[FREE PDF sample] Systems biology modelling and analysis 1st edition elisabetta de maria ebooks

Page 1


Systems Biology Modelling and Analysis 1st Edition Elisabetta De Maria

Visit to download the full and correct content document: https://ebookmass.com/product/systems-biology-modelling-and-analysis-1st-edition-el isabetta-de-maria/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Emerging trends in applications and infrastructures for computational biology, bioinformatics, and systems biology : systems and applications 1st Edition Arabnia

https://ebookmass.com/product/emerging-trends-in-applicationsand-infrastructures-for-computational-biology-bioinformatics-andsystems-biology-systems-and-applications-1st-edition-arabnia/

Applied Power Quality: Analysis, Modelling, Design and

Implementation

Perera

of Power Quality Monitoring Systems

https://ebookmass.com/product/applied-power-quality-analysismodelling-design-and-implementation-of-power-quality-monitoringsystems-sarath-perera/

Dynamic System Modelling and Analysis with MATLAB and Python 1st Edition Jongrae Kim

https://ebookmass.com/product/dynamic-system-modelling-andanalysis-with-matlab-and-python-1st-edition-jongrae-kim/

Advanced Data Analysis & Modelling in Chemical Engineering 1st Edition Denis Constales

https://ebookmass.com/product/advanced-data-analysis-modellingin-chemical-engineering-1st-edition-denis-constales/

Solar Photovoltaic System Modelling and Analysis: Design and Estimation (River Publishers Series in Power) 1st Edition Mariprasath

https://ebookmass.com/product/solar-photovoltaic-systemmodelling-and-analysis-design-and-estimation-river-publishersseries-in-power-1st-edition-mariprasath/

Predictive Modelling for Energy Management and Power Systems Engineering Ravinesh Deo

https://ebookmass.com/product/predictive-modelling-for-energymanagement-and-power-systems-engineering-ravinesh-deo/

Human Migration: Biocultural Perspectives Maria De Lourdes Munoz

https://ebookmass.com/product/human-migration-bioculturalperspectives-maria-de-lourdes-munoz/

Imaging Life: Image Acquisition and Analysis in Biology and Medicine 1st Edition Lawrence R. Griffing

https://ebookmass.com/product/imaging-life-image-acquisition-andanalysis-in-biology-and-medicine-1st-edition-lawrence-r-griffing/

(eBook PDF) Systems Analysis and Design, 12th Edition

https://ebookmass.com/product/ebook-pdf-systems-analysis-anddesign-12th-edition/

SystemsBiologyModellingandAnalysis

SystemsBiologyModellingandAnalysis

UniversitéCôted’Azur France

Thiseditionfirstpublished2023

©2023JohnWiley&Sons,Inc.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrieval system,ortransmitted,inanyformorbyanymeans,electronic,mechanical, photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowto obtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/ go/permissions.

TherightofElisabettaDeMariatobeidentifiedastheauthoroftheeditorialmaterialin thisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationabout Wileyproductsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand. Somecontentthatappearsinstandardprintversionsofthisbookmaynotbeavailablein otherformats.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohn Wiley&Sons,Inc.and/oritsaffiliatesintheUnitedStatesandothercountriesandmay notbeusedwithoutwrittenpermission.Allothertrademarksarethepropertyoftheir respectiveowners.JohnWiley&Sons,Inc.isnotassociatedwithanyproductorvendor mentionedinthisbook.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmental regulations,andtheconstantflowofinformationrelatingtotheuseofexperimental reagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatethe informationprovidedinthepackageinsertorinstructionsforeachchemical,pieceof equipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsor indicationofusageandforaddedwarningsandprecautions.Whilethepublisherand authorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentations orwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthiswork andspecificallydisclaimallwarranties,includingwithoutlimitationanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybe createdorextendedbysalesrepresentatives,writtensalesmaterialsorpromotional statementsforthiswork.Thefactthatanorganization,website,orproductisreferredto inthisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmean thatthepublisherandauthorsendorsetheinformationorservicestheorganization, website,orproductmayprovideorrecommendationsitmaymake.Thisworkissold withtheunderstandingthatthepublisherisnotengagedinrenderingprofessional services.Theadviceandstrategiescontainedhereinmaynotbesuitableforyour situation.Youshouldconsultwithaspecialistwhereappropriate.Further,readers shouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappeared betweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernor authorsshallbeliableforanylossofprofitoranyothercommercialdamages,including butnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationDataAppliedfor: ISBN9781119716532(hardback)

CoverDesign:Wiley

CoverImage:©EkaterinaGoncharova/GettyImages

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

TomychildrenArthurandJuliette,whoareeagertogrowuptoreadthis book,whichseemsmagicaltothem.

Contents

ListofContributors xv

Preface xix Acknowledgments xxv

1Introduction 1 ElisabettaDeMaria

1.1WhyWritingModels 2

1.2ModellingandValidatingBiologicalSystems:ThreeSteps 4

1.2.1ModellingBiologicalSystems 4

1.2.2SpecifyingBiologicalSystems 7

1.2.3ValidatingBiologicalSystems 8 References 9

2PetriNetsforSystemsBiologyModellingand Analysis 15 FeiLiu,HiroshiMatsuno,andMonikaHeiner

2.1Introduction 15

2.2ARunningExample 16

2.3PetriNets 16

2.3.1Modelling 17

2.3.2Analysis 18

2.3.3Applications 20

2.4ExtendedPetriNets 20

2.5StochasticPetriNets 20

2.5.1Modelling 21

2.5.2StochasticSimulation 21

2.5.3CSLModelChecking 22

2.5.4Applications 23

2.6ContinuousPetriNets 24

viii Contents

2.6.1Modelling 24

2.6.2DeterministicSimulation 24

2.6.3SimulativeModelChecking 25

2.6.4Applications 27

2.7FuzzyStochasticPetriNets 27

2.7.1Modelling 27

2.7.2FuzzyStochasticSimulation 27

2.7.3Applications 29

2.8FuzzyContinuousPetriNets 29

2.8.1Modelling 29

2.8.2FuzzyDeterministicSimulation 29

2.8.3Applications 30

2.9Conclusions 30

Acknowledgment 31 References 31

3ProcessAlgebrasinSystemsBiology 35 PaoloMilazzo

3.1Introduction 35

3.2ProcessAlgebrasinConcurrencyTheory 36

3.2.1 π-Calculus 38

3.3AnalogiesbetweenBiologyandConcurrentSystems 42

3.3.1ElementsofCellBiology 43

3.3.2CellPathways 44

3.3.3“MoleculesasProcesses”Abstraction 48

3.4ProcessAlgebrasforQualitativeModelling 51

3.4.1FormalAnalysisTechniques 51

3.5ProcessAlgebrasforQuantitativeModelling 53

3.5.1ChemicalKinetics 54

3.5.2StochasticProcessAlgebras 59

3.6Conclusions 61 Acknowledgments 61 References 62

4TheRule-BasedModelApproach: AKappaModelfor HepaticStellateCellsActivationbyTGFB1 69 MatthieuBouguéon,PierreBoutillier,JérômeFeret,OctaveHazard, andNathalieThéret

4.1Introduction 69

4.1.1ModellingSystemsofBiochemicalInteractions 69

4.1.2ModellingLanguages 70

4.1.3Kappa 71

4.1.3.1Overview 71

4.1.3.2SemanticsofKappa 72

4.1.3.3KappaEcosystem 73

4.1.3.4MainLimitations 75

4.1.4ModellingaPopulationofHepaticStellateCells 76

4.1.5Outline 78

4.2Kappa 78

4.2.1SiteGraphs 78

4.2.1.1Signature 79

4.2.1.2Complexes 81

4.2.1.3Patterns 82

4.2.1.4EmbeddingsBetweenPatterns 84

4.2.2SiteGraphRewriting 86

4.2.2.1InteractionRules 86

4.2.2.2ReactionsInducedbyanInteractionRule 87

4.2.2.3UnderlyingReactionNetwork 88

4.3ModelofActivationofStellateCells 91

4.3.1OverviewofModel 91

4.3.2SomeElementsofBiochemistry 91

4.3.2.1ReactionHalf-Time 92

4.3.2.2Conversion 93

4.3.2.3ProductionEquilibrium 93

4.3.2.4ErlangDistributions 94

4.3.3InteractionRules 94

4.3.3.1BehaviorofTGFB1Proteins 95

4.3.3.2RenewalofQuiescentHSCs 96

4.3.3.3ActivationandDifferentiation 97

4.3.3.4ProliferationofActivatedHepaticStellateCells 99

4.3.3.5ProliferationofMyofibroblasts 100

4.3.3.6ApoptosisandSenescenceofMyofibroblasts 101

4.3.3.7InactivationofMyofibroblasts 102

4.3.3.8BehaviorofInactivatedHepaticStellateCells 102

4.3.3.9ProliferationofReactivatedCells 105

4.3.3.10DegradationofReactivated MFB106

4.3.3.11BehaviorofReceptors 106

4.3.4Parameters 108

4.4Results 109

4.4.1StaticAnalysis 109

4.4.2UnderlyingReactionNetwork 111

4.4.3Simulations 111

x Contents

4.5Conclusion 113 References 116

5PathwayLogic:CurationandAnalysisof Experiment-BasedSignalingResponseNetworks 127 MerrillKnapp,KeithLaderoute,andCarolynTalcott

5.1Introduction 127

5.2PathwayLogicOverview 130

5.3PLRepresentationSystem 133

5.3.1RewritingLogicandMaude 133

5.3.2PathwayLogicLanguage 134

5.3.3PetriNetRepresentation 140

5.3.4ComputingwithPetriNets 142

5.4PathwayLogicAssistant 144

5.5DatumCurationandModelDevelopment 150

5.5.1DatumCuration 150

5.5.2ModelDevelopment–InferringRules 153

5.6STM8 155

5.6.1LPSResponseNetwork 156

5.6.2CombiningNetworkAnalyses 158

5.6.3DeathMap:AReviewModel 159

5.6.3.1ReviewMapasaSummaryoftheStateoftheArt 163

5.7Conclusion 163

Acknowledgments 164

Appendix5.A:SummaryofSTM8Networks 164 References 168

6BooleanNetworksandTheirDynamics:TheImpactof Updates 173 LoïcPaulevéandSylvainSené

6.1Introduction 173

6.1.1GeneralNotationsandDefinitions 178

6.2BooleanNetworkFramework 179

6.2.1OntheSimplicityofBooleanNetworks 179

6.2.2BooleanNetworkSpecification 181

6.2.3BooleanNetworkDynamics 183

6.2.3.1Updates 183

6.2.3.2TransitionsandTrajectories 185

6.2.3.3UpdatingModeandTransitionGraph 186

6.2.3.4DeterministicUpdatingModes 187

6.2.3.5Non-deterministicUpdatingModes 199

6.3BiologicalCaseStudies 208

6.3.1FloralMorphogenesisof A.thaliana209

6.3.2CellCycle 211

6.3.3VegetalandAnimalZeitgebers 212

6.3.4AbstractionofQuantitativeModels 214

6.4FundamentalKnowledge 216

6.4.1StructuralPropertiesandAttractors 216

6.4.1.1FixedPointsStability 216

6.4.1.2FeedbackCyclesasEnginesofDynamicalComplexity 217

6.4.1.3AboutSignedFeedbackCycles 219

6.4.2ComputationalComplexity 224

6.4.2.1ExistenceofaFixedPoint 225

6.4.2.2ReachabilityBetweenConfigurations 227

6.4.2.3LimitConfigurations 229

6.5Conclusion 232

6.5.1UpdatingModesandTime 232

6.5.1.1ModellingDurations 233

6.5.1.2ModellingPrecedence 234

6.5.1.3ModellingCausality 234

6.5.2TowardanUpdatingModeHierarchy 235

6.5.2.1SoftwareTools 235

6.5.3OpeningonIntrinsicSimulations 236 Acknowledgments 238 References 238

7AnalyzingLong-TermDynamicsofBiologicalNetworks WithAnswerSetProgramming 251 EmnaBenAbdallah,MaximeFolschette,andMorganMagnin

7.1Introduction 251

7.2StateoftheArt 253

7.2.1QualitativeModellingofBiologicalSystems 253

7.2.2IdentifyingAttractors:AMajorChallenge 255

7.2.3AnswerSetProgrammingforSystemsBiology 257

7.2.4EnumeratingAttractorsofaBiologicalModelUsingAnswerSet Programming 258

7.3BasicNotionsofAnswerSetProgramming 259

7.3.1SyntaxandRules 259

7.3.2Predicates 261

7.3.3Scripting 263

7.4DynamicModellingUsingAsynchronousAutomata Networks 264

7.4.1Motivation:UsingASPtoAnalyzetheDynamics 264

7.4.2DefinitionofAsynchronousAutomataNetworks 264

7.4.3SemanticsandDynamicsofAsynchronousAutomata Networks 267

7.4.4StableStatesandAttractorsinAsynchronousAutomata Networks 271

7.5EncodingintoAnswerSetProgramming 275

7.5.1TranslatingAsynchronousAutomataNetworksintoAnswerSet Programs 276

7.5.2Stable-StateEnumeration 278

7.5.3Attractors 280

7.5.3.1CycleEnumeration 281

7.5.3.2AttractorEnumeration 285

7.5.3.3PythonScripting 288

7.6CaseStudies 290

7.6.1ToyExample 290

7.6.2BacteriophageLambda 292

7.6.3BenchmarksonModelsComingfromtheLiterature 293

7.7Conclusion 297 Acknowledgments 299 References 299

8HybridAutomatainSystemsBiology 305 AlbertoCasagrande,RaffaellaGentilini,CarlaPiazza,and AlbertoPolicriti

8.1Introduction 305

8.2Basics 307

8.2.1LanguagesandTheories 308

8.3Events 313

8.3.1TemporalLogics 316

8.3.2ModelChecking 318

8.4EventsandTime 318

8.4.1HybridAutomataandGeneRegulatoryNetworks 319

8.4.2ExpressibilityandDecidabilityIssues 323

8.5Events,Time,andUncertainty 327

8.6Conclusions 331 Acknowledgement 332 References 332

9KalleParvinen:OrdinaryDifferentialEquations 339 KalleParvinen

9.1Introduction 339

9.2AnalyzingandSolvingOrdinaryDifferentialEquations 340

9.2.1SolvingOrdinaryDifferentialEquationsAnalytically 340

9.2.2EquilibriaandTheirStability 341

9.2.3SolvingDifferentialEquationsNumerically 344

9.3MechanisticDerivationofOrdinaryDifferentialEquations 345

9.3.1ElementaryUnimolecularReaction(EUR) 346

9.3.2ElementaryBimolecularReaction(EBR) 347

9.3.3ElementaryBimolecularReactionofTwoIdentical Molecules 348

9.3.4ReactionNetworks 348

9.4ClassicalLotka–VolterraDifferentialEquation 350

9.4.1ModelFormationandHistory 350

9.4.2Phase-PlaneAnalysisandEquilibria 351

9.4.3ConstantofMotion 352

9.4.4AveragePopulationDensities 353

9.4.5EffectofFishingonthePopulationDensities 353

9.5ModelofKillerT-CellandCancerCellDynamics 354

9.5.1ModelDefinition 354

9.5.1.1ResourceDynamics 354

9.5.1.2CancerCellDynamics 355

9.5.1.3KillerT-CellDynamics 356

9.5.2ModelDynamicsWithoutTreatment 357

9.5.3TreatmentEffects 358

9.6Conclusion 359 Acknowledgments 359 References 360

10NetworkModellingMethodsforPrecision Medicine 363 ElioNushi,Victor-BogdanPopescu,Jose-AngelSanchezMartin, SergiuIvanov,EugenCzeizler,andIonPetre

10.1Introduction 363

10.2NetworkModellingMethods 364

10.2.1NetworkCentralityMethods 364

10.2.1.1RunningExample 366

xiv Contents

10.2.1.2DegreeCentralities 366

10.2.1.3ProximityCentralities 368

10.2.1.4PathCentrality:Betweenness 373

10.2.1.5SpectralCentralities 377

10.2.2SystemControllabilityMethods 383

10.2.2.1NetworkControllability 384

10.2.2.2MinimumDominatingSets 387

10.2.3Software 388

10.2.3.1NetworkX 389

10.2.3.2Cytoscape 390

10.2.3.3NetControl4BioMed 390

10.3ApplicationsofNetworkModellinginPersonalized Medicine 392

10.3.1ConstructingPersonalizedDiseaseNetworks 392

10.3.2AnalysisMethods 393

10.3.3Results 398

10.3.3.1StructuralControllabilityAnalysis 398

10.3.3.2MinimumDominatingSetAnalysis 406

10.4Conclusion 412 References 413

11Conclusion 425

Index 427

ListofContributors

EmnaBenAbdallah IndependentResearcher Nantes

France

MatthieuBouguéon Inria,CNRS,IRISA,UMR6074 UniversityofRennes Rennes

France

Inserm,EHESP,Irset,UMRS1085 UniversityofRennes Rennes

France

PierreBoutillier NomadicLabs

Paris

France

AlbertoCasagrande DepartmentMathematicsand Geosciences

UniversityofTrieste Trieste

Italy

EugenCzeizler DepartmentofInformation Technology ÅboAkademiUniversity Turuku

Finland

NationalInstituteofResearchand DevelopmentinBiologicalSciences Bucharest

Romania

ElisabettaDeMaria UniversitéCôted’Azur CNRS,I3S SophiaAntipolis

France

JérômeFeret TeamAntique,Inria

Paris

France

Écolenormalesupérieure DI-ENS(ÉNS,CNRS,PSL University)

Paris France

xvi ListofContributors

MaximeFolschette

Univ.Lille,CNRS,CentraleLille

UMR9189CRIStAL Lille

France

RaffaellaGentilini DepartmentofMathematicsand ComputerScience UniversityofPerugia Perugia

Italy

OctaveHazard TeamAntique,Inria

Paris

France

Écolenormalesupérieure DI-ENS(ÉNS,CNRS,PSL University)

Paris

France

ÉcolePolytechnique Palaiseau

France

MonikaHeiner ComputerScienceDepartment FacultyofMathematics,Natural SciencesandComputerScience BrandenburgUniversityof TechnologyCottbus-Senftenberg Cottbus

Germany

SergiuIvanov IBISCLaboratory UniversitéParis-Saclay UniversitéÉvry

Paris

France

MerrillKnapp InformationandComputing Sciences

SRIInternational MenloPark,CA USA

KeithLaderoute NumentusTechnologies,Inc. MenloPark,CA USA

FeiLiu SchoolofSoftwareEngineering SouthChinaUniversityof Technology

Guangzhou

China

MorganMagnin CentraleNantes,Universitéde Nantes,CNRS,LS2N Nantes

France

HiroshiMatsuno GraduateSchoolofScienceand TechnologyforInnovation YamaguchiUniversity Yamaguchi

Japan

PaoloMilazzo DipartimentodiInformatica UniversitàdiPisa

Pisa

Italy

ElioNushi DepartmentofComputerScience

UniversityofHelsinki

Helsinki

Finland

KalleParvinen DepartmentofMathematicsand Statistics UniversityofTurku

Turku

Finland

AdvancingSystemsAnalysis Program,InternationalInstitutefor AppliedSystemsAnalysis Laxenburg

Austria

LoïcPaulevé

BordeauxINP,CNRS,LaBRI UMR5800

UniversityofBordeaux

Talence

France

IonPetre

NationalInstituteofResearchand DevelopmentinBiologicalSciences Bucharest

Romania

DepartmentofMathematicsand Statistics UniversityofTurku

Turku

Finland

ListofContributors xvii

CarlaPiazza DepartmentofMathematics ComputerScience,andPhysics UniversityofUdine

Udine

Italy

AlbertoPolicriti DepartmentofMathematics ComputerScience,andPhysics UniversityofUdine

Udine

Italy

Victor-BogdanPopescu DepartmentofInformation Technology ÅboAkademiUniversity

Turku

Finland

Jose-AngelSanchezMartin DepartmentofComputerScience TechnicalUniversityofMadrid

Madrid

Spain

SylvainSené CNRS,LIS AixMarseilleUniversity

Marseille

France

xviii ListofContributors

CarolynTalcott InformationandComputing Sciences

SRIInternational MenloPark,CA

USA

NathalieThéret

Inria,CNRS,IRISA,UMR6074 UniversityofRennes

Rennes

France

Inserm,EHESP,Irset,UMRS1085 UniversityofRennes

Rennes France

Preface Overview

Formalmethodsofcomputersciencearenowadaysunavoidabletomodel, study,andmakeadvancedanalysisofbiologicalsystems.Severalformalismsaresuitabletomodelbiologicalsystems:Petrinets,Boolean networks,reactionrules,processalgebras,ordinarydifferentialequations, timedandhybridautomata,etc.Onceabiologicalsystemisencoded usingoneoftheseformalisms,someformaltechniquessuchasmodel checkingcanbeusedtospecifysomeexpectedpropertiesofthesystem andverifywhethertheyholdornotinthemodelatissue.Thisgreatly helpsinvalidating/refutingbiologicalhypothesis,makingpredictions, andassociatingparameterswithbiologicalphenomena.Inthisbook,we presentandcomparethemainformalismsusedinsystemsbiologytomodel biologicalnetworks.

OrganizationandFeatures

Somecrucialformalapproachesusedinsystemsbiologyarepresented indetail,alongwiththeiradvantages/drawbacksandmainapplications. ApartfromChapters1(Introduction)and11(Conclusion),eachchapterof thebookisdevotedtooneofthekeyformalismsusedintheliteratureto model(andverify)biologicalsystems.Eachchapterincludesanintuitive presentationofthetargetedformalism,abriefhistoryoftheformalismand ofitsapplicationsinsystemsbiology,aformaldescriptionoftheformalism anditsvariants,atleastonerealisticcasestudy,someapplicationsofformal techniquestovalidateandmakedeepanalysisofmodelsencodedwiththe formalism,andadiscussiononthekindofbiologicalsystemsforwhichthe formalismissuited,alongwithconcreteideasonitspossibleevolutions.

Somechaptersalsoincludethedescriptionofatoolimplementingthe formalismandasortofhow-topracticalguideaboutusingthetool.The networkschosentoserveascasestudiesspanthefieldofsystemsbiology inalargeway(theyrangefromgeneregulatorynetworkstoprey-predatory networks).

Somechaptersarequitetechnicalandmakeuseofaninvolvedformal notation,butotherchaptersaremorefocusedonthebiologicalapplications (inparticular,thelastchapterbeforetheconclusionopenstosomeapplicationsinprecisionmedicine).Foreachchapter,thenotationhasbeencarefullychosensothatitlooksthemostnaturalandsuitedonetorepresent theformalismatissue.Pleasenotethattheauthorsofsomechaptersarethe oneswhofirstintroducedthecorrespondingformalismsand/ortoolsinthe literature.Also,notethatallthechaptersarethoughttobeself-contained: thereaderwillfindineachchapteralltheelementsthatareusefultounderstandandlearn,withouthavingtoreadotherworks.Somechapterscontain referencestootherchapterstomakecomparisons,buttherearenostrong dependenciesamongchapters,andthereadercandecidetoreadchapters inadifferentorderthantheonechoseninthisbook.

Someapproachesappearedsomedecadesago,othersarequiterecent,but allofthemarepresentedfromacurrentandgroundbreakingpointofview. Wedescribehoweachformalismanswerstodayneedsinsystemsbiology, whichmakesarealcontributiontothescientificcommunity.

Thebookisorganizedasfollows.

Chapter1focusesonthenecessityofusingformalmethodsinthedomain ofsystemsbiology.Itintroducesthemainformalapproachestothemodellingofbiologicalsystemsandthestepstofollowtoimproveandvalidate theobtainedmodels.

Chapter2isdevotedtoPetrinets,animportanttoolforstudyingdifferent aspectsofbiologicalsystems,rangingfromsimplesignalingpathways, metabolicnetworks,andgeneticnetworkstotissuesandorgans.Toexplore suchvarietiesofbiologicalsystems,manyvariantsofPetrinetshavebeen proposed.Thischapterexplainshowthesedifferentnetclassesareapplied tomodellingandanalysisofthesedifferenttypesofbiologicalsystems withtheillustrativeexampleoftheyeastpolarizationmodeldescribingthe pheromone-inducedG-proteincyclein Saccharomycescerevisiae.

Chapter3describesthedevelopmentofProcessAlgebrasandrelated analysismethodsinthecontextofsystemsbiology.Itpresentsconcepts thatareatthebasisoftheapplicationofthisclassofformalismsinthe biologicalcontext,providingtherelevantnotionsofbiochemistryandcell biology,anddiscussingbothqualitativeandquantitativeapproaches.The �� -calculusischosenasrepresentativeProcessAlgebrainordertogive

modellingexamplesandclarifytherelationshipsoftheprocessalgebraic approachwiththetraditionalmodellingofcellpathwaysassetsofchemical reactions.

Chapter4describesKappa,asitegraphrewritinglanguage.Asarealisticcasestudy,apopulationofhepaticstellatecellsundertheeffectofthe tgfb proteinismodeled.Kappaoffersarule-centricapproach,inspiredfrom chemistry,whereinteractionruleslocallymodifythestateofasystemthat isdefinedasagraphofcomponents,connectedornot.Inthiscasestudy, thecomponentsareoccurrencesofhepaticstellatecellsindifferentstates andoccurrencesoftheprotein tgfb.Theprotein tgfb inducesdifferentbehaviorsofhepaticstellatecells,therebycontributingeithertotissuerepairorto fibrosis.Betterunderstandingtheoverallbehaviorofthemechanismsthat areinvolvedintheseprocessesisakeyissuetoidentifymarkersandtherapeutictargetslikelytopromotetheresolutionoffibrosisattheexpenseof itsprogression.

Chapter5introducesPathwayLogic,aformal,rule-basedsystemand interactiveviewerfordevelopingexecutablemodelsofcellularprocesses. Itincludesacuratedevidenceknowledgebaseandadiversecollectionof modelsforevaluationbyusers.ThischapterpresentsthePathwayLogic representationsystemandthealgorithmsusedbythePathwayLogic Assistant.Theoverviewdiscussesrewritinglogicanditsimplementation intheMaudesystem,theformalbasisofPathwayLogic.Othersectionsin thechapterpresenttheSTM8collectionofsignalingresponsenetworks, provideoverviewsofthecurationprocessandhowrulesareinferred,and illustratetheutilityofPathwayLogicusingthe Lps (lipopolysaccharide) andCellDeathmodels.

Chapter6presentsBooleannetworks,amathematicalmodelthathas beenwidelyusedsincedecadesinthecontextofbiologicalregulation networksqualitativemodelling.Theyconsistincollectionsofentities, eachhavingtwopossiblelocalstates(1–activeand0–inactive),which interactwitheachotheroverdiscretetime.Thesimplicityoftheirsetting togetherwiththeirhighabstractionlevelareespeciallyconvenientto focusonfoundationsofinformationtransmissioningeneticregulation, andonmathematicalexplanationandpredictionofphenomenological observations.ThischapteraimstopresenttheBooleanmodellingframeworkbydevelopingitstheoreticalbasesandemphasizingitsusefulness forcapturingbiologicalregulationphenomena.Butitgoesbeyondthat bycoveringtheirabilitytocapturetheinformationtransmissionandits consequencesdependingonthewaystheentitiesupdatetheirlocalstate overtime.

Chapter7dealswithAnswerSetProgramming(ASP),whichhasproven tobeastronglogicprogrammingparadigmtodealwiththeinherentcomplexityofthebiologicalmodels,allowingustoquicklyinvestigateawide rangeofconfigurations.ASPcanefficientlyenumeratealargenumberof answersets,aswellaseasilyfiltertheresultsthankstoconstraintsbased oncertainproperties.ThischapterfirstmotivatesthemeritsofASPinbiologicalstudiesbasedonthestateoftheart.Then,itintroducesthebasic conceptsaboutASPanditsuseinsystemsbiology.Afterhavinggivenan overviewofthedifferentissuesthatcanbetackledusingASP,itthenfocuses ononeproblemthatisofcriticalimportance:model-checkingwithASP,and morespecifically,theidentificationofattractors.Themeritsofthisstudyare illustratedusingcasestudies.

Chapter8focusesonhybridautomata,aformalismintroducedanddevelopedwiththeaimofintegratingdiscreteandcontinuousingredientsina singlesimulationtool.Thischapterintroducessomekeylogicformalisms forsystemsbiology;illustratessomeautomata-basedsimulationtools;discussestherole,potential,andcomplexityofthenotionoftimeinautomata; andpresentsseveralmethodologiestointegratediscreteandcontinuous, time-oriented,formalinstrumentsforsystemsbiology.Severalrealisticcase studiesaretreated.

Chapter10discussesseveralnetworkmodellingmethodsandtheir applicabilitytoprecisionmedicine.Thechapterintroducesacertainnumberofnetworkcentralitymethods(degreecentrality,closenesscentrality, eccentricitycentrality,betweennesscentrality,andeigenvector-based prestige)andtwosystemscontrollabilitymethods(minimumdominating setsandnetworkstructuralcontrollability).Theirapplicabilitytoprecisionmedicineonthreemultiplemyelomapatientdiseasenetworksis demonstrated.Eachnetworkconsistsofprotein–proteininteractionsbuilt aroundaspecificpatient’smutatedgenes,aroundthetargetsofthedrugs usedinthestandardofcareinmultiplemyeloma,andaroundmultiple myeloma-specificessentialgenes.Foreachnetwork,itisdemonstrated howthediscussednetworkmethodscanbeusedtoidentifypersonalized, targeteddrugcombinationsuniquelysuitedtothatpatient.

Finally,Chapter11underlinessomekeyconceptsofthebookand opensonpossibleevolutionsinthedomainofformalmethodsforsystems biology.

Audience

Thisbookcanbeofinteresttoscientistsatalllevels,frommasterstudents toseniorscientiststhatwanttolearnaboutformalmethodsforsystems biology.Thebookismainlyaddressedtobioinformaticiansbutcanalsobe appreciatedbybiologists,medicaldoctors,computerscientists,andmathematiciansinterestedinthishighlyinterdisciplinaryarea.

Nice,August2022

Acknowledgments

Iwouldliketothankalltheauthorsofthisbook.Theyarehighlyqualified andverybusyresearchersandteachers,andI’mhonoredtheyacceptedto contributetothisbook.

I’mdeeplygratefultoFrançoisFages,whoin2008introducedmetothe fieldofsystemsbiologyandtransmittedtomehispassionforthisresearch domain.Iwouldliketoexpressthankstoallthemembersoftheteam“DiscreteModelsforComplexSystems”atI3SresearchlaboratoryinSophia Antipolis.AtI3S,Icouldfindastimulatingscientificenvironmentwhich wasverypropitioustomyresearchesandtothewritingofthisbook.Iwould liketoexpressmygratitudetoallmystudents,frombachelor’stoPh.D.,for theextraordinaryinputstheyhaveprovidedmeduringthelastyears.

I’mdeeplyindebtedtomycompanionandmyparentswhosupportedmy effortsinthisendeavor.FinallyaspecialthanksgoestomychildrenArthur andJuliette,wholookatmyworkwithenthusiasm,andareconvincedthat myprofessionisthemostbeautifulintheworld.

Introduction

ElisabettaDeMaria

UniversitéCôted’Azur,CNRS,I3S,SophiaAntipolis,France

Thisbookisdevotedtotheuseof formalmethods ofcomputerscienceinthe domainof systemsbiology,whichisafieldthatbringstogetherresearchers frombiological,mathematical,computational,andphysicalsciencesin ordertostudy,conceive,simulate,andmakeadvancedanalysisofbiological systems(Idekeretal.,2001).Tothisaim,biologicalknowledgeisoften extractedfromhigh-throughput“omics”(genomics,transcriptomics, proteomics,metabonomics,etc.)datageneratedthankstonext-generation moleculartechnologies.Theobtainedpiecesofinformationarethenintegratedinto interactionmaps or networks,whichrepresenttheinteractions amongtheinvolvedbiologicalcompounds.Inthesenetworks,nodes representthemodeledentities,andedgesstandfortheirinteractions. Severalkindsofbiologicalnetworksareinthescopeofsystemsbiology: generegulatorynetworks(whichrepresentgenes,theirregulators,and theregulatoryrelationshipsbetweenthem),protein–proteininteraction networks(whichmodelthephysicalcontactsbetweenproteinsinacell), metabolicnetworks(whichrepresentthebiochemicalreactionscatalyzed byenzymesinacell),biologicalneuralnetworks(whichdescribehow neuronsinthebraincommunicatethroughtheirsynapses),ecological networks(whichmodelthebiologicalinteractionsofanecosystem),etc. Thesenetworkshelpinhavinga globalviewondata,turningdatafrom individualpiecestopiecesthatconnecttoformasystem.Asstatedby KitanoinKitano(2002),tounderstandbiologyatthesystemlevel,wemust examinethestructureanddynamicsofcellularandorganismalfunctions ratherthanthecharacteristicsofisolatedpartsofacelloranorganism. Thecoreofsystemsbiologyactuallyconsistsinturningdataintonetworks towhichwewanttogivea dynamics.Asamatteroffact,thesenetworks

SystemsBiologyModellingandAnalysis:FormalBioinformaticsMethodsandTools, FirstEdition.EditedbyElisabettaDeMaria. ©2023JohnWiley&Sons,Inc.Published2023byJohnWiley&Sons,Inc.

areconsideredasdynamicalsystems,andwewanttostudytheevolution oftheircomponentsaccordingtothetimeevolution.The timedimension isthuscrucial:itisrelevanttolinkthetopologyofthesenetworkstotheir dynamics(Richard,2010).Itbehovesustounderlinethatthedynamical systemswetreatinsystemsbiologyarequitedifferentfromtheonesstudied inphysics.Themaincomplicationderivesfromthefactthatthelarge-scale datawegetareoftenincomplete,heterogeneous,andinterdependent (dependenciesareusuallyhidden).Furthermore,thedatainourpossession aretoofewwithrespecttothesearchspace.Infact,thesearchspacegrows exponentiallywiththenumberofmeasuredcompounds,whichgivesan explosionofthenumberofparameters.Asaconsequence,itisalmost impossibletoobtainauniquemodelfromagivendataset,andasystem isgenerallydescribedbyafamilyofabstractmodels(Videlaetal.,2017). Theuseofformalmethodsofcomputerscienceisthenhelpfultoreason overthesefamiliesofmodelsandtodiscriminatemodelsaccordingtothe biologicalpropertiestheysatisfy(GilbertandHeiner,2015).

1.1WhyWritingModels

Systemsbiologyseeksatpointingouttheemergenceofbiologicalphenomena(asystemismorethanthesumofitsparts),anditwouldbereductiveto considerthemodelingtaskasawaytostoreasmoreinformationaspossibleconcerningabiologicalsystem.Modelsarerarelyanendinthemselves, andtheyareveryoftenwritteninordertoanswersomespecificquestions. Wecanidentifythefollowingmainreasonsforwritingformalmodelsof biologicalsystems.

Validating/refutingabiologicalhypothesis: Biologistsoftengetintouch withcomputerscientists,mathematicians,and/orphysicistsbecausethey conjectureahypothesisconcerningabiologicalsystemandtheyneed helpinvalidating/refutingthishypothesis.Inthiscase,weneedtoformalizenotonlythebiologicalsystematissuebutalsotheassociated(setof) hypothesis.Toolssuchasmodelcheckers(Clarkeetal.,1999)arethen employedtotestwhetherthehypothesisholdsornotinthesystem. Makingpredictions: Toavoidtoperformwetexperimentsinthelaboratory, modelscanbeexploitedfortheirpredictivepower.Inthisregard,irrespectiveofwhetherexperimentscanbeexpensive,time-consuming,and intrusiveforlivingcreatures,weshouldconsiderthatwetexperimentsare

sometimesunsatisfactoryforlackof operability (somecompoundscannot bemanipulated)and observability (theexpressionofsomecompounds cannotbeobserved).Modelscanthushelpinpredictingthevaluesof someentitiesthatcannotbeobserved.Theycanalsopredictthereactions thesystemwillhaveundersomespecialconditions,forexample,when confrontedwithexternalfactorssuchasdisease,medicine,andenvironmentalchanges(TalcottandKnapp,2017).Thepredictedbehaviorsneed tobeformallyspecifiedtoautomatereasoningonthem.

Associatingparameterswithbiologicalphenomena: Biologistsoften expectbiologicalsystemstodisplaysomeknownbehaviors,butthey donotalwaysknowunderwhichconditionsthesebehaviorscanbe observed.Totacklethisproblem,itisneededtowriteamodelformalizing thebiologicalknowledgeconcerningthesystematissueandtolook forparameterssuchthattheexpecteddynamicalpropertiesaretruein themodel(thesepropertiesareoftenencodedusingformalmethods).

Parametersearch iscrucialinartificialintelligence,andtechniques fromthisdomainareemployedinsystemsbiologytoinfertheparametersofbiologicalsystems.Observethatparametersearchcanalso beexploitedtofindparameterssuchthatagivenmodelcanreproduce somegivenexecutiontraces(data-fitting).Again,thesetracescanbe formallyencoded.

Whateverthereasonforwritingamodelis,formalmethodsarethus importantforhavingdeepinsightsintothesystem(s)involved.Ofcourse, formalmethodscanalsobeexploitedto validatemodels withrespectto somealreadyacquiredbiologicalknowledge,i.e.toverifywhetherthe encodedmodelscanreproducesomebehaviorstheyaresupposedtodisplay (anddonotdisplaysomeunwantedbehaviors).Alsointhiscase,the behaviorstobecheckedshouldbeformallyencoded.Insystemsbiology, modelsarenotstatic,andtheyareoftentheobjectofmodificationsto incorporatenewbiologicalknowledge.Discoverypassesthroughunceasing roundsbetweenmodellingandexperiments.Therefore,itislikeacyclein whichexperimentsleadtothepropositionofnewimprovedmodelsand inturnthesemodelssuggestenhancedexperimentsandsoon.Formal methodsareagainnecessarytoverifythatthenewinformationiscorrectly encodedandconsistentwiththepreviousknowledge.Tosummarize,formalmethodsareunavoidabletounderstandandcontrolbiologicalsystems and,moregenerally,toautomatereasoningonthedifferentbehaviorsof biologicalsystems.

1.2ModellingandValidatingBiologicalSystems: ThreeSteps

Asstatedbefore,formalmethodsgreatlyhelpinunderstandinghowcomplexbiologicalsystemswork.Formalapproachesforsystemsbiologyusually followthenextthreesteps:

1. Describingthesystematissueusingaformallanguage;

2. Formalizingthebiologicalpropertiestobeverifiedusingaformal language,whichneednotbethelanguageusedatstep1;

3. Usingatoolto(automatically)testwhethertheencodedpropertiesare verifiedbythemodeledsystem,ortolearntheconditionsallowingthe propertysatisfaction.

Asfarasthefirststepisconcerned,abiologicalsystemcanbemodeledas agraph(transitionsystem)whosenodesrepresentthedifferentpossibleconfigurationsofthesystemandwhoseedgesencodemeaningfulconfiguration changes.Mostoftheformallanguagesemployedinsystemsbiologyallowto (directlyorindirectly)representabiologicalsystemasatransitionsystem. Theseformalisms,whichareattheheartofthisbook,willbeintroducedin Section1.2.1.Concerningthesecondstep,abiologicalpropertyconcerning thetemporalevolutionofthebiologicalspeciesinvolvedinthesystemcanbe encodedusingformallanguagessuchastemporallogics.Theseformalisms areintroducedinSection1.2.2.Inthesefirsttwosteps,thequalityofinteractionsbetweenbiologistsandcomputerscientists/mathematiciansisvery important.Agapbetweendifferentterminologiesoftenarises,anddeepdiscussionsareneededtofindacommonlanguage.Asfarasthethirdstepis concerned,toolscalledmodelcheckersarelargelyusedtoverifythatspecific propertiesofasystemholdatparticularstates.Thesetoolsarepresentedin Section1.2.3.

1.2.1ModellingBiologicalSystems

Asfarasthemodellingofbiologicalsystemsisconcerned,intheliterature, wecanfindbothqualitativeandquantitativeapproaches.Whereasqualitativemethodsareconceptual(e.g.theymodelthepresenceorabsence ofabiologicalentity),quantitativemethodsaimatcounting,measuring, andrepresentingdatausingnumbers.Toexpressthe qualitative nature ofdynamics,themostusedformalismsarethefollowingones:Petrinets, BooleannetworksandThomas’networks,reactionrules,processalgebras, logicprogramminglanguages,andpurelogics.

Petrinets: Theyaredirected-bipartitegraphswithtwodifferenttypes ofnodes:placesandtransitions.Placesrepresenttheresourcesofthe system,whiletransitionscorrespondtoeventsthatcanchangethe stateofresources.Thankstotheirgraph-basedstructure,Petrinets areamathematicalformalismallowinganintuitiverepresentationof biochemicalnetworks(Reddyetal.,1993,Chaouiya,2007).Theyare basedonsynchronousupdatingtechniques.

BooleannetworksandThomas’networks: Theyareregulatorygraphs, wherenodesrepresentregulatorycomponents(e.g.regulatorygenes orproteins)andsignedarcs(positiveornegative)standforregulatory interactions(activationsorinhibitions).Thisgraphrepresentationisfurtherassociatedwithlogicalrules(orlogicalparameters),whichspecify howeachnodeisaffectedbydifferentcombinationsofregulatoryinputs (Thomasetal.,1995).Theycanbeothersynchronous(Booleannetworks (Kauffman,1969,Ruzetal.,2018))orasynchronous(Thomas’networks (Thomas,1973)).

Reactionrules: Dedicatedrule-basedlanguagesallowustomodelbiochemicalreactions,defininghow(setsof)reactantscanbetransformedinto (setsof)products,andassociatingcorrespondingrate-laws(ChabrierRivieretal.,2004).TheSystemsBiologyMarkupLanguage(SBML)isthe mostcommonrepresentationformatformodelsofbiologicalprocesses. ItisbasedonXML,anditstoresmodelsaschemicalreaction-likeprocessesthatactonentities(Hucka,2014).Themainrule-basedmodelling tools,suchasBioNetGen(Blinovetal.,2004)orBiocham(Fagesetal., 2004),providebothatextualandgraphicalformatandarecompatible withSBML.

Processalgebras: Theyallowustospecifythecommunicationand interactionsofconcurrentprocesseswithoutambiguities.Thereisa strongcorrespondencebetweenconcurrentsystemsdescribedbyprocess algebrasandthebiologicalones:biologicalentitiesmaybeabstracted asprocessesthatcaninteractwitheachotherandreactionsmaybe modeledasactions.Themostwidelyusedprocessalgebrasinsystems biologyare pi-calculus (Regevetal.,2001),whereprocessescommunicate oncomplementarychannelsidentifiedbyspecificnames, bio-ambients (Regevetal.,2004),whicharebasedonboundedplaceswhereprocesses arecontainedandwherecommunicationstakeplace,and process-hitting (Folschetteetal.,2015),wherebiologicalcomponentsareabstractedas sortsdividedintodifferentprocesses,interactionsbetweencomponents arerepresentedasahitfromoneprocessofasorttoanotherprocess ofanothersort,andsomecooperativesortsallowustorepresentthe combinedinfluencesofmultiplecomponentsonasingletarget.

Logicprogramminglanguages: Declarativeproblem-solvinglanguages belongingtothefamilyoflogicprogramminglanguages,suchasAnswer SetProgramming(ASP),allowustomodelbiologicalsystemswith inherenttoleranceofincompleteknowledgeandtogeneratehypotheses aboutrequiredexpansionsofbiologicalmodels(Gebseretal.,2010, Videlaetal.,2015,Fayruzovetal.,2011).

Purelogics: DifferentextensionsofLinearLogic,suchasHyLL(Despeyroux andChaudhuri,2013)andSELL(Olarteetal.,2015),allowustospecify systemsthatexhibitmodalitiessuchasthetemporalorspatialones.In theselogics,propositionsarecalledresources,andrulescanbeviewedas rewriterulesfromasetofresourcesintoanothersetofresources,where asetofresourcesdescribesastateofthesystem.Thus,biologicalsystems canbemodeledbyasetofrulesoftheaboveform.Higher-orderlogic (HOL(Rashidetal.,2017))canalsobeconvenientlyexploitedtoformalize reactionkinetics.PathwayLogicusesrewritetheoriestoformalizebiologicalentitiesandprocesses(Talcott,2016).

Somerecentqualitativeapproachesevoketheuseoflanguagesforreactive systems.Thesearesystemsthatconstantlyinteractwiththeenvironment andwhichmayhaveaninfiniteduration.Asmanybiologicalsystems canbeseenasreactivesystemscontinuouslyreactingtosomestimuli, languagesforreactivesystemssuchasNusmv(GoldfederandKugler,2018) orLustre(DeMariaetal.,2017,DeMariaetal.,2020)aresuitedtomodel them.Tocapturethedynamicsofabiologicalsystemfroma quantitative pointofview,themostusedapproachesarethefollowingones:ordinary andstochasticdifferentialequations,hybridPetrinets,timedandhybrid automata,rule-basedlanguageswithcontinuous/stochasticdynamics,and stochasticprocessalgebras.

Ordinaryorstochasticdifferentialequations: Themostclassicalquantitativemodelsresorttoordinarydifferentialequations.Theinteraction betweencomponentsiscapturedbysigmoidexpressionsembeddedin differentialequations.Bothpositiveandnegativeregulationscanbe considered.Modelsbasedonordinarydifferentialequationscanhardly bestudiedanalyticallybutareoftenemployedtosimulateandpredict theanswerofbiologicalsystems.Totracknotonlyindividualsbuttotal populations,stochasticdifferentialequationsareoftenused(Székelyand Burrage,2014).

HybridPetrinets: Theyarecharacterizedbythepresenceoftwokindsof places(discreteandcontinuous)andtwokindsoftransitions(discreteand continuous)(HofestädtandThelen,1998).Acontinuousplacecanholda non-negativerealnumberasitscontent,andacontinuoustransitionfires

1.2ModellingandValidatingBiologicalSystems:ThreeSteps 7 continuouslyatthespeedofanassignedparameter.Biologicalpathways canbeobservedashybridsystems,showingbothdiscreteandcontinuous evolution.Forinstance,proteinconcentrationdynamicsbehavecontinuouslywhencoupledwithdiscreteswitches.

Timedautomataandhybridautomata: Timedautomata(Malerand Batt,2008)arefinitestateautomataextendedwithtimedbehaviors:constraintsallowustolimittheamountoftimespentwithinparticularstates andthetimeintervalsinwhichtransitionsareenabled.Theyaresuited tomodelthetimeaspectsofbiologicalsystems,suchastimedurations ofactivities.Hybridautomata(CampagnaandPiazza,2010)combine finitestateautomatawithcontinuouslyevolvingvariables.Ahybrid automatonexhibitstwokindsofstatechanges:discretejumptransitions occurinstantaneouslyandcontinuousflowtransitionsoccurwhentime elapses.Thepresenceofbothdiscreteandcontinuousdynamicsmakes thisformalismappealingtomodelbiologicalsystems(Bortolussiand Policriti,2008).

Rule-basedlanguageswithcontinuous/stochasticdynamics: Theyallow towritemechanisticmodelsofcomplexreactionsystems,associatingcontinuousorstochasticdynamicstorules(KimandGelenbe,2012).Inthe populartoolKappa(Boutillieretal.,2018),entitiesaregraphicalstructures,rulesaregraph-rewritedirectives,andrulescanfirestochastically, asdeterminedbystandardcontinuous-timeMonteCarloalgorithms.

Stochasticprocessalgebras: Theyareprocessalgebraswheremodelsare decoratedwithquantitativeinformationusedtogeneratestochasticprocesses.Themostexploitedformalismsarestochastic pi-calculus(Phillips andCardelli,2007),whereeachchannelisassociatedwithastochastic rate,andprocessalgebrassuchasBio-PEPA(CiocchettaandHillston, 2009),whichallowsthespecificationofcomplexkineticformulae.

Thechoiceofthemodellingapproachmustbesuitedtothebiological phenomenon/systematissue:itisimportanttochooseaformalismwhose featuresandgranularityofrepresentationaresufficienttoexplainthe phenomenonandtoanswertothequestionsraisedbybiologists.Thechosenformalismshouldbeexpressiveenoughwithoutbeingtooexpressive (toavoidcombinatorialexplosion).

1.2.2SpecifyingBiologicalSystems

Themostwidespreadformallanguagestospecifypropertiesconcerningthe dynamicalevolutionofbiologicalsystemsare temporallogics.Theyareformalismsfordescribingsequencesoftransitionsbetweenstates(Emerson, 1990).The ComputationTreeLogic CTL∗ (Clarkeetal.,1999)allowsone

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.