Buy ebook Computer models of process dynamics: from newton to energy fields olis harold rubin cheap

Page 1


Computer Models of Process Dynamics: From Newton to Energy Fields Olis Harold Rubin

Visit to download the full and correct content document: https://ebookmass.com/product/computer-models-of-process-dynamics-from-newton-t o-energy-fields-olis-harold-rubin/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Hybrid Energy System Models Asmae Berrada

https://ebookmass.com/product/hybrid-energy-system-models-asmaeberrada/

Dynamics of EU Renewable Energy Policy Integration

Mariam Dekanozishvili

https://ebookmass.com/product/dynamics-of-eu-renewable-energypolicy-integration-mariam-dekanozishvili/

Probabilistic graphical models for computer vision Ji Q

https://ebookmass.com/product/probabilistic-graphical-models-forcomputer-vision-ji-q/

Renewable Energy: From Europe to Africa David Elliott

https://ebookmass.com/product/renewable-energy-from-europe-toafrica-david-elliott/

Special relativity, electrodynamics, and general relativity : from Newton to Einstein Second Edition Kogut

https://ebookmass.com/product/special-relativity-electrodynamicsand-general-relativity-from-newton-to-einstein-second-editionkogut/

Thermal Energy Storage: From Fundamentals to Applications Alexandra Soh

https://ebookmass.com/product/thermal-energy-storage-fromfundamentals-to-applications-alexandra-soh/

Quantum Fields: From the Hubble to the Planck Scale 1st Edition Michael

https://ebookmass.com/product/quantum-fields-from-the-hubble-tothe-planck-scale-1st-edition-michael-kachelriess/

A Thermo-Economic Approach to Energy from Waste Anand Ramanathan

https://ebookmass.com/product/a-thermo-economic-approach-toenergy-from-waste-anand-ramanathan/

An Introduction to the Policy Process: Theories, Concepts, and Models of Public Policy Making 4th Edition – Ebook PDF Version

https://ebookmass.com/product/an-introduction-to-the-policyprocess-theories-concepts-and-models-of-public-policy-making-4thedition-ebook-pdf-version/

ComputerModelsof ProcessDynamics

JónAtliBenediktsson

AnjanBose

AdamDrobot

Peter(Yong)Lian

IEEEPress

445HoesLane

Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

AndreasMolisch

SaeidNahavandi

JeffreyReed

ThomasRobertazzi

DiomidisSpinellis

AhmetMuratTekalp

ComputerModelsofProcessDynamics

FromNewtontoEnergyFields

OlisRubin

Brooklyn,Pretoria,SouthAfrica

Copyright©2023byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans,electronic,mechanical,photocopying,recording,scanning,or otherwise,exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct, withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentof theappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive, Danvers,MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com. RequeststothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment, JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008, oronlineathttp://www.wiley.com/go/permission.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontact ourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnited Statesat(317)572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitour websiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationDataAppliedfor

ISBN:9781119885658[Hardback]

CoverDesign:Wiley

CoverImages:©zhengshuntang/GettyImages;CourtesyofOlisRubin

Setin9.5/12.5ptSTIXTwoTextbyStraive,Pondicherry,India

ToJudy

Shebroughtbeauty,goodnessandloveinmylife. Wegivethanksforalltheblessingsthatwehavereceived,togetherwithourchildren

Contents

Preface xiii

1Introduction 1

1.1Engineeringusesofcomputermodels 1

1.1.1 Missionstatement 2

1.2Thesubjectmatter 3

1.3Mathematicalmaterial 4

1.4Someremarks 5 Bibliography 5

2FromComputerHardwaretoSoftware 7

2.1Introduction 7

2.2 Comp utingmachines 7

2.2.1Thesoftwareinterface 8

2.3Computerprogramming 9

2.3.1Algebraicexpressions 10

2.3.2Mathfunctions 13

2.3.3Computationloops 14

2.3.4Decisionmaking 16

2.3.5Graphics 17

2.3.6Userdefinedfunctions 17

2.4Statetransitionmachines 17

2.4.1Abinarysignalgenerator 18

2.4.2Operationalcontrolofanindustrialplant 24

2.5Differenceengines 25

2.5.1Differenceequationtocalculatecompoundinterest 26

2.6Iterativeprogramming 27

2.6.1Inversefunctions 29

2.7Digitalsimulationofdifferentialequations 30

2.7.1Rectangularintegration 31

2.7.2Trapezoidalintegration 33

2.7.3Second-orderintegration 35

2.7.4AnExample 36

2.8Discussion 37 Exercises 38 References 41

3Creativethinkingandscientifictheories 43

3.1Introduction 43

3.2 The dawnofastronomy 44

3.3Therenaissance 45

3.3.1Galileo 45

3.3.2Newton 46

3.4Electromagnetism 49

3.4.1Magneticfields 50

3.4.2Electromagneticinduction 50

3.4.3Electromagneticradiation 51

3.5Aerodynamics 52

3.5.1Vectorflowfields 53

3.6Discussion 54 References 56

4Calculusandthecomputer 57

4.1Introduction 57

4.2 Mathematicalsolutionofdifferentialequations 58

4.3Fromphysicalanalogstoanalogcomputers 60

4.4Picard’smethodforsolvinganonlineardifferentialequation 61

4.4.1MechanizationofPicard’smethod 62

4.4.2Feedbackmodelofthedifferentialequation 62

4.4.3ApproximatesolutionbyTaylorseries 64

4.5Exponentialfunctionsandlineardifferentialequations 65

4.5.1Taylorseriestoapproximateexponentialfunctions 66

4.6Sinusoidalfunctionsandphasors 67

4.6.1Taylorseriestoapproximatesinusoids 69

4.7Bessel’sequation 70

4.8Discussion 72 Exercises 73 Bibliography 74

5Scienceandcomputermodels 75

5.1Introduction 75

5.2 A planetaryorbitaroundastationarySun 76

5.2.1Ananalyticsolutionforplanetaryorbits 79

5.2.2Adifferenceequationtomodelplanetaryorbits 80

5.3Simulationofaswingingpendulum 81

5.3.1Agraphicalconstructiontoshowthemotionofapendulum 83

5.3.2Truncationandroundofferrors 84

5.4Lagrange’sequationsofmotion 85

5.4.1Adoublependulum 87

5.4.2Afewcomments 90

5.4.3Modesofmotionofadoublependulum 90

5.4.4Structuralvibrationsinanaircraft 91

5.5Discussion 94 Exercises 94 Bibliography 95

6Flightsimulators 97

6.1Introduction 97

6.2 The motionofanaircraft 98

6.2.1Theequationsofmotion 99

6.3Shortperiodpitchingmotion 101

6.3.1Casestudyofshortperiodpitchingmotion 104

6.3.2Stateequationsofshortperiodpitching 105

6.3.3Transferfunctionsofshortperiodpitching 107

6.3.4Frequencyresponseofshortperiodpitching 108

6.4Phugoidmotion 110

6.5Userinterfaces 111

6.6Discussion 112 Exercises 113 Bibliography 114

7Finiteelementmodelsandthediffusionofheat 115

7.1Introduction 115

7.2 A thermalmodel 117

7.2.1Afiniteelementmodelbasedonanelectricalladdernetwork 118

7.2.2Freesettlingfromaninitialtemperatureprofile 119

7.2.3Stepresponsetest 121

7.2.4Statespacemodelofdiffusion 126

7.3Apracticalapplication 129

7.4Two-dimensionalsteady-statemodel 131

7.5Discussion 132

Exercises 134

Bibliography 135

8Waveequations 137

8.1Introduction 137

8.2 Energy storagemechanisms 138

8.2.1Partialdifferentialequationdescribingpropagationinatransmission line 140

8.3Afiniteelementmodelofatransmissionline 141

8.4Statespacemodelofastandingwaveinavibratingsystem 145

8.4.1Statespacemodelofamultiplecompoundpendulum 147

8.5Atwo-dimensionalelectromagneticfield 148

8.6Atwo-dimensionalpotentialflowmodel 151

8.7Discussion 155

Exercises 156

Bibliography 159

9Uncertaintyandsofterscience 161

9.1Introduction 161

9.2 Empirical and “blackbox” models 162

9.2.1Animperfectmodelofasimplephysicalobject 163

9.2.2Finiteimpulseresponsemodels 164

9.3Randomnesswithincomputermodels 166

9.3.1Randomnumbergeneratorsanddataanalysis 167

9.3.2Statisticalestimationandthemethodofleastsquares 168

9.3.3Astateestimator 171

9.3.4Avelocityestimator 175

9.3.5AnFIRfilter 176

Bibliography 196 x Contents

9.4Economic,Geo-,Bio-,andothersciences 179

9.4.1Apricingstrategy 181

9.4.2Theproductivityofmoney 184

9.4.3Commentsonbusinessmodels 187

9.5Digitalimages 189

9.5.1Animageprocessor 190

9.6Discussion 193

Exercises 194

10Computermodelsinadevelopmentproject 197

10.1Introduction 197

10.1.1 The scopeofthischapter 198

10.2Amotordrivemodel 198

10.2.1Aconceptualmodel 200

10.2.2Themotordriveparameters 202

10.2.3Creatingthesimulationmodel 203

10.2.4Theelectricalandmechanicalsubsystems 204

10.2.5Systemintegration 206

10.2.6Configurationmanagement 208

10.3Thedefinitionphase 208

10.3.1Selectionofthemotor 209

10.3.2Simulationofloaddisturbances 210

10.4Thedesignphase 213

10.4.1Calculationoffrequencyresponse 213

10.4.2Thecurrentcontrolloop 214

10.4.3Designreviewandfurtheractions 217

10.4.4Ratefeedback 219

10.5Asetbacktotheproject 222

10.5.1Elasticcouplingbetweenmotorandload 222

10.6Discussion 227 Exercises 229 Bibliography 230

11Postscript 231

11.1Lookingback 231

11.2 The operationofasimulationfacility 233

11.3Lookingforward 234 Bibliography 235

AppendixAFrequencyresponsemethods 237

Appendix BVectoranalysis 261

AppendixCScalarandvectorfields 269

AppendixDProbabilityandstatisticalmodels 287 Index 297

Preface

“Itisunworthyforexcellentmentolosehourslikeslavesinthelaborof calculationwhichcouldsafelyberelegatedtoanyoneelseifmachines wereused”

MyfirstjobwaswithalargeelectricalengineeringenterprisewhereIhadbeen movedtoadivisionthatdesignedandinstalledheavydutymotordrives.Our divisionhadjustacquiredananalogcomputerthatwasbarelylargeenoughto simulatethesemachines.IwasluckytobechosentoworkwithmyfriendGopal toseewhatwecouldachievewiththis “new-fangledcontraption.” Ourfirstproject wastoinvestigatetheperformanceofaWard-Leonard(generator–motor)setthat droveahugeminingmachine.Thecomputergaveusanew “windowtothe world,” throughwhichwecouldseewhatwashappeninginsidethemotor.All thatwehadlearnedasundergraduatesnowfellintoplace.Ourbasictraining hadconsideredthesteadystateoperationofelectricmotors,whilethelectures ondynamicbehaviorwereentirelymathematical.Wecouldnowconstructacomputermodelthatallowedustoseethehardware,thedifferentialequations,and thetransientbehaviorofshaftsandothervariables.Thisiswhatacomputermodel candoforus!

Leibnizwouldhavebeenelatedifhecouldhaveforeseenhowfarmachines couldtakeus,beyondjustsavinguslaboriouscalculations.Digitalcomputers nowprovideuswithplatformsthatmakethephysicalmodelingprocessalmost effortless,leavingusfreetothinkaboutmoreimportantquestions.Thisbookis writtentoshowhowacomputercanbeprogrammedtosimulatemotionin general.Wewillnotincludethegrowingmarketfornewuserinterfaces,such asvirtualrealityornetworking.Thesefieldsshouldbelefttotheexpertattention ofspecialists.

Inadditiontosettingthewheelsinmotionalongapaththatledtothecomputers oftoday,Leibnizwasalsotheco-founderofdifferentialcalculus.Thecreationofa dynamicmodelisdeeplyrootedinmathematicalanalysis.Wewillsacrificetheoreticalrigorinordertosimplifythemathematicsinawaythatisintelligibletothe workingengineerandcomputerprofessional.Whereverpossiblewewillexplain mathematicaloperationsbymeansofcomputerprogramsthatapproximatetheir behavior.

Thanksgotothemanyreviewerswhosesuggestionshelpedtobringthisbook intoitspresentform.Ihopethatitwillgivereadersthebenefitofexperiencethat wasgainedbyworkingwithmanycolleaguesondiverseprojects.ThankstoPhilip deVaal,whoseenthusiasticsupportstrengthenedmetopersevereinthefaceof setbacks,andtoBeckervanNiekerk,whoseindustryconstantlyinvigoratedme tocompletethisproject.ThisisthesecondtimethatAileenStorryhashelped mebringabooktoseethelightofday.ThankstotheprofessionalismoftheWiley team,ledbyKimberly,MustaqandPatricia,thatmanagedthepublicationprocess.

Imustthankmydearestwifeforherconstant,unstintingsupport.Notonlyis herspellingbetterthanmine,butshehasawayofprovokingmetowritemore lucidlyforyou,thereader.Mayitthusgiveyoufoodforthought,andbetterequip youforthefuture!

xiv Preface

1.1Engineeringusesofcomputermodels

Computermodelsareusedthroughouteveryphaseofindustrialresearch, design,anddevelopment.Simulationstudiescanplayalargepartintheconcept phaseofanengineeringprojectsinceco mputermodelscanusuallybecreatedin lesstimeandcostlessthanhardwareprototypes.Theverycreationofsuchmodelsforceseveryonetodelvedeeperintotheunderlyingphysicsoftheplant.This cangivevaluableinsightintoplantoperationthatcanaidtheplantdesigners.If suchsimulatorsaredevelopedbeforetheplantisbuilt,theycanbeusedtoevaluatethedesignbeforeexpensivedecisionsaremade,andtherebyhelptoavoid costlymistakes.Inthelaterstagesofa developmentprogram,wecangreatly reducethetimeandcostofcommissioningandqualificationbyusingsimulator studiestoreducethescaleofhardwaretesting.Themodelcanalsobeusedto determinesafetylimitsandemergencyproceduresbysimulatingteststhatwould behazardousintherealplant.Thereisalsoagrowingmarketfortrainingsimulatorstoensurethecompetenceoftheoperatorswhowillruntheplant.Wecan foreseethatthiswilltieupwiththecreationofvirtualrealityandthecomputer gameindustry.

Computermodelingofdynamicprocesseshasalongassociationwithcontrol engineering,wherethereisoftenaninterestinthespeedwithwhichthesystem settlestoarequiredoperatingcondition.Thedesignersgenerallymakeuseof feedbackcontrolloops,wheretheyhavetoallowforthetimeresponseofthe planttocontrolinputs.Computermodelswereusedtostudysimpleservomechanisms,andthisledtotheirextensiv euseinverylargeandcomplexfeedback controlproblems.Theyhavebeenwidelyemployedintheaerospaceindustry forthedesignofflightcontrolsystems.Theprocesscontrolindustryhas appliedcomputermodelingtosuchlarge-scalestudiesasoptimizingacomplete

ComputerModelsofProcessDynamics:FromNewtontoEnergyFields,FirstEdition. OlisRubin.

©2023TheInstituteofElectricalandElectronicsEngineers,Inc. Published2023byJohnWiley&Sons,Inc.

chemicalprocess.Thegrowingfieldofroboticswillalsomakeuseofdynamic models.

“Thepurposeofcomputingisinsight,notnumbers.”

Computermodelsalsofindapplicationinmanydiversescientificfields,includingareasthatareknownasthesoftersciences.Asweusemachinerytoperform manuallabor,wecanusecomputerstomechanizedifficultrepetitivemathematicalprocessesandtherebyfreeourmindstoconsiderquestionsofamoreintellectualnature.

1.1.1Missionstatement

Thisbookiswrittenforyou,theprofessionalworkerinthefieldofcomputermodeling,whowishestowidenyourhorizonandneedstoconsidernewapproaches, applications,andadvancedtechniques.Whenweusetheword “model” weare thinkingofaprogramthatsimulatesthedynamicbehaviorofaphysicalphenomenon.Perhapsyouhavenotalreadyenteredthefield,butwishtoapplyyourtraininginappliedmathematicsandexperiencewithcomputerstoexplorethebehavior ofanobjectthatevolvesinthisway.Thisbookproceedsfrombasicmethodsof programmingandsetsupmathematicalmodelsoffairlycommonobjectsthat canbedescribedbyreasonablysimpleequations.

Aseriesofcasestudiescoversamyriadofdifferenttopicsinordertoprovidea vistaofthechallengesthatfallwithinthisdiscipline.Thesetopicshavebeenfitted intoaframeworkthatprogressesfromintroductorymaterialtosubjectsofincreasingcomplexity.Youwillmeetscoresofexamplesthathavebeencarefullychosen totakeyoustepbystepalongalogicallearningcurvethatleadstogreater enlightenment.

Itisshownhowthecomputerhasprogressedfrombeingameretooltoconvert mathematicalequationsintonumbers.Wecaninteractwithitaswithvirtualrealitywhereitsgraphicaloutputmakestheequationsbecomealive.

Thereisanothermissiontobeaccomplished.Ifthereistobesynergybetween yourselfandthecomputer,thesimulationprocesshastostandfirmlyonthefollowinglegs:

1.2Thesubjectmatter

Thebookprovidesalongseriesofcasestudiesthatarebasedonpersonalexperience. Theemphasisisonthesimulationofmovingobjectsorthepropagationofenergyin aphysicalmedium.Computermodelsarepresentedtothereadereitherasprogram listingsorasblockdiagrams.MostofthemareprogrammedontheMATLAB® or Scilab® platforms:

MATLABisaregisteredtrademarkofTheMathWorks,Inc.

ScilabisregisteredundertheGPLv2license(previouslyCeCILL)ascirculatedby CEA,CNRS,andInria.

ThecomputercodefragmentsusestatementsthatareeasilyunderstoodbyPython andCusers.

Chapter2 givesanintroductiontocomputerprogramming,usingtheinstructionsetsfromMATLABandScilab.Thisfirstlyshowshowtoperformvarious repetitiveoperations,andthengoesontoconsidertheuseofadigitalcomputer tosimulatedifferentialequations.Thesetechniqueswillserveasaspringboard forthecreationofeventhemostadvancedcomputermodels.

Chapter3 servesasanobjectlessontoshowhowcreativethinkingisatoolin themodelbuildingprocess.Itexplainshowscientifictheoriesareactuallyconceptualmodelsthatdescribephysicalphenomenaandshowshowtheevolutionof sciencedependedonaseriesofinspiredguesses.Itdescribesthedevelopment ofthreedifferentmathematicalframeworksthatareusedinlaterchapterstoillustratethecreationofvariouscomputermodels.

Chapter4 showshowdifferentialequationscanbeimplementedascomputer models,whichcanthenbeexploitedtoproducegraphsandnumbers.Italsoshows howmathematicaltoolsbasedoncalculuscanbeusedtofindanalyticalsolutions thatsatisfytheequations.Ittherebyillustrateshowproblemscanbestudiedby twoindependentmethodstoincreaseourconfidenceintheresults.

Chapter5 considersthecreationofdifferentialequationsthatdescribethe motionofpointmassesandtheirimplementationascomputermodels.Italsoshows howanalyticalsolutionscanbeusedtoperformcross-checks,toverifythecomputed results.

Chapter6 thenconsidersthemotionofarigidbodyandthecreationofaflight simulatorintheaircraftindustry.

Chapter7 analysestheflowofheatthroughasolidbodybyexploitingmathematicalmethodsthatarebasedontheconceptofscalarandvectorfields.Theseare usedtoshowhowtheevolutionofatemperaturefieldcanbedescribedbyapartial differentialequation.Itisdemonstratedhowacomputermodelcanbecreatedby 1.2Thesubjectmatter

approximatingthebodyasaseriesoffiniteelements,whereeachindividual elementcanbedescribedbyanordinarydifferentialequation.

Chapter8 analyseswavepropagationofanenergyfieldthroughacontinuous medium.Itagaindemonstrateshowacomputermodelcanbecreatedbyapproximatingthemediumasaseriesoffiniteelements.Methodsareusedthatare similartothosedescribedinChapter7.Theanalysisofthephysicalphenomena discussedinthesetwochaptersismuchmorecomplexthanthestudyofmechanicalmotion.Thecasestudiesuseacombinationofcomputermodeling,mathematicalanalysis,andphysicalanalogiesasawaytogainabetterunderstandingofthe physicalprocessesthatareconsidered.

Chapter9 widensourhorizonbyexploringtherealmofuncertaintyandstatisticalanalysis.Theexamplesthatappearinthischapterconsidervarioustopics, whichrangefromimperfecttheoreticalknowledgetomeasurementnoise,aswell asbusinessmodelsanddigitalimages.

Chapter10 showshowsimulationengineerscanworkasmembersofadesign teamwithinanengineeringproject.Atthebeginningoftheprojectthecomputer modelcanbeusedasanelectronicprototypethatiscreatedmorequicklyand cheaplythanhardware.Italsoprovidesthefacilityforcheckingthesensitivity oftheproducttovariationsinparameterswithinthedesigntolerances.Theremust beaconfigurationmanagementprocesstokeeptrackofchangestothemodelduringthecourseoftheproject.Theneedforformalproceduresisemphasizedin ordertocreatetrustworthymodels.Thisincludescross-checksonsimulation resultsbymeansofmathematicalanalysistoseethatthecomputermodelhasbeen implementedcorrectly.

Whenengineersusecomputermodelstoassistthemwithmakingcriticaldesigndecisionstheymustrememberthatthesolutionsobtainedwiththecomputeraregreatly dependentontheequationsthatwerecreatedtorepresentthephysicalhardware. Approximationsintheseequationsresultinapproximatesolutions.Theequationsused inthisbookmaybesufficientforanintroductiontothetopic,andindeedmanyhave beenusedforpreliminaryinvestigationsoftheproblemsthatwillbediscussed.However,beforereadersattemptseriousinvestigationsofthistype,itisrecommendedthat theysatisfythemselvesabouttheformoftheequationsthattheychoosetouse. Themomentoftrutharriveswhenthehardwareistested.Afterthis,thecomputermodelcanstillserveasthemeanswherebywecanquicklyandefficiently predictthebehaviorofthehardwareunderdifferentoperatingconditions.

1.3Mathematicalmaterial

Theadvanceofscienceledtothecreationofnewmathematicalmethodsthat describethenewtheoreticalconcepts.Thus,Newton’slawsofmotionledtothe creationofvectoranalysis,whileMaxwell’sequationsrequiredtheconceptofa

Bibliography 5

vectorfield.Suchmathematicalanalysisformsanintegralpartofthemodeling process,bothinthedefinitionofthemodelsandincheckingtheresults.Itwas thuspreferabletoincludeselectedmathematicalmaterialinseparateappendices thatcanbestudiedseparatelyorconsultedwhenreferredtointhechapters.

AppendixA describesfrequencyresponsetechniquesthatareusedinengineering,suchasthedesignoffeedbackcontrollers.ItshowshowMATLABandScilab candeterminelinearstateequationsandtransferfunctionsthatapproximatea givencomputermodel.

AppendixB describestheuseofvectorstocreatekineticmodelsofpointmasses andrigidbodies.

AppendixC describestheapplicationofvectorfieldstosolvediffusionand waveequations.

AppendixD discussesthemathematicalmodelingandanalysisofrandom events.

1.4Someremarks

MathematicalmodelingbeganwhenGalileoandNewtonmarriedthesciencesof astronomyandmathematics.Manyprofessionshavesinceusedcalculustoanalyzesystemsofeverydescription.Asthecalculationsbecamemorecomplex,scientistsbegantocreatecomputermodels.Thisbeganwiththecreationofanalog computersandthedevelopmentofsophisticatedsimulationtechniques.Some ofthebooksthatwerewrittenonthesubjectarelistedbelowandarestillavaluablesourceofinformationtoanyonewhowishestocreatecomputermodels. Oncethemodelhasbeenmathematicallydefined,itisnowpossibletouseadigital simulationplatformthatgreatlysimplifiesitsprogrammingonthecomputer.We canthenexperimentwiththemodelandobtainanswerswithastonishingrapidity. Thiscreatesariskthatwesometimesforgettotakesometimeofftoconsider wherewearegoing.TheIBMCorporationusedtohandoutpostersthatcontinue togivegoodadvice “THINK.” Thescientistsofyesteryearcanstillserveasarole modelinthisregard.

Thisbookaimstoshowhowcreativethinking,mathematicalanalysis,andcomputermodelscanbeusedtogethertoachieveasynergythatmaynototherwisebe apparenttothereader.Italsotakestruewisdomtodecidehowrealisticamodel mustbeandwhatisenoughtosatisfyourneeds.

Bibliography

Abbasov,I.B.(2019). ComputerModelingintheAerospaceIndustry.NewYork:Wiley. Hamming,R.W.(1962). NumericalMethodsforScientistsandEngineers.NewYork: McGraw-Hill.

Karplus,W.J.(1958). AnalogSimulation.NewYork:McGrawHill.

Korn,G.A.andKorn,T.M.(1956). ElectronicAnalogComputers.NewYork: McGrawHill.

Paynter,H.M.(1960). APalimpsestontheElectronicAnalogArt,Dedham.MA: PhilbrickResearches.

Raczynski,S.(2014). ModelingandSimulation.NewYork:Wiley.

Rogers,A.E.andConnoly,T.W.(1960). AnalogComputationinEngineeringDesign NewYork:McGrawHill.

Rubin,O.(2016). ControlEngineeringinDevelopmentProjects,Dedham.MA: ArtechHouse.

ShearerJ.L.,Murphy,A.T.andRichardson,H.H., IntroductiontoSystemDynamics, Reading,MA:Addison-Wesley,1967

Soroka,W.W.(1954). AnalogMethodsinComputationandSimulation.NewYork: McGrawHill.

Tomovic,R.andKarplus,W.J.(1962). HighSpeedAnalogComputers.NewYork:Wiley.

FromComputerHardwaretoSoftware

Thischapterspendslessthan5%ofitstimeonthecomputerandover95%ofits timeonthesoftware.

“Forthemachineisnotathinkingbeing,butsimplyanautomaton whichactsaccordingtothelawsimposeduponit.”

Ada,CountessofLovelace,1843

(Source: InthePublicDomain,RightsHolderAugustaAdaKing)

Wewillcodecomputermodelsinaprogramminglanguagethatbearsnoresemblancetothecodethatcontrolsthecomputingcircuits.

2.1Introduction

ThemissionstatementinChapter1describedalearningcurvethatprogresses frombasicprogrammingtothemostchallengingtechniquesofcomputermodeling.Thischapterbeginsbygivingashortintroductiontothedigitalcomputer.It willthengoontodescribeaprogramminglanguagethatwilltypicallybeusedin laterchapters.Itwillalsoshowsomefundamentaltechniqueswherebythislanguagecanbeusedtoperformrelativelycomplextasks.Laterchapterswillconsider modelsofcontinuousmotionbymeansofdifferentialequations;thuswerequire methodswherebyadigitalcomputer,whichisadiscretedevice,canemulatecontinuousbehavior.Section2.7presentstechniqueswherebythiscanbeachieved.

2.2Computingmachines

Ourword “calculate” comesfromtheRoman calculus (apebble).Aprimitiveabacususedpebblesthatwerelaidinfurrowsofsand.Overmanycenturiesmachines weredevelopedtospeedupsuchcalculations.LeonardodaVinci(1452–1519)left

ComputerModelsofProcessDynamics:FromNewtontoEnergyFields,FirstEdition. OlisRubin.

©2023TheInstituteofElectricalandElectronicsEngineers,Inc. Published2023byJohnWiley&Sons,Inc.

sketchesofthemechanismsthatareusedinamechanicaladdingmachine.Pascal (1623–1662)inventedacalculatorthatwasusedbyhistax-collectorfather.Then Babage(1791–1871)attemptedtocreateamachinethathadthecapabilityofthe moderncomputer(Swade,1991).

OneeveningIwassittingintheroomsoftheAnalyticalSocietyatCambridge…, withatableoflogarithmslyingopenbeforeme.Anothermember…calledout. ‘Well,Babage,whatareyoudreamingabout?’ towhichIreplied, ‘Iamthinking thatallthesetablesmightbecalculatedbymachinery.”

Babage’sfirstmachine,the “DifferenceEngine,” hadanabilitytorepeatcalculationsthathadneverbeenachievedbefore.Heabandonedthistoembarkonamuch moreambitiousproject,the “AnalyticalEngine.” Thismachineembodiedmanyof thefeaturesofmodernelectroniccomputers.Itwasprogrammableusingpunched cards,socomplexactionscouldbeachievedbymeansofagroupofmoreelementary instructions.Ithada “store” wherenumbersandintermediateresultswereheldand aseparate “mill” wherethearithmeticprocessingwasperformed.Themachinecould implementcomputingloopsandwascapableofperformingconditionalbranching:

Aformof IF THEN ELSE

Themachinewouldhavebeenthesizeofasmalllocomotive – 15feethigh,6feet across,and,inoneversion,20feetlong.Haditbeenbuilt, “calculatingbysteam” wouldhavebeenapropheticwishcometrue.

In1944AikenbuiltanelectromechanicalversionofBabage’ sAnalytical Engine(Trask,1971).Bernstein(1963)describestheoperationofthismachine: “ Onecouldgoinandlistentothegentleclickingofitsrelays,whichsounded likearoomfullofladiesknitting. ” Thiswasfollowedin1945bytheENIAC,an electronicdigitalcomputerthatcontained18000thermionicvalvesthat consumed150kWofelectricity(Trask,1971).Theinventionoftransistors andintegratedcircuitsthenallowedthecr eationoflow-cost,high-performance microprocessors.

2.2.1Thesoftwareinterface

Digitalcomputersareabletoperformcomplexoperationsbyexecutingmanysimpleactionsindiscretesteps.Thefirstcomputerswereprogrammedbywritingeach stepseparatelyinbinarycode.Suchasetofinstructions,knownasaprogram,can thenbeloadedintothecomputermemorybank.Thecomputerthenperformsthe particularoperationbyreadingtheinstructionsfrommemoryandexecutingthem step-by-step.Specialprogramswerethendevelopedandinstalledinthecomputer thatallowustowriteourinstructionsinasimplerlanguage.Suchaninstalled 8

programthentranslatesourstatementsintobinaryinstructionsthatareexecuted bythecomputer.Todaytherecanbeseverallayersofsoftwarethatactasaninterfacebetweentheuserandtheactualcomputerhardware.

Withtheadventofpersonalcomputers(PCs)inthe1980sthestagewassetfor thedevelopmentofthedigitalsimulationplatformsoftoday.ThefirstPCswere slowandhadlittlememory,butJohnLittleanticipatedthattheywouldeventually becapableofeffectivetechnicalcomputingandinitiatedthedevelopmentofthe productthatisknownasMATLAB® (Moler,2006).Thiscanexecuteprogramfiles toperformmanyscientificandengineeringtasks.Numericalresultscanthenbe displayedorplottedinhigh-resolutiongraphics.

2.3Computerprogramming

Scientificcomputationscanbedonethroughunderlyingsoftwarethatallowsusto writeourinstructionsinalanguagethatresemblestheequationsthatarefamiliar tomathematicians.Atypicalinstructiontoperformanarithmeticcalculation takestheformofastatementthathasthefollowingformat:

variable=expression;

Mathematicianswriteequationsinthiswaytodefinevariablesasalgebraicfunctionsofothervariables.Theaboveinstructionwillcausethecomputertoperform acalculationthatisdefinedbythe expression ontheright-handsideoftheequal (=)sign,andsavetheresultasthe variable thatisdefinedontheleft-handside. Thisissavedasabinarynumberinitsmemory.Itisnecessarytoidentifythelocation(address)ofthis variable inthememorybank,sothatitcanberetrievedfor lateruse.Theunderlyingsoftwareplatformthatsupportsthescientificlanguage providesauserinterfacewherenumbersaredisplayedasdecimals,whilethe addressofthe variable isdisplayedasanamethatiswritteninalphanumeric characters.

Severalscientificlanguageshavebeendeveloped,eachofwhichhasaslightly differentalgebraicsyntax.

Theprogramlistingsgiveninthisbookareextractedfromprogramsthatwere createdandrunoneithertheScilabortheMATLABsoftwareplatform.Programs thataresavedinafilewiththeextension.sce canberunbyScilab,whilefileswith theextension .m canberunbyMATLAB.Theindividualinstructionsintheseprogramscanalsobetypedandruninthecommandwindowsoftherespectiveplatforms.Thenextsections(2.3.1–2.3.6)giveashortintroductiontothebasicsyntax thatisused.Readerswhowriteprogramsusingtheseplatformscanconsulttheir built-inHelpfacilitiesforfurtherinformation.UserGuidesarealsoavailable, whichgivemorebasictraining.

2.3.1Algebraicexpressions

MATLABandScilabperformarithmeticalcalculationsonnumericalobjects.The instructiontoperformaparticularcalculationiscreatedbytypingastatementof theformthatwasshownintheprevioussection.Forexample,wecoulddefinethe radiusofacirclebythefollowingstatement:

r=1.2;

Thiswouldinstructthecomputertosavethenumericalvalueoftheradiusinits memorybank.Ifwenowtypetheletter r inthecommandwindowwewouldsee thefollowing:

Thisquantityisnowavailableforfurtheruse.IfweareusingScilabwecould calculatetheareawithinthiscirclebythefollowingstatement:

A=%pi*(r^2);

Scilabhasapredefinedvariable %pi thatisequaltotheratioofacircle’scircumferencetoitsdiameter,whileMATLABusesthesymbol pi toidentifythisnumber.Thebracketsdefinetheorderofexecution.Theabovestatementwillthus causethesquareoftheradiustobecalculatedbeforeitismultipliedby %pi. Nowsupposethatwehavedefinedthelengthofacylinderbythesymbol L.We couldthencalculateitsvolumebythefollowingstatement:

V=(%pi*(r^2))*L;

Otherarithmeticoperationsaresimilarlycoded.Theirdefaultorderofexecution isasfollows:

^ exponentiation + addition - subtraction

* multiplication / division

ScilabandMATLABallowustocreatevariables “onthefly” astheyaredefinedby statementswithinaprogram.Theirnumericalvaluescanthenbechangedbysubsequentstatements.Ifastatementreferstoacalculationthatinvolvesavariable y that hasnotbeenpreviouslycreated,theprogramwillendanddisplayanerrormessage: Undefinedvariable:y

2.3Computerprogramming

MATLABandScilabaredesignedtoperformarithmeticalcalculationson numericalvectorsandmatrices,wherescalarsareregardedtobe1-by-1matrices. Supposethatwehavecreatedthefollowingscalars:

a11=1; a12=2; a21=3; a22=4;

Wecouldthencreatethefollowingrowvectors:

R1=[a11,a12]; R2=[a21,a22];

Ifwenowtypethename R1 inthecommandwindowwewouldseethe following:

R1= 1.2.

Theserowvectorscanthenbecombinedtoformamatrix:

M=[R1;R2];

Ifwenowtypethename M inthecommandwindow,wewouldseethe following:

M= 1. 2. 3. 4.

Wecanalsoaddresstheindividualelementsinamatrix,inordertousetheir valuesinfurthercalculations.Forexample,ifwetypethe M(1,2) inthecommandwindowwewouldseethefollowing:

ans= 2.

Similarly,ifwetypethe M(2,1) inthecommandwindowwewouldseethe following:

ans= 3.

Alternatively,wecouldhavecreatedthefollowingcolumnvectors:

C1=[a11;a21]; C2=[a12;a22];

Ifwenowtypethename C1 inthecommandwindowwewouldseethefollowing: C1= 1. 3.

Thesecolumnvectorscanthenbecombinedtoformthesamematrix: M=[C1,C2];

Wecanalsoaddresstherowandcolumnvectorsinamatrix.Forexample,ifwe type M(2,:) inthecommandwindowwewouldseethefollowing:

ans= 3. 4. whileifwetype M(:,2) inthecommandwindowwewouldseethefollowing:

ans= 2. 4.

Amatrix N canbeaddedtoorsubtractedfromasecondmatrix(M)providedthat theyhavethesamedimensions.Considerthefollowingstatement:

A=M+N;

Theindividualelementsofthematricesareaddedtogether,sothatA(i,j)= M(i,j)+N(i,j).

Twomatrices M and N canbemultipliedusingthefollowingstatement,provided thatthenumberofcolumnsof M equalsthenumberofrowsof N:

A=M*N; Forexample,ifMisarowvector[m1,m2]andNisacolumnvector[n1;n2],the abovestatementproducesthescalarproduct:

A=m1n1 +m2n2

IfMisasquarematrixtheexpression M^2 isequivalentto M*M while M^3 is equivalentto M*M*M.

Similarly, M^0.5*M^0.5 isequalto M and M^1.5 isequalto M*M^0.5.

Twomatricescanbemultipliedelement-by-elementprovidedthattheyhavethe samedimensions.Thefollowingstatementgivessuchamatrixthathasthesame dimensionsas M and N:

A=M.*N;

2.3Computerprogramming

Theexpression M./N giveselement-by-elementdivision,whiletheexpression M.^2 isequivalentto M.*M

TheHelpfacilitiesandUserGuidesgivebetterinformationonsuchoperations; forexample,howtodivideonematrixbyanother.

2.3.2Mathfunctions

MATLABandScilabhavebuilt-infunctions,suchas:

sqrt squareroot sin sine

cos cosine

tan tangent asin arcsine atan arctangent atan2 fourquadrantarctangent

exp exponentialtobasee log naturallogarithm log10 logtobase10

factorial(4)=1*2*3*4

M’ matrixtranspose(rowvectortocolumnvectorandvice versa)

If M isamatrix,theexpression sqrt(M)willapplythesquarerootoperation element-by-element.Otherfunctionsoperateinthesameway.Wecanalsonest functions,asshownbythefollowingexample: s=sqrt(exp(A))

Thisbringsustocomplexnumbers.Ifwetypetheexpression sqrt(-1) inthe Scilabcommandwindowwewouldseethefollowingsymbolfortheunitaryimaginarynumber: ans= i

Scilabhaspredefinedthisquantity,sothestatement c=3+(4.5*%i) creates acomplexvariable. Ifwethentypethesymbol c inthecommandwindow,wewouldseethe following:

c= 3.+4.5i

Wecansimilarlycreateacomplexmatrixsuchas M+(N*%i). Unlike sqrt(M), theexpression M^0.5 canoperateonarealmatrixtogivea complexmatrix.

TheHelpfacilitiesandUserGuidesgivebetterinformationonavailable functions.

2.3.3Computationloops

Wearenowcomingtothosefeaturesthatdistinguishacomputerfroma calculator.

Considerthecalculationofthefollowingpolynomialtoproduceavariable y asa functionofagivenvariable(x):

y=a0+a(1)*x+a(2)*x^2+...+a(99)*x^99 wherethecoefficientsaredefinedastheelementsofavector:

[a(1),a(2),...,a(99)]

Wecanuseacalculatorasfollows,tocalculatetheindividualtermsandadd themsuccessivelytoarunningtotal:

y=a0

y=y+a(1)*x y=y+a(2)*x^2 /////////// y=y+a(99)*x^99

Onacomputer,wecanavoidthelaboriousprocessofseparatelyprogramming eachindividualstepbycreatingacomputingloop.MATLABandScilabhavestatementsthatallowustodothisasfollows:

y=a0; K=99; fork=1:K

y=y+a(k)*x^k; end;

Alltheoperationsthatappearbetweenthe for statementandthe end keywordwillbeexecuted99times.Inthisexamplethereisasingleoperation,which calculatesaterm a(k)*x^k andaddsittotherunningtotal(y).Thecomputing loopgoesaroundfrom for to end andbackto for.The for loopusesacounter,thevariable k,tokeeptrackofthenumberoftimesthattheoperationhas beeniterated.Thisisatruevariablethatcanbeusedwithinthecalculations.In thisexampleithasbeenusedtoaddresstheelements a(k) ofthevector,and alsotodeterminethepowertowhichthevariable x mustberaised.The

2.3Computerprogramming

expression 1:K referstoanactualvector.Thestatement V=1:K; wouldproducearowvectoroftheform:

Ratherthancalculatingapolynomialwithagivennumberofterms,wemay wishtocomputethevariable y toanaccuracyof1%.MATLABandScilaballow ustodothisasfollows:

y=a0; k=1; z=a0; whilez<y

y=y+a(k)*x^k; k=k+1; z=100*a(k)*x^k; end;

Inthiscasetherearethreeoperationsbetweenthe while statementandthe end keyword.Beforeitbeginsthefirstiteration,thecomputingloopteststo seewhethertheexpression z<y istrue.Thesymbol < isarelationaloperator.With MATLABthestatement u=z<y wouldproduceavariable u thatissettooneif x is lessthan y,andtozeroif x isnotlessthan y.Thelaststatementintheloopcomputesthenexttermofthepolynomialandthengoesbacktothetest(z<y).Ifthe nexttermislessthan1%oftherunningtotal,theprogramexitsfromtheloop. WithScilabthestatement u=z<y producesaBooleanvariablethatis%T(fortrue) or%F(forfalse).

Computingloopscanalsobenested.Thuswecouldusethefollowingprogramto calculate y for M valuesof x thatarestoredinavector(X):

Y=[]; form=1:M x=X(m); y=a0; fork=1:K

y=y+a(k)*x^k; end; Y=[Y,y]; end

The M valuesof y havebeenstoredinarowvector(Y).

2.3.4Decisionmaking

The while loopconsideredinthelastsectionusedtheresultofanexpression (z<y)todecidewhethertocontinueiteratingorexitingfromtheloop.Thisexpressionusestherelationaloperator < totestwhether x islessthan y.MATLABand Scilabhaverelationaloperatorsthatincludethefollowing:

lessthan

greaterthan

equalto

notequalto

Thebooleanvariables%T(fortrue)and%F(forfalse)usedbyScilabcanbecombinedtotestwhetherseveralconditionsaresatisfied.MATLABcansimilarlycombinebinaryvariables.Thisisachievedbymeansofthelogicaloperators: & logicalAND | logicalOR ~ logicalNOT

Manyprogramsmustdecidebetweenseveralcoursesofactionthatcouldbe takentoachieveagivenobjective.Forexample,considerthedescriptionofa motorthatmovesthroughadistance(x)todriveamachinethroughmechanical links.Therecouldbeplay P inthelinksbefore x causesanymotion(y)ofthe machine.Supposethattheequivalentgearratioofthelinkscanthenbeexpressed bythefollowingrelationship:

y=N*(x-P)

Wemaythenhaveanendstopthatprevents y frommovingbeyondaposition E Supposethatthelinkscanbendelastically,allowingthemotortomovebeyondthe point (E/N)+P.Wemaydecidetouseagrossapproximationinordertomodel thisbehaviorbyamathematicalfunction y = f (x)thathasthefollowingproperties:

Y=0:whenxislessthanP

Y=N*(x-P):whenxliesbetweenPand(E/N)+P

Y=E:whenxexceeds(E/N)+P

Wecanrealizethisfunctionbymeansofthefollowingprogram:

ifx<P

y=0; elseifx<(E/N)+P

y=N*(x-P); elsey=E; end

2.4Statetransitionmachines

Weseethattheregionwhere y movesfromzeroto E satisfiestwoconditionsthat couldbecombinedintotheexpression (x>=P)&(x<(E/N)+P)

Morecomplexprogramscanusevariouscombinationsofloopsand if statements.

2.3.5Graphics

MATLABandScilabcancreatevariousplotsofnumericalresults.Thebulkofthe examplesinthisbookusethestatement plot(X,Y) toplotagraphofavector Y versusthevector X.Theelements X(i) canrepresentthevaluesofanindependentvariable,whiletheelements Y(i) canrepresentafunctionof X(i).Frequencyresponsescanbeplottedagainstalogarithmicfrequencyaxis. Section6.3.4showshowthisisdoneinScilab,whileSection10.4.1showssimilar MATLABinstructions.Athree-dimensionalplotisshowninFigure7.14.Thiswas createdbytheScilabstatement plot3d(X,Y,Z).TheMATLABandScilabHelp facilitiesandUserGuidesgivebetterinformationonavailablegraphicsfeatures.

2.3.6Userdefinedfunctions

Wehaveseenthepowerthataniterativeloophasgivenacomputer.Theconcept ofafunctionextendsthispowerbyallowingustocallupacomputingprocedure at will,atdifferentpointsintheprogram.AppendixA.3givesanexampleofthecoding ofafunctioninScilab.TheMATLABHelpfacilityandUserGuidegiveinformationonthecodingofanequivalentfunction.

2.4Statetransitionmachines

Adigitalcomputerisastatetransitionmachine.Ateveryclockpulsethereisa changeinthepatternofbits(0or1)thatisstoredinitsmemorybankanditselectronicregisters.Theexecutionofalineofcodetypicallyinvolvesoneormoreofthe followingactions,eachofwhichchangesthestateofthemachine:

loadaprogramstatementintothecontrolunit loadavariableintotheprocessor executethestatementtocomputethevalueofavariable savethevariableinmemory

Wewillnowdescribeadigitalmachinewhosestateisdeterminedbythepattern ofbitsthatisstoredinasingleshiftregister.Everyclockpulsewillcauseachange initsstate,whichisdeterminedbyhard-wiredinterconnections.Themachine resemblesanelementarycomputer,wheretheprogramconsistsoftheseinterconnections.Wethushaveasinglestatementthatisendlesslyrepeated.Thedevice canalsobeimplementedonamicrocontrollerasanalgorithmthatisrepeated

wheneveritreceivesaninterruptsignalfromtheclock.Thealgorithmcanbe testedbyaprogramthatusesa for looptosimulatetherepetitionsthatoccur intheactualhardware.WewilluseScilabforrunningsuchatest.

2.4.1Abinarysignalgenerator

Consideradevicethatusesvariousdigitalelementstoproduceasequenceof binarypulses.Binarydataisstoredinbistableflip-flops,eachofwhichstoresa singlebitinatransistorthatisswitchedONorOFF.Theflip-flopsareinterconnectedinastringtoformashiftregister.Whenthemachinereceivesaclockpulse, thepatternofbitsintheregisterismovedbyonepositiondowntheline.Logic operationsareperformedbyAND,OR,andNOTgates.

Wecanalsoimplementthedeviceasanalgorithmonamicrocontroller.The stateoftheshiftregisterisgivenbyavector(x)whoseelementsareeitherones orzerosandaninputsignal z=1 or 0.Wewillbeginwithastatevector(x)that hasthreeelements.Wheneverthemicrocontrollerreceivesaninterruptsignal fromtheclockthepatternofbitswillbeshifted: fromx(2)tox(3) fromx(1)tox(2) fromztox(1)

WecanimplementthealgorithmbythefollowingScilabprogram: fork=1:4

x(3)=x(2); x(2)=x(1); x(1)=z(k); X=[X;x]; end

Supposethattheinitialstateis x=[010] and z=[1111]

Thelaststatementintheloopgatherstherowvectors(x)thatshowtheevolutionofthestateintoamatrix(X)thatcanthenbedisplayedas: X(:,1)X(:,2)X(:,3) 0.1.0.

Havingverifiedtheoperationoftheshiftregister,wewishtoimplementabinary feedbackloopbyusinganexclusive-orgatetocombine x(3) and x(2) andfeedingitsoutput(z)backto x(1).Thisimpliesthat z willbe1providedthatone inputis1andtheotheris0.Theexpression x(3)~=x(2) canbeusedtorealize

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.