Sustainable manufacturing systems: an energy perspective first edition lin li download pdf

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/sustainable-manufacturing-systems-an-energy-persp ective-first-edition-lin-li/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Sustainable food waste-to-energy systems Babbitt

https://ebookmass.com/product/sustainable-food-waste-to-energysystems-babbitt/

Future Energy Options from a Systems Perspective Nick King

https://ebookmass.com/product/future-energy-options-from-asystems-perspective-nick-king/

Sustainable Manufacturing Kapil Gupta

https://ebookmass.com/product/sustainable-manufacturing-kapilgupta/

Sustainable Luxury: An International Perspective

Claudia E. Henninger

https://ebookmass.com/product/sustainable-luxury-aninternational-perspective-claudia-e-henninger/

Future Propulsion Systems and Energy Sources in Sustainable Aviation Farokhi

https://ebookmass.com/product/future-propulsion-systems-andenergy-sources-in-sustainable-aviation-farokhi/

Hybrid Nuclear Energy Systems: A Sustainable Solution for the 21st Keller

https://ebookmass.com/product/hybrid-nuclear-energy-systems-asustainable-solution-for-the-21st-keller/

Customized Production Through 3D Printing in Cloud Manufacturing Lin Zhang

https://ebookmass.com/product/customized-productionthrough-3d-printing-in-cloud-manufacturing-lin-zhang/

Integrated Sustainable Urban Water, Energy, and Solids

Managementpresents an integrated and sustainable system of Vladimir Novotny

https://ebookmass.com/product/integrated-sustainable-urban-waterenergy-and-solids-managementpresents-an-integrated-andsustainable-system-of-vladimir-novotny/

Exergy. Energy, Environment and Sustainable Development 3rd Edition Ibrahim Dincer And Marc A. Rosen (Eds.)

https://ebookmass.com/product/exergy-energy-environment-andsustainable-development-3rd-edition-ibrahim-dincer-and-marc-arosen-eds/

SustainableManufacturingSystems

IEEEPress

445HoesLane Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktssonAndreasMolischDiomidisSpinellis

AnjanBoseSaeidNahavandiAhmetMuratTekalp

AdamDrobotJeffreyReed

Peter(Yong)LianThomasRobertazzi

SustainableManufacturingSystems

AnEnergyPerspective

LinLi

UniversityofIllinoisatChicago Chicago,IL,USA

MengChuZhou UniversityHeights Newark,NJ,USA

IEEEPressSeriesonSystemsScienceandEngineering

MengChuZhou,SeriesEditor

Copyright©2023byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.

IEEEStandardsdesignationsaretrademarksofTheInstituteofElectricalandElectronics Engineers,Incorporated(http://www.ieee.org/).

Non-IEEEtrademarksaretherespectivepropertyoftheirowners.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers, MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requeststo thePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley& Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley& Sons,Inc.and/oritsaffiliatesintheUnitedStatesandothercountriesandmaynotbeused withoutwrittenpermission.Allothertrademarksarethepropertyoftheirrespectiveowners. JohnWiley&Sons,Inc.isnotassociatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedor disappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernor authorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnot limitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontact ourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnited Statesat(317)572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitour websiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationDataappliedfor HardbackISBN:9781119578246

CoverDesign:Wiley CoverImages:©AlekseyPopov

Setin9.5/12.5ptSTIXTwoTextbyStraive,Pondicherry,India

Contents

AuthorBiography xv

Preface xvii

Acknowledgments xxiii

ListofFigures xxv

PartIIntroductionstoEnergyEfficiencyinManufacturingSystems 1

1Introduction 3

1.1DefinitionsandPracticesofSustainableManufacturing 3

1.1.1CurrentStatusofManufacturingIndustry 3

1.1.2SustainabilityintheManufacturingSectorandAssociatedImpacts 5

1.1.3SustainableManufacturingPractices 10

1.2FundamentalofManufacturingSystems 12

1.2.1StagesofProductManufacturing 12

1.2.2ClassificationofManufacturingSystems 13

1.2.2.1JobShop 13

1.2.2.2ProjectShop 14

1.2.2.3CellularSystem 15

1.2.2.4FlowLine 15

1.2.2.5ContinuousSystem 15

1.3ProblemStatementandScope 18 Problems 19 References 19

2EnergyEfficiencyinManufacturingSystems 23

2.1EnergyConsumptioninManufacturingSystems 23

2.1.1EnergyandPowerBasics 23

2.1.2EnergyGeneration 24

2.1.2.1PrimaryEnergy 25

Contents

2.1.2.2SecondaryEnergy 27

2.1.3EnergyDistribution 27

2.1.3.1Electricity 28

2.1.3.2Steam 30

2.1.3.3CompressedAir 30

2.1.4EnergyConsumption 31

2.1.4.1IndirectEndUse 33

2.1.4.2DirectProcessEndUse 33

2.1.4.3DirectNon-processEndUse 34

2.2EnergySavingPotentialsandEnergyManagementStrategiesfor ManufacturingSystems 35

2.2.1MachineLevel 39

2.2.1.1IntrinsicCharacteristicsofMachineTools 41

2.2.1.2ProcessingConditions 42

2.2.2SystemLevel 43

2.2.2.1InhomogeneousSystem 44

2.2.2.2MachineMaintenance 45

2.2.3PlantLevel 46

2.2.3.1IndirectEndUse 46

2.2.3.2DirectNon-processEndUse 47

2.3Demand-sideEnergyManagement 49

2.3.1ElectricityBillComponents 50

2.3.1.1ElectricityCost 51

2.3.1.2DemandCost 51

2.3.1.3FixedCost 52

2.3.2EnergyEfficiencyPrograms 52

2.3.3DemandResponsePrograms 55

2.3.3.1Incentive-basedPrograms 56

2.3.3.2PriceBaseOptions 57 Problems 59 References 59 PartIIMathematicalToolsandModelingBasics 65

3MathematicalTools 67

3.1Probability 67

3.1.1FundamentalsofProbabilityTheory 67

3.1.1.1BasicsofProbabilityTheory 67

3.1.1.2AxiomsofProbabilityTheory 69

3.1.1.3ConditionalProbabilityandIndependence 72

3.1.1.4TotalProbabilityTheorem 73

3.1.1.5Bayes’ Law 74

3.1.2RandomVariables 74

3.1.2.1DiscreteRandomVariables 75

3.1.2.2ContinuousRandomVariables 82

3.1.3RandomProcess 88

3.1.3.1Discrete-timeMarkovChain 89

3.1.3.2Continuous-timeMarkovChain 92

3.2PetriNet 94

3.2.1FormalDefinitionofPetriNet 95

3.2.1.1DefinitionofPetriNet 95

3.2.2ClassicalPetriNet 99

3.2.2.1StateMachinePetriNet 101

3.2.2.2MarkedGraph 102

3.2.2.3SystematicModelingMethods 105

3.2.3DeterministicTimedPetriNet 106

3.2.4StochasticPetriNet 109

3.3OptimizationMethods 113

3.3.1FundamentalsofOptimization 113

3.3.1.1ObjectiveFunction 114

3.3.1.2DecisionVariables 114

3.3.1.3Constraints 115

3.3.1.4LocalandGlobalOptimum 116

3.3.1.5Near-optimalSolutions 117

3.3.1.6Single-objectiveandMulti-objectiveOptimization 117

3.3.1.7DeterministicandStochasticOptimization 118

3.3.2GeneticAlgorithms 119

3.3.2.1Initialization 119

3.3.2.2Evaluation 121

3.3.2.3Selection 121

3.3.2.4Crossover 123

3.3.2.5Mutation 124

3.3.2.6TerminationCriteria 125

3.3.3ParticleSwarmOptimizer(PSO) 126

3.3.3.1Initialization 126

3.3.3.2Evaluation 128

3.3.3.3PersonalandGlobalBestPositions 128

3.3.3.4UpdatingVelocityandPosition 129

3.3.3.5TerminationCriteria 132 Problems 132 References 134

4MathematicalModelingofManufacturingSystems 139

4.1BasicsinManufacturingSystemModeling 139

4.1.1StructureofManufacturingSystems 139

4.1.1.1BasicComponents 139

4.1.1.2StructuralModeling 140

4.1.1.3TypesofManufacturingSystems 141

4.1.2MathematicalModelsofMachinesandBuffers 142

4.1.2.1TimingIssuesforMachines 143

4.1.2.2MachineReliabilityModels 143

4.1.2.3ParametersofAggregatedMachines 145

4.1.2.4MathematicalModelofBuffers 146

4.1.2.5InteractionBetweenMachinesandBuffers 147

4.1.2.6BufferStateTransition 147

4.1.2.7BlockageandStarvation 148

4.1.3PerformanceMeasures 150

4.1.3.1BlockageandStarvation 150

4.1.3.2ProductionRateandThroughput 151

4.1.3.3Work-in-process 151

4.2Two-machineProductionLines 152

4.2.1ConventionsandNotations 152

4.2.1.1Assumptions 152

4.2.1.2Notations 152

4.2.2StateTransition 154

4.2.2.1StateTransitionProbabilities 155

4.2.2.2SystemDynamics 157

4.2.3Steady-stateProbabilities 157

4.2.3.1IdenticalMachines 159

4.2.3.2NonidenticalMachines 160

4.2.4PerformanceMeasures 161

4.2.4.1BlockageandStarvation 161

4.2.4.2ProductionRate 161

4.2.4.3Work-in-process 162

4.3Multi-machineProductionLines 162

4.3.1AssumptionsandNotations 163

4.3.1.1Assumptions 163

4.3.1.2Notations 163

4.3.2StateTransition 164

4.3.2.1StateTransitionProbabilities 165

4.3.2.2SystemDynamics 167

4.3.3PerformanceMeasures 167

4.3.3.1BlockageandStarvation 167

4.3.3.2ProductionRate 168

4.3.3.3Work-in-process 169

4.3.4SystemModelingwithIteration-basedMethod 169

4.4ProductionLinesCoupledwithMaterialHandlingSystems 174

4.4.1AssumptionsandNotations 174

4.4.1.1Assumptions 175

4.4.1.2Notations 175

4.4.2StateTransitionandPerformance 175

4.4.2.1BlockageandStarvation 175

4.4.2.2ProductionRate 176 Problems 179

References 180

5EnergyEfficiencyCharacterizationinManufacturingSystems 181

5.1EnergyConsumptionModeling 181

5.1.1Operation-basedEnergyModeling 182

5.1.2Component-basedEnergyModeling 185

5.1.3System-levelEnergyModeling 188

5.2EnergyCostmodeling 191

5.2.1EnergyCostUnderFlatRate 192

5.2.1.1EnergyConsumptionCost 192

5.2.1.2DemandCost 192

5.2.2EnergyCostUnderTime-of-useRate 196

5.2.2.1EnergyConsumptionCost 196

5.2.2.2DemandCost 198

5.2.3EnergyCostUnderCriticalPeakPrice(CPP) 199

5.2.3.1EnergyConsumptionCost 199

5.2.3.2DemandCost 200 Problems 203 References 203

PartIIIEnergyManagementinTypicalManufacturingSystems 205

6ElectricityDemandResponseforManufacturingSystems 207

6.1Time-of-usePricingforManufacturingSystems 208

6.1.1IntroductiontoTOU 208

6.1.2SurveyofTOUPricinginUSUtilities 209

6.1.3ComparisonofEnergyCostBetweenFlatRateandTOURates 210

6.2TOU-BasedProductionSchedulingforManufacturingSystems 216

6.2.1ManufacturingSystemsModeling 216

x Contents

6.2.2EnergyConsumptionandEnergyCostModeling 218

6.2.3ProductionSchedulingforTOU-basedDemandResponse 219

6.2.3.1ProductionSchedulingProblemFormulation 219

6.2.3.2PSOAlgorithmforNear-optimalSolutions 220

6.2.3.3CaseStudySetup 221

6.2.3.4OptimalProductionSchedules 222

6.3CriticalPeakPricingforManufacturingSystems 228

6.3.1IntroductiontoCriticalPeakPricing(CPP) 228

6.3.2ComparisonofEnergyCostBetweenTOUandCPPRates 229 Problems 234

Appendix3.ASupplementaryInformationofDemandResponse Tariffs 235 References 255

7EnergyControlandOptimizationforManufacturingSystemsUtilizing CombinedHeatandPowerSystem 257

7.1IntroductiontoCombinedHeatandPowerSystem 257

7.2ProblemDefinitionandModeling 258

7.2.1ObjectiveFunction 260

7.2.1.1ElectricityCost 260

7.2.1.2OperationCostfortheCHPSystemandBoiler 261

7.2.2Constraints 262

7.3SolutionApproach 263

7.3.1Initialization 263

7.3.2Evaluation 264

7.3.3UpdatingProcess 265

7.4CaseStudy 266

7.4.1CaseStudySettings 267

7.4.2ResultsandDiscussions 269 Problems 270 References 271

8Plant-levelEnergyManagementforCombinedManufacturingandHVAC System 273

8.1DefinitionandModeling 273

8.1.1ObjectiveFunction 274

8.1.1.1CalculateTEL(t) 276

8.1.1.2Estimate q(t) 278

8.1.2Constraints 279

8.2SolutionApproach 281

8.2.1Initialization 281

8.2.2Evaluation 282

8.2.3UpdatingProcess 282

8.3CaseStudy 283

8.3.1ModelSettings 284

8.3.2ResultsandDiscussions 287 Problems 289 References 290 PartIVEnergyManagementinAdvancedManufacturingSystems 291

9EnergyAnalysisofStereolithography-basedAdditive Manufacturing 293

9.1IntroductiontoAdditiveManufacturing 293

9.1.1IllustrationofMIPSL-basedAMProcess 294

9.2EnergyConsumptionModeling 296

9.2.1EnergyConsumptionofUVCuringProcess 297

9.2.2EnergyConsumptionofBuildingPlatformMovement 298

9.2.3EnergyConsumptionofCoolingSystem 298

9.3Experimentation 298

9.3.1ExperimentDesignMethodology 298

9.3.2ExperimentApparatus 299

9.4ResultsandDiscussions 300

9.4.1BaselineCaseResultsUsingDefaultConditions 300

9.4.2FactorialAnalysisResults 302

9.4.3ProductQualityComparison 305 Problems 308 References 308

10EnergyEfficiencyModelingandOptimizationofCellulosicBiofuel ManufacturingSystem 311

10.1IntroductiontoCellulosicBiofuelManufacturing 311

10.2EnergyModelingofCellulosicBiofuelProduction 313

10.2.1EnergyModelingofBiomassSizeReductionProcess 314

10.2.2EnergyModelingofBiofuelChemicalConversionProcesses 314

10.2.2.1HeatingEnergy 315

10.2.2.2EnergyLoss 316

10.2.2.3ReactionEnergy 317

10.2.2.4EnergyRecovery 320

10.2.2.5TotalEnergyConsumption 321

10.3EnergyConsumptionOptimizationUsingPSO 321

Contents

10.3.1ProblemFormulation 321

10.3.2SolutionProcedures 322

10.3.2.1Initialization 322

10.3.2.2Evaluation 323

10.3.2.3UpdatingProcess 323

10.4CaseStudy 323

10.4.1CaseSettings 324

10.4.2EnergyAnalysisofBaselineCase 324

10.4.2.1EnergyConsumptionBreakdown 324

10.4.3EnergyAnalysisofOptimalResults 327 Problems 328 References 329

11Energy-consumptionMinimizedSchedulingofFlexibleManufacturing Systems 333

11.1Introduction 334

11.2ConstructionofPlace-timedPNforFMSScheduling 335

11.2.1BasicDefinitionsofPN 335

11.2.2Place-timedPNSchedulingModelsofFMS 336

11.3EnergyConsumptionFunctions 338

11.3.1CalculatingtheEarliestFiringTimeofTransitions 339

11.3.2TwoEnergyConsumptionFunctions 340

11.3.2.1EnergyConsumptionFunction E1 341

11.3.2.2EnergyConsumptionFunction E2 341

11.4DynamicProgrammingforSchedulingFMS 344

11.4.1FormulationofDPforFMSs 344

11.4.1.1StatesandStages 344

11.4.1.2StateTransitionEquation 344

11.4.1.3BellmanEquation 345

11.4.2ReachabilityGraphofPNS 345

11.4.3DPImplementationforSchedulingFMS 347

11.5ModifiedDynamicProgrammingforSchedulingFMS 348

11.5.1EvaluationFunctionofTransitionSequences 349

11.5.2HeuristicFunction 350

11.5.3MDPAlgorithmforFMSScheduling 351

11.6CaseStudy 353

11.7Summary 358 Problems 358 References 359

PartVSummariesandConclusions 363

12ResearchTrendsandFutureDirectionsinSustainableIndustrial Development 365

12.1InsightsintoSustainableIndustrialDevelopment 365

12.2EnergyandResourceEfficiencyinManufacturing 366

12.2.1EquipmentDesign 366

12.2.2SmartManufacturing 367

12.3IndustrialSymbiosis 369

12.4SupplyChainManagement 371

12.5CircularEconomy 373

12.6LifeCycleAssessment 376 References 378

Glossary 387 Acronyms 391 Index 393

AuthorBiography

Dr.LinLi joinedtheDepartmentofMechanicalandIndustrialEngineering, UniversityofIllinoisChicagoin2011,andisnowaProfessorinMechanical andIndustrialEngineering.HealsoservesastheDirectorofU.S.Department ofEnergyIndustrialAssessmentCenterandthefoundingDirectoroftheSustainableManufacturingSystemsResearchLaboratoryattheUniversityofIllinoisChicago.HereceivedaB.E.degreeinMechanicalEngineeringfromShanghaiJiao TongUniversityin2001,andanM.S.E.degreeinMechanicalEngineering,an M.S.E.degreeinIndustrialandOperationsEngineering,andaPh.D.degreein MechanicalEngineeringfromtheUniversityofMichigan,AnnArbor,in2003, 2005,and2007,respectively.Hisresearchinterestsincludeenergycontroland electricitydemandresponseofmanufacturingsystems,environmentalsustainabilityofadditivemanufacturingprocesses,cost-effectivecellulosicbiofuelmanufacturingsystem,lithium-ionelectricvehiclebatteryremanufacturingand reliabilityassessment,multi-machinesystemmodelingandthroughputestimation,andintelligentmaintenanceofmanufacturingsystems.Heisarecipientof HaroldA.SimonAwardandUniversityofIllinoisChicagoTeachingRecognition ProgramAward.HeisafoundingmemberofthetechnicalcommitteeofSustainableProductionandServiceAutomationintheIEEERoboticsandAutomation Society,anacademicEditorforjournalSustainability,andwasChairofquality andreliabilitytechnicalcommittee,ASMEManufacturingEngineeringDivision.

Dr.MengChuZhou joinedtheDepartmentofElectricalandComputerEngineering,NewJerseyInstituteofTechnologyin1990,andisnowaDistinguished ProfessorinElectricalandComputerEngineering.Hisinterestsareinintelligent automation,semiconductormanufacturing,AI,Petrinets,InternetofThings, edge/cloudcomputing,andbigdataanalytics.Hehasover1000publications including12books,over700journalpapersincludingover600IEEEtransactions/journal/magazinepapers,31patentsand30book-chapters.Heisthe

foundingEditorofIEEEPressBookSeriesonSystemsScienceandEngineering andEditor-in-ChiefofIEEE/CAAJournalofAutomaticaSinica.Heisfounding Chair/Co-chairofTechnicalCommitteeonAI-basedSmartManufacturingSystemsofIEEESystems,Man,andCyberneticsSociety,TechnicalCommitteeon SemiconductorManufacturingAutomationandTechnicalCommitteeonDigital ManufacturingandHuman-CenteredAutomationofIEEERoboticsandAutomationSociety.HeisarecipientofExcellenceinResearchPrizeandMedalfrom NJIT,HumboldtResearchAwardforUSSeniorScientistsfromAlexandervon HumboldtFoundation,andFranklinV.TaylorMemorialAwardandtheNorbert WienerAwardfromIEEESystems,Man,andCyberneticsSociety,andEdisonPatentAwardfromtheResearch&DevelopmentCouncilofNewJersey.HeisFellow ofIEEE,InternationalFederationofAutomaticControl,AmericanAssociationfor theAdvancementofScience,ChineseAssociationofAutomationandNational AcademyofInventors.

Preface

SustainableManufacturingSystemsareoneofmoderntechnologiesandhave playedasignificantroleineconomicgrowthworldwide.Currently,thetotalvalue addedbytheglobalmanufacturingindustryreachesUSD13.5trillion,accounting fornearly16%oftheglobaleconomy.Despitethecontinuedstrengthofmanufacturingindustry,italsofacesapressingconcernoverenergyconsumptionandenvironmentalsustainability.Approximately,theindustrysectorpossessesnearonequarterofthetotalenergyconsumptionintheU.S.,whereover75%ofenergyuse isprimarilyattributedtomanufacturingactivities.

Theissuesofresourcescarcityandenvironmentalimpactsarebecomingvital duetotheconstantlyrisingdemandforenergyinthemanufacturingsector.Severalcriticalquestionsariseinproposingenergymanagementstrategiesinmanufacturingandevokedifferentaspectsofenergyefficiencystudies,including (i)improvingtheenergyefficiencyofmanufacturingsystemsconsideringthecomplexmanufacturingconditions,(ii)reducingtheenergycostwithnosacrificeof manufacturingproductivity,and(iii)generatingpoliciesorincentivestopromote energyefficiencyinthemanufacturingindustryandencouragethemanufacturers’ transitiontoenvironmentallyconsciousmanufacturing.Allthesequestions leadtothejointmodelingandanalysisofproductionandenergyformanufacturingsystems.

Thisbookprovidesaholisticviewofenergyefficiencyassessmentandimprovementmeasuresforsustainablemanufacturingsystems,deliveredthroughthe state-of-the-artonsustainablemanufacturingandenergyefficiencyissues,fundamentalsandmathematicaltoolsformanufacturingsystemmodeling,andenergy managementmethodologiesfordifferentmanufacturingsystems.Meanwhile,this booktransferstherecentacademicresearchresultsintovariousrepresentative examplesandcasestudies,whichprovideinsightsintothecurrentsustainable practicesandenergymanagementstrategiesinmanufacturingsystemsatdifferent scalesandlevels.Fromtheapplicationaspect,thisbookisexpectedtohelp

xviii Preface

(i)energyconsumers,participantsandadministratorsinenergyefficiencyprograms,and(ii)researchparticipantsembracetheopportunitiesforadvanced energymanagement.Furthermore,thisbookisintendedtobringaboutlearning initiativesforstudentsinmechanical,industrial,environmental,andelectrical engineeringprogramsbyeffectivelyintegratingconceptsinacademicresearch intoreal-worldproblemsolving,whichhelpscultivatethestudent’senthusiasm forenergyconservationandgreenmanufacturing.

OrganizationoftheBook

PartI:IntroductionstoEnergyEfficiencyinManufacturingSystems

Chapter1providesanoverviewofthisbookandintroducesbackgroundknowledgeaboutmanufacturingsystemsandconceptsofsustainablemanufacturing. First,itreviewsthecurrentstatusanddevelopmentofthemanufacturingindustry anddemonstratesaseriesofrepresentativemanufacturingsystems.Then,itpresentsthekeyconceptsofsustainablemanufacturinganddiscussestheexisting challengesthatmayimpedesustainabledevelopmentinmanufacturingindustries.Finally,itgeneralizestheproblemstatementsandscopesofresearchin thecontextofsustainablemanufacturingsystems.

Chapter2providesmoredetailedback groundinformationonenergyefficiencyinmanufacturingsystems.Theoverallenergyconsumptionandmajor energyend-usersinmanufacturingfacilitiesarefirstintroduced,followedby thediscussionsontheenergy-savingpote ntialsandenergymanagementstrategiesatthemachine,system,andplantlevels.Inaddition,thesignificanceof demand-sideenergymanagementisillust ratedwiththedetailedexplanations ofassociatedtechniques.

PartII:MathematicalToolsandModelingBasics

Chapter3introducesthenecessarymathematicaltoolsusedinthefollowingchaptersofthisbook.Specifically,thefundamentalsofprobabilitytheoryandapplicationscenariosofseveralcommonprobabilitydistributionsusedinmanufacturing systemmodelingareintroduced,followedbythedemonstrationofPetrinetsfor thevisualrepresentationofmanufacturingsystemsasdiscreteeventsystemsand discussionsontheoptimizationproblemswithmetaheuristicsalgorithms,specificallyaparticleswarmoptimizer.

Chapter4presentsthemathematicalmodelingtechniquesformanufacturing systems,whichplayacriticalroleinsustainablemanufacturingsystemdesign andanalysis.Thischapterintroducesthebasicsofmanufacturingsystemmodeling,followedbydetaileddiscussionsonsometypicalmodelingapproachestosimpletwo-machineproductionlinesandcomplexmulti-machineones.

Chapter5extendsthemodelingandanalysistechniquesdiscussedinthepreviouschapterintoenergyefficiencycharacterizationinmanufacturingsystems. First,theenergyconsumptionmodelingapproachesarediscussedbasedonthe inter-processdependencyorthemachines’ operationschemes.Then,theenergy costmodelsofmanufacturingsystemsunderdifferentelectricitytariffsaredemonstratedwithillustrativeexamples.

PartIII:EnergyManagementinTypicalManufacturingSystems

Chapter6presentstheelectricitydemandresponse(DR)strategiesformanufacturingsystems.Theinstanthighdemandcanhinderthestabilityofapowergrid, andthustheutilityproviderschargeindustrialcustomersspecificallyfortheir electricitydemandinadditiontothetotalenergyconsumption.Inthischapter, thetime-of-use(TOU)andcriticalpeakpricing(CPP)tariffsarefirstintroduced. Theproductionschedulingmethodsthatcanrespondtoelectricitypricesignals basedonthesystemmodelsarethendiscussed.Finally,casestudiesarepresented tocomparethepeakdemandandenergycostsunderTOU,CPP,andtraditional flat-ratetariffs.

Chapter7extendstheDRschedulingmethodspresentedinthepreviouschapter byintegratingacombinedheatandpower(CHP)systemwithmanufacturingsystems.Asanon-siteenergygenerationmethod,aCHPsystemcanprovideelectricityandheattothemanufacturingplant,leadingtoareductioninthegridpower demandofthemanufacturingplant.Inthischapter,thekeyconceptsofaCHP systemarefirstreviewed,followedbytheformulationofanenergycostoptimizationmodelforacombinedCHPandmanufacturingsystems.Thecasestudiesare presentedtodemonstratetheeffectivenessofthecombinedsystemindemandand energycostreduction.

Chapter8addressesanenergymanagementprobleminmanufacturingsystems consideringtheheating,ventilation,andairconditioning(HVAC)system,which isoneoftheprimarycontributorstothedirectnon-processenduseenergyconsumptioninmanufacturingplants.TheheatemissionsfrommanufacturingoperationscansignificantlyaffectthethermalloadofanHVACsystem,andthe relationshipsbetweenmanufacturingandHVACsystemsarediscussedinthis

chapter.Specifically,theformulationofanenergycostoptimizationproblemfor theintegratedsystemsisfirstintroduced,andthenthemetaheuristicalgorithm usedtosolvetheproblemisdiscussedindetail.Finally,casestudiesdemonstrate theoptimalDRstrategyfortheintegratedsystem.

PartIV:EnergyManagementinAdvancedManufacturingSystems

Chapter9specificallyfocusesontheenergyanalysisofadditivemanufacturing (AM)systems.Inthischapter,stereolithography(SL),oneofthemostcommonly usedAMtechnologies,isadoptedtodemonstratetheenergymodelingandanalysismethodsforanAMprocess.Thischapterstartswiththeintroductionofthe technicaladvantagesofAMtechnologiesandadetaileddescriptionofanSLprocess.Then,itpresentstheenergyconsumptionmodelofsuchSLprocessandits experimentalvalidationresults.Theimpactsofdifferentparametersontheoverall energyconsumptionarerevealedthroughaDesign-of-experiments(DOE)methodology.Finally,itgivescasestudiestoillustratetheoptimalcombinationofcontrolparameters.

Chapter10presentstheenergyefficiencymodelingandoptimizationofcellulosicbiofuelmanufacturingsystems.Thebackgroundknowledgeandmajorprocessesofcellulosicbiofuelmanufacturingarefirstintroduced.Then,the formulationoftheenergyconsumptionmodelforcellulosicbiofuelmanufacturingisillustratedbyconsideringtheintra-processandinter-processvariables. Afterward,theoptimizationproblemissolvedthroughametaheuristicalgorithm, andtheenergyefficiencyimprovementunderoptimalprocessvariablesispresentedattheendofthischapter.

Chapter11demonstratestheenergyconsumptionmodelingusingPetrinets (PN)andproductionschedulingoptimizationforflexiblemanufacturingsystems (FMS).Inthischapter,theformulationofaplace-timedPNmodelforFMSisfirst introduced,followedbyadiscussionofadynamicprogramming(DP)algorithmto findproductionschedulesthatcanminimizetheenergyconsumptionofsmall-size FMS.Next,aModifiedDP(MDP)algorithmispresentedtosolvelarge-scaleproblemsbyaddressingthestateexplosionissue.Finally,experimentalresultson FMSarepresentedtoshowtheeffectivenessofMDP.

PartV:SummariesandConclusions

Chapter12summarizesthecontributionofthisbookandhighlightsseveralimportantfutureresearchdirections.Thefollowingfigureillustratestheorganizationof thecontentsinthisbook.

Chapter 3

Chapter 1

Chapter

2

Chapter 5 Energy modeling

Chapter 6 Manufacturing system DR

Chapter 7 DR considering CHP

Chapter 8 DR considering HVAC

Part IV Part V

Chapter 12 Conclusion

Chapter 9 Energy management for AM

Chapter 10 Energy management for biofuel production

Chapter 11 Energy management for FMS

HowtoRead

Thisbookcanbeusedasareferenceoratextbookforseniorandgraduatestudents inmechanical,industrial,environmental,andelectricalengineeringprogramsas wellasresearchers,engineeringprofessionalsandpolicymakersintheareasof energymanagementandsustainablemanufacturing.

ThechaptersinPartsIandIIprovidebackgroundknowledgeandamathematicalfoundationforthelaterchaptersandareespeciallyrecommendedtoberead bystudentsandnewresearchers.ThechaptersinPartIIIdiscusstheenergyefficiencyandpowerdemandresponseintypicalmanufacturingsystemsandare encouragedtobereadinorder,aseachchapterbuildsontheconceptsinthepreviouschapter.ThechaptersinPartIVpresenttheenergymanagementin advancedmanufacturingsystemsandcanmoreorlessbeapproachedinany order,aseachchapterdiscussesadifferenttypeofmanufacturingsystems.Thelast chapterasPartVsummarizesthisbookandisrecommendedtobereadintheend.

Acknowledgments

Fromthefirstauthorofthisbook:

Iwouldliketothankallthepeoplewhohavecontributedtothisbookandthe researchteamattheSustainableManufacturingSystemsResearchLaboratoryat theUniversityofIllinoisatChicagofortheirfulldedicationandqualityresearch. Inparticular,Iwouldliketoacknowledgethefollowingindividuals.

First,Iwouldliketoexpressmygreatappreciationtothisbook’sco-author,ProfessorMengChuZhoufromtheNewJerseyInstituteofTechnology,forhisinspirationaladvicesandinsightfulsuggestionstohelpstrengthenthevisionsand conceptsofthisbook.

IwouldliketothankthesignificanthelpfrommydoctoralstudentsLingxiang YunandMuyueHanforcontentandmaterialpreparations,aswellastheresearch outcomesfrommyformerdoctoralstudents,especiallyDr.YongWangfromBinghamtonUniversity,Dr.ZeyiSunfromMissouriUniversityofScienceandTechnology,Dr.FadwaDababnehfromGermanJordanianUniversity,andDr. Yiran(Emma)YangfromUniversityofTexasatArlington.

IwouldliketoappreciatetheWiley-IEEEPressforprovidingtheopportunityto publishthisbookandtheesteemededitorandanonymousreviewersforreviewing ourwork.SpecialthanksaregiventoMs.TeresaNetzler,SeniorManagingEditor ofWiley-IEEEPressatUnitedKingdom,whokindlyandpatientlyhelpedus movesmoothlyduringourbookwritingandpreparationperiod.

IwouldliketoacknowledgethefundingsupportfortheresearchcontentspartiallycoveredinChapters6,7,9,and10fromtheU.S.NationalScienceFoundation,underGrantsCMMI-1131537,CMMI-1434392,andCBET-1604825.

Finally,Itrulyappreciatethecontinuoussupportandendlesslovefrommy family,especiallyfrommyparents,whotaughtmetonevergiveupanythingthat youfeeldeservesputtingeffortswholeheartedly.

xxiv Acknowledgments

Fromthesecondauthorofthisbook:

Numerouscollaborationswerebehindthisbookanditsrelatedwork.It wouldbeimpossibletoreachthisstatuswithoutthefollowingcollaborators,some ofwhomwerealreadymentionedinthefirstauthor’smessage.Inparticular, Iwouldliketoacknowledgethefollowingindividuals:

ProfessorKeyiXing,theStateKeyLaboratoryforManufacturingSystemsEngineering,SystemsEngineeringInstitute,Xi’anJiaotongUniversity,China,andhis groupmembers,e.g.Dr.YanxiangFeng(DepartmentofComputerScienceand TechnologyandtheStateKeyLaboratoryforManufacturingSystemsEngineering, Xi’anJiaotongUniversity,China),Dr.XiaolingLi(nowwiththeSchoolofElectronicandControlEngineering,Chang’anUniversity,Xi’an,China),andDr.JianchaoLuo(nowwiththeResearchandDevelopmentInstituteandtheSchoolof Software,NorthwesternPolytechnicalUniversity,Xi’an,China),havecollaboratedwithmeformanyyearsintheareasofPetrinettheoryandapplications toautomatedmanufacturingsystems.Specifically,wehavedevelopedseveral schedulingmethodsbasedontimed-placePetrinets.Someofourcollaborated contributionsarereflectedinChapter11ofthisbook.Ihaveenjoyedmuchcollaborationwithmanyoutstandingresearchersintheareaofintelligentautomation, transportationandsustainablemanufacturing,e.g.ProfessorsNaiqiWu(Fellowof IEEE,MacauInstituteofSystemsEngineering,MacauUniversityofScienceand Technology,China),ZhiwuLi(FellowofIEEE,MacauInstituteofSystemsEngineering,MacauUniversityofScienceandTechnology,China),andMariaPia Fanti(FellowofIEEE,DipartimentodiElettrotecnicaedElettronica,Polytechnic ofBari,Italy).

Ihaveenjoyedthefullsupportandlovefrommyfamily(mywife,FangChen, mytwosons,AlbertandBenjamin)forlong.Itwouldbeimpossibletoaccomplish thisbookandmanyotherachievementswithouttheirsupportandlove.

TheworkpresentedinthisbookwasinpartsupportedbyFDCT(Fundoparao DesenvolvimentodasCienciasedaTecnologia)underGrantNo.0047/2021/A1, andLamResearchCorporationthroughitsUnlockIdeasprogram.

LinLi,UniversityofIllinois,Chicago,IL,USA MengChuZhou,NewJerseyInstituteofTechnology,Newark,NJ,USA MacauUniversityofScienceandTechnology,Macao,China 20August2022

ListofFigures

Figure1.1 ChangesinMVAamongcountriesofdifferentregionsoverthetime from2004to2017 4

Figure1.2 Challengesinthemanufacturingsector 6

Figure1.3 TheUSenergyconsumptionbysectorin2019 7

Figure1.4 ThetotalUSGHGemissionsbysectorin2018 7

Figure1.5 Thethreekeypillarsinsustainability 9

Figure1.6 Illustrationoftheconnectionsamongmanufacturing, remanufacturing,andde-manufacturing 11

Figure1.7 Illustrationsofproductmanufacturingstages 12

Figure1.8 Schematicdiagramofajobshop 14

Figure1.9 Schematicdiagramofaprojectshop 14

Figure1.10 Schematicdiagramofacellularsystem 15

Figure1.11 Schematicdiagramofaflowline 16

Figure1.12 Schematicdiagramofacontinuoussystem 16

Figure1.13 Selectionsofmanufacturingsystems 17

Figure1.14 Fourlayersofsustainablemanufacturingproblems 18

Figure2.1 TheUSprimaryenergyconsumptionbyenergysourcein2019 26

Figure2.2 TheUSelectricitygenerationbyenergysourcein2020 27

Figure2.3 Illustrationofthesupplychainofelectricity 29

Figure2.4 Theschematicdiagramofatypicalsteamgenerationand distributionsystem 30

Figure2.5 Theschematicdiagramofatypicalcompressedairdistribution system 31

Figure2.6 IllustrationofenergyconsumptionintheUSmanufacturingsector byenergy 32

Figure2.7 ThedirectprocessenduseenergyconsumptionintheUS manufacturingsector 34

Figure2.8 Thedirectnon-processenduseenergyconsumptionintheUS manufacturingsector 36

Figure2.9 TheUSindustrialenergyconsumptionintheAEO2020reference case 37

Figure2.10 TotalGHGcombustionemissionsinUSmanufacturingbyenergy end-usetype 37

Figure2.11 ThecostofenergyconsumptioninUSmanufacturingbyenergy type 38

Figure2.12 Threelevelsofenergymanagementinmanufacturing 39

Figure2.13 Atypicalelectricalloadprofileofamachiningcenter 40

Figure2.14 Schematicdiagramofatypicalserialproductionlinewith N machinesand N 1WIPbuffers 44

Figure2.15 EnergyefficiencycomparisonbetweenCHPsystemandseparated heatandpowergenerationsystems 47

Figure2.16 Illustrationofconvectiveandradiantheattransferdueto manufacturingoperations 48

Figure2.17 Impactsofenergyefficiencyanddemandresponseprogramson electricitydemand 50

Figure2.18 Illustrationofcostcompositionsofelectricityinamanufacturing plant 51

Figure2.19 Thepeakdemandfortime-of-userate 52

Figure2.20 Illustrationofseven-stepguidelinesforenergymanagement 54

Figure2.21 Industrialsectorannualincrementalsavingsresultingfromenergy efficiencyprograms 55

Figure2.22 TheUShourlyelectricdemandinDecember2020 56

Figure2.23 Classificationofdemandresponseprograms 56

Figure2.24 TOUrateplansofferedbySCEwiththepriceper kilowatt-hour 58

Figure2.25 Industrialsectortotalannualsavingsresultingfromdemandresponse programs 58

Figure3.1 IllustrationofVenndiagram 69

Figure3.2 Venndiagramofmutuallyexclusiveevents 70

Figure3.3 Venndiagramofcomplement 71

Figure3.4 Venndiagramofinclusion 71

Figure3.5 Venndiagramofaddition 72

Figure3.6 Venndiagramofconditionalprobability 73

Figure3.7 TheVenndiagramoftotalprobability 74

Figure3.8 ExamplesofPMF(left)andCDF(right)ofadiscreterandom variable 76

Figure3.9 TwoexamplePMFsofBernoullidistribution 78

ListofFigures xxvii

Figure3.10 ThePMFsofPoissondistributionwithdifferentvalueof λ 80

Figure3.11 Examplesofthesurvivalfunctionofgeometricdistribution 81

Figure3.12 Thestatetransitiondiagramofageometricmachine 82

Figure3.13 ExamplesofPDFandCDFforacontinuousrandomvariable 83

Figure3.14 Examplesurvivalfunctionsoftheexponentialdistribution 85

Figure3.15 Statetransitiondiagramofanexponentialmachine 86

Figure3.16 ThesurvivalfunctionofWeibulldistributionwithparameter values 87

Figure3.17 Statetransitiondiagram 90

Figure3.18 IllustrationoffundamentalcomponentsinPetrinet 95

Figure3.19 ThePetrinetforExample3.8 97

Figure3.20 ThesolutionsforExample3.9 99

Figure3.21 SequentialstructureinPetrinet 100

Figure3.22 ConcurrentstructureinPetrinet 100

Figure3.23 ConflictingstructureinPetrinet 101

Figure3.24 CyclicstructureinPetrinet 101

Figure3.25 (a)Theworkflowforcircuitboardsoldering,(b)determinationof states,and(c)thefinalstatemachinePetrinet 103

Figure3.26 (a)Theworkflowofademonstrativemachine,(b)determinationof sub-nets,and(c)thefinalmarkedgraph 104

Figure3.27 Theworkflowofasystemwiththreemachinestwobuffers 105

Figure3.28 Sub-netsforsubsystems:(a)Machine M1 and M2,(b)buffer B1 and B2,and(c)machine M3 107

Figure3.29 ThecompletePetrinetfortheentiresystem 108

Figure3.30 SolutionsforExample3.10:(a)convertaplace,(b)convertanarc betweenplaceandtransition,and(c)convertanarcbetween transitionandplace 110

Figure3.31 ExampleofstochastictimedPetrinet 112

Figure3.32 Thesolutionspaceofaconstrainedtwo-dimensionaloptimization problem 115

Figure3.33 Illustrationoflocalandglobaloptima 117

Figure3.34 Globaloptimumandnearoptima 118

Figure3.35 TheschematicdiagramofPareto-optimalsolutions 119

Figure3.36 Theflowchartofageneticalgorithm(GA) 120

Figure3.37 Theprocessofconstitutingthenextgenerationbasedonthe previousgeneration 122

Figure3.38 Differenttypesofcrossovermethods:(a)one-pointcrossover,(b) two-pointcrossover,and(c)uniformcrossover 123

Figure3.39 Anexampleofthemutationoperation 125

Figure3.40 ThebasicflowchartofthePSOalgorithm 127

Figure3.41 Anexampleofpbestandgbestupdatinginaone-dimensional minimizationproblem:(a)firstiteration,(b)seconditeration,and (c)thirditeration 130

Figure3.42 Updatingthevelocityandpositionofaparticle j131

Figure4.1 Theschematicdiagramofparallelmachines 140

Figure4.2 Theschematicdiagramofsynchronous-dependentmachines 141

Figure4.3 Aggregatingparallelorsynchronous-dependentmachines 141

Figure4.4 Theschematicdiagramofaserialproductionline 141

Figure4.5 Theschematicdiagramofanassemblysystem 142

Figure4.6 Theschematicdiagramofaproductionlinewithrework 142

Figure4.7 Theschematicdiagramofthetimetofailureandthetimeto repair 144

Figure4.8 Theschematicdiagramofasegmentofaproductionline 147

Figure4.9 Situationswhere(a) Mi isnotblocked,and(b) Mi isblocked 148

Figure4.10 Situationswhere(a) Mi isnotstarved,and(b) Mi isstarved 149

Figure4.11 Therelationshipamongblockage,starvation,upanddownstatesof amachine 150

Figure4.12 Thelayoutofatwo-machineproductionline 152

Figure4.13 Therelationshipsamongmachinestatesfor(a) M1 and(b) M2 153

Figure4.14 Statetransitiondiagramofbuffer B154

Figure4.15 PMFofbufferoccupancyintwo-machinelinewithidentical Bernoullimachines 160

Figure4.16 PMFsofbufferoccupancyinatwo-machineproductionlinewith nonidenticalBernoullimachines 161

Figure4.17 Thelayoutofaproductionlinewith N machinesand N 1 buffers 163

Figure4.18 Therelationshipsamongdifferentmachinestates 164

Figure4.19 Statetransitiondiagramofbuffer Bi 165

Figure4.20 Aflowchartofaniteration-basedmethod 170

Figure4.21 Evolutionofstateprobabilitiesfor(a)buffer B1,(b)buffer B2,(c) buffer B3,andsystemmeasure(d)WIP 173

Figure4.22 EvolutionofWIPSYS withdifferentinitialconditions 174

Figure4.23 SystemlayoutofaproductionsystemcoupledwithMHS 175

Figure4.24 Evolutionofstateprobabilitiesfor(a)buffer B1,(b)buffer B2,(c) buffer B3,andsystemmeasure(d)WIP 179

Figure5.1 Classificationsofenergyconsumptionmodelingmethods 182

Figure5.2 Illustrationoftheoperation-basedenergymodel 182

Figure5.3 Illustrationofthemachineenergyprofile 183

Figure5.4 Therelationshipsbetweenthecontrolvariableandmachine states 184

Figure5.5 Illustrationofacomponent-basedenergymodel 185

Figure5.6 Schematicdiagramofamachineconsistingof n components 185

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Sustainable manufacturing systems: an energy perspective first edition lin li download pdf by Education Libraries - Issuu