Buy ebook Artificial intelligence-based smart power systems 1st edition sanjeevikumar padmanaban che

Page 1


Padmanaban

Visit to download the full and correct content document: https://ebookmass.com/product/artificial-intelligence-based-smart-power-systems-1stedition-sanjeevikumar-padmanaban/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Residential Microgrids and Rural Electrifications

Sanjeevikumar Padmanaban

https://ebookmass.com/product/residential-microgrids-and-ruralelectrifications-sanjeevikumar-padmanaban/

Smart Cities and Artificial Intelligence: Convergent Systems for Planning, Design, and Operations 1st Edition Christopher Grant Kirwan

https://ebookmass.com/product/smart-cities-and-artificialintelligence-convergent-systems-for-planning-design-andoperations-1st-edition-christopher-grant-kirwan/

Active Electrical Distribution Network: Issues, Solution Techniques, and Applications Sanjeevikumar Padmanaban

https://ebookmass.com/product/active-electrical-distributionnetwork-issues-solution-techniques-and-applicationssanjeevikumar-padmanaban/

Applications of Artificial Intelligence in Process Systems Engineering Jingzheng Ren

https://ebookmass.com/product/applications-of-artificialintelligence-in-process-systems-engineering-jingzheng-ren/

Analytics, data science, & artificial intelligence : systems for decision support Eleventh Edition Dursun Delen

https://ebookmass.com/product/analytics-data-science-artificialintelligence-systems-for-decision-support-eleventh-editiondursun-delen/

Engineering Intelligent Systems: Systems Engineering and Design with Artificial Intelligence, Visual Modeling Barclay R. Brown

https://ebookmass.com/product/engineering-intelligent-systemssystems-engineering-and-design-with-artificial-intelligencevisual-modeling-barclay-r-brown/

Artificial Intelligence for Dummies 2nd Edition John Paul Mueller & Luca Massaron

https://ebookmass.com/product/artificial-intelligence-fordummies-2nd-edition-john-paul-mueller-luca-massaron/

The Psychoanalysis of Artificial Intelligence 1st Edition Isabel Millar

https://ebookmass.com/product/the-psychoanalysis-of-artificialintelligence-1st-edition-isabel-millar/

Predicting Heart Failure : Invasive, Non-Invasive, Machine Learning, and Artificial Intelligence Based Methods 1st Edition Kishor Kumar Sadasivuni

https://ebookmass.com/product/predicting-heart-failure-invasivenon-invasive-machine-learning-and-artificial-intelligence-basedmethods-1st-edition-kishor-kumar-sadasivuni/

IEEEPress

445HoesLane Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktsson

AnjanBose

AdamDrobot

Peter(Yong)Lian

AndreasMolisch

SaeidNahavandi

JeffreyReed

ThomasRobertazzi

DiomidisSpinellis

AhmetMuratTekalp

ArtificialIntelligence-basedSmartPowerSystems

Editedby

SanjeevikumarPadmanaban

DepartmentofElectricalEngineering,InformationTechnology,andCybernetics, UniversityofSouth-EasternNorway,Porsgrunn,Norway

SivaramanPalanisamy

WorldResourcesInstitute(WRI)India,Bengaluru,India

SharmeelaChenniappan

DepartmentofElectricalandElectronicsEngineering,AnnaUniversity,Chennai,India

JensBoHolm-Nielsen

DepartmentofEnergyTechnology,AalborgUniversity,Aalborg,Denmark

Copyright©2023byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic, mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection107or108ofthe1976UnitedStates CopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriate per-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)750-4470,or onthewebatwww.copyright.com.RequeststothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment, JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthisbook,they makenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisbookandspecifically disclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedby salesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.You shouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitorany othercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.Further,readersshould beawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread. Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomerCareDepartment withintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailableinelectronic formats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationDataAppliedfor:

HardbackISBN:9781119893967

CoverDesign:Wiley

CoverImage:©EkaterinaGoncharova/GettyImages

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Contents

EditorBiography xv ListofContributors xvii

1IntroductiontoSmartPowerSystems 1

SivaramanPalanisamy,ZahiraRahiman,andSharmeelaChenniappan

1.1ProblemsinConventionalPowerSystems 1

1.2DistributedGeneration(DG) 1

1.3WideAreaMonitoringandControl 2

1.4AutomaticMeteringInfrastructure 4

1.5PhasorMeasurementUnit 6

1.6PowerQualityConditioners 8

1.7EnergyStorageSystems 8

1.8SmartDistributionSystems 9

1.9ElectricVehicleChargingInfrastructure 10

1.10CyberSecurity 11

1.11Conclusion 11 References 11

2ModelingandAnalysisofSmartPowerSystem 15

MadhuPalati,SagarSinghPrathap,andNageshHalasahalliNagaraju

2.1Introduction 15

2.2ModelingofEquipment’sforSteady-StateAnalysis 16

2.2.1LoadFlowAnalysis 16

2.2.1.1GaussSeidelMethod 18

2.2.1.2NewtonRaphsonMethod 18

2.2.1.3DecoupledLoadFlowMethod 18

2.2.2ShortCircuitAnalysis 19

2.2.2.1SymmetricalFaults 19

2.2.2.2UnsymmetricalFaults 20

2.2.3HarmonicAnalysis 20

2.3ModelingofEquipmentsforDynamicandStabilityAnalysis 22

2.4DynamicAnalysis 24

2.4.1FrequencyControl 24

2.4.2FaultRideThrough 26

2.5VoltageStability 26

2.6CaseStudies 27

2.6.1CaseStudy1 27

2.6.2CaseStudy2 28

2.6.2.1ExistingandProposedGenerationDetailsintheVicinityofWindFarm 29

2.6.2.2PowerEvacuationStudyfor50MWGeneration 30

2.6.2.3WithoutInterconnectionoftheProposed50MWGenerationfromWindFarmon66kVLevelof220/66kV Substation 31

2.6.2.4ObservationsMadefromTable2.6 31

2.6.2.5WiththeInterconnectionofProposed50MWGenerationfromWindFarmon66kVlevelof220/66kV Substation 31

2.6.2.6NormalConditionwithoutConsideringContingency 32

2.6.2.7ContingencyAnalysis 32

2.6.2.8WiththeInterconnectionofProposed60MWGenerationfromWindFarmon66kVLevelof220/66kV Substation 33

2.7Conclusion 34 References 34

3MultilevelCascadedBoostConverterFedMultilevelInverterforRenewableEnergy Applications 37

MarimuthuMarikannu,VijayalakshmiSubramanian,ParanthaganBalasubramanian,JayakumarNarayanasamy, NishaC.Rani,andDeviVigneshwariBalasubramanian

3.1Introduction 37

3.2MultilevelCascadedBoostConverter 40

3.3ModesofOperationofMCBC 42

3.3.1Mode-1SwitchSA IsON 42

3.3.2Mode-2SwitchSA IsON 42

3.3.3Mode-3-Operation–SwitchSA IsON 42

3.3.4Mode-4-Operation–SwitchSA IsON 42

3.3.5Mode-5-Operation–SwitchSA IsON 42

3.3.6Mode-6-Operation–SwitchSA IsOFF 42

3.3.7Mode-7-Operation–SwitchSA IsOFF 42

3.3.8Mode-8-Operation–SwitchSA IsOFF 43

3.3.9Mode-9-Operation–SwitchSA IsOFF 44

3.3.10Mode10-Operation–SwitchSA isOFF 45

3.4SimulationandHardwareResults 45

3.5ProminentStructuresofEstimatedDC–DCConverterwithPrevailingConverter 49

3.5.1VoltageGainandPowerHandlingCapability 49

3.5.2VoltageStress 49

3.5.3SwitchCountandGeometricStructure 49

3.5.4CurrentStress 52

3.5.5DutyCycleVersusVoltageGain 52

3.5.6NumberofLevelsinthePlannedConverter 52

3.6PowerElectronicConvertersforRenewableEnergySources(ApplicationsofMLCB) 54

3.6.1MCBCConnectedwithPVPanel 54

3.6.2OutputResponseofPVFedMCBC 54

3.6.3H-BridgeInverter 54

3.7ModesofOperation 55

3.7.1Mode1 55

3.7.2Mode2 55

3.7.3Mode3 56

3.7.4Mode4 56

3.7.5Mode5 56

3.7.6Mode6 56

3.7.7Mode7 58

3.7.8Mode8 58

3.7.9Mode9 59

3.7.10Mode10 59

3.8SimulationResultsofMCBCFedInverter 60

3.9PowerElectronicConverterforE-Vehicles 61

3.10PowerElectronicConverterforHVDC/Facts 62

3.11Conclusion 63 References 63

4RecentAdvancementsinPowerElectronicsforModernPowerSystems-ComprehensiveReview onDC-LinkCapacitorsConcerningPowerDensityMaximizationinPowerConverters 65 NaveenkumarMarati,ShariqAhammed,KathirvelKaruppazaghi,BalrajVaithilingam,GyanR.Biswal, PhaneendraB.Bobba,SanjeevikumarPadmanaban,andSharmeelaChenniappan

4.1Introduction 65

4.2ApplicationsofPowerElectronicConverters 66

4.2.1PowerElectronicConvertersinElectricVehicleEcosystem 66

4.2.2PowerElectronicConvertersinRenewableEnergyResources 67

4.3ClassificationofDC-LinkTopologies 68

4.4BriefingonDC-LinkTopologies 69

4.4.1PassiveCapacitiveDCLink 69

4.4.1.1FilterTypePassiveCapacitiveDCLinks 70

4.4.1.2FilterTypePassiveCapacitiveDCLinkswithControl 72

4.4.1.3InterleavedTypePassiveCapacitiveDCLinks 74

4.4.2ActiveBalancinginCapacitiveDCLink 75

4.4.2.1SeparateAuxiliaryActiveCapacitiveDCLinks 76

4.4.2.2IntegratedAuxiliaryActiveCapacitiveDCLinks 78

4.5ComparisononDC-LinkTopologies 82

4.5.1ComparisonofPassiveCapacitiveDCLinks 82

4.5.2ComparisonofActiveCapacitiveDCLinks 83

4.5.3ComparisonofDCLinkBasedonPowerDensity,Efficiency,andRippleAttenuation 86

4.6FutureandResearchGapsinDC-LinkTopologieswithBalancingTechniques 94

4.7Conclusion 95 References 95

5EnergyStorageSystemsforSmartPowerSystems 99

SivaramanPalanisamy,LogeshkumarShanmugasundaram,andSharmeelaChenniappan

5.1Introduction 99

5.2EnergyStorageSystemforLowVoltageDistributionSystem 100

5.3EnergyStorageSystemConnectedtoMediumandHighVoltage 101

5.4EnergyStorageSystemforRenewablePowerPlants 104

5.4.1RenewablePowerEvacuationCurtailment 106

5.5TypesofEnergyStorageSystems 109

5.5.1BatteryEnergyStorageSystem 109

5.5.2ThermalEnergyStorageSystem 110

5.5.3MechanicalEnergyStorageSystem 110

5.5.4PumpedHydro 110

5.5.5HydrogenStorage 110

5.6EnergyStorageSystemsforOtherApplications 111

5.6.1ShiftinEnergyTime 111

5.6.2VoltageSupport 111

5.6.3FrequencyRegulation(Primary,Secondary,andTertiary) 112

5.6.4CongestionManagement 112

5.6.5BlackStart 112

5.7Conclusion 112 References 113

6Real-TimeImplementationandPerformanceAnalysisofSupercapacitorforEnergyStorage 115 ThamatapuEswararao,SundaramElango,UmashankarSubramanian,KrishnamohanTatikonda, GarikaGantaiahswamy,andSharmeelaChenniappan

6.1Introduction 115

6.2StructureofSupercapacitor 117

6.2.1MathematicalModelingofSupercapacitor 117

6.3BidirectionalBuck–BoostConverter 118

6.3.1FPGAController 119

6.4ExperimentalResults 120

6.5Conclusion 123 References 125

7AdaptiveFuzzyLogicControllerforMPPTControlinPMSGWindTurbineGenerator 129 RaniaMoutchou,AhmedAbbou,BouazzaJabri,SalahE.Rhaili,andKhalidChigane

7.1Introduction 129

7.2ProposedMPPTControlAlgorithm 130

7.3WindEnergyConversionSystem 131

7.3.1WindTurbineCharacteristics 131

7.3.2ModelofPMSG 132

7.4FuzzyLogicCommandfortheMPPTofthePMSG 133

7.4.1Fuzzification 134

7.4.2FuzzyLogicRules 134

7.4.3Defuzzification 134

7.5ResultsandDiscussions 135

7.6Conclusion 139 References 139

8ANovelNearestNeighborSearching-BasedFaultDistanceLocationMethodforHVDC TransmissionLines 141 AleenaSwetapadma,ShobhaAgarwal,SatarupaChakrabarti,andSohamChakrabarti

8.1Introduction 141

8.2NearestNeighborSearching 142

8.3ProposedMethod 144

8.3.1PowerSystemNetworkUnderStudy 144

8.3.2ProposedFaultLocationMethod 145

8.4Results 146

8.4.1PerformanceVaryingNearestNeighbor 147

8.4.2PerformanceVaryingDistanceMatrices 147

8.4.3NearBoundaryFaults 148

8.4.4FarBoundaryFaults 149

8.4.5PerformanceDuringHighResistanceFaults 149

8.4.6SinglePoletoGroundFaults 150

8.4.7PerformanceDuringDoublePoletoGroundFaults 151

8.4.8PerformanceDuringPoletoPoleFaults 151

8.4.9ErrorAnalysis 152

8.4.10ComparisonwithOtherSchemes 153

8.4.11AdvantagesoftheScheme 154

8.5Conclusion 154 Acknowledgment 154 References 154

9ComparativeAnalysisofMachineLearningApproachesinEnhancingPowerSystem

Stability 157

Md.I.H.Pathan,MohammadS.Shahriar,MohammadM.Rahman,Md.SanwarHossain,NadiaAwatif,and Md.Shafiullah

9.1Introduction 157

9.2PowerSystemModels 159

9.2.1PSSIntegratedSingleMachineInfiniteBusPowerNetwork 159

9.2.2PSS-UPFCIntegratedSingleMachineInfiniteBusPowerNetwork 160 9.3Methods 161

9.3.1GroupMethodDataHandlingModel 161

9.3.2ExtremeLearningMachineModel 162

9.3.3NeurogeneticModel 162

9.3.4MultigeneGeneticProgrammingModel 163

9.4DataPreparationandModelDevelopment 165

9.4.1DataProductionandProcessing 165

9.4.2MachineLearningModelDevelopment 165

9.5ResultsandDiscussions 166

9.5.1EigenvaluesandMinimumDampingRatioComparison 166

9.5.2Time-DomainSimulationResultsComparison 170

9.5.2.1RotorAngleVariationUnderDisturbance 170

9.5.2.2RotorAngularFrequencyVariationUnderDisturbance 171

9.5.2.3DC-LinkVoltageVariationUnderDisturbance 173

9.6Conclusions 173 References 174

10AugmentationofPV-WindHybridTechnologywithAdroitNeuralNetwork,ANFIS,andPI ControllersIndeedPrecociousDVRSystem 179 JyotiShukla,BasantaK.Panigrahi,andMonikaVardia

10.1Introduction 179

10.2PV-WindHybridPowerGenerationConfiguration 180

10.3ProposedSystemsTopologies 181

10.3.1StructureofPVSystem 181

10.3.2TheMPPTsTechnique 183

10.3.3NNPredictiveControllerTechnique 183

10.3.4ANFISTechnique 184

10.3.5TrainingData 186

10.4WindPowerGenerationPlant 187

10.5PitchAngleControlTechniques 189

10.5.1PIController 189

10.5.2NARMA-L2Controller 190

10.5.3FuzzyLogicControllerTechnique 192

10.6ProposedDVRsTopology 192

10.7ProposedControllingTechniqueofDVR 193

10.7.1ANFISandPIControllingTechnique 193

10.8ResultsoftheProposedTopologies 196

10.8.1PVSystemOutputs(MPPTTechniquesResults) 196

10.8.2MainPVSystemoutputs 196

10.8.3WindTurbineSystemOutputs(PitchAngleControlTechniqueResult) 198

10.8.4ProposedPMSGWindTurbineSystemOutput 199

10.8.5PerformanceofDVR(ControllingTechniqueResults) 203

10.8.6DVRsPerformance 203

10.9Conclusion 204 References 204

11DeepReinforcementLearningandEnergyPricePrediction 207

DeepakYadav,SaadMekhilef,BrijeshSingh,andMuhyaddinRawa Abbreviations 207

11.1Introduction 208

11.2DeepandReinforcementLearningforDecision-MakingProblemsinSmartPowerSystems 210

11.2.1ReinforcementLearning 210

11.2.1.1MarkovDecisionProcess(MDP) 210

11.2.1.2ValueFunctionandOptimalPolicy 211

11.2.2ReinforcementLearningstoDeepReinforcementLearnings 212

11.2.3DeepReinforcementLearningAlgorithms 212

11.3ApplicationsinPowerSystems 213

11.3.1EnergyManagement 213

11.3.2PowerSystems’DemandResponse(DR) 215

11.3.3ElectricityMarket 216

11.3.4OperationsandControls 217

11.4MathematicalFormulationofObjectiveFunction 218

11.4.1LocationalMarginalPrices(LMPs)Representation 219

11.4.2RelativeStrengthIndex(RSI) 219

11.4.2.1AutoregressiveIntegratedMovingAverage(ARIMA) 219

11.5Interior-pointTechnique&KKTCondition 220

11.5.1ExplanationofKarush–Kuhn–TuckerConditions 220

11.5.2AlgorithmforFindingaSolution 221

11.6TestResultsandDiscussion 221

11.6.1IllustrativeExample 221

11.7ComparativeAnalysiswithOtherMethods 223

11.8Conclusion 224

11.9Assignment 224 Acknowledgment 225 References 225

12PowerQualityConditionersinSmartPowerSystem 233

ZahiraRahiman,LakshmiDhandapani,RaviChengalvarayanNatarajan,PramilaVallikannan, SivaramanPalanisamy,andSharmeelaChenniappan

12.1Introduction 233

12.1.1VoltageSag 234

12.1.2VoltageSwell 234

12.1.3Interruption 234

12.1.4UnderVoltage 234

12.1.5Overvoltage 234

12.1.6VoltageFluctuations 234

12.1.7Transients 235

12.1.8ImpulsiveTransients 235

12.1.9OscillatoryTransients 235

12.1.10Harmonics 235

12.2PowerQualityConditioners 235

12.2.1STATCOM 235

12.2.2SVC 235

12.2.3HarmonicFilters 236

12.2.3.1ActiveFilter 236

12.2.4UPSSystems 236

12.2.5DynamicVoltageRestorer(DVR) 236

12.2.6EnhancementofVoltageSag 236

12.2.7InterruptionMitigation 237

12.2.8MitigationofHarmonics 241

12.3StandardsofPowerQuality 244

12.4SolutionforPowerQualityIssues 244

12.5SustainableEnergySolutions 245

12.6NeedforSmartGrid 245

12.7WhatIsaSmartGrid? 245

12.8SmartGrid:The“EnergyInternet” 245

12.9Standardization 246

12.10SmartGridNetwork 247

12.10.1DistributedEnergyResources(DERs) 247

12.10.2OptimizationTechniquesinPowerQualityManagement 247

12.10.3ConventionalAlgorithm 248

12.10.4IntelligentAlgorithm 248

12.10.4.1FireflyAlgorithm(FA) 248

12.10.4.2SpiderMonkeyOptimization(SMO) 250

12.11SimulationResultsandDiscussion 254

12.12Conclusion 257 References 257

13TheRoleofInternetofThingsinSmartHomes 259

SanjeevikumarPadmanaban,MostafaAzimiNasab,MohammadEbrahimShiri,HamidHajSeyyedJavadi, MortezaAzimiNasab,MohammadZand,andTinaSamavat

13.1Introduction 259

13.2InternetofThingsTechnology 260

13.2.1SmartHouse 261

13.3DifferentPartsofSmartHome 262

13.4ProposedArchitecture 264

13.5ControllerComponents 265

13.6ProposedArchitecturalLayers 266

13.6.1InfrastructureLayer 266

13.6.1.1InformationTechnology 266

13.6.1.2InformationandCommunicationTechnology 266

13.6.1.3Electronics 266

13.6.2CollectingData 267

13.6.3DataManagementandProcessing 267

13.6.3.1ServiceQualityManagement 267

13.6.3.2ResourceManagement 267

13.6.3.3DeviceManagement 267

13.6.3.4Security 267

13.7Services 267

13.8Applications 268

13.9Conclusion 269 References 269

14ElectricVehiclesandIoTinSmartCities 273

SanjeevikumarPadmanaban,TinaSamavat,MostafaAzimiNasab,MortezaAzimiNasab,MohammadZand,and FatemehNikokar

14.1Introduction 273

14.2SmartCity 275

14.2.1InternetofThingsandSmartCity 275

14.3TheConceptofSmartElectricNetworks 275

14.4IoTOutlook 276

14.4.1IoTThree-layerArchitecture 276

14.4.2ViewLayer 276

14.4.3NetworkLayer 277

14.4.4ApplicationLayer 278

14.5IntelligentTransportationandTransportation 278

14.6InformationManagement 278

14.6.1ArtificialIntelligence 278

14.6.2MachineLearning 279

14.6.3ArtificialNeuralNetwork 279

14.6.4DeepLearning 280

14.7ElectricVehicles 281

14.7.1DefinitionofVehicle-to-NetworkSystem 281

14.7.2ElectricCarsandtheElectricityMarket 281

14.7.3TheRoleofElectricVehiclesintheNetwork 282

14.7.4V2GApplicationsinPowerSystem 282

14.7.5ProvideBaseloadPower 283

14.7.6CourierSupply 283

14.7.7ExtraService 283

14.7.8PowerAdjustment 283

14.7.9RotatingReservation 284

14.7.10TheConnectionbetweentheElectricVehicleandthePowerGrid 284

14.8ProposedModelofElectricVehicle 284

14.9PredictionUsingLSTMTimeSeries 285

14.9.1LSTMTimeSeries 286

14.9.2PredictingtheBehaviorofElectricVehiclesUsingtheLSTMMethod 287

14.10Conclusion 287 Exercise 288 References 288

15ModelingandSimulationofSmartPowerSystemsUsingHIL 291

GunapriyaDevarajan,PuspalathaNaveenKumar,MunirajChinnusamy,SabareeshwaranKanagaraj, andSharmeelaChenniappan

15.1Introduction 291

15.1.1ClassificationofHardwareintheLoop 291

15.1.1.1SignalHILModel 291

15.1.1.2PowerHILModel 292

15.1.1.3Reduced-ScaledHILModel 292

15.1.2PointstoBeConsideredWhilePerformingHILSimulation 293

15.1.3ApplicationsofHIL 293

15.2WhyHILIsImportant? 293

15.2.1Hardware-In-The-LoopSimulation 294

15.2.2SimulationVerificationandValidation 295

15.2.3SimulationComputerHardware 295

15.2.4BenefitsofUsingHardware-In-The-LoopSimulation 296

15.3HILforRenewableEnergySystems(RES) 296

15.3.1Introduction 296

15.3.2HardwareintheLoop 297

15.3.2.1ElectricalHardwareintheLoop 297

15.3.2.2MechanicalHardwareintheLoop 297

15.4HILforHVDCandFACTS 299

15.4.1Introduction 299

15.4.2ModularMultiLevelConverter 300

15.5HILforElectricVehicles 301

15.5.1Introduction 301

15.5.2EVSimulationUsingMATLAB,Simulink 302

15.5.2.1Model-BasedSystemEngineering(MBSE) 302

15.5.2.2ModelBatteriesandDevelopBMS 302

15.5.2.3ModelFuelCellSystems(FCS)andDevelopFuelCellControlSystems(FCCS) 303

15.5.2.4ModelInverters,TractionMotors,andDevelopMotorControlSoftware 304

15.5.2.5Deploy,Integrate,andTestControlAlgorithms 304

15.5.2.6Data-DrivenWorkflowsandAIinEVDevelopment 305

15.6HILforOtherApplications 306

15.6.1ElectricalMotorFaults 306

15.7Conclusion 307 References 308

16DistributionPhasorMeasurementUnits(PMUs)inSmartPowerSystems 311 GeethanjaliMuthiah,MeenakshiDeviManivannan,HemavathiRamadoss,andSharmeelaChenniappan

16.1Introduction 311

16.2ComparisonofPMUsandSCADA 312

16.3BasicStructureofPhasorMeasurementUnits 313

16.4PMUDeploymentinDistributionNetworks 314

16.5PMUPlacementAlgorithms 315

16.6Need/SignificanceofPMUsinDistributionSystem 315

16.6.1SignificanceofPMUs–ConcerningPowerSystemStability 316

16.6.2SignificanceofPMUsinTermsofExpenditure 316

16.6.3SignificanceofPMUsinWideAreaMonitoringApplications 316

16.7ApplicationsofPMUsinDistributionSystems 317

16.7.1SystemReconfigurationAutomationtoManagePowerRestoration 317

16.7.1.1CaseStudy 317

16.7.2PlanningforHighDERInterconnection(Penetration) 319

16.7.2.1CaseStudy 319

16.7.3VoltageFluctuationsandVoltageRide-ThroughRelatedtoDER 320

16.7.4OperationofIslandedDistributionSystems 320

16.7.5Fault-InducedDelayedVoltageRecovery(FIDVR)Detection 322

16.8Conclusion 322 References 323

17BlockchainTechnologiesforSmartPowerSystems 327

A.Gayathri,S.Saravanan,P.Pandiyan,andV.Rukkumani

17.1Introduction 327

17.2FundamentalsofBlockchainTechnologies 328

17.2.1Terminology 328

17.2.2ProcessofOperation 329

17.2.2.1ProofofWork(PoW) 329

17.2.2.2ProofofStake(PoS) 329

17.2.2.3ProofofAuthority(PoA) 330

17.2.2.4PracticalByzantineFaultTolerance(PBFT) 330

17.2.3UniqueFeaturesofBlockchain 330

17.2.4EnergywithBlockchainProjects 330

17.2.4.1BitcoinCryptocurrency 331

17.2.4.2Dubai:BlockchainStrategy 331

17.2.4.3HumanitarianAidUtilizationofBlockchain 331

17.3BlockchainTechnologiesforSmartPowerSystems 331

17.3.1BlockchainasaCyberLayer 331

17.3.2Agent/AggregatorBasedMicrogridArchitecture 332

17.3.3LimitationsandDrawbacks 332

17.3.4PeertoPeerEnergyTrading 333

17.3.5BlockchainforTransactiveEnergy 335

17.4BlockchainforSmartContracts 336

17.4.1ThePlatformforSmartContracts 337

17.4.2TheArchitectureofSmartContractingforEnergyApplications 338

17.4.3SmartContractApplications 339

17.5DigitizeandDecentralizationUsingBlockchain 340

17.6ChallengesinImplementingBlockchainTechniques 340

17.6.1NetworkManagement 341

17.6.2DataManagement 341

17.6.3ConsensusManagement 341

17.6.4IdentityManagement 341

17.6.5AutomationManagement 342

17.6.6LackofSuitableImplementationPlatforms 342

17.7SolutionsandFutureScope 342

17.8ApplicationofBlockchainforFlexibleServices 343

17.9Conclusion 343

References 344

18PowerandEnergyManagementinSmartPowerSystems 349 SubratSahoo

18.1Introduction 349

18.1.1GeopoliticalSituation 349

18.1.2Covid-19Impacts 350

18.1.3ClimateChallenges 350

18.2DefinitionandConstituentsofSmartPowerSystems 351

18.2.1ApplicableIndustries 352

18.2.2EvolutionofPowerElectronics-BasedSolutions 353

18.2.3OperationofthePowerSystem 355

18.3ChallengesFacedbyUtilitiesandTheirWayTowardsBecomingSmart 356

18.3.1DigitalizationofPowerIndustry 359

18.3.2StoragePossibilitiesandIntegrationintoGrid 360

18.3.3AddressingPowerQualityConcernsandTheirMitigation 362

18.3.4APathForwardTowardsHolisticConditionMonitoring 363

18.4WaystowardsSmartTransitionoftheEnergySector 366

18.4.1CreatinganAll-InclusiveEcosystem 366

18.4.1.1ExampleofSensor-BasedEcosystem 367

18.4.1.2UtilizingtheSensorDataforEffectiveAnalytics 368

18.4.2ModularEnergySystemArchitecture 370

18.5Conclusion 371

References 373

Index 377

EditorBiography

SanjeevikumarPadmanaban receivedhisPhDdegreeinelectricalengineeringfromtheUniversityofBologna,Bologna,Italy,2012.HewasanAssociate ProfessoratVITUniversityfrom2012to2013.In2013,hejoinedtheNational InstituteofTechnology,India,asafacultymember.Then,heservedasan AssociateProfessorwiththeDepartmentofElectricalandElectronicsEngineering,UniversityofJohannesburg,SouthAfrica,from2016to2018.FromMarch 2018toFebruary2021,hewasanAssistantProfessorwiththeDepartmentof EnergyTechnology,AalborgUniversity,Esbjerg,Denmark.Hecontinuedhis activitiesfromMarch2021asanAssociateProfessorwiththeCTIFGlobal Capsule(CGC)Laboratory,AarhusUniversity,Herning,Denmark.Presently, heisaFullProfessorinElectricalPowerEngineeringwiththeDepartmentof ElectricalEngineering,InformationTechnology,andCybernetics,Universityof South-EasternNorway,Norway.HeisafellowoftheInstitutionofEngineers,India,theInstitutionofElectronics andTelecommunicationEngineers,India,andtheInstitutionofEngineeringandTechnology,UK.Heislisted amongtheworld’stoptwoscientists(from2019)byStanfordUniversity,USA.

SivaramanPalanisamy wasborninVellalur,MaduraiDistrict,TamilNadu, India.HecompletedschoolinginGovt.HigherSecondarySchool,Vellalur, receivedhisBEinElectricalandElectronicsEngineeringandMEinPower SystemsEngineeringfromAnnaUniversity,Chennai,India,in2012and2014, respectively.Hehasmorethaneightyearsofindustrialexperienceinthefieldof powersystemanalysis,gridcodecompliancestudies,electricvehiclecharging infrastructure,solarPVsystem,windpowerplant,powerqualitystudies,and harmonicassessments.PresentlyheisworkingasaProgramManager–EV charginginfrastructureatWRIIndia(majorcontributiondonebeforejoining thisposition).Heisanexpertinpowersystemsimulationsoftwaresuchas ETAP,PSCAD,DIGSILENTPOWERFACTORY,PSSE,andMATLAB.Heisa workinggroupmemberofvariousIEEEstandardssuchasP2800.2,P2418.5, P1854,andP3001.9.HeisanIEEESeniorMember,aMemberofCIGRE,Life MemberoftheInstitutionofEngineers(India),andTheEuropeanEnergyCenter(EEC).Heisalsoaspeaker whoiswellversedonbothnationalandinternationalstandards.

SharmeelaChenniappan holdsaBEinElectricalandElectronicsEngineering,MEinPowerSystemsEngineeringfromAnnamalaiUniversity, Chidambaram,India,andaPhDinElectricalEngineeringfromAnnaUniversity,Chennai,India,in1999,2000,and2009,respectively.ShereceivedherPG DiplomainElectricalEnergyManagementandEnergyAuditfromAnnamalai University,Chidambaramin2010.Atpresent,sheholdsthepostofProfessor intheDepartmentofEEE,CEGcampus,AnnaUniversity,Chennai,India.She hasmorethan21yearsofteaching/researchexperienceandhastaughtvarious subjectstoundergraduateandpostgraduatestudents.Shedidanumberof researchprojectsandconsultancyworkinrenewableenergy,ElectricVehicle ChargingInfrastructure,powerquality,anddesignofPQcompensatorsfor variousindustries.SheisanIEEESeniorMember,aFellowoftheInstitution ofEngineers(India),andaLifeMemberofCBIP,ISTE,andSSI.

JensBoHolm-Nielsen currentlyworksasHeadoftheEsbjergEnergySection attheDepartmentofEnergyTechnology,AalborgUniversity.Throughhis research,hehelpedestablishtheCenterforBioenergyandGreenEngineering in2009andservedastheheadoftheresearchgroup.Hehasvastexperience inthefieldofbiorefineryconceptsandbiogasproduction,inparticular anaerobicdigestion.Hehasimplementedbio-energysystemsprojectsin variousprovincesinDenmarkandEuropeanstates.Heservedasthetechnical advisorformanyindustriesinthisfield.Hehasexecutedmanylarge-scale EuropeanUnionandUnitedNationprojectsinresearchaspectsofbioenergy, biorefineryprocesses,thefullbiogaschain,andgreenengineering.Hewas amemberoninvitationwithvariouscapacitiesincommitteesforover250 variousinternationalconferencesandorganizerofinternationalconferences, workshops,andtrainingprogramsinEurope,CentralAsia,andChina.His focusareasarerenewableenergy,sustainability,andgreenjobsforall.

ListofContributors

AhmedAbbou

DepartmentofElectricalEngineering

MohammedVUniversityinRabat

MohammadiaSchoolofEngineers

Rabat Morocco

ShobhaAgarwal DepartmentofHigherTechnicalEducationandSkill Development

JharkhandUniversity

Ranchi

India

ShariqAhammed PES

ValeoIndiaPrivateLimited

Chennai India

NadiaAwatif DepartmentofElectrical,Electronicand CommunicationEngineering

MilitaryInstituteofScienceandTechnology

Dhaka Bangladesh

GyanR.Biswal

DepartmentofElectricalandElectronicsEngineering VeerSurendraSaiUniversityofTechnology(VSSUT)

Burla

Odisha

India

PhaneendraB.Bobba DepartmentofElectricalandElectronicsEngineering GokarajuRangarajuInstituteofEngineeringand Technology(GRIET)

Hyderabad

India

SatarupaChakrabarti SchoolofComputerEngineering KIITUniversity

Bhubaneswar

India

SohamChakrabarti SchoolofComputerEngineering KIITUniversity

Bhubaneswar

India

RaviChengalvarayanNatarajan DepartmentofElectricalandElectronicsEngineering VidyaJyothiInstituteofTechnology

Hyderabad

Telangana

India

SharmeelaChenniappan DepartmentofElectricalandElectronicsEngineering AnnaUniversity

Chennai

India

KhalidChigane

DepartmentofElectricalEngineering

MohammedVUniversityinRabat

MohammadiaSchoolofEngineers

Rabat

Morocco

MunirajChinnusamy DepartmentofEEE KnowledgeInstituteofTechnology

Salem India

GunapriyaDevarajan DepartmentofEEE

SriEshwarCollegeofEngineering Coimbatore

India

LakshmiDhandapani DepartmentofElectricalandElectronicsEngineering AcademyofMaritimeEducationandTraining (AMET)

Chennai India

SundaramElango DepartmentofElectricalandElectronicsEngineering CoimbatoreInstituteofTechnology Coimbatore

India

ThamatapuEswararao DepartmentofElectricalandElectronicsEngineering CoimbatoreInstituteofTechnology Coimbatore

India

GarikaGantaiahswamy DepartmentofElectricalandElectronicsEngineering JNTUKakinada

AndhraLoyolaInstituteofEngineeringand Technology

Vijayawada AndhraPradesh

India

A.Gayathri DepartmentofEEE

SriKrishnaCollegeofTechnology Coimbatore

TamilNadu

India

Md.SanwarHossain DepartmentofElectricalandElectronicEngineering BangladeshUniversityofBusinessandTechnology

Dhaka

Bangladesh

BouazzaJabri DepartmentofPhysical

LCSLaboratory FacultyofSciences

MohammedVUniversityinRabat

Rabat

Morocco

HamidHajSeyyedJavadi DepartmentofMathematicsandComputerScience

ShahedUniversity

Tehran

Iran

JayakumarNarayanasamy DepartmentofEEE

TheOxfordCollegeofEngineering

Bommanahalli

Bangalore

India

SabareeshwaranKanagaraj DepartmentofEEE

KarpagamInstituteofTechnology Coimbatore

India

KathirvelKaruppazaghi PES

ValeoIndiaPrivateLimited

Chennai

India

MeenakshiDeviManivannan

DepartmentofElectricalandElectronicsEngineering ThiagarajarCollegeofEngineering

Madurai

India

SaadMekhilef PowerElectronicsandRenewableEnergyResearch Laboratory DepartmentofElectricalEngineering UniversityofMalaya KualaLumpur Malaysia and SchoolofScience,ComputingandEngineering Technologies

SwinburneUniversityofTechnology

Hawthorn Vic

Australia and

SmartGridsResearchGroup CenterofResearchExcellenceinRenewableEnergy andPowerSystems KingAbdulazizUniversity Jeddah SaudiArabia

NaveenkumarMarati PES

ValeoIndiaPrivateLimited

Chennai India

MarimuthuMarikannu DepartmentofEEE

SaranathanCollegeofEngineering

Trichy

India

RaniaMoutchou DepartmentofElectricalEngineering MohammedVUniversityinRabat MohammadiaSchoolofEngineers

Rabat

Morocco

GeethanjaliMuthiah DepartmentofElectricalandElectronicsEngineering ThiagarajarCollegeofEngineering

Madurai

India

NageshHalasahalliNagaraju PowerSystemStudies PowerResearch&DevelopmentConsultantsPvtLtd Bengaluru

India

MortezaAzimiNasab CTIFGlobalCapsule DepartmentofBusinessDevelopmentandTechnology AarhusUniversity

Herning

Denmark

MostafaAzimiNasab CTIFGlobalCapsule DepartmentofBusinessDevelopmentandTechnology AarhusUniversity

Herning

Denmark and DepartmentofElectricalandComputerEngineering BoroujerdBranch IslamicAzadUniversity

Boroujerd

Iran

xx ListofContributors

PuspalathaNaveenKumar DepartmentofEEE

SriEshwarCollegeofEngineering Coimbatore

India

FatemehNikokar DepartmentofBusinessDevelopmentandTechnology CTIFGlobalCapsule AarhusUniversity

Herning

Denmark

SanjeevikumarPadmanaban DepartmentofElectricalEngineering,Information Technology,andCybernetics UniversityofSouth-EasternNorway Porsgrunn

Norway

SivaramanPalanisamy WorldResourcesInstitute(WRI)India

Bengaluru

India

MadhuPalati

DepartmentofElectricalandElectronicsEngineering

BMSInstituteofTechnologyandManagement AffiliatedtoVisvesvarayaTechnologicalUniversity DoddaballapurMainRoad,Avalahalli

Yelahanka

Bengaluru

India

P.Pandiyan DepartmentofEEE

KPRInstituteofEngineeringandTechnology Coimbatore

TamilNadu

India

BasantaK.Panigrahi DepartmentofElectricalEngineering InstituteofTechnicalEducation&Research SOAUniversity Bhubaneswar

India

ParanthaganBalasubramanian DepartmentofEEE SaranathanCollegeofEngineering

Trichy

India

Md.I.H.Pathan DepartmentofElectricalandElectronicEngineering HajeeMohammadDaneshScienceandTechnology University

Dinajpur

Bangladesh

SagarSinghPrathap EnergyandPowerSector CenterforStudyofScienceTechnologyandPolicy

Bengaluru

India

ZahiraRahiman DepartmentofElectricalandElectronicsEngineering B.S.AbdurRahmanCrescentInstituteofScience& Technology

Chennai India

MohammadM.Rahman InformationandComputingTechnologyDivision HamadBinKhalifaUniversity CollegeofScienceandEngineering

Doha

Qatar

HemavathiRamadoss DepartmentofElectricalandElectronicsEngineering ThiagarajarCollegeofEngineering

Madurai

India

NishaC.Rani DepartmentofEEE TheOxfordCollegeofEngineering Bommanahalli

Bangalore India

MuhyaddinRawa

SmartGridsResearchGroup

CenterofResearchExcellenceinRenewableEnergy andPowerSystems

KingAbdulazizUniversity

Jeddah

SaudiArabia and DepartmentofElectricalandComputerEngineering FacultyofEngineering

K.A.CAREEnergyResearchandInnovationCenter KingAbdulazizUniversity

Jeddah

SaudiArabia

SalahE.Rhaili

DepartmentofElectricalEngineering

MohammedVUniversityinRabat MohammadiaSchoolofEngineers

Rabat

Morocco

V.Rukkumani DepartmentofEIE SriRamakrishnaEngineeringCollege Coimbatore

TamilNadu

India

SubratSahoo

HitachiEnergyResearch

Vasteras

Sweden

TinaSamavat CTIFGlobalCapsule DepartmentofBusinessDevelopmentandTechnology

AarhusUniversity

Herning

Denmark

S.Saravanan DepartmentofEEE SriKrishnaCollegeofTechnology Coimbatore

TamilNadu

India

Md.Shafiullah KingFahdUniversityofPetroleum&Minerals InterdisciplinaryResearchCenterforRenewable EnergyandPowerSystems

Dhahran

SaudiArabia

MohammadS.Shahriar DepartmentofElectricalEngineering UniversityofHafrAl-Batin

HafrAlBatin

SaudiArabia

LogeshkumarShanmugasundaram DepartmentofElectronicsandCommunication Engineering ChristtheKingEngineeringCollege

Coimbatore

India

MohammadEbrahimShiri MathematicsandComputerScienceDepartment AmirkabirUniversityofTechnology

Tehran

Iran

JyotiShukla DepartmentofElectricalEngineering PoornimaCollegeofEngineering

RTU

Jaipur

India

BrijeshSingh DepartmentofElectricalandElectronicsEngineering KIETGroupofInstitutions

Ghaziabad

India

UmashankarSubramanian RenewableEnergyLaboratory DepartmentofCommunicationsandNetworks PrinceSultanUniversity CollegeofEngineering

Riyadh

SaudiArabia

AleenaSwetapadma SchoolofComputerEngineering KIITUniversity Bhubaneswar

India and RenewableEnergyLaboratory DepartmentofCommunicationsandNetworks PrinceSultanUniversity CollegeofEngineering

Riyadh SaudiArabia

KrishnamohanTatikonda DepartmentofElectricalandElectronicsEngineering JNTUKakinada

AndhraLoyolaInstituteofEngineeringand Technology

Vijayawada AndhraPradesh

India

BalrajVaithilingam PES

ValeoIndiaPrivateLimited

Chennai India

PramilaVallikannan DepartmentofElectricalandElectronicsEngineering B.S.AbdurRahmanCrescentInstituteofScience& Technology

Chennai India

MonikaVardia DepartmentofElectricalEngineering PoornimaCollegeofEngineering

RTU

Jaipur

India

DeviVigneshwariBalasubramanian DepartmentofEEE TheOxfordCollegeofEngineering

Bommanahalli

Bangalore India

VijayalakshmiSubramanian DepartmentofEEE SaranathanCollegeofEngineering

Trichy

India

DeepakYadav PowerElectronicsandRenewableEnergyResearch Laboratory DepartmentofElectricalEngineering UniversityofMalaya KualaLumpur

Malaysia

MohammadZand CTIFGlobalCapsule DepartmentofBusinessDevelopmentandTechnology

AarhusUniversity

Herning

Denmark

IntroductiontoSmartPowerSystems

SivaramanPalanisamy 1 ,ZahiraRahiman 2 ,andSharmeelaChenniappan 3

1 WorldResourcesInstitute(WRI)India,Bengaluru,India

2 DepartmentofElectricalandElectronicsEngineering,B.S.AbdurRahmanCrescentInstituteofScience&Technology,Chennai,India

3 DepartmentofElectricalandElectronicsEngineering,AnnaUniversity,Chennai,India

1.1ProblemsinConventionalPowerSystems

Theconventionalpowersystemisgenerallyclassifiedaspowergeneration,powertransmission,andpowerdistributionsystems.Thepowerisgeneratedfromthermalplants,nuclearplants,orhydroplantsatremotelocations andthisistransmittedtotheloadcenterthroughapowertransmissionsystem[1].Thedistributionsystemis usedtodistributetheelectricpowertovariousend-users.Ithaslimitedcontrolandvisibilityofpowerflowsfrom generationtotheenduser’sload.Someoftheproblemsassociatedwithconventionalsystemsarelimitedvisibilityinpowerflows,limitedcontrol,delayinmeasurementandcontrol,higherenergylossesintransmissionand distributionsystems,poorpowerquality,etc.[2].

1.2DistributedGeneration(DG)

Thedistributedgeneration(DG)isusedtoproducetheelectricpowerclosertotheloadcenterorend-userloads toreducetheenergylossinthetransmissionaswellasdistributionsystemandimprovethevoltageprofile.The sourcesofDGcanbebothrenewableenergysources(likesolar,wind,andfuelcells),andnonrenewableenergy sources(likedieselgenerators).Thesesourcesassimplycalleddistributedenergyresources(DERs)[3].Generally, theseDGsareinterconnectedwiththeprimaryorsecondarydistributionsystemsbasedontheirrating.Figure1.1 showsthesingle-linediagramofa100kWrooftopsolarPVsystemasDGconnectedtothe415V,50Hzsecondary distributionsystem.

Figure1.2showsthesingle-linediagramofa1MWrooftopsolarPVsystemasDGconnectedtothe11kV,50Hz primarydistributionsystem.

TheintermittencyisoneofthemajorchallengesofusingrenewableenergysourcessuchassolarPVandwind energyconversionsystemsasDG.Duetointermittence,theoutputpowerfromthesolarPVsystemandwind energyconversionsystemalsovariesthroughouttheoperationresultinginpowerbalanceandstabilityissues[4]. Theimpactofintermittencycanbereducedtoacertainextentbyusingacomplexsoftwareprogram/tooltopredict theenergyoutputbasedonvarioushistoricaldata.

ArtificialIntelligence-basedSmartPowerSystems,FirstEdition. EditedbySanjeevikumarPadmanaban,SivaramanPalanisamy,SharmeelaChenniappan,andJensBoHolm-Nielsen. ©2023TheInstituteofElectricalandElectronicsEngineers,Inc.Published2023byJohnWiley&Sons,Inc.

SinglelinediagramofarooftopsolarPVsystemconnectedtothesecondarydistributionsystem.

1.3WideAreaMonitoringandControl

Powergridsarethemostcomplicatedandessentialsystemsintoday’slife.Theriskofexperiencingawidevariety offaultsandfailuresisincreasing[5].Theunpredictableandcascadedeventsoffaultsleadtoablackout,andthey haveanimpactonalargerangeofconsumers.Manygridcodesallowthefrequencywithinthespecifiedtolerance limits.Hence,flexibilityinfrequencyleadstounderdrawloroverdrawlofrealpower,aswellasundergeneration oroveragenerationbytheutilities.Thisresultsintheoverloadingoftransmissionlinesandundervoltageorover voltageofthegrid.Also,unpredictability,intermittency,andvariabilityofrenewableenergyintegrationposechallengesingridoperation.ConventionalSupervisoryControlandDataAcquisition(SCADA)systemsarelimited tosteady-statemeasurementsandcannotbeusedforobservingthesystemdynamicsbehavior.Toovercomethe drawbacksofaconventionalsystem,oneofthemostrecentadvancementsinmodernpowergridsiswide-area monitoring(WAM).WiththedevelopmentsofWAM,powersystemdynamicbehaviorismonitoredcloselyin real-time.Sothatthefaultsinthepowergridcanbeidentifiedandprotectedinawiderrange[6].

TheoverallgoalofusingWAMistoimproveprotectionandtodevelopnewprotectionconceptsthatwillmake blackoutslessprobableandmuchlesssevereeveniftheydooccur.ThefollowingarethekeyareaswhereWAM canhelptoprotectpowersystems.

1.Dealingwithlarge-scaleinterruptions

2.Takingtheappropriateprecautionstomitigatetheimpactoffailedsystems

3.Ignoringrelaysettingsthatareincompatiblewiththecurrentsystemconfiguration

4.Achievingareasonablebalancebetweensecurityanddependability

Figure1.1

Figure1.2 SinglelinediagramofarooftopsolarPVsystemconnectedtotheprimarydistributionsystem.

Thepurposeofprotectionistosafeguardspecificelementsofthepowersystemaswellasthesecurityofthe powersystemasawhole.

Inthecaseofmainequipmentprotection,WAMplaysasignificantrole.Thisisduetothefactthatprimary protectionmustconsistentlyofferaveryfastresponsetoanyfailureontheelementthatitsafeguards.WAM, ontheotherhand,canbeabeneficialtoolforincreasingsystemperformanceduetotheslowerresponsetime necessaryforbackupprotectionandthefactthatitprotectsazoneofthesystem.Wide-areameasurementshave thepotentialtoenablethedevelopmentofsupervisorymethodsforbackupprotection,morecomplextypesof systemprotection,andaltogethernewprotectionconcepts.Examplesoftheseprotectionfunctionsare

1.Dynamicrelaysadjusttheirparametersinresponsetochangesinthesystemcondition.

2.Multiterminallineprotectionhasbeenimproved.

3.Predictiveend-of-lineprotection,whichmonitorsthedistantlocationbreakerandreplacestheunder-reaching Zone1withaninstantaneouscharacteristicifitisopen.

4.Modifyrelaysettingstemporarilytopreventmalfunctionduringcoldloadpickup.

5.Employthecapabilityofmodernrelaystoself-monitortofindhiddenfaultsandusetheIEC61850hot-swap capabilitiestoeliminatethem.

6.Artificialcontrolledmicrogridsprovideanadaptivecontrolleddivergencetopreventanuncontrolledsystem separation.

WAMgathersdatafromremoteplacesthroughoutthepowergridandintegratestheminreal-timeintoasingle snapshotofthepowersystemforagiventime.Synchronizedmeasurementtechnology(SMT)isacrucialcomponentofWAMbecauseitallowsmeasurementstobecorrectlytimestamped,typicallyusingglobalpositioning system(GPS)timingsignals.Thedatamaybesimplymergedwiththesetimestamps,andphaseanglemeasurementscanbemadewithacommonreference[7].Figure1.3showsthegenericWAMSarchitecturebasedonphasor measurementunits(PMUs).PMUs,phasordataconcentrators(PDCs),communicationnetworks,datastorage, andapplicationsoftwarearetheprimarycomponentsofWAM.ThenumberofsubstationPDCsisdetermined

Figure1.3 Blockdiagramofwide-areamonitoringand control.

Transmission system

Distribution system

Customers

bythepowersystemrequirements.Voltage,current,andfrequencyaremeasuredbyPMUsplacedinsubstations. ThesereadingsareroutedstraighttothecentralPDCorasubstationPDC. ThefollowingfunctionsareavailableatthePDCsubstation:

✓ Synchronizationofdateandtime

✓ GathersinfofromPMUs

✓ Analyzescollecteddata

✓ DataissenttothecentralPDC

✓ CommunicatesdatawiththeregionalSCADA

✓ Dataisarchivedlocally

✓ Carriesoutlocaldataanalysisandsecurityactions

1.4AutomaticMeteringInfrastructure

ThenameAdvancedMeteringInfrastructureorsimplyAMIreferstotheentireinfrastructure,whichincludes everythingfromsmartmeterstotwo-waycommunicationnetworkstocontrolcenterequipment,aswellasall theapplicationsthatallowforthegatheringandtransferofenergyusagedatainreal-time.Thebackboneofthe smartgrid[8]isAMI,whichenablestwo-wayconnectivitywithcustomers.Error-freemeterreadingfromremote, networkproblemanditsdiagnosis,loadprofile/patterns,energyaudits/consumptions,andpartialloadcurtailmentinplaceofloadsheddingareallpotentialobjectivesofAMI.ThetypicalbuildingblocksofAMIareshown inFigure1.4.

AMIismadeupofseveralhardwareandsoftwarecomponentsthatallworktogethertomeasureenergyconsumptionandsenddataaboutittoutilitycompaniesandcustomers[8].Thekeytechnologicalcomponentsof AMIare,

◽ SmartMeters:Advancedmeterdevicesthatcouldgatherdataofelectricalparametersatvariousintervals andtransferthedatatotheutilityviafixedcommunicationnetworks,aswellasreceivinginformationfrom theutilitysuchaspricingsignalsandrelayingittotheconsumer[9].

Figure1.4 BasicbuildingblocksofAMI.

• CommunicationNetwork:Smartmeterscanprovidedatatoutilitycompaniesandviceversa.The advancedcommunicationnetworksallowtwo-waycommunicationbetweensmartmetersandutilitycompanies.Fortheseapplications,networkslikeBroadbandoverPowerline(BPL),PowerLineCommunications (PLC),FiberOpticCommunication,FixedRadioFrequency(RF),orpublicnetworks(e.g.landline,cellular, paging)areused[10].

• MeterDataAcquisitionSystem:Dataiscollectedfromsmartmetersoveracommunicationnetworkand senttothemeterdatamanagementsystem(MDMS)usingsoftwareapplicationsontheControlCentrehardwareandDCUs(DataConcentratorUnits).

MDMSMetering:receivestheinformation,storesit,andanalyzeditbythehostsystem.

◽ HomeAreaNetwork(HAN):Itcanbeaconsumer-sideextensionofAMI,allowingforeasiercommunication betweenhouseholdappliancesandAMI,andthusbetterloadcontrolbyboththeutilityandtheconsumer[11].

ThebenefitsofAMIaremultifoldandcanbegenerallycategorizedasfollows:

OperationalBenefits:TheentiresystembenefitsfromAMIsinceitimprovesmeterreadingaccuracy,detects energytheft,andrespondstopoweroutageswhileremovingtheneedforanon-sitemeterreading.

FinancialBenefits:UtilitycompaniesfinanciallybenefitfromAMIbecauseitlowersequipmentandmaintenancecosts,enablesfasterrestorationofelectricserviceduringoutages,andstreamlinesthebillingprocess.

CustomerBenefits:ElectriccustomersbenefitfromAMIbecauseitdetectsmeterfaultsearly,allowsforspeedierservicerestoration,andimprovesbillingaccuracyandflexibility.AMIalsoofferstime-basedtariffchoices, whichcanhelpconsumerssavemoneyandbettermanagetheirenergyusage.

SecurityBenefits:AMItechnologyallowsforbettermonitoringofsystemresources,reducingtheriskof cyber-terroristnetworksposingathreattothegrid.

Inspiteofvariousadvantages,AMIdeploymentfacesthreesignificantchallenges:highercapitalcostsorinvestments,connectionorinteroperabilitywithothergridsystems,andstandardization.

HighCapitalCosts:Afull-scaleimplementationofAMInecessitatesinvestmentsinallhardwareandsoftware components,includingsmartmeters,networkinfrastructures,andnetworkmanagementsoftware,aswellas costsassociatedwithmeterinstallationandmaintenance.

Integration: CustomerInformationSystems(CISs),GeographicalInformationSystems(GISs),OutageManagementSystems(OMSs),WorkManagementSystem(WMS),MobileWorkforceManagement(MWM), SCADA/DMS,DistributionAutomationSystem(DAS),andotherutilities’informationtechnologysystems essentiallyintegratedwithAMI.

Standardization:Compatibilitystandardsmustbecreated,astheyarethekeystoproperlyconnectingand sustaininganAMI-basedgridsystem.TheysetuniversalrequirementsforAMItechnology,deployment,and generaloperations.

InvestinginAMItomodernizethepowergridsystemwillalleviateseveralgridstressescausedbytherising powerdemands.AMIwillimprovethreecriticalaspectsofpowergridinfrastructuresuchassystemreliability, energycost,andelectricitytheft.

SystemReliability:AMItechnologyincreaseselectricitydistributionandoveralldependabilitybyallowingelectricitydistributorstoidentifyandrespondtoelectricdemandautomatically,reducingpoweroutages.

EnergyCosts:Increasedstabilityandfunctionality,aswellasfewerpoweroutagesandstreamlinedbillingoperations,willgreatlyreducetheexpensesinvolvedwithprovidingandmaintainingthegrid,resultinginsignificantlycheaperelectricitybills.

ElectricityTheft:ElectricitytheftisaprevalentprobleminSociety.AMIsystemsthattrackenergyusagewillaid inmonitoringpowerinreal-time,resultinginenhancedsystemtransparency.

1.5PhasorMeasurementUnit

AphasormeasurementunitorsimplyPMUisacrucialmeasurementtoolthatisusedonelectricpowersystems toimprovegridoperators’visibilityonthehugepowergridnetwork/system[12].Itmeasurestheparametercalled aphasoranditprovidestheinformation/dataofmagnitudeandphaseangleofvoltageorcurrentataparticular location[13].Thisinformation/datashallbeusedtofindtheoperatingfrequencyataparticulartimeinstantand examinetheconditionofthesystemasshowninFigure1.5.

APMUmayprovideupto60measurementspersecond.AscomparedwithatypicalSCADA-basedsystem,the measurementspersecondarehigherinPMU.AtypicalSCADA-basedsystemwillprovidethedata(onemeasurementdataintwotofoursecondstimeinterval)[14].ThemainadvantageofusingPMUoverconventionalSCADA systemisPMUcancollectthedataofallPMUataparticulartimethroughGPS.Thismeans,thatcollecteddata acrossthepowergridaretime-synchronized.Becauseofthisreason,PMUsarealsocalledsynchrophasors[15].

TheinformationcollectedfromthePMUconveystothesystemoperatorwhetherthemainelectricalparameters suchasvoltage,current,andfrequencyarewithinthespecifiedlimitwithtoleranceornot.Thecapabilityofthe PMUisasfollows,

◾ Linecongestion:prediction,analysis,andmanage

◾ Analyzingtheeventafterthedisturbanceorfault(postfaultanalysis)

◾ Instabilityandstressdetection

◾ Inefficienciesdetection

Inthisdecade,severalthousandsofPMUsaresuccessfullyinstalledandcommissionedintransmissionand/or distributiongridsacrosstheglobe.APMUcanbeintegratedwithsmartcontrollers,andthiswillreducethemanualoperationsrequiredbytheSCADAsystemindecisionmakingandcontrol.Duetothisfeature,thegridbecomes robustandefficient,itallowsthemoreintegrationofrenewablepowers,DERs,andmicrogrids.

ThereportonUnifiedReal-TimeDynamicStateMeasurement(URTDSM)byPowerGridCorporationofIndia Ltd.(PGCIL)showstheimportanceofPMUdata(datafromvariouslinesattime-stamped)isusefulforprediction andpostfaulteventanalysis.PGCILfollowedthephilosophystatedbelowforinstallingthePMUsacrossIndia, installationofPMUsonsubstationsat400kVlevelabove,allgeneratingstationsat220kVlevelandabove,HVDC terminals,importantinter-regionalconnectionpoints,inter-nationalconnectionpoints,etc.Also,theprovision ofPDCatallStateLoadDispatchCenters(SLDCs),RegionalLoadDispatchCenters(RLDCs),andNationalLoad DispatchCenter(NLDC)[7].

ThePMUisusedtomeasurethemagnitudeandphaseangleofbusvoltageandlinecurrentphasor.PMUtakes thebusPTinputforvoltageandlineCTinputforcurrentatthesubstationaswellasGPStimesignal.ThePMU presentlyavailableinthemarketcanmeasureonesetofbusvoltage(three-phase)andtwosetsoflinecurrent (three-phase).ThetypicalarrangementofPMUinsubstationandMainPhasorDataConcentrator(MPDC)/Sub PhasorDataConcentrator(SPDC)inloaddispatchcenterisshowninFigure1.6[7].

Figure1.5 Transmissionlinedata.

Figure1.6 TypicalarrangementofPMUinsubstationandPDCintheloaddispatchcenter.

ThePMUoutputfromthesubstationiscommunicatedtoPDCthroughaLocalAreaNetwork(LAN)switch androuter.APDCattheloaddispatchcenterisusedtoreceivethedatafromthemultiplePMUsofdifferent substations.Also,PDCcommunicateswithotherPDCsandtransfersthedata.ThePDCsalign/storethePMU databythetime-stampedlabelandcreatethetime-synchronizeddataset.AllthePDCsareconnectedlocallywith computers/hostworkstations,printers,andoperators’cabinetsviaEthernet.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.