Full download Dynamic system modelling and analysis with matlab and python 1st edition jongrae kim p

Page 1


DynamicSystemModellingandAnalysiswithMATLAB andPython1stEditionJongraeKim

https://ebookmass.com/product/dynamic-system-modelling-andanalysis-with-matlab-and-python-1st-edition-jongrae-kim/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Optimizations and Programming: Linear, Non-linear, Dynamic, Stochastic and Applications with Matlab

Abdelkhalak El Hami

https://ebookmass.com/product/optimizations-and-programming-linearnon-linear-dynamic-stochastic-and-applications-with-matlababdelkhalak-el-hami/ ebookmass.com

Solar Photovoltaic System Modelling and Analysis: Design and Estimation (River Publishers Series in Power) 1st Edition Mariprasath

https://ebookmass.com/product/solar-photovoltaic-system-modelling-andanalysis-design-and-estimation-river-publishers-series-in-power-1stedition-mariprasath/

ebookmass.com

Systems Biology Modelling and Analysis 1st Edition

Elisabetta De Maria

https://ebookmass.com/product/systems-biology-modelling-andanalysis-1st-edition-elisabetta-de-maria/

ebookmass.com

Principles and Applications of Soil Microbiology 3rd Edition Terry J. Gentry (Editor)

https://ebookmass.com/product/principles-and-applications-of-soilmicrobiology-3rd-edition-terry-j-gentry-editor/

ebookmass.com

The YouTube Formula Derral Eves

https://ebookmass.com/product/the-youtube-formula-derral-eves/

ebookmass.com

Laws of nature First Edition. Edition Ott

https://ebookmass.com/product/laws-of-nature-first-edition-editionott/

ebookmass.com

Financial Accounting: Information for Decisions 9th Edition, (Ebook PDF)

https://ebookmass.com/product/financial-accounting-information-fordecisions-9th-edition-ebook-pdf/

ebookmass.com

A Very Typical Family Sierra Godfrey

https://ebookmass.com/product/a-very-typical-family-sierra-godfrey-2/

ebookmass.com

Summertime On The Ranch (Spikes & Spurs #7.5) 1st Edition

Carolyn Brown

https://ebookmass.com/product/summertime-on-the-ranch-spikesspurs-7-5-1st-edition-carolyn-brown/

ebookmass.com

Decision Intelligence For Dummies 1st Edition Pam Baker

https://ebookmass.com/product/decision-intelligence-for-dummies-1stedition-pam-baker/

ebookmass.com

DynamicSystemModellingandAnalysiswithMATLABandPython

IEEEPress

445HoesLane

Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktssonAndreasMolischDiomidisSpinellis

AnjanBoseSaeidNahavandiAhmetMuratTekalp

AdamDrobot

Peter(Yong)Lian

JeffreyReed

ThomasRobertazzi

DynamicSystemModellingandAnalysis withMATLABandPython

ForControlEngineers

JongraeKim

UniversityofLeeds Leeds,UK

IEEEPressSeriesonControlSystemsTheoryandApplications MariaDomenicaDiBenedetto,SeriesEditor

Copyright©2023byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrights reserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.

PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers, MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requeststo thePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley& Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhave changedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthe publishernorauthorshallbeliableforanylossofprofitoranyothercommercialdamages, includingbutnotlimitedtospecial,incidental,consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,please contactourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidethe UnitedStatesat(317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsin printmaynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts, visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationDataAppliedfor: Hardback:9781119801627

CoverDesign:Wiley

CoverImages:©BocskaiIstvan/Shutterstock

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

ToMiyoung

Contents

Preface xiii

Acknowledgements xv

Acronyms xvii

AbouttheCompanionWebsite xix

1Introduction 1

1.1ScopeoftheBook 1

1.2MotivationExamples 2

1.2.1Free-FallingObject 2

1.2.1.1FirstPrograminMatlab 4

1.2.1.2FirstPrograminPython 10

1.2.2Ligand–ReceptorInteractions 14

1.3OrganizationoftheBook 21 Exercises 21 Bibliography 22

2AttitudeEstimationandControl 23

2.1AttitudeKinematicsandSensors 23

2.1.1SolveQuaternionKinematics 26

2.1.1.1MATLAB 26

2.1.1.2Python 29

2.1.2GyroscopeSensorModel 33

2.1.2.1Zero-MeanGaussianWhiteNoise 33

2.1.2.2GenerateRandomNumbers 34

2.1.2.3StochasticProcess 40

2.1.2.4MATLAB 41

2.1.2.5Python 45

2.1.2.6GyroscopeWhiteNoise 49

2.1.2.7GyroscopeRandomWalkNoise 50

2.1.2.8GyroscopeSimulation 53

2.1.3OpticalSensorModel 57

2.2AttitudeEstimationAlgorithm 64

2.2.1ASimpleAlgorithm 64

2.2.2QUESTAlgorithm 65

2.2.3KalmanFilter 66

2.2.4ExtendedKalmanFilter 75

2.2.4.1ErrorDynamics 76

2.2.4.2BiasNoise 77

2.2.4.3NoisePropagationinErrorDynamics 78

2.2.4.4StateTransitionMatrix, Φ 84

2.2.4.5VectorMeasurements 84

2.2.4.6Summary 86

2.2.4.7KalmanFilterUpdate 86

2.2.4.8KalmanFilterPropagation 87

2.3AttitudeDynamicsandControl 88

2.3.1DynamicsEquationofMotion 88

2.3.1.1MATLAB 91

2.3.1.2Python 94

2.3.2ActuatorandControlAlgorithm 95

2.3.2.1MATLABProgram 98

2.3.2.2Python 101

2.3.2.3AttitudeControlAlgorithm 103

2.3.2.4AltitudeControlAlgorithm 105

2.3.2.5Simulation 106

2.3.2.6MATLAB 107

2.3.2.7RobustnessAnalysis 107

2.3.2.8ParallelProcessing 110 Exercises 113 Bibliography 115

3AutonomousVehicleMissionPlanning 119

3.1PathPlanning 119

3.1.1PotentialFieldMethod 119

3.1.1.1MATLAB 122

3.1.1.2Python 126

3.1.2GraphTheory-BasedSamplingMethod 126

3.1.2.1MATLAB 128

3.1.2.2Python 129

3.1.2.3Dijkstra’sShortestPathAlgorithm 130

3.1.2.4MATLAB 130

3.1.2.5Python 131

3.1.3ComplexObstacles 134

3.1.3.1MATLAB 135

3.1.3.2Python 141

3.2MovingTargetTracking 145

3.2.1UAVandMovingTargetModel 145

3.2.2OptimalTargetTrackingProblem 148

3.2.2.1MATLAB 149

3.2.2.2Python 151

3.2.2.3Worst-CaseScenario 153

3.2.2.4MATLAB 157

3.2.2.5Python 159

3.2.2.6OptimalControlInput 164

3.3TrackingAlgorithmImplementation 167

3.3.1Constraints 167

3.3.1.1MinimumTurnRadiusConstraints 167

3.3.1.2VelocityConstraints 169

3.3.2OptimalSolution 172

3.3.2.1ControlInputSampling 172

3.3.2.2InsidetheConstraints 175

3.3.2.3OptimalInput 177

3.3.3VerificationSimulation 180 Exercises 182 Bibliography 182

4BiologicalSystemModelling 185

4.1BiomolecularInteractions 185

4.2DeterministicModelling 185

4.2.1GroupofCellsandMultipleExperiments 186

4.2.1.1ModelFittingandtheMeasurements 188

4.2.1.2FindingAdaptiveParameters 190

4.2.2 E.coli TryptophanRegulationModel 191

4.2.2.1Steady-StateandDependantParameters 194

4.2.2.2PadéApproximationofTime-Delay 195

4.2.2.3State-SpaceRealization 196

4.2.2.4Python 205

4.2.2.5ModelParameterRanges 206

4.2.2.6ModelFittingOptimization 213

4.2.2.7OptimalSolution(MATLAB) 221

4.2.2.8OptimalSolution(Python) 223

4.2.2.9AdaptiveParameters 226

4.2.2.10Limitations 226

x Contents

4.3BiologicalOscillation 227

4.3.1Gillespie’sDirectMethod 231

4.3.2SimulationImplementation 234

4.3.3RobustnessAnalysis 241 Exercises 245 Bibliography 246

5BiologicalSystemControl 251

5.1ControlAlgorithmImplementation 251

5.1.1PIController 251

5.1.1.1IntegralTerm 252

5.1.1.2ProportionalTerm 253

5.1.1.3SummationoftheProportionalandtheIntegralTerms 253

5.1.1.4ApproximatedPIController 253

5.1.1.5ComparisonofPIControllerandtheApproximation 254

5.1.2ErrorCalculation: ΔP 260

5.2RobustnessAnalysis: �� -Analysis 269

5.2.1SimpleExamples 269

5.2.1.1 �� UpperBound 272

5.2.1.2 �� LowerBound 275

5.2.1.3ComplexNumbersinMATLAB/Python 278

5.2.2SyntheticCircuits 280

5.2.2.1MATLAB 281

5.2.2.2Python 281

5.2.2.3 �� -UpperBound:GeometricApproach 290 Exercises 291 Bibliography 292

6FurtherReadings 295

6.1BooleanNetwork 295

6.2NetworkStructureAnalysis 296

6.3Spatial-TemporalDynamics 297

6.4DeepLearningNeuralNetwork 298

6.5ReinforcementLearning 298 Bibliography 298

AppendixASolutionsforSelectedExercises 301

A.1Chapter1 301

Exercise1.4 301

Exercise1.5 301

A.2Chapter2 302

Exercise2.5 302

A.3Chapter3 302

Exercise3.1 302

Exercise3.6 303

A.4Chapter4 303

Exercise4.1 303

Exercise4.2 303

Exercise4.7 304

A.5Chapter5 304

Exercise5.2 304

Exercise5.3 304

Index 307

Preface

ThisbookisforcontrolengineerstolearndynamicsystemmodellingandsimulationandcontroldesignandanalysisusingMATLABorPython.Thereaders areassumedtohavetheundergraduatefinal-yearlevelofknowledgeonordinary differentialequations,vectorcalculus,probability,andbasicprogramming.

WehaveverifiedalltheMATLABandPythoncodesinthebookusingMATLAB R2021aandPython3.8inSpyder,thescientificPythondevelopmentenvironment. Toreducetheconfusioninrunningaparticularprogram,mostoftheprogramsare independentontheirown.Organizingprogrammingwithmultiplefilesisleftas anadvancedskillforreaderstolearnafterreadingthisbook.

Leeds,WestYorkshire,England,UK 30November2021

JongraeKim

Acknowledgements

Ihavelearneddynamicmodellingandsimulationthroughmyundergraduate andpost-graduateeducationandresearchprojectsinthepast30years.Hence, thisbookwillnotbepossiblewithouthavingmyteachers,supervisors,and collaborators.IthankDrJinhoKim,ProfessorJohnL.Crassidis,Professor JoãoP.Hespanhna,ProfessorDeclanG.Bates,DrDaizhanCheng,Professor Kwang-HyunCho,ProfessorFrankPollick,andDrRajeevKrishnadas.

JongraeKim

Acronyms

DCMdirectioncosinematrix

DNAdeoxyribonucleicacid

EKFextendedKalmanfilter

KFKalmanfilter

LHSleft-handside

LTIlineartime-invariant

mRNAmessengerRNA

mRNAPmessengerRNApolymerase

N2LNetwton’ssecondlawofmotion

ODEordinarydifferentialequation

pdfprobabilitydensityfunction

PIproportionalintegral

QUESTquaternionestimationalgorithm

RHSright-handside

RNAribonucleicacid

AbouttheCompanionWebsite

Thisbookisaccompaniedbyacompanionwebsite.

www.wiley.com/go/kim/dynamicmodeling

Thiswebsiteincludes:

● Thesolutionsfortheproblemslistedinthechaptersandtheprogramcodesused inPythonandMATLABsoftwares.

1.1ScopeoftheBook

Thisbookisforadvancedundergraduatestudents,post-graduatestudents,orengineerstoacquireprogrammingskillsfordynamicsystemmodellingandanalysis usingcontroltheory.Thereadersareassumedtohaveabasicunderstandingof computerprogramming,ordinarydifferentialequations(ODE),vectorcalculus, andprobability.

Mostengineeringcurriculaattheundergraduatelevelincludeonlyan elementary-levelprogrammingcourseintheearlyoftheundergraduateyears. Onlyahandfulofself-motivatedengineeringstudentsacquireadvancedlevel programmingskillsmainlyfromself-studythroughtedioustime-consuming practicesandtrivialmistakes.Asmodernengineeringsystemssuchasaircraft, satellite,automobile,orautonomousrobotsareimplementedthroughinseparable tightintegrationofhardwaresystemsandsoftwarealgorithms,thedemandfor engineershavingfluentskillsindynamicsystemmodellingandalgorithmdesign isincreasing.Inaddition,theemergenceofinterdisciplinaryareasmergingthe experimentaldomainwithmathematicalandcomputationalapproachessuch assystemsbiology,syntheticbiology,orcomputationalneurosciencefurther increasesthenecessityoftheengineerswhounderstanddynamicsandare capableofcomputationalimplementationsofdynamicmodels.

Thisbookaimstofillthegapinlearningpracticaldynamicmodelling,simulation,andanalysisskillsinaerospaceengineering,robotics,andbiology.Learningprogrammingintheengineeringorbiologydomainrequiresnotonlydomain knowledgebutalsoarobustconceptualunderstandingofalgorithmdesignand implementation.Itisnot,ofcourse,theskillstolearnin14daysorlessasmany onlinecoursesclaim.Tobeconfidentindynamicsystemmodellingandanalysis takesmorethanseveralyearsofpracticeanddedication.Thisbookprovidesthe startingpointofthelongjourneyforthereaderstoequipandpreparebetterfor realengineeringandscientificproblems.

DynamicSystemModellingandAnalysiswithMATLABandPython:ForControlEngineers, FirstEdition.JongraeKim.

©2023TheInstituteofElectricalandElectronicsEngineers,Inc.Published2023byJohnWiley&Sons,Inc. CompanionWebsite:www.wiley.com/go/kim/dynamicmodeling

1.2MotivationExamples

1.2.1Free-FallingObject

Newton’ssecondlawofmotionisgivenby

where Fi isthe i-thexternalforceinNewtons(N)actingontheobjectcharacterized bythemass, m,inkg, d∕dt isthetimederivative, t isthetimeinseconds, �� isthe velocityinm/s,and m�� isthemomentumoftheobject.Newton’ssecondlawstates that thesumofallexternalforcesisequaltothemomentumchangeperunitoftime Considerafree-fallingobjectshowninFigure1.1.Thereexistsonlyoneexternalforce,i.e.thegravitationalforceactingdownwardsinthefigure.Hence,the left-handsideof(1.1)issimplygivenby ∑i Fi = Fg ,where Fg isthegravitational force.Introducetheadditionalassumptionthattheobjectiswithinthereasonable rangefromthesealevel.Withtheassumption,thegravitationalforce, Fg ,isknown tobeproportionaltothemass,andtheproportionalconstantisthegravitational accelerationconstant, g,whichisequalto9.81m/s2 inthesealevel.Therefore, Fg = mg.Replacetheleft-handsideof(1.1),i.e.

Fg

wherethedownwarddirectionissettothepositivedirection,whichistheopposite oftheusualconvention. Ithighlightsthatestablishingaconsistentcoordinatesystem atthebeginningofmodellingisvitalindynamicsystemsimulation.

Fromthekinematicrelationshipbetweenthevelocity, ��,andthedisplacement, x ,wehave dx dt = ��

wheretheoriginof x isattheinitialpositionoftheobject, m,andthepositive directionof x isdownwardsinthefigure.Theright-handsideof(1.2)becomes

mg = Fg =

Finally,theleftmostandtherightmosttermsareequaltoeachotherasfollows:

mg = d dt (m dx dt ) anditisexpandedasfollows:

mg = dm dt dx dt + m d2 x dt2

Usingtheshortnotations, m = dm∕dt, x = dx ∕dt,and x = d2 x ∕dt2 ,andafter rearrangements,thegoverningequationisgivenby ̈ x = g m m ̇

Forpurelyeducationalpurposes,assumethatthemasschangerateisgivenby ̇ m =−m + 2(1.4)

Wecanidentifynowthattherearethreeindependenttime-varyingstates,which aretheposition, x ,thevelocity, x ,andthemass, m.Alltheothertime-varying states,forexample, x and m,canbeexpressedusingtheindependentstatevariables.Definethestatevariablesasfollows:

x1 = x x2 = ̇ x x3 = m

Obtainthetimederivativeofeachstateexpressedinthestatevariableasfollows:

andthisiscalled thestate-spaceform.

Lettheinitialconditionsbeequalto x1 (0)= x (0)= 0.0m, x2 (0)= x (0)= 0.5m/s, and x3 (0)= m(0)= 5kg.Equation(1.5)canbewritteninacompactformusingthe

matrix–vectornotations.Definethestatevector, x,asfollows:

andthecorrespondingstate-spaceformiswrittenas

Thesecond-orderdifferentialequation,(1.3),andthefirst-orderdifferential equation,(1.4),arecombinedintothefirst-orderthree-dimensionalvector differentialequation,(1.6).Anyhigherorderdifferentialequationscanbe transformedintothefirst-ordermulti-dimensionalvectordifferentialequation,

̇ x = f(x).NumericalintegrationmethodssuchasRunge–Kuttaintegration (Pressetal.,2007)solvesthefirst-orderODE.Theycansolveanyhigh-order differentialequationsbytransformingthemintothecorrespondingfirst-order multi-dimensionaldifferentialequation.

1.2.1.1FirstPrograminMatlab

Wearereadytosolve(1.6)withtheinitialconditionequalto x(0)=[0.00.55.0]T , wherethesuperscript T isthetransposeofthevector.Wesolvethedifferentialequationfrom t = 0to t = 5secondsusingMatlab.Matlabincludesmany numericalfunctionsandlibrariestobeusedfordynamicsimulationandanalysis. AnumericalintegratorisoneofthefunctionsalreadyimplementedinMatlab. Hence,theonlytaskwehavetodoforsolvingthedifferentialequationisto learnhowtousetheexistingfunctionsandlibrariesinMatlab.Thecomplete programmetosolvethefree-fallingobjectproblemisgiveninProgram1.1. ProducingFigure1.2isleftasanexerciseinExercise1.1.

1 clear ; 2

3grv_const=9.81; %[m/s^2]

4init_pos=0.0; %[m]

5init_vel=0.5; %[m/s]

6init_mass=5.0; %[kg]

7

8init_time=0; %[s]

9final_time=5.0; %[s]

10time_interval=[init_timefinal_time];

11

12x0=[init_posinit_velinit_mass]; 13[tout,xout]= ode45 (@(time,state)free_falling_obj(time,state, grv_const),time_interval,x0);

14

15 figure (1); 16 plot (tout,xout(:,1))

17 ylabel (’position[m]’);

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Full download Dynamic system modelling and analysis with matlab and python 1st edition jongrae kim p by Education Libraries - Issuu