeginnersworkinginthefieldofMLandDLusedforsignalandimageanalysis, interdisciplinaryinitsnature.Writtenbywell-qualifiedauthors,withworkcontributedbyateamofexpertswithin thefield,theworkcoversawiderangeofimportanttopicsasfollows:

● Speechrecognition,imagereconstruction,objectdetectionandclassification,andspeechandtextprocessing.

● Healthcaremonitoring,biomedicalsystems,andgreenenergy.

● Realapplicationsandexamples,includingasmarttextreadersystemforblindpeople,asmartsignlanguage recognitionsystemfordeafpeople,handwrittenscriptrecognition,real-timemusictranscription,smartagriculture,structuraldamagepredictionfromearthquakes,andskinlesionclassificationfromdermoscopicimages.

● HowvariousMLandDLtechniquescanimprovetheaccuracy,precisionraterecallrate,andprocessingtime.

Thiseasy-to-understandyetincrediblythoroughreferenceworkwillbeinvaluabletoprofessionalsinthefield ofsignalandimageprocessingwhowanttoimprovetheirwork.Itisalsoavaluableresourceforstudentsand researchersinrelatedfieldswhowanttolearnmoreaboutthehistoryandrecentdevelopmentsinthisfield.

Acknowledgments

AlleditorswouldliketothanktheSchoolofElectronicsandElectricalEngineering,LovelyProfessional University,Phagwara,India;DepartmentofElectronicsandCommunicationEngineering,MeghnadSaha InstituteofTechnology,Kolkata;andCollegeofEngineering,ITandEnvironmentatCharlesDarwinUniversity, Australia;theMinistryofEducationoftheRepublicofKoreaandtheNationalResearchFoundationofKorea (NRF-2021S1A5A2A03064391);forprovidingnecessarysupportforcompletingthisbook.Theauthorswould alsoliketothanktheresearcherswhohavecontributedtheirchapterstothisbook.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.