Instant download Hydrogen sulfide: chemical biology basics, detection methods, therapeutic applicati

Page 1


Hydrogen Sulfide:

Chemical Biology Basics, Detection Methods, Therapeutic Applications, and Case Studies Michael D Pluth

Visit to download the full and correct content document: https://ebookmass.com/product/hydrogen-sulfide-chemical-biology-basics-detectionmethods-therapeutic-applications-and-case-studies-michael-d-pluth/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Chemical Product Formulation Design and Optimization: Methods, Techniques, and Case Studies Ali Elkamel

https://ebookmass.com/product/chemical-product-formulationdesign-and-optimization-methods-techniques-and-case-studies-alielkamel/

Program Evaluation: Methods and Case Studies 9th Edition, (Ebook PDF)

https://ebookmass.com/product/program-evaluation-methods-andcase-studies-9th-edition-ebook-pdf/

Simultaneous Mass Transfer and Chemical Reactions in Engineering Science: Solution Methods and Chemical Engineering Applications Bertram K.C. Chan

https://ebookmass.com/product/simultaneous-mass-transfer-andchemical-reactions-in-engineering-science-solution-methods-andchemical-engineering-applications-bertram-k-c-chan/

Simulation and optimization in process engineering : the benefit of mathematical methods in applications of the chemical industry 1st Edition Michael Bortz

https://ebookmass.com/product/simulation-and-optimization-inprocess-engineering-the-benefit-of-mathematical-methods-inapplications-of-the-chemical-industry-1st-edition-michael-bortz/

Therapeutic dressings and wound healing applications

Boateng

https://ebookmass.com/product/therapeutic-dressings-and-woundhealing-applications-boateng/

Case Studies in Geospatial Applications to Groundwater Resources Pravat Kumar Shit

https://ebookmass.com/product/case-studies-in-geospatialapplications-to-groundwater-resources-pravat-kumar-shit/

Chemical Methods Abdolhossein Hemmati Sarapardeh

https://ebookmass.com/product/chemical-methods-abdolhosseinhemmati-sarapardeh/

Electronic Structure and Surfaces

of

Sulfide Minerals:

Density Functional Theory and Applications Jianhua Chen

https://ebookmass.com/product/electronic-structure-and-surfacesof-sulfide-minerals-density-functional-theory-and-applicationsjianhua-chen/

Zinc Batteries: Basics, Developments, and Applications

https://ebookmass.com/product/zinc-batteries-basics-developmentsand-applications-rajender-boddula/

HydrogenSulfide

WileySeriesinDrugDiscoveryandDevelopment

BingheWang,SeriesEditor

DrugDelivery:PrinciplesandApplications

EditedbyBingheWang,TerunaSiahaan,andRichardA.Soltero

ComputerApplicationsinPharmaceuticalResearchandDevelopment

EditedbySeanEkins

GlycogenSynthaseKinase-3(GSK-3)andItsInhibitors:DrugDiscoveryand Development

EditedbyAnaMartinez,AnaCastro,andMiguelMedina

AminoglycosideAntibiotics:FromChemicalBiologytoDrugDiscovery

EditedbyDevP.Arya

DrugTransporters:MolecularCharacterizationandRoleinDrugDisposition

EditedbyGuofengYouandMarilynE.Morris

Drug-DrugInteractionsinPharmaceuticalDevelopment

EditedbyAlbertP.Li

DopamineTransporters:Chemistry,Biology,andPharmacology

EditedbyMarkL.TrudellandSariIzenwasser

Carbohydrate-BasedVaccinesandImmunotherapies

EditedbyZhongwuGuoandGeert-JanBoons

ABCTransportersandMultidrugResistance

EditedbyAhcèneBoumendjel,JeanBoutonnat,andJacquesRobert

DrugDesignofZinc-EnzymeInhibitors:Functional,Structural,andDisease Applications

EditedbyClaudiuT.SupuranandJean-YvesWinum

KinaseInhibitorDrugs

EditedbyRongshiLiandJeffreyA.Stafford

EvaluationofDrugCandidatesforPreclinicalDevelopment:Pharmacokinetics, Metabolism,Pharmaceutics,andToxicology

EditedbyChaoHan,CharlesB.DavisandBingheWang

HIV-1Integrase:MechanismandInhibitorDesign

EditedbyNouriNeamati

CarbohydrateRecognition:BiologicalProblems,Methods,andApplications

EditedbyBingheWangandGeert-JanBoons

Chemosensors:Principles,Strategies,andApplications

EditedbyBingheWangandEricV.Anslyn

MedicinalChemistryofNucleicAcids

EditedbyLiHeZhang,ZhenXi,andJyotiChattopadhyaya

PlantBioactivesandDrugDiscovery:Principles,Practice,andPerspectives

EditedbyValdirCechinelFilho

Dendrimer-BasedDrugDeliverySystems:FromTheorytoPractice

EditedbyYiyunCheng

Cyclic-NucleotidePhosphodiesterasesintheCentralNervousSystem:FromBiology toDrugDiscovery

EditedbyNicholasJ.BrandonandAnthonyR.West

DrugTransporters:MolecularCharacterizationandRoleinDrugDisposition,2nd Edition

EditedbyGuofengYouandMarilynE.Morris

DrugDelivery:PrinciplesandApplications,2nd Edition

EditedbyBingheWang,LongqinHu,andTerunaJ.Siahaan

CarbonMonoxideinDrugDiscovery:Basics,Pharmacology,andTherapeutic Potential

EditedbyBingheWangandLeoE.Otterbein

DrugTransporters:MolecularCharacterizationandRoleinDrugDisposition,3rd Edition

EditedbyGuofengYouandMarilynE.Morris

HydrogenSulfide:ChemicalBiologyBasics,DetectionMethods,Therapeutic Applications,andCaseStudies,FirstEdition

EditedbyMichaelD.Pluth

HydrogenSulfide

ChemicalBiologyBasics,DetectionMethods,Therapeutic Applications,andCaseStudies

UniversityofOregon

Eugene,OR,USA

Thiseditionfirstpublished2023

©2023JohnWiley&Sons,Inc.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthis titleisavailableathttp://www.wiley.com/go/permissions.

TherightofMichaelD.Pluthtobeidentifiedastheeditorialmaterialthisworkhasbeenassertedin accordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontent thatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andthe constantflowofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,the readerisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructions foreachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesinthe instructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisherand authorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarranties withrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimall warranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessfora particularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensales materialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductis referredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthat thepublisherandauthorsendorsetheinformationorservicestheorganization,website,orproduct mayprovideorrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthe publisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedherein maynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further, readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetween whenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliablefor anylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental, consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Pluth,MichaelD.,editor.

Title:Hydrogensulfide:chemicalbiologybasics,detectionmethods, therapeuticapplications,andcasestudies/editedbyMichaelD.Pluth.

Description:Firstedition.|Hoboken,NJ:Wiley,2022.|Series:Wiley seriesindrugdiscoveryanddevelopment

Identifiers:LCCN2022018103(print)|LCCN2022018104(ebook)|ISBN 9781119799870(cloth)|ISBN9781119799894(adobepdf)|ISBN 9781119799887(epub)

Subjects:LCSH:Hydrogensulfide–Toxicology.|Hydrogen sulfide–Therapeuticuse.

Classification:LCCRA1247.H8H93252022(print)|LCCRA1247.H8(ebook) |DDC615.9/1–dc23/eng/20220609

LCrecordavailableathttps://lccn.loc.gov/2022018103

LCebookrecordavailableathttps://lccn.loc.gov/2022018104

Coverdesignby:Wiley

Coverimage:CourtesyofMichaelD.Pluth

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Contents

Preface xvii

ListofContributors xix

1FundamentalandBiologicallyRelevantChemistryofH2 S andRelatedSpecies 1

JonM.Fukuto

ListofAbbreviations 1

1.1Introduction 2

1.2TheChemicalBiologyofH2 S 2

1.2.1BasicChemicalPropertiesofH2 S 3

1.2.2H2 SRedoxChemistry 4

1.2.3ReactionsofH2 SwithMetals/Metalloproteins 5

1.2.4H2 SandSulfhemeFormation 6

1.2.5H2 SandHeavyMetals 7

1.3H2 SReactionswithOtherSulfurSpecies 8

1.3.1SulfaneSulfur 8

1.3.2GenerationofRSSH 8

1.3.3RSHVersusRSSHComparison 9

1.3.4RSSHInteractionswithMetals/Metalloproteins 14

1.3.5TheElectrophilicityofRSSH 14

1.3.6Higher-OrderPolysulfides 15

1.3.7RSSHInstability 16

1.4TheBiochemicalUtilityofRSSH 17

1.5Summary/Conclusion 18 References 18

2SignalingbyHydrogenSulfide(H2 S)andPolysulfides(H2 Sn ) andtheInteractionwithOtherSignalingPathways 27 HideoKimura

ListofAbbreviations 27

2.1Introduction 28

2.2DeterminationoftheEndogenousConcentrationsofH2 S 29

2.3H2 SandH2 Sn asSignalingMolecules 31

2.4CrosstalkBetweenH2 SandNO 32

2.4.1TheChemicalInteractionofH2 SandNOProducesH2 Sn 32

2.4.2RegulationofNO-ProducingEnzymesbyH2 SandViceVersa 33

2.5CytoprotectiveEffectofH2 S,H2 Sn ,andH2 SO3 34

2.6EnergyFormationinMitochondriawithH2 S 34

2.7 S-SulfuratedProteinsandBoundSulfaneSulfurinCells 35

2.8RegulatingtheActivityofTargetProteinsbyH2 SandH2 Sn 36

2.8.1S-SulfurationbyH2 S 37

2.8.2S-SulfurationbyH2 Sn 38

2.9Perspectives 38

Acknowledgments 40

AuthorDisclosureStatement 41 References 41

3PersulfidesandTheirReactionsinBiologicalContexts 49 DayanaBenchoam,ErnestoCuevasanta,MatíasN.Möller,and BeatrizAlvarez ListofAbbreviations 49

3.1PersulfidesAreKeyIntermediatesinSulfurMetabolismand Signaling 49

3.2PersulfidesAreFormedinBiologicalSystemsthroughDifferent Pathways 51

3.2.1DisulfidesFormPersulfidesinthePresenceofH2 S 51

3.2.2SulfenicAcidsCanAlsoFormPersulfidesbyReactionwithH2 S 53

3.2.3OtherPersulfideFormationPathwaysInvolveOxidationProductsof H2 S 53

3.2.4SomeSulfurAtomsforPersulfidesAreDonatedbyFreeCysteine 54

3.2.5TrisulfidesAreAlsoaSourceofPersulfides 55

3.2.6PersulfidesCanBePreparedintheLab 56

3.3PersulfidesAreMoreAcidicThanThiols 56

3.4PersulfidesAreStrongerNucleophilesThanThiols 58

3.5PersulfidationProtectsAgainstIrreversibleOxidation 60

3.6PersulfidesInteractwithMetalsandMetalloproteins 61

3.7PersulfidesHaveElectrophilicCharacterinBothSulfurAtoms 62

3.8PersulfidesAreEfficientOne-ElectronReductants 63

3.9ConcludingRemarks 64

References 64

4HydrogenSulfide,ReactiveNitrogenSpecies,and “TheJoyoftheExperimentalPlay” 77

MiriamM.Cortese-Krott

4.1Introduction 77

4.2BasicPhysicochemicalPropertiesofNitricOxideandItsBiological RelevantMetabolites 79

4.2.1NitricOxide 79

4.2.2Nitrite 80

4.2.3Nitrosothiols(RSNOs) 81

4.3BasicPhysicochemicalPropertiesofH2 SandItsBiologicalRelevant Metabolites 82

4.3.1H2 S/HS 83

4.3.2PolysulfidesandPersulfide 85

4.4InorganicSulfur–NitrogenCompounds 86

4.4.1HSNO/SNO 87

4.4.2SSNO 89

4.4.3SULFI/NO 90

4.5PutativeBiologicalRelevanceoftheNO/H2 SChemical Interaction 90

4.5.1PharmacologicalActivity 90

4.5.2PutativeSourcesofSSNO andSULFI/NO InVivo91

4.5.3MethodsofDetection InVivo92

4.6SummaryandConclusions 93 Acknowledgment 93 References 93

5H2 SandBioinorganicMetalComplexes 103

ZacharyJ.Tonzetich

ListofAbbreviations 103

5.1Introduction 104

5.2BasicLigativePropertiesofH2 S/HS 105

5.3H2 SandHemeIron 106

5.4H2 SandNonhemeIron 112

5.5H2 SChemistrywithOtherMetals 122

5.6H2 SSensingwithTransitionMetalComplexes 126

5.7Summary 131 Acknowledgments 134 References 134

x Contents

6MeasurementofHydrogenSulfideMetabolitesUsing theMonobromobimaneMethod 143 XingguiShen,EllenH.Speers,andChristopherG.Kevil ListofAbbreviations 143

6.1Introduction 143

6.1.1HydrogenSulfide:BiologicalSignificance 143

6.1.2HydrogenSulfideChemistry 144

6.1.3BioavailableSulfide 144

6.2Monobromobimane:AnOptimalMethodofBioavailableSulfur Detection 145

6.2.1MonobromobimaneDerivatizationofHydrogenSulfide 146

6.2.2HistoryoftheMonobromobimaneMethod 147

6.3Procedures 148

6.3.1Sulfide-DibimaneStandardSynthesis 148

6.3.2BioavailableSulfidePreparation 149

6.3.3MonobromobimaneDerivatization 149

6.3.4HPLCwithFluorescenceDetection 150

6.3.5MassSpectrometryDetection 150

6.4CaveatsandConsiderations 151 Acknowledgment 152 Disclosures 152 References 152

7FluorescentProbesforH2 SDetection:Cyclization-Based Approaches 157 YingyingWang,YannieLam,CaitlinMcCartney,BrockBrummett, GeatRamush,andMingXian ListofAbbreviations 157

7.1Introduction 157

7.2GeneralDesignofNucleophilicReaction-CyclizationBased FluorescentProbes 159

7.2.1WSPProbes 159

7.2.22,2′ -DithiosalicylicEster-BasedProbes 164

7.2.3AlkylHalide-BasedProbes 166

7.2.4Diselenide-BasedProbes 167

7.2.5SelenenylSulfide-BasedProbes 167

7.2.6AldehydeAddition-BasedProbes 169

7.2.7MichaelAddition-CyclizationBasedProbes 175

7.3ConclusionsandPerspectives 177 Acknowledgments 177 References 177

8FluorescentProbesforH2 SDetection:Electrophile-Based Approaches 183 LongYiandZhenXi

8.1Introduction 183

8.2SelectedProbesBasedonDifferentReactionTypes 185

8.2.1CleavageofC—OBond 185

8.2.2CleavageofC—SBond 188

8.2.3CleavageofC—ClBond 190

8.2.4MichaelAddition 191

8.2.5CleavageofC—NBond 193

8.2.6ReductionofArylAzide 193

8.3ConclusionandFutureProspects 197 References 199

9FluorescentProbesforH2 SDetection:Metal-Based Approaches 203

MariaStrianeseandClaudioPellecchia

9.1Introduction 203

9.2MetalDisplacementApproach 205

9.2.1Copper-BasedSystems 205

9.2.2Zinc-BasedSystems 214

9.2.3DifferentMetal-BasedSystems 216

9.3Coordinative-BasedApproach 218

9.3.1Metalloporphyrin-BasedSystems 218

9.3.1.1SyntheticSystems 219

9.3.1.2NaturalSystems 220

9.3.2Salen-BasedSystems 220

9.3.3SystemswithDifferentOrganicLigands 221

9.4H2 S-MediatedReductionoftheMetalCenter 223

9.5ConclusionsandFutureOutlooks 224 References 225

10H2 SReleasefromP=SandSe—SMotifs 235 RynneA.HankinsandJohnC.LukeshIII ListofAbbreviations 235

10.1Introduction 235

10.2H2 SReleasefromP=SMotifs 236

10.2.1GYY4137:SynthesisandCharacterizationofH2 SRelease 237

10.2.2GYY4137:BiologicalStudies 238

10.2.3GYY4137:MechanisticStudies 240

10.2.4GYY4137:StructuralModificationsandActivityofAnalogs 242

10.2.5JKDonors:Cyclization-AssistedH2 SReleasefromP=SMotifs 248

10.3H2 SReleasefromSe—SMotifs 249

10.3.1AcylSelenylsulfides:SynthesisandCharacterizationofH2 S Release 251

10.3.2AcylSelenylsulfides:MechanisticStudies 251

10.4AcylSelenylsulfides:StructuralModificationsandActivityof Analogs 253

10.5Conclusions 253 References 254

11HydrogenSulfide:TheHiddenPlayerofIsothiocyanates

Pharmacology 261

ValentinaCiti,EugeniaPiragine,VincenzoCalderone,andAlmaMartelli

11.1OrganicIsothiocyanatesasH2 S-Donors 261

11.2OrganicITCsandCardiovascularSystem 266

11.2.1EffectofITCsasH2 SDonorsinVascularInflammation 266

11.2.2VasorelaxingEffectofITCsasH2 SDonors 269

11.2.3OrganicITCsandHeart 270

11.3ChemopreventivePropertiesofITCs 272

11.4Anti-nociceptiveEffectsofITCs 274

11.5Anti-inflammatoryandAntiviralEffectsofITCs 277

11.6Conclusion 280 Acknowledgment 281 References 281

12PersulfideProdrugs 293

BingchenYu,ZhengnanYuan,andBingheWang ListofAbbreviations 293

12.1Introduction 293

12.2PersulfideProdrugs 295

12.2.1StructuralMoietiesThatHaveBeenStudiedforTheirAbilitytoCage andReleasePersulfideSpecies 296

12.2.2Enzyme-SensitiveProdrugs 298

12.2.3ROS-SensitivePersulfideProdrugs 303

12.2.4pH-SensitivePersulfideProdrugs 306

12.2.5Photo-SensitivePersulfideProdrugs 308

12.2.6H2 SProdrugsThatReleaseH2 SViaPersulfideIntermediate 309

12.3ChallengesinPersulfideProdrugDesignandPotentialTherapeutic Applications 310 References 313

13COS-BasedH2 SDonors 321

AnnieK.GilbertandMichaelD.Pluth

13.1Introduction 321

13.2PropertiesofCOS 322

13.3COS-BasedH2 SDelivery 323

13.3.1StimuliResponsiveCOS/H2 SDonors 325

13.3.2Bio-orthogonalDonorActivation 326

13.3.3DonorsActivatedbyNucleophiles 329

13.3.4Enzyme-ActivatedDonors 334

13.3.5pH-ActivatedDonors 337

13.3.6FluorescentDonors 339

13.4ConclusionsandOutlook 341 Acknowledgments 342 References 342

14Light-ActivatableH2 SDonors 347

PetrKlán,TomášSlanina,andPeterŠtacko

14.1Introduction 347

14.2PhotophysicalandPhotochemicalConcepts 347

14.3PhototherapeuticWindow 349

14.4LightSources 349

14.5(Photo)PhysicalPropertiesofH2 S 351

14.6MechanismsandExamplesofH2 SPhotorelease 351

14.6.1PhotoreleaseofH2 SfromExcitedState 352

14.6.2ReleaseofH2 SfromaReactiveIntermediate 355

14.6.3PhotoreleaseofPotentialH2 SDonors 357

14.6.4PhotosensitizedH2 SRelease 362

14.6.5PhotothermalEffect 364

14.7Outlook 365 Acknowledgment 366 References 366

15MacromolecularandSupramolecularApproachesfor H2 SDelivery 373

SarahN.Swilley-Sanchez,ZhaoLi,andJohnB.Matson ListofAbbreviations 373

15.1Introduction 375

15.2H2 S-DonatingLinearPolymers 377

15.2.1PendantH2 SDonors 378

15.2.2H2 SDonorsonChainEnds 379

15.2.3DepolymerizablePolymersfortheReleaseofH2 SviaCOS 383

15.3H2 SDeliveryfromBranchedandGraftPolymerTopologies 384

15.3.1GraftPolymersfortheDeliveryofH2 S 386

15.4PolymerMicellesforH2 SDelivery 388

15.4.1H2 SDonorsCovalentlyAttachedtoPolymerAmphiphiles 389

15.5PolymerNetworksforLocalizedH2 SDelivery 394

15.5.1PhysicalEncapsulationofH2 SDonorsWithinNetworks 394

15.5.2CovalentAttachmentofH2 SDonorsWithinHydrogels 396

15.6OtherPolymericSystemsfortheEncapsulationofH2 SDonors 399

15.6.1MicrofibersasH2 SDonors 400

15.6.2MembranesasH2 SDonors 400

15.6.3MicroparticlesandNanoparticlesasH2 SDonors 401

15.7H2 SReleaseviaSupramolecularSystems 404

15.7.1Self-Assembled,Peptide-BasedMaterialsforH2 SDelivery 405

15.7.2Self-AssembledNanoparticlesandProteinsforH2 SDelivery 410

15.8ConclusionsandFuturePerspectives 414 References 416

16H2 SandHypertension 427

VincenzoBrancaleone,MariarosariaBucci,andGiuseppeCirino

ListofAbbreviations 427

16.1Hypertension,VascularHomeostasisandMediatorsControllingBlood Pressure 428

16.2GenerationofH2 SintheCardiovascularSystem 429

16.2.1BiosyntheticPathways 429

16.2.2CatabolicPathwayforH2 S 430

16.3RelevanceofH2 SinHypertension 432

16.3.1PreclinicalEvidence 432

16.3.2ClinicalEvidence 436

16.4Conclusions 437 References 438

17H2 SSupplementationandAugmentation:Approaches forHealthyAging 445

ChristopherHine,JieYang,AiliZhang,NataliaLlarena,and ChristopherLink

ListofAbbreviations 445

17.1IntroductionandBackground 445

17.1.1GlobalAgingPopulations 445

17.1.2PathophysiologicalAspectsofAging 447

17.1.3AlterationsinSulfurAminoAcidMetabolismandHydrogenSulfide DuringAging 448

17.1.4GeroscienceApproachestoAddressLongevityandImproved Healthspan,andTheirConnectiontoHydrogenSulfide 451

17.2HydrogenSulfideMetabolismandApplicationsinNon-mammalian Aging 454

17.2.1Plants 454

17.2.2Bacteria 454

17.2.3Yeast 455

17.2.4Worms 458

17.2.5Flies 459

17.3HydrogenSulfideMetabolismandApplicationsinNonhuman MammalianAging 460

17.3.1StandardLaboratoryRodents(MiceandRats) 460

17.3.2NakedMole-Rats 464

17.4HydrogenSulfideMetabolismandApplicationsinHumanAgingand Aging-RelatedDisorders 464

17.4.1HumanExposuretoH2 SandAdvancesinClinicalBiomarkerand InterventionalH2 SApproaches 464

17.4.2CardiovascularDiseases 467

17.4.3OncologicalDiseases 469

17.5ConclusionsandSummary 472

Acknowledgments 472 References 472

18AberrantHydrogenSulfideSignalinginAlzheimer’s Disease 489

BinduD.Paul ListofAbbreviations 489

18.1Introduction 490

18.1.1HydrogenSulfide 490

18.1.2ProteinSulfhydration/Persulfidation 492

18.1.3ReciprocityofProteinSulfhydrationandNitrosylation 492

18.2Alzheimer’sDisease 494

18.2.1NeuropathologyofAD 494

18.2.2H2 SSignalinginAlzheimer’sDisease 496

18.2.3SulfhydrationinAgingandAD 496

18.3TherapeuticAvenues 497

Acknowledgments 499 References 500

19MultifacetedActionsofHydrogenSulfideinthe Kidney 507

BalakuntalamS.KasinathandHakJooLee

ListofAbbreviations 507

19.1Introduction 508

19.2H2 SSynthesisintheKidney 509

19.3H2 SandKidneyPhysiology 511

19.4H2 SandtheAgingKidney 513

19.5H2 SandAcuteKidneyInjury(AKI) 517

19.5.1H2 SinAKIDuetoIntrinsicKidneyInjury 517

19.5.1.1Ischemia-InducedAKI 517

19.5.1.2Rhabdomyolysis-InducedAKI 519

19.5.1.3NephrotoxicAKI 519

19.5.1.4Glomerulonephritis-AssociatedAKI 520

19.5.2H2 SinAKIDuetoObstructionoftheGenitourinaryTract 521

19.5.3InjuriousRoleofH2 SinAKI 521

19.6H2 SinChronicKidneyDisease(CKD) 521

19.6.1H2 SinObesity-RelatedCKD 524

19.6.2H2 SinDiabeticKidneyDisease(DKD) 525

19.6.3H2 SinCongestiveHeartFailure(CHF)AssociatedCKD 530

19.7H2 SandPreeclampsia 530

19.8H2 SandGenitourinaryCancers 531

19.9ConclusionandFutureDirections 531

Acknowledgments 532 References 532

Index 551

Preface

Thelasttwodecadeshaveseensignificantadvancesinourunderstandingofhow reactivesulfurspeciesaffectbiologicalsystems.Ofsuchspecies,hydrogensulfide (H2 S)hasemergedasanimportantsmallmoleculethatnowjoinsnitricoxide (NO)andcarbonmonoxide(CO)inatrioof“gasotransmitters”withbroadimpacts invariousaspectsofhumanhealthanddisease.WhyhasNaturechosentouse thesesimple,reactive,typicallytoxicmoleculestocarryoutcomplexandprecise biologicalactions?Theanswermaybesimple:Incomplexbiologicalmilieu,the heightenedreactivityandaffinityforspecifictargets,oftenmanifestedastoxicity athigherconcentrations,areneededforthesignaltoriseabovethenoise.NO, CO,H2 S,andemerginggasotransmittersallfitthisparadigm–theyarereactive smallmoleculesthatwereinitiallyrecognizedastoxicgassesbutlaterfoundtobe producedendogenouslyandexertbiologicalaction.

GrowingfromearlyinitialobservationsofthepotentialroleofH2 Sinneuromodulation,investigationsintoH2 Snowspandiversedisciplinesincludingchemistry, biology,physiology,andotheradjacentfields.Althoughmanybiologicalpathways involvingH2 Sarecomplex,allaregovernedbyfundamentalchemicalinteractionsbetweenreactivesulfurspeciesandothermolecularentities.Addingtothis complexity,sulfurhasawidearrayofavailableredoxstates( 2to +6),andH2 S istheonlycanonicalgasotransmitterwithionizablehydrogens.Theseproperties providesimplepathwaystomodulatecharge,lipophilicity,redoxpotential,and nucleophilicity–allofwhichcontributetotherichandrapidlyexpandingchemicalbiologyofH2 S.Understandingthesesystemsandmakingconnectionstonew, yetundiscoveredpathwaysandmechanismsofactionrequiresknowledgespanningdifferentdisciplines.Onegoalofthisbookistoprovideafoundationfor understandingthefundamentalchemicalbiologyofH2 Stohelpbridgethisgap betweenadjacentfields,whilealsohighlightingselectedapplicationsandopportunitiespoisedtoadvancethismultidisciplinaryarea.

ThisbookisdividedintofourmainsectionsthatcoverkeyaspectsofH2 Schemicalbiology.Thefirstsection(Chapters1–5)focusesongeneralconceptsrelatedto

H2 Sandinteractionswithotherreactivespeciesinbiologicalsystems.Theseare thefundamentals–thekeypointsneededtounderstandthecomplexinteractions betweenH2 Sandotherreactivebiomolecules.Thesecondsection(Chapters6–9) focusesonmethodsofmeasuringanddetectingH2 Sincomplexbiologicalenvironments.Thesesummarizekeyadvancesinavailabletoolstoaskthe“where, when,andhowmuch”typequestions.Thethirdsection(Chapters10–15)focuses onmethodsfordeliveringH2 Sinbiologicalenvironments.Thesesummarizekey advancesinavailabletoolstomodulateH2 Slevelsinbiologicalenvironments.The fourthandfinalsection(Chapters16–19)includesselectedcasestudiesontherole ofH2 SandH2 Sdeliveryrelatedtohumanhealth.ThesehighlightkeyopportunitiesforapplicationsofH2 Sactionincomplexenvironments.

AsthecomplexfieldofH2 Schemicalbiologycontinuestoadvanceandevolve, Ihopethatthisbookwillprovideausefulresourceforstudents,researchers, andotherprofessionalsalikeandhelptoinspirefutureworkinthisrapidly growingarea.

MichaelD.Pluth Oregon,USA December,2021

ListofContributors

BeatrizAlvarez

LaboratoriodeEnzimología,Instituto deQuímicaBiológica

FacultaddeCiencias,Universidadde laRepública Montevideo

Uruguay and CentrodeInvestigacionesBiomédicas (CEINBIO)

UniversidaddelaRepública Montevideo

Uruguay

DayanaBenchoam

LaboratoriodeEnzimología,Instituto deQuímicaBiológica

FacultaddeCiencias,Universidadde laRepública

Montevideo

Uruguay and CentrodeInvestigacionesBiomédicas (CEINBIO)

UniversidaddelaRepública Montevideo

Uruguay and GraduatePrograminChemistry

FacultaddeQuímica,Universidadde laRepública

Montevideo

Uruguay

VincenzoBrancaleone DepartmentofScience UniversityofBasilicata

Potenza

Italy

BrockBrummett DepartmentofChemistry

BrownUniversity

Providence,RI

USA

MariarosariaBucci DepartmentofPharmacy,Schoolof Medicine

UniversityofNaplesFedericoII

Naples

Italy

xx ListofContributors

GiuseppeCirino

DepartmentofPharmacy,Schoolof Pharmacy

UniversityofNaplesFedericoII

Naples Italy

ValentinaCiti

DepartmentofPharmacy

UniversityofPisa

Pisa

Italy

MiriamM.Cortese-Krott

MyocardialInfarctionResearch Laboratory,DepartmentofCardiology, Pneumology,andAngiology,Medical Faculty

HeinrichHeineUniversity Düsseldorf

Germany and DepartmentofPhysiologyand Pharmacology

KarolinskaInstitutet

Stockholm

Sweden

ErnestoCuevasanta LaboratoriodeEnzimología,Instituto deQuímicaBiológica,Facultadde Ciencias

UniversidaddelaRepública Montevideo

Uruguay and CentrodeInvestigacionesBiomédicas (CEINBIO)

UniversidaddelaRepública Montevideo

Uruguay and UnidaddeBioquímicaAnalítica, CentrodeInvestigacionesNucleares, FacultaddeCiencias

UniversidaddelaRepública Montevideo

Uruguay

JonM.Fukuto DepartmentofChemistry

JohnsHopkinsUniversity Baltimore,MD USA and DepartmentofChemistry

SonomaStateUniversity RohnertPark,CA USA

AnnieK.Gilbert DepartmentofChemistryand Biochemistry InstituteofMolecularBiology KnightCampusforAccelerating ScientificImpact,MaterialsScience Institute,UniversityofOregon,Eugene Oregon,97403 USA

RynneA.Hankins DepartmentofChemistry

WakeForestUniversity Winston-Salem,NC USA

ChristopherHine DepartmentofCardiovascularand MetabolicSciences ClevelandClinicLernerResearch Institute Cleveland,OH USA

BalakuntalamS.Kasinath DepartmentofMedicine,Centerfor RenalPrecisionMedicine UniversityofTexasHealth

SanAntonio,TX USA and BarshopInstituteforLongevityand AgingStudies UniversityofTexasHealth SanAntonio,TX USA and GeriatricResearch,Education& ClinicalCenter SouthTexasVeteransHealthCare System

SanAntonio,TX USA

ChristopherG.Kevil DepartmentsofPathologyand TranslationalPathobiology MolecularandCellularPhysiologyand CellBiologyandAnatomy,LSUHealth –Shreveport Shreveport,LA USA

HideoKimura DepartmentofPharmacology,Faculty ofPharmaceuticalScience

Sanyo-OnodaCityUniversity

Sanyo-Onoda,Yamaguchi Japan

PetrKlán DepartmentofChemistry,Facultyof Science

MasarykUniversity Brno

CzechRepublic and RECETOX,FacultyofScience

MasarykUniversity Brno

CzechRepublic

YannieLam DepartmentofChemistry

BrownUniversity

Providence,RI USA

HakJooLee DepartmentofMedicine,Centerfor RenalPrecisionMedicine UniversityofTexasHealth

SanAntonio,TX USA

ZhaoLi DepartmentofChemistry

VirginiaPolytechnicInstituteand StateUniversity

Blacksburg,VA USA and MacromoleculesInnovationInstitute

VirginiaPolytechnicInstituteand StateUniversity

Blacksburg,VA USA

xxii ListofContributors

ChristopherLink DepartmentofCardiovascularand MetabolicSciences

ClevelandClinicLernerResearch Institute

Cleveland,OH USA

NataliaLlarena DepartmentofCardiovascularand MetabolicSciences

ClevelandClinicLernerResearch Institute

Cleveland,OH USA and DepartmentofReproductive EndocrinologyandInfertility

ClevelandClinicWomen’sHealth Institute Cleveland,OH USA

JohnC.LukeshIII DepartmentofChemistry WakeForestUniversity

Winston-Salem,NC USA

AlmaMartelli DepartmentofPharmacy UniversityofPisa Pisa Italy

JohnB.Matson DepartmentofChemistry

VirginiaPolytechnicInstituteand StateUniversity

Blacksburg,VA USA and MacromoleculesInnovationInstitute VirginiaPolytechnicInstituteand StateUniversity

Blacksburg,VA USA

CaitlinMcCartney DepartmentofChemistry

BrownUniversity Providence,RI USA

MatíasN.Möller CentrodeInvestigacionesBiomédicas (CEINBIO)

UniversidaddelaRepública Montevideo Uruguay and LaboratoriodeFisicoquímica Biológica,InstitutodeQuímica Biológica,FacultaddeCiencias UniversidaddelaRepública Montevideo Uruguay

BinduD.Paul DepartmentofPharmacologyand MolecularSciences

JohnsHopkinsUniversitySchoolof Medicine Baltimore,MD USA and DepartmentofPsychiatryand BehavioralSciences

JohnsHopkinsUniversitySchoolof Medicine

Baltimore,MD USA

and

TheSolomonH.SnyderDepartmentof Neuroscience

JohnsHopkinsUniversitySchoolof Medicine Baltimore,MD

USA

ClaudioPellecchia

DipartimentodiChimicaeBiologia UniversitàdegliStudidiSalerno Fisciano,SA

Italy

EugeniaPiragine DepartmentofPharmacy UniversityofPisa Pisa Italy

MichaelD.Pluth DepartmentofChemistryand Biochemistry InstituteofMolecularBiology KnightCampusforAccelerating ScientificImpact,MaterialsScience Institute,UniversityofOregon,Eugene Oregon,97403

USA

GeatRamush DepartmentofChemistry BrownUniversity Providence,RI

USA

XingguiShen DepartmentsofPathologyand TranslationalPathobiology,LSU Health–Shreveport Shreveport,LA

USA

TomášSlanina InstituteofOrganicChemistryand BiochemistryoftheCzechAcademyof Sciences

Prague CzechRepublic

EllenH.Speers LSUHealth–Shreveport

Shreveport,LA

USA

PeterŠtacko DepartmentofChemistry UniversityofZurich

Zurich Switzerland

MariaStrianese DipartimentodiChimicaeBiologia UniversitàdegliStudidiSalerno Fisciano,SA

Italy

SarahN.Swilley-Sanchez DepartmentofChemistry VirginiaPolytechnicInstituteand StateUniversity Blacksburg,VA

USA and MacromoleculesInnovationInstitute VirginiaPolytechnicInstituteand StateUniversity Blacksburg,VA

USA

xxiv ListofContributors

ZacharyJ.Tonzetich DepartmentofChemistry

UniversityofTexasatSanAntonio SanAntonio,TX USA

BingheWang DepartmentofChemistryandCenter forDiagnosticsandTherapeutics

GeorgiaStateUniversity Atlanta,GA USA

YingyingWang DepartmentofChemistry

BrownUniversity Providence,RI USA

ZhenXi DepartmentofChemicalBiology,State KeyLaboratoryofElemento-Organic Chemistry

CollegeofChemistry,National PesticideEngineeringResearchCenter NankaiUniversity Tianjin China

MingXian DepartmentofChemistry

BrownUniversity Providence,RI USA

JieYang DepartmentofCardiovascularand MetabolicSciences

ClevelandClinicLernerResearch Institute

Cleveland,OH USA

LongYi

BeijingUniversityofChemical Technology(BUCT) CollegeofChemicalEngineering Beijing China

BingchenYu DepartmentofChemistryandCenter forDiagnosticsandTherapeutics

GeorgiaStateUniversity

Atlanta,GA

USA

ZhengnanYuan DepartmentofChemistryandCenter forDiagnosticsandTherapeutics

GeorgiaStateUniversity

Atlanta,GA

USA

AiliZhang DepartmentofCardiovascularand MetabolicSciences

ClevelandClinicLernerResearch Institute

Cleveland,OH,USA

FundamentalandBiologicallyRelevantChemistryofH2 S andRelatedSpecies

DepartmentofChemistry,JohnsHopkinsUniversity,Baltimore,MD,USA

DepartmentofChemistry,SonomaStateUniversity,RohnertPark,CA,USA

ListofAbbreviations

RSHThiols

Cys-SHCysteine

Cys-SSHcysteinehydropersulfide

Cys-SS-Cyscystine

GSHglutathione

GSSHglutathionehydropersulfide

GSSGoxidizedglutathione

HSABhard-softacid-base

HOMOhighestoccupiedmolecularorbitals

LUMOlowestunoccupiedmolecularorbitals

RSSRdisulfides

BDEbonddissociationenergy

RSSHhydropersulfide

CcOcytochromecoxidase

HbFeIIIferrichemoglobin

HbFeIIferroushemoglobin

MbFeIIIferricmyoglobin

MbFeIIferrousmyoglobin

RSalkylthiyl

MPOmyeloperoxidase

RSOHsulfenicacid

HydrogenSulfide:ChemicalBiologyBasics,DetectionMethods,TherapeuticApplications,andCaseStudies, FirstEdition.EditedbyMichaelD.Pluth.

©2023JohnWiley&Sons,Inc.Published2023byJohnWiley&Sons,Inc.

1FundamentalandBiologicallyRelevantChemistryofH2 SandRelatedSpecies

RSNOS-nitrosothiol

TEMPO4-hydroxy-2,2,6,6-tetramethylpiperidin-1-yl)oxyl

RSSperthiylradical

Soxsulfur-oxidizingenzyme

1.1Introduction

Itisnowevidentthatseveralendogenouslysynthesizeddi-andtri-atomic moleculesareimportantphysiologicalbioregulatorsand/orsignalingspecies(for areviewofthesemolecules,see[1–3]).Nitricoxide(NO),carbonmonoxide(CO), andhydrogensulfide(H2 S)areallbiosynthesizedandreportedlypossessimportantphysiologicalsignalingandregulatoryfunctions.Sincethesemoleculesall existasgassesatroomtemperatureandpressuretheyhavebeengroupedtogether undertheterm“gasotransmitters,”althoughtheyaresolutesinbiologicalmedia andnotgaseswhentheyareactingphysiologically.Dioxygen(O2 ),althoughnot necessarilyendogenouslybiosynthesized,canalsobeincludedinthisgroupsince ittoo(alongwithderivedspecies)hasbiologicalsignalingfunctionsthatare distinctfromitsroleincellularrespiration.Importantly,asagroupthesesignaling moleculeslikelyrepresentanintegratedsignaling“web”duetothefactthatthey cansharebiologicaltargets,canbeinvolvedineachother’sbiosynthesis,and forsomeevenreactwitheachotheraseithertheparentmoleculeorviaderived species.Thus,foracompleteunderstandingofthechemicalbiology,mechanism ofactionandphysiologicalfunctionsofthesesignalingmoleculesitisimportant toconsiderthemasanintegratedgroupandnotnecessarilyasindividualspecies (e.g.[2,4]).Amongthesemolecules(i.e.NO,CO,O2 ,andH2 S),H2 Sisdistinctin thatithaschemicalpropertiesandgeneralreactivitynotfoundintheothers(vide infra).Clearly,thechemicalbiologyisbestdefinedandestablishedforNOand,of course,O2 .ThechemicalbiologyofH2 Sismuchlessunderstoodandistherefore thefocusofthischapter.

1.2TheChemicalBiologyofH2 S

Asisthecasewithallbiologicaleffectorspecies,thebiologicalactivityand/or utilityofH2 Sareduetoitschemicalpropertiesandchemicalinteractionswithbiologicaltargets.Inthecontextofthischapter,theterm“chemicalbiology”refers tothechemicalpropertiesandreactivityofaspeciesthatareresponsibleforits biologicalactions.Therefore,anexhaustiveandcomprehensivediscussionofall H2 Schemistryisunwarrantedandonlythechemistrythatisthoughttobebiologicallyrelevantcoveredherein.

1.2.1BasicChemicalPropertiesofH2 S

Unliketheothersmall-moleculesignalingspecies(NO,CO,andO2 ),H2 Sisionizable.ThepK a ’sofH2 SandHS are6.8and14,respectively.Thisindicatesthat atphysiologicalpH(7.4),H2 Sisapproximately80%ionizedtoHS withnegligibleamountsofthedianionS2 .H2 Sisthesimplestofallthiols(RSH)andyetis somewhatdistinctfromtheminthatitisinherentlymoreacidic.Forexample,the pK a valuesformostbiologicallyrelevantthiols(e.g.cysteine[Cys-SH],glutathione [GSH]),freeinsolutionareapproximately8.2.Thus,whilemostfreethiolsexist predominatelyastheprotonatedRSHspeciesatphysiologicalpH,H2 Sismostly ionized.Tobesure,thepK a ofthiolsinorattachedtoproteinscanvarysignificantlyduetoeffectsassociatedwiththeproteinenvironment(e.g.[5]).Asaneutral molecule,H2 Sfavorablypartitionsintononpolar(e.g.lipid)environmentsasindicatedbyreportedpartitioncoefficientsbetweenH2 Oandorganicsolventssuchas octanolorhexaneofapproximately2(indicatingatwofoldhigherconcentration ofH2 Sinahydrophobic/lipidenvironmentversusawaterenvironment)[6].Thus, H2 Scanreadilytraversemembranesbysimplediffusion.Ofcourse,thecharged, anionicHS willnotpartitionintononpolarenvironmentsandthereforewillnot readilytraversemembranesbydiffusion.Thus,therateofH2 Sdiffusionwillbe highlydependentonthepHwithacidicconditionsfavoringamorerapiddiffusion. ItisworthwhiletocompareH2 SandH2 Owithregardtotheirrelativeabilitiesto diffuseacrossmembranes.ThedipolemomentforH2 Sis0.97,whilethatforH2 O issignificantlygreaterat1.84.Thus,H2 SisdistinctfromH2 Oregardingitsinteractionwithlipid,nonpolarenvironments.ThediffusionofH2 Oacrossmembranes isgreatlydependentonthenature/compositionofthemembraneandoccurswith apermeabilitycoefficientintherangeof2–50 × 10 4 cm/s[7].Thepermeability coefficientforH2 Swasfoundtobesignificantlygreaterat >0.5–3cm/s[6,8]indicatingamuchgreaterabilityforH2 Stodiffuseacrossmembranescomparedto H2 O.Importantly,unlikeH2 Odiffusionacrossmembranes,whichcanbegreatly enhancedbyaquaporins,H2 Sdiffusionisrelativelyrapidandnotenhancedby aquaporins[8].

ThepredominantbiologicalchemistryofH2 SisthatofaLewisbase.Thatis, H2 S(ormorelikelyHS )isanelectrondonorthatreacts(formsbonds)with Lewisacids(i.e.electronacceptors).Inorganicchemistryterms,Lewisbases canbeconsideredasnucleophilesandLewisacidsconsideredaselectrophiles. Thus,HS isanelectron-donatingnucleophilecapableofreactingwithelectron poor/deficientelectrophiliccenters.Ofcourse,thisisthechemicalpropertythat biologicalRSHspeciesingeneralpossess.OnethingthatsetsH2 Sapartfrom allotherRSHmoleculesisthatitpossessestwodissociableandexchangeable protonsandthereforecanpotentiallyreacttwicewithLewisacids.Thus,the generationofcomplexeswithbridgingsulfidesthatconnecttwo,forexample,

1FundamentalandBiologicallyRelevantChemistryofH2 SandRelatedSpecies

metalcenters(i.e.M–S–M,M = metal)isverycommonlyseen.Itisimportantto note,however,thatLewisbases/nucleophilesarenotallequivalentwithrespect totheirreactivitytowardLewisacids/electrophiles.Onesimpleandusefulwayof distinguishingandrationalizingnucleophilic/electrophilicreactivitypreferences istoutilizetheHard–SoftAcidBase(HSAB)principlesdevelopedbyPearson [9,10].TheideaofHSABreliesonthecharacterizationofLewisbasesand Lewisacids(i.e.nucleophilesandelectrophiles)asbeingeithersoftorhard andtheunderstandingthathardbasesprefertoreactwithhardacidsandsoft basesprefertoreactwithsoftacids.Ofcourse,therearesomereactantsthatare consideredas“borderline”whichcanreacteitherway.Generallyspeaking,soft bases/nucleophilesarequalitativelyviewedasspecieswithhighpolarizability, lowerelectronegativity,easilyoxidized,andpossessinglow-lyingemptyorbitals. Softacids/electrophileshaveanacceptoratomwithlowpositivecharge,large size,arepolarizable,andpossesseasilyexcitedouterelectrons.Ontheother hand,hardbaseshaveadonoratomwithlowpolarizability,highelectronegativitywithhigh-energy/inaccessibleemptyorbitals.Hardacidspossessan acceptoratomwithhigh-positivecharge,smallsize,andnotpolarizable.These reactivitypreferencescanalsobereconciledonthebasisoftheenergeticsand natureofthereactinghighestoccupiedmolecularorbitals(HOMOs)ofthe base/nucleophileandthelowestunoccupiedmoleculeorbitals(LUMOs)ofthe acid/electrophile(i.e.theFrontierorbitals)[11]withhardacid–hardbaseinteractionsviewedasprimarilyionicinnatureandsoftacid–softbaseinteractions viewedashighlycovalentinnature(duetofavorableHOMO–LUMOoverlap). Regardless,itisclearthatRSH,RS ,H2 S,andHS areallsoftbases/nucleophiles whichreadilypredictsreactionwithsoftacids/electrophiles.H2 S-reactiveand biologicallyrelevantsoftelectrophilesincludeheavymetals(e.g.Cd2+ ,Hg2+ ), lowoxidationstatemetals(e.g.Cu+ ), α–β unsaturatedcarbonylcompounds(e.g. acrolein, N -ethylmaleimide)anddisulfides(RSSR),amongothers.Importantly, theprinciplesofHSABalsocorrectlyreconcilethefactthatRSSRelectrophiles arenotreadilycleavedbyhardnucleophilessuchasH2 O,HO ,NH3 ,orRNH2 .

1.2.2H2 SRedoxChemistry

Numerousbiologicallyrelevantsulfurspecieswithvaryingoxidationstateshave beenreportedandcharacterized(e.g.[12])andofalltheseH2 S(aswellasthiols) representthefullyreducedsulfurspecies(Figure1.1).

Thiols,includingH2 S,canpotentiallyserveasone-electronreductants,generatingtheradicalintermediates(RS• /HS• ).However,RS /RSHandHS /H2 Sare notpowerfulone-electronreductantsasindicatedbytherelativelyhighreductionpotentialfortheRS ,H+ /RSH,andHS /HS couplesofapproximately0.92V [13,14].Indeed,RS• isknowntobeapotentoxidantgeneratedattheactivesite

1/2 R–S(–I) –S(–I) –R

ThiolThiyl/disulfideSulfenic acidSulfinic acidSulfonic acid

Figure1.1 Redoxrelationshipofbiologicallyrelevantsulfurspecies(R = alkyl,H).The oxidationstatesofthesulfuratomsindicatedbysuperscriptednumerals.

oftheenzymeribonucleotidereductasecapableofabstractingahydrogenatom fromtheriboseringofDNA(e.g.[15]).Thus,thefactthatRS• andHS• arerelativelystrongoxidantsgeneratedfromRS /RSHorHS /H2 Soxidationindicates theweakone-electronreducingcapabilitiesofthesespecies.Anotherindicatorof therelativelyweakone-electronreducingcapabilitiesofRSH/H2 SaretheS—H bonddissociationenergies(BDEs)ofapproximately87–92kcal/mol[16,17].For comparison,theO—HBDEfortocopherol(e.g.vitaminE)issignificantlylower (79kcal/mol),indicatingahigherpropensitytoserveasareducingH-atomdonor.

1.2.3ReactionsofH2 SwithMetals/Metalloproteins

Asalludedtoabove,H2 SisasoftLewisbaseandthereforereactsveryreadilywith softLewisacidmetals.Also,sinceH2 Shastwoexchangeableprotons,ithasthe potentialtoformtwobondstometalspecies,eithertoasinglemetalorbridging twometals.Aprimeexampleofsulfide(S2 )bridgingcanbefoundiniron–sulfur (FeS)clusterproteins.AlthoughFeSclustersareveryimportantandestablished biochemicalentitiesinvolvedinnumerousfunctionsincludingelectrontransfer processes,geneexpression,oxygensensing,regulationofenzymaticfunctionand metalsensing,amongmanyothers(e.g.[18]),thesewillnotbediscussedfurther astherearenumerousreviewsofthistopicavailable(e.g.[19,20]).Itis,however, worthmentioningthatFeSbiosynthesisinvolvestheintermediacyofahydropersulfide(RSSH),afunctionalgroupthatwillbediscussedinsomedetaillater.

TheinteractionsofH2 Swithhemeproteinsisamongthemoststudied,duein parttothefactthatdisruptionofhemeproteinfunction(e.g.cytochromecoxidase, CcO)isthoughttocontributesignificantlytoH2 S-mediatedtoxicity(e.g.[21]) andthathemeproteinscanalsobeinvolvedinphysiologicalH2 Ssignaling, metabolism,andfunction[22].TheinteractionsofH2 Swithhemeproteins,such asCcO,arepotentiallycomplex(e.g.[23])andhighlyconcentration-dependent. Atlowlevels,H2 Scanactuallyserveasasourceofelectrons,supportingoxidative phosphorylation[24,25],aneffectsupportedbyafunctionalmodelsystemfor CcOwherebylowlevelsofH2 SwerecapableofreducingbothFeandCusites ofthemodel(aswellascytochromec,whichcandonateelectronstoCcO)[26]. However,athigherlevels,H2 ScompeteswithO2 binding,possiblyviabindingto boththeironhemea3 andCuB centersofCcO[22]inhibitingrespiration.

1FundamentalandBiologicallyRelevantChemistryofH2 SandRelatedSpecies

AparticularlyinterestinginteractionbetweenH2 Sandahemeprotein occurswiththespecializedhemoglobinof Lucinapectinata,amolluskthat inhabitsH2 S-richenvironments.Thehemoglobinof L.pectinata doesnotcarry O2 ,butrathercarriesH2 Sasasourceofelectronsforsymbioticchemoautotrophicbacteriathatinhabititsgills[27].H2 Scanbindtoandreactwith hemoglobin/myoglobinfromotherspecies(videinfra)oftenleadingtooxidized H2 Smolecules.However,thestabilityofH2 Sboundtothehemoglobinof L.pectinata appearstobetheresultofaprotective,hydrophobicpocketaround theboundH2 Sthatprotectsitagainstfurtherchemistry[28–30].Withother globinssuchashemoglobinormyoglobin,H2 Sbindingcanresultinfurther reactions.Forexample,H2 Sbindingtoferrichemoglobin(HbFeIII )orferric myoglobin(MbFeIII )resultsinthecatalyticoxidationofH2 Stoeitherthiosulfate orpolysulfidespecies(e.g.HSn H, n > 1)viaferroushemoglobin(HbFeII )or ferrousmyoglobin(MbFeII )intermediates[31–33].ThereductionofFeIII to FeII byHS hasalsobeenobservedinmodel“picket-fence”porphyrinsaswell [34].Finally,JensenandFago[35]haveexaminedtheinteractionsofH2 Swith HbFeIII andMbFeIII atphysiologicalconcentrationsandpostulatethatHbFeIII canactasanH2 Scarrierinblood,whereasMbFeIII maybeinvolvedinH2 S metabolism.InthereductionofFeIII toFeII byH2 S,ahydrothiyl(HS• )radicalis thoughttobegenerated,whichcanfurtherreactwithH2 S/HS leadingtothe generationofpolysulfidespecies(e.g.[31]).Itisworthnotingthatthereaction ofanalkylthiylradical(RS• )withanalkylthiolate(RS )isreportedtogivea disulfideradicalanion[36],whichisapotentreducingagent[37]capableof,for exampleconvertingO2 tosuperoxide(O2 ).Whethertheequivalentprocesses forHS• andHS areinvolvedintheabovereactionsremaintobedetermined. Interestingly,anotherhemeproteinthatisnotinvolvedinO2 transportor storage,myeloperoxidase(MPO),alsoreactswithH2 Sinchemistrythatinvolves coordinationofH2 S/HS toaferrichemefollowedbypossibleredoxchemistry generatingferrousproteinandpresumablyHS• [38,39].Aswiththeglobins, HS• generationcanleadtopolysulfurspecies.PeroxidaticchemistryofMPOalso resultsintheoxidationofH2 StoHS• furthercontributingtotheformationof polysulfurs.

1.2.4H2 SandSulfhemeFormation

Asdescribedabove,theinteractionofH2 S/HS withvarioushemeproteinsresults inredoxchemistrythatcouldresultinHS• intermediacy.AlthoughHS• inthese systemscanreactwithothersulfurmolecules(giving,forexample,thiosulfate orpolysulfurspecies),ithasalsobeenproposedtoreactwiththeporphyrinring ofthehemeprotein,generatingamodifiedhemespeciesreferredtoassulfheme (e.g.[40]).Insulfhemeproteins,asulfuratomisinsertedintoapyrroleofthe

Figure1.2 SomesulfhemestructuresgeneratedviaH2 S/oxidizingconditions.Source: Arbelo-Lopezetal.[41]/AmericanChemicalSociety.

porphyrinring(pyrroleB)underoxidizingconditionsleadingtoachangein theabsorbance(givinganabsorbanceatapproximately620nm).Severaldistinct sulfhemeisomershavebeencharacterized(Figure1.2)(e.g.[41]).

Currently,theexactmechanismofsulfhemeformationisnotestablished.However,itappearsclearthatH2 S-mediatedsulfhemeformationrequiresoxidizing conditions,consistentwiththeideathatH2 SoxidationtoHS• maybeacritical step.However,itshouldbenotedthatH2 S-independentsulfhemeformationhas beenreported,possiblyinvolvingsulfenicacid(RSOH)oralkylthiyl(RS• )species (e.g.[42]).Moreover,otheroxidizedH2 SspeciessuchasRSSHand/orH2 S2 have beenimplicatedinsulfhemeformationaswell[43].Regardless,sulfhemeformationcanalterthefunction/biochemistryofthehemeprotein.Forexample,theO2 affinitiesofmyoglobinandhemoglobinaredramaticallydecreasedwheninthe sulfhemeform[44,45]andsulfhemoglobinlosescooperativeO2 binding[46].

1.2.5H2 SandHeavyMetals

AsasoftLewisbasethatpreferentiallyreactswithsoftLewisacids,itisexpected thatH2 SwillrapidlyreactwithheavymetaltoxinssuchasCd2+ andmercury species(e.g.methylmercury,MeHg),formingstablecomplexes(manyofwhich areknowntoprecipitate).Indeed,H2 Scanbeusedasareagenttoprecipitateand ridsolutionsofavarietyofmetalions(e.g.[47]).Ithasbeenknownforalongtime thatonestrategymicrobesutilizetogainresistanceagainstheavymetaltoxicityis viaH2 Sgeneration[48].Forexamplebacterialresistanceagainstmercury[49]and cadmium[50]toxicityhasbeenlinkedtoH2 S-biosyntheticcapacity.Thisisalso trueinmammaliancellswhereexogenousH2 SadministrationorincreasedH2 S biosynthesisresultedinthedetoxificationofMeHgviatheformationoftherelativelynontoxicbis-methylmercurysulfide((MeHg)2 S)[51].Inallofthesecases, itisthoughtthatH2 Sformscomplexeswithheavymetals(e.g.CdS,NiS,PbS) leadingtononreactive(andofteninsoluble)metalsulfides,thusprotectingother biochemicalthioltargetsfrombeingdisrupted.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.