Instant Download Calculations and simulations of low-dimensional materials : tailoring properties fo

Page 1


CalculationsandSimulationsofLow-Dimensional Materials:TailoringPropertiesforApplications 1stEditionYingDai

https://ebookmass.com/product/calculations-and-simulationsof-low-dimensional-materials-tailoring-properties-forapplications-1st-edition-ying-dai/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Ferroic materials for smart systems from fundamentals to device applications Dai

https://ebookmass.com/product/ferroic-materials-for-smart-systemsfrom-fundamentals-to-device-applications-dai/

ebookmass.com

Low-Dimensional Halide Perovskites: Structure, Synthesis, and Applications Yiqiang Zhan

https://ebookmass.com/product/low-dimensional-halide-perovskitesstructure-synthesis-and-applications-yiqiang-zhan/

ebookmass.com

Optical properties of materials and their applications Second Edition Singh

https://ebookmass.com/product/optical-properties-of-materials-andtheir-applications-second-edition-singh/

ebookmass.com

Current Developments in Biotechnology and Bioengineering : Designer Microbial Cell Factories Swati Joshi

https://ebookmass.com/product/current-developments-in-biotechnologyand-bioengineering-designer-microbial-cell-factories-swati-joshi/

ebookmass.com

Galvanic corrosion of Type 316L stainless steel and Graphite in molten fluoride salt Jie Qiu & Angjian Wu & Yanhui Li & Yi Xu & Raluca Scarlat & Digby D. Macdonald

https://ebookmass.com/product/galvanic-corrosion-oftype-316l-stainless-steel-and-graphite-in-molten-fluoride-salt-jieqiu-angjian-wu-yanhui-li-yi-xu-raluca-scarlat-digby-d-macdonald/ ebookmass.com

The Politics of Presidential Term Limits Alexander Baturo (Editor)

https://ebookmass.com/product/the-politics-of-presidential-termlimits-alexander-baturo-editor/

ebookmass.com

The House on the Hill Irina Shapiro

https://ebookmass.com/product/the-house-on-the-hill-irina-shapiro/

ebookmass.com

Clinically Oriented Anatomy Eighth North American Edition – Ebook PDF Version

https://ebookmass.com/product/clinically-oriented-anatomy-eighthnorth-american-edition-ebook-pdf-version/ ebookmass.com

Strategic Staffing, Global Edition [Print Replica] (Ebook PDF)

https://ebookmass.com/product/strategic-staffing-global-edition-printreplica-ebook-pdf/ ebookmass.com

Como Programar En C, C++ Y Java 4ta

https://ebookmass.com/product/como-programar-en-c-c-y-java-4ta-edharvey-m-deitel/

ebookmass.com

CalculationsandSimulationsof

Low-DimensionalMaterials

CalculationsandSimulationsof

Low-DimensionalMaterials

TailoringPropertiesforApplications

YingDai

WeiWei

YandongMa ChengwangNiu

Authors

Prof.YingDai ShandongUniversity SchoolofPhysics Shandananlu27 250100Jinan China

Prof.WeiWei ShandongUniversity SchoolofPhysics Shandananlu27 250100Jinan China

Prof.YandongMa ShandongUniversity SchoolofPhysics Shandananlu27 250100Jinan China

Prof.ChengwangNiu ShandongUniversity SchoolofPhysics Shandananlu27 250100Jinan China

CoverImage: ©YuichiroChino/Getty Images

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetails,orotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>

©2023WILEY-VCHGmbH,Boschstraße12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34909-8

ePDFISBN: 978-3-527-83211-8

ePubISBN: 978-3-527-83212-5

oBookISBN: 978-3-527-83213-2

Typesetting Straive,Chennai,India

Contents

Preface ix

1AnIntroductiontoDensityFunctionalTheory(DFT)and Derivatives 1

1.1TheProblemofaN-electronSystem 1

1.2TheThomas–FermiTheoryforElectronDensity 3

1.3TheFirstHohenberg–KohnTheorem 3

1.4TheSecondHohenberg–KohnTheorem 5

1.5TheKohn–ShamEquations 5

1.6TheLocalDensityApproximation(LDA) 7

1.7TheGeneralizedGradientApproximation(GGA) 8

1.8TheLDA+UMethod 8

1.9TheHeyd–Scuseria–ErnzerhofDensityFunctional 9

1.9.1IntroductiontoTight-BindingApproximation 9

1.9.2MatrixElementsofTight-BindingHamiltonian 10

1.9.3MatrixElementswiththeHelpofWannierFunction 10

1.9.4ExampleforaGrapheneModel 10

1.10Introductionto k • p PerturbationTheory 11

1.10.1SolutionforNon-degenerateBands 11

1.10.2SolutionforDegenerateBands 12

1.10.3ExplicitHamiltonianof k • p PerturbationTheory 12 References 13

2NewPhysicalEffectsBasedonBandStructure 17

2.1ValleyPhysics 17

2.1.1SpontaneousValleyPolarization 22

2.1.2ValleyPolarizationbyForeignAtomDoping 31

2.1.3ValleyPolarizationinvanderWaalsHeterostructures 37

2.2RashbaEffects 43 References 55

3FerromagneticOrderinTwo-andOne-Dimensional Materials 65

3.1IntrinsicFerromagneticOrderin2DMaterials 66

3.2IntrinsicFerromagneticOrderin1DMolecularNanowires 73 References 75

4Two-DimensionalTopologicalStates 81

4.1TopologicalInsulators 82

4.1.1Graphene 82

4.1.2HgTe/CdTeQuantumWells 83

4.1.3 Z 2 InvariantandSpinChernNumber 84

4.1.4LargeGapQuantumSpinHallInsulators 86

4.2TopologicalCrystallineInsulators 91

4.2.1SnTeThinFilms 91

4.2.2IV–VIMonolayers 93

4.2.3TopologicalPhaseTransitionBetween2DTCIandTI 94

4.2.4DualTopologicalInsulator 96

4.2.5TCIin2DFerromagnets 100

4.3QuantumAnomalousHallEffect 103

4.4AntiferromagneticTopologicalInsulators 107

4.5MixedTopologicalSemimetals 113 References 118

5CalculationofExcited-StateProperties 123

5.1Green’sFunctionMany-BodyPerturbationTheory 123

5.2ExcitonicEffectsandBandGapRenormalizationinTwo-Dimensional Materials 130

5.3Electron–PhononEffectsontheExcited-stateProperties 133

5.4NonlinearOpticalResponse 136

5.5OpticalPropertiesofvanderWaalsHeterostructuresof Two-DimensionalMaterials 137 References 139

6ChargeCarrierDynamicsfromSimulations 145

6.1Time-DependentDensityFunctionalTheoryandNonadiabatic MolecularDynamics 145

6.2ApplicationsofTDDFTandNAMDinTwo-DimensionalMaterials 148 References 155

7SimulationsforPhotocatalyticMaterials 159

7.1PhotocatalysisandPhotocatalyticReactions 159

7.2PhotoresponsivityandPhotocurrentfromSimulations 164

7.3SimulationforLocalizedSurfacePlasmonResonance 174 References 182

8SimulationsforElectrochemicalReactions 195

8.1Single-atomCatalysts 195

8.2StabilityofCatalyst 197

8.3ElectrochemicalReactions 199

8.3.1HydrogenEvolutionReaction(HER) 199

8.3.2OxygenEvolutionReaction(OER) 203

8.3.3OxygenReductionReaction(ORR) 204

8.3.4NitrogenReductionReaction(NRR) 204

8.3.5ElectrocatalyticActivityEvaluatedfromtheFirst-principles Calculations 209

8.3.6SimulationsforNitrogenReductionReaction 220 References 232

Index 239

Preface

Inmodernsociety,theoreticalcalculationandsimulationareadvancingthedevelopmentofphysics,chemistry,andmaterialsscience,etc.,alongwiththegreatsuccesses incomputertechnology.Afterthesuccessfulexfoliationofgraphenefromgraphite bySirAndreGeimandKonstantinNovoselov,thenvarioustwo-dimensionalmaterialsarepredicted,synthesized,transferred,andcharacterized,andwearewitnessing thecomingoftheearoftwo-dimensionalmaterials.Incomparisontothecorrespondingbulkcounterparts,materialsinlowdimensionexhibitunprecedented novelchemicalandphysicalproperties.Meanwhile,manynovelphenomenaaswell aspromisingpotentialdevicesareproposedbasedonlow-dimensionalmaterials.

Amongtheseintriguingphysicsintwo-dimensionallattices,forexample,the valleyphysics,excitoniceffects,andRashbaeffectattractspecialinterestfromthe standpointsofbothfundamentalandappliedlevel.Thus,thereisanimpressing progressintheresearchontheseexcitingtopics.Forthemagneticproperty,itwas extensivelystudiedinconventionalbulksystems,asithadlongbeenconsidered tosurviveinlow-dimensionalsystemsduetothethermalfluctuationsaccording totheMermin–Wagnertheorem.Inrecentyears,withthediscoveryoflong-range magneticorderintwo-dimensionallattice,magneticmaterialsintwodimensions spurredextensiveattention.Currently,therearemanyworksdevotedtoinvestigate themagneticpropertiesintwo-dimensionalmaterials.Also,thepastdecadeshave witnessedtheevolutionoftopologicalphasesandtopologicalmaterialswhich reshapeourunderstandingofphysicsandmaterials.First-principlescalculations basedonthedensityfunctionaltheoryprovideeffectivedescriptionsoftopological phasesandplayimportantrolesinpredictingrealistictopologicalmaterials,from insulatorstosemimetals,andfromnonmagneticsystemstomagneticones.In fieldsofphotochemistryandphotoelectrochemistry,thetheoreticalcalculations andsimulationsaresopowerfulindesigning,screening,andcharacterizingthe photocatalystsandelectrocatalystsofhighstability,selectivity,andactivity.Indeed, calculationandsimulationareguiding,leading,andmovingforwardthesefields.

Thebookisdividedintoeightchapters.InChapter1,densityfunctionaltheory anditsderivatives(e.g.,thetight-bindingmethod)arebrieflyintroduced,and inChapter2,therecentdevelopmentofvalleyphysicsandRashbaeffectin two-dimensionalmaterialsfromthefirst-principlesarereviewed.InChapter3, calculationsandsimulationresultsforlow-dimensionalferromagneticmaterials

x Preface arediscussed.Chapter4providesagentleintroductionoftopologicalphases andtopologicalmaterialsespeciallyintwodimensions.Theconceptsofdifferent topologicalstatesarediscussedusingfirst-principlesbandstructuresandtopologicalinvariants.InChapter5,ingredientsinthemany-bodyGreen’sfunction perturbationtheoryforcalculatingtheexcited-statepropertiesoflow-dimensional materialsaresummarized,andinChapter6,time-dependentdensityfunctional theoryandnonadiabaticmoleculardynamicsareintroducedforthosewhoare studyingphotoexcitedchargecarrierdynamics.Processofhowtocalculateand simulatephotocatalyticreactionispresentedinChapter7,andelectrochemical reactionsfromcalculationsandsimulationsarereviewedinChapter8.

Thisbookwouldnothavebeenpossiblewithouthelpfrommanypeople.

Jinan,China Summer,2022

YingDai WeiWei YandongMa ChengwangNiu

AnIntroductiontoDensityFunctionalTheory(DFT)and Derivatives

1.1TheProblemofaN-electronSystem

Thedensityfunctionaltheory(DFT)isfirstresultedfromtheworkbyHohenberg andKohn[1],whereinthecomplicatedindividualelectronorbitalsaresubstituted bytheelectrondensity.Namely,theDFTisentirelyexpressedintermsofthefunctionalofelectrondensity,ratherthanthemany-electronwavefunctions.Inthiscase, DFTsignificantlyreducesthecalculationsofthegroundstatepropertiesofmaterials.ThatiswhyDFTisusefulforcalculatingelectronicstructures,especiallywith manyelectrons.AsthefoundationofDFT,twotheoremsareproposedbyHohenberg andKohn[1].Thefirsttheorempresentsthatthegroundstateenergyisafunctional ofelectrondensity.Thesecondtheoremshowsthatthegroundstateenergycanbe achievedbyminimizingsystemenergyonthebasisofelectrondensity.

Itshouldbenotedthat,althoughHohenbergandKohnpointouttherearerelationsbetweenpropertiesandelectrondensityfunctional,theydonotpresentthe exactrelationship.Butfortunately,soonaftertheworkofHohenbergandKohn, KohnandShamsimplifiedthemany-electronproblemsintoamodelofindividual electronsinaneffectivepotential[2].Suchapotentialcontainstheexternalpotentialandexchange-correlationinteractions.Forexchange-correlationpotential,itis achallengetodescribeitrigorously.

Thesimplestapproximationfortreatingtheexchange-correlationinteractionis thelocaldensityapproximation(LDA)[3],whereintheexchangeandcorrelation energiesareobtainedbytheuniformelectrongasmodelandfittingtotheuniform electrongas,respectively.LDAcanprovidearealisticdescriptionoftheatomicstructure,elastic,andvibrationalpropertiesforawiderangeofsystems.Yet,becauseLDA treatstheenergyofthetruedensityusingtheenergyofalocalconstantdensity,it cannotdescribethesituationswherethedensityfeaturesrapidchangessuchasin molecules[4,5].Toaddressthisproblem,thegeneralizedgradientapproximation (GGA)isproposed[6–8],whichdependsonboththelocaldensityandthespatial variationofthedensity.Andinprinciple,GGAisassimpletouseasLDA.Currently, inthevastmajorityofDFTcalculationsforsolids,thesetwoapproximationsare adopted.

CalculationsandSimulationsofLow-DimensionalMaterials:TailoringPropertiesforApplications, FirstEdition.YingDai,WeiWei,YandongMa,andChengwangNiu. ©2023WILEY-VCHGmbH.Published2023byWILEY-VCHGmbH.

1AnIntroductiontoDensityFunctionalTheory(DFT)andDerivatives

ByconsideringtheBorn–Oppenheimerandnon-relativisticapproximations,the effectiveHamiltonianofaN-electronsysteminthepositionrepresentationcanbe givenby,

Thefirsttermiskineticenergyoperator.Thesecondtermisanexternalpotential operator.Insystemsofinteresttous,theexternalpotentialissimplytheCoulomb interactionofelectronswithatomicnuclei:

wherethe r i isthecoordinateofelectron i andthechargeonthenucleusat R�� is Z ��

ThethirdtermofEq.(1.1)istheelectron-electronoperator.Theelectronicstatecan beobtainedbytheSchrödingerequation:

Here, Ψ(r 1 , r 2 , r N )isawavefunctionintermsofspace-spincoordinates.Apparently, thewavefunctionisantisymmetricunderexchangingthecoordinates.UnderDirac notation,theEq.(1.1)canbeexpressedinrepresentation-independentformalism:

Inprinciple,thegroundstateenergy E0 oftheN-electronsystemcanbefound basedonthevariationaltheorem,whichisobtainedbytheminimization:

Here,thesearchisoverallantisymmetricwavefunctions Ψ.Inthisregard,betterapproximationsfor Ψ canreadilyresultinthegroundstateenergy E0 ofthe N-electronsystem,butthecomputationalcostwouldbeveryhigh.Therefore,the directsolutionisnotfeasible.Toaddressthisissue,DFTisdeveloped,whichisbased onareformulationofthevariationaltheoremintermsofelectrondensity.

Weknowthat|Ψ|2 =Ψ* Ψ representstheprobabilitydensityofmeasuringthefirst electronat r 1 ,thesecondelectronat r 2 , … andthe N thelectronat r N .Byintegrating |Ψ|2 overthefirst N 1electrons,theprobabilitydensityofthe N thelectronat r N is determined.ThentheprobabilityelectrondensitythatdefinesanyoftheNelectrons attheposition r isgivenby:

Andtheelectrondensityisnormalizedtotheelectronnumber:

Theenergyofthesystemisexpressedas:

Here,

1.3TheFirstHohenberg–KohnTheorem 3

1.2TheThomas–FermiTheoryforElectronDensity

BeforediscussingtheHohenberg–Kohntheorems,wefirstintroducetheThomas–Fermitheory.TheThomas–Fermitheoryisimportantasitgivestherelationbetween externalpotentialandthedensitydistributionforinteractingelectronsmovinginan externalpotential:

and �� isthe r independentchemicalpotential.ThesecondtermisEq.(1.12)isthe classicalelectrostaticpotentialraisedbythedensity ��(r ).BasedontheThomas–Fermitheory,HohenbergandKohnbuilduptheconnectionbetweenelectrondensityandtheSchrödingerequation.Andinthefollowing,wewillintroducethetwo Hohenberg–Kohntheorems,whichlieattheheartofDFT.

1.3TheFirstHohenberg–KohnTheorem

Byreplacingtheexternalpotential vne (r )withanarbitraryexternallocalpotential v(r ),thecorrespondinggroundstatewavefunction Ψ canbefoundbysolving theSchrödingerequation.Basedontheobtainedwavefunction,thegroundstate density ��(r )canbecomputed.Andobviously,twodifferentlocalpotentialswould givetwodifferentwavefunctionsandthustwodifferentelectrondensities.This givesthemap:

BasedontheThomas–Fermitheory,HohenbergandKohndemonstratedthatthe precedingmappingcanbeinverted,namely, thegroundstateelectrondensity ��(r ) of aboundsystemofinteractingelectronsinsomeexternalpotentialv(r)determinesthe potentialuniquely:

ThisisknownasthefirstHohenberg–Kohntheorem.

1AnIntroductiontoDensityFunctionalTheory(DFT)andDerivatives

Todemonstratethistheorem,weconsidertwodifferentlocalpotentials v1 (r )and v2 (r ),whichdifferbymorethantheconstant.Thesetwopotentialsyieldtwodifferentgroundstatewavefunctions Ψ and Ψ′ ,respectively.Andapparently,thesetwo groundstatewavefunctionsaredifferent.Assume v1 (r )and v2 (r )correspondtothe samegroundstatewavefunction,then

BysubtractingEq.(1.17)fromEq.(1.16),wecanobtain:

whichcanbeexpressedinpositionrepresentation,

Thissuggeststhat

thusincontradictionwiththeassumptionthat v

)and

(

)differbymorethan aconstant.Accordingly,twodifferentlocalpotentialsthatdifferbymorethanthe constantcannotsharethesamegroundstatewavefunction,whichdemonstratethe map:

Then,wedemonstratethemap:

Let Ψ and Ψ′ bethegroundstatewavefunctionscorrespondingto v1 (r )and v2 (r ), respectively.Assumingthat Ψ and Ψ′ exhibitthesamegroundstateelectrondensity ��(r ),thenthevariationaltheoremgivesthegroundstateenergyas:

BysubtractingEq.(1.23)fromEq.(1.24),wecanobtain:

Thismakesnosense.Thisfinallyleadstotheconclusionthattherecannotexisttwo localpotentialsdifferingbymorethananadditiveconstantthathasthesameground statedensity.

1.4TheSecondHohenberg–KohnTheorem

AccordingtothefirstHohenberg–Kohntheorem,thegroundstatedensity ��(r )determinesthelocalpotential v(r ),andinturndeterminestheHamiltonian.Therefore, foragivengroundstatedensity ��0 (r )thatisgeneratedbyalocalpotential,itispossibletocomputethecorrespondinggroundstatewavefunction Ψ0 .Thatistosay, Ψ0 isalsoauniquefunctionalof ��0 (r ):

AccordingtoEq.(1.26),thegroundstateenergy E0 isalsoafunctionalof ��0 (r ):

HohenbergandKohndefinetheuniversaldensityfunctional:

Here, Ψ[��]isanygroundstatewavefunctioncorrespondingtothegroundstatedensity ��(r ).BycombiningEq.(1.10),thetotalenergyfunctionalcanbedefinedas:

FromtheRitzprinciple,wehave:

ThisisknownasthesecondHohenberg–Kohntheorem.

1.5TheKohn–ShamEquations

Forasystemwithnoninteractingelectrons,theeffectiveHamiltonianncanbe givenby:

ThecorrespondingSchrödingerequationis:

Thenthedensityisgivenby:

Here,thesingleparticleorbital �� i (r )isconstructedbasedontheeffectivepotential vs (r ).

Thetotalenergycanbeexpressedas:

1AnIntroductiontoDensityFunctionalTheory(DFT)andDerivatives

Thefirsttermisthekineticenergyofthenoninteractingelectrons,whichisgivenby:

Thesecondtermistheeffectivepotential,whichisgivenby:

Accordingly,thetotalenergycanbegivenby:

BycombiningEqs.(1.36)and(1.37),thekineticenergycanbeexpressedas:

UsingthemethodofLagrangemultipliers,wecanobtainthefollowingequation:

SolutionofEq.(1.39)yieldsthedensity ��s (r ).

Theclassicalelectrostaticinteractionenergyisgivenby:

And

Thenthefollowingequationisobtained:

Thethirdtermisexchangeandcorrelationenergyfunctional:

Theexchange-correlationpotentialisdefinedas:

UsingthemethodofLagrangemultipliers,wecanobtainthefollowingequation:

AndsolutiontoEq.(1.45)is ��(r ).

Therefore,giventherelation:

Wehave:

WethenarriveattheKohn–Shamequation:

1.6TheLocalDensityApproximation(LDA) 7

Solvingthisequationgivestheorbitalandthenthedensityoftheoriginalinteracting system.

Theexchangeandcorrelationfunctionalcanbewrittenas:

Here, ��xc (r ′ ; ��)istheexchange-correlationenergydensity.Andtheexchangepotentialisdefinedas:

Thenthetotalenergycanbegivenby:

Fromprecedingequation,wecanseethat,exceptfortheexchange-correlationfunctional,alltheaforementionedexpressionsareexact.Inpractice,wehavetouse approximationsforexchange-correlationpotential,astheexactformisunknown.

1.6TheLocalDensityApproximation(LDA)

LDAisoneofthemostwidelyusedandsimplestapproximationsfor Exc .InLDA, theexchange-correlationfunctionalisapproximatedas:

Here, ��unif xc [��(r )] istheexchange-correlationenergyperelectroninhomogeneous electrongasatdensity ��.LDAworkswellforhomogeneouselectrongas,andthusis validforsystemswhereelectrondensitydoesnotchangerapidly.

Theexchange-correlationenergydensitycanbebrokendownintotwoparts:

Thefirsttermistheexchangeterm,whichisgivenby:

WhileforthesecondtermofEq.(1.53),itisthecorrelationdensity,whichdoes nothaveananalyticformula.However,thecorrelationenergiescanbeobtained numericallyfromquantumMonteCarlo(QMC)calculationsbyCeperleyand Alder[9].

1AnIntroductiontoDensityFunctionalTheory(DFT)andDerivatives

Andforspin-polarizedsystems,thespin-upandspin-downdensitiesaretakenas twoindependentdensitiesintheexchange-correlationenergy.Andinthiscase,the Eq.(1.52)canbeexpressedas:

Forcalculatingtheelectronicstructure,LDAapproachisestimatedtobesuccessful. However,forsomesystems,itdoesnotwork.Asaresult,manyeffortsaredevoted toimproveit.Oneofthemistoincludethegradientofthedensityintheexchange correlationfunctional,aswewillshownext.

1.7TheGeneralizedGradientApproximation(GGA)

Tointroducethegradientofthedensityintheexchangecorrelationfunctional,the gradientexpansionapproximation(GEA)isfirstproposed.Startingfromtheuniformelectrongas,aslowlyvaryingexternalpotential v(r )isintroduced.Andthen theexchange-correlationenergyisexpandedintermsofthegradientsofthedensity:

Here, Cxc (��)isthesumoftheexchangeandcorrelationcoefficientsofthegradient expansion.Asthereduceddensitygradientissmall,GEAapproachshouldbesuperiortoLDAapproach.However,becausethereduceddensitygradientcanbelarge insomeregionofspaceforrealsystems,GEAisshowntobeworsethanLDA. ToovercometheshortcomingsofGEA,theGGAisdeveloped.InGGA,the exchange-correlationfunctionalisapproximatedas:

Here, f issomefunction.ManyGGAfunctionalshavebeenproposed,includingB88 [10],Lee-Yang-Parr(LYP)[11],PW91[12],andPerdew–Burke–Ernzerhof(PBE)[13] exchange-correlationfunctionals.

1.8TheLDA+UMethod

WhileLDAandGGAareestimatedtobeabletodealwiththemanysystemsandphenomena,theydonotworkwellforthesystemswithrare-earthandlate-transition metalelements.Thisisbecausetheeffectivesingle-particlemethodsareapplicableforhighlydelocalizedbandstatesbutnotforstronglylocalizedstates.Forthe dandfelectronsofrare-earthandlate-transitionmetalelements,theyessentially retaintheiratomiccharacterinsolids.Asaconsequence,standardDFTfunctionalssuchasLDA,localspindensityapproximation(LSDA),andGGAitinerantd statesandmetallicgroundstateformanytransitionmetaloxides,forwhichsemiconductingbehaviorisdemonstratedexperimentally.Forimprovingtheseissues, LDA+Umethodisdeveloped[14–16].Here,ifnotspecifiedelsewhere, +Uindicates aHubbard,andLDAindicatesthestandardDFTfunctionals,i.e.LDA,LSDA,and

1.9TheHeyd–Scuseria–ErnzerhofDensityFunctional 9 GGA.TheideaofLDA+Umethodisonthebasisthatthestronglycorrelatedelectronicstates(i.e.dandfsates)aretreatedbytheHubbardmodel,andtherestof thevalenceelectronsaredescribedbythestandardDFTfunctionals.Therefore,the totalenergywithinLDA+Umethodcanbegivenby:

Here,thefirsttermisthestandardDFTtotalenergyfunctionalbeingcorrected, thesecondtermrepresentstheHubbardHamiltoniantomodelcorrelatedstates, andthethirdisthedouble-countingterm.TheLDA+Umethodcanwelldescribe theelectronicpropertiesoftheMottinsulatorsandincreasethebandgapsinthe Kohn–Shamspectrum.

1.9TheHeyd–Scuseria–ErnzerhofDensityFunctional

InstandardDFT,theFockexchangeenergyiscomputedbasedonalocalenergy densityanditsderivatives.However,theexactformfortheFockexchangeenergy isknownasnonlocalfromtheHartree–Focktheory.Toimprovetheaccuracy, thePBEexchangeenergyshouldbemixedwithafractionoftheexactnonlocalFockexchangeenergy,givingrisetothehybridfunctionals,suchasthe Heyd–Scuseria–Ernzerhof(HSE)functional[17].TheHSEexchange-correlation energyisgivenby:

Here, EHF x and EPBE x ,respectively,representtheexactFockexchangeenergyandthe PBEexchangeenergy. EPBE c isthePBEcorrelationenergy. �� istherange-separation parameter. �� isthemixingparameter.FromEq.(1.59),itcanbeseenthattheHSE functionalissplitintoshort-andlong-rangeterms.Inthiscase,itcanimprovethe accuracy,whileavoidingthecomputationalcost.

1.9.1IntroductiontoTight-BindingApproximation

Considerinasingleatomtherearemultipleatomicorbitals ��m (r)withmbeingthe orbitalindices.Here, ��m (r)mustbeeigenfunctionsoftheHamiltonianofthatsingle atom H atom .Whenweplaceitinacrystalwithplentyofatoms,thewavefunction ofdifferentatomsoverlapeachothertoformadifferentwavefunction.Duetothat ��m (r)isnotarealeigenfunctionforaHamiltonianofcrystalandweneedtofind outwhatthetrueeigenfunctionsare.Iftheoverlapofoneatomonanotherissmall enough,wecanstillassumethatelectronsaretightlyboundtothecorresponding atoms,whichisexactlythereasonwhywecallitastight-bindingapproximation.The approximateHamiltonianis H (r) = H atom (r) +ΔU (r),whoseBlochwavefunction canbetakenasacombinationofalltheisolatedorbitals:[18,19]

��m (r)= ∑ Rn bm (Rn )��m (r Rn ),

where Rn denotesalllatticepointsand bm (Rn )isjustacoefficientnumberfororbital m.Inthepresenceoftranslationsymmetry,coefficientnumberscanbereplacedby

1AnIntroductiontoDensityFunctionalTheory(DFT)andDerivatives aBlochform,whichgives:

1.9.2MatrixElementsofTight-BindingHamiltonian

TogetHamiltonianinthemomentumspace,weshalldoabasistransformationsuch as:[20]

When Ri isequalto Rj ,wewillfindtheonsiteenergyrepresentedfortheatomic energyshiftduetotheoverlapofotheratoms,whichcanbegivenas:

If Ri isnotequalto Rj ,hoppingenergybetweendifferentlatticesitescanbedefined as:

1.9.3MatrixElementswiththeHelpofWannierFunction

Usually,Blochwavefunctionsarenotorthogonal,whichmayresultinsomeproblems.ToresolvethatweshoulddefinetheorthogonalWannierfunctionas:

(r Ri )= 1

Byusingabra-ketnotation,theHamiltonianintherealspacetakestheformof:[21]

where �� i and tij denotetheonsiteenergyandhoppingenergy,respectively.Toget theenergyofHamiltonian,weshalldoabasistransformationintothemomentum space,whichisimplementedbyaFouriertransform:

1.9.4ExampleforaGrapheneModel

Byusinggraphenelattice[22]asanexample,wegiveadetaileddescriptionabout howtousetight-bindingmethod.Here,weconsidertwoatomswithsorbitalina singleunitcellofunitlatticeconstant,whoselatticevectorcanbewrittenas: a1 = 1 2 (3, √3) , a2 = 1 2 (3, √3) .

Eachatomisconnectedwiththreenearest-neighboratomswithadistanceof: ��1 = 1 2 (1, √3) ,��2 = 1 2 (1, √3) ,��3 =(−1, 0)

1.10Introductionto k • p PerturbationTheory 11

Inthemomentumspace,weconsidertheonsiteenergyfortwosorbitalsis �� 1 .The nearest-neighborhoppingstrengthis t,whichleavesaHamiltonianmatrixasfollows:

Wecangettheenergydispersionwithanimplementationofdiagonalization, whichresultsin:

1.10Introductionto k p PerturbationTheory

Asingleelectroninaperiodicpotential V (r)obeysaSchrödingerequation,andsuch aformcanbewrittenas[23,24]:

[ p2 2m + V (r)] ��(k,r) = E��(k,r) ,

wheretheeigenvaluesandeigenfunctionscanbewrittenas En (k)and �� n (k, r) = eik • r un (k, r).TheperiodicpartthatiscalledasaBlochfunctionsatisfiessuchan equationas:

H0 (k)un (k, r)= En (k)un (k, r), wheretheHamiltonianlocatedatmomentumpointof k0 canbegivenas: H0 (k0 )= p2 2m + ℏ m k0 ⋅ p + ℏ2 k2 0 2m + V (r).Iftheeigenvaluesandeigenfunctionsareassumedtobe solvedforpointas k0 ,wecangetthesolutionsofnearbypointssuchas k = k0 + �� k throughthefollowingequation:

[H0 (k0 )+ ℏ m �� k ⋅ p] un (k, r)= [En (k0 )+ ℏ2 2m (k2 0 k2 )] un (k, r).

Then,theperturbationHamiltoniangainsaformof H ′ (k)= ℏ m �� k p.Withthehelp ofperturbationtheory,wecansolvetheenergyofnearbypointsundertwodifferent situations,whichisillustratedinthefollowingchapter.

1.10.1SolutionforNon-degenerateBands

Ifthebandsarenotdegeneratefor k0 ,theperturbatedeigenvaluesofthepoints k = k0 + �� k canbegivenby[25,26]: En (k)= En (k0 )+ 2 2m (k2 0 k2 ) + ℏ m �� k⟨unk0 (r )∣ p ∣ unk0 (r )⟩ + ℏ2 m2 ∑ n′ ≠n ⟨unk0 (r )∣ p ∣ un′ k0 (r )⟩⟨un′ k0 (r )∣ p ∣ unk0 (r )⟩�� k2 En (k0 )− En′ (k0 ) ,

1AnIntroductiontoDensityFunctionalTheory(DFT)andDerivatives

wherethefirsttermandsecondtermofright-handsidearezeroorderapproximation,andthethirdtermandfourthtermserveasthefirstandsecondorderapproximation.Here,wegiveanexplicitexampletodescribehowtogetaHamiltonian basedonthefollowingequation.Weassumetheeigenvaluesandeigenfunctionsof k0 = 0areknownbyfirst-principlescalculationsorexperiment.Consideracubic latticewithapointgroupof Oh andtwobands|u1k (r)⟩ and|u2k (r)⟩ thattransform as Γ+ 1 and Γ1 representation,andthesymmetryrepresentationof H ′ isthevector representationas Γ15 .

Forthefirstorderapproximation,thedirectproduct Γ+ 1 ⊗ Γ15 ⊗ Γ+ 1 =Γ15 changes therepresentation Γ+ 1 into Γ15 ,resultinginavanishingmatrix.Whileforthesecond orderapproximation,thedirectproduct Γ15 ⊗ Γ+ 1 =Γ15 limitsthe |un′ k0 (r)⟩ tothe Γ15 representation,whichisjustthebandrepresentationofantibondingpbands. Therearethreebasis x , y,and z for Γ15 representation;onlythreetermscanexistas acrosstermof ⟨Γ+ 1 |px |x ⟩, ⟨Γ+ 1 |py |y⟩,and ⟨Γ+ 1 |pz |z⟩ accordingtotheselectionrules. Finally,wecangetthetotaleigenvaluesas:

(

u1k0 (r)|px |x ⟩|2 E1 (0)− En′ (0)

1.10.2SolutionforDegenerateBands

Ifthebandsaredegeneratefor k0 ,theeigenfunctionmustbealinearcombination ofdegeneratedbands.Here,weassumeband i isdegeneratewithband j,andthe firstorderperturbationequationcanbewrittenas:[27] | | | | | ⟨i|H0 + H ′ |i⟩ �� ⟨i|H0 + H ′ | j⟩ ⟨ j|H0 +

Thefourtermsonleft-handsidecanchangetheformsas ⟨i|H0 + H ′ |i⟩

|

⟩ = (

/

)

• ⟨j|p|i⟩.Thesolutionyields: ��( ⃗ �� )= E0 i + E0 j 2 ± 1 2 √(E0 i E0 j )2 + 4ℏ2 m2 k ⋅ p↔ ij ⋅ k, where p↔ ij isathirdordertensor.Foracubiclattice,suchatensorhasaformof: p↔ ij = ⎛ ⎜ ⎜ ⎜ ⎝ p2 ij 00 0 p2 ij 0 00 p2 ij ⎞ ⎟ ⎟ ⎟ ⎠

1.10.3ExplicitHamiltonianof k p PerturbationTheory

Generally,any4 × 4Hamiltoniancanbeexpandedwith16Diracmatricesas: H = �� (k)I + ∑ i di (k)Γi + ∑ ij dij (k)Γij ,

where I istheidentifymatrices,andthefiveDirac Γi matricescanbedefinedas Γ1 = �� 1 ⊗��

]/2i with �� i and �� i aretwosetsofPaulimatrices.

First,weshouldwritethesymmetrymatrixinthebasiswechoose.TakenBi2 Se3 asanexample,[28,29]wechoosefourstatesas:

and

.Accordingtothetransformation formula,foursymmetrymatricesD(R)canbeconstructedas:

1.Time-reversalsymmetry: T = i�� y K ⊗ 1.

2.Threefoldrotationsymmetryalong z axis: R3 = ei(��3 ⊗1

3.Twofoldrotationsymmetryalong x axis: R2 = i�� 1 ⊗�� 3 .

4.Inversionsymmetry: P = 1 ⊗�� 3 .

Second,weapplythesymmetrymatricesinto16Diracmatricestogettherepresentationofmatrices,whichisimplementedby D(R)Γi D(R) 1 .Inthepresenceof time-reversalsymmetry,weonlyneedtotakeintoconsiderationoneidentitymatrix andfiveDirac Γi matrices.

Third,wecombinedtheDiracmatriceswithcorrespondingpolynomialsofthe momentum k whosharegettheHamiltonian.Itcanbewrittenas:

References

1 Hohenberg,P.andKohn,W.(1964).Inhomogeneouselectrongas. Phys.Rev. 136: B864–B871.

2 Kohn,W.andSham,L.J.(1965).Self-consistentequationsincludingexchange andcorrelationeffects. Phys.Rev. 140:A1133–A1138.

3 Jones,R.O.andGunnarsson,O.(1989).Thedensityfunctionalformalism,its applicationsandprospects. Rev.Mod.Phys. 61:689–746.

4 Grossman,J.C.,Mitas,L.,andRaghavachari,K.(1995).Structureandstabilityofmolecularcarbon:importanceofelectroncorrelation. Phys.Rev.Lett. 75: 3870–3873.

5 Zupan,A.,Blaha,P.,Schwarz,K.,andPerdew,J.P.(1998).Pressure-induced phasetransitionsinsolidSi,SiO2,andFe:Performanceoflocal-spin-density andgeneralized-gradient-approximationdensityfunctionals. Phys.Rev.B 58: 11266–11272.

6 Perdew,J.P.,Burke,K.,andErnzerhof,M.(1996).Generalizedgradientapproximationmadesimple. Phys.Rev.Lett. 77:3865–3868.

7 Perdew,J.P.,Burke,K.,andWang,Y.(1996).Generalizedgradientapproximation fortheexchange-correlationholeofamany-electronsystem. Phys.Rev.B 54: 16533–16539.

1AnIntroductiontoDensityFunctionalTheory(DFT)andDerivatives

8 Becke,A.D.(1997).Density-functionalthermochemistry.V.Systematicoptimizationofexchange-correlationfunctionals. J.Chem.Phys. 102:8554–8560.

9 Ceperley,D.M.andAlder,B.J.(1980).Groundstateoftheelectrongasbya stochasticmethod. Phys.Rev.Lett. 45:566–569.

10 Becke,A.D.(1988).Density-functionalexchange-energyapproximationwith correctasymptoticbehavior. Phys.Rev.A 38:3098–3100.

11 Lee,C.,Yang,W.,andParr,R.G.(1988).DevelopmentoftheColle-Salvetti correlation-energyformulaintoafunctionaloftheelectrondensity. Phys.Rev.B 37:785–789.

12 Colle,R.andSalvetti,O.(1975).Approximatecalculationofthecorrelation energyfortheclosedshells. Theor.Chim.Acta 37:329–334.

13 Miehlich,B.,Savin,A.,Stoll,H.,andPreuss,H.(1989).Resultsobtainedwiththe correlationenergydensityfunctionalsofbeckeandLee,YangandParr. Chem. Phys.Lett. 157:200–206.

14 Anisimov,V.I.andGunnarsson,O.(1991).Density-functionalcalculationof effectiveCoulombinteractionsinmetals. Phys.Rev.B 43:7570–7574.

15 Anisimov,V.I.,Zaanen,J.,andAndersen,O.K.(1991).BandtheoryandMott insulators:HubbardUinsteadofStonerI. Phys.Rev.B 44:943–954.

16 Anisimov,V.I.,Solovyev,I.V.,Korotin,M.A.etal.(1993).Density-functionaltheoryandNiOphotoemissionspectra. Phys.Rev.B 48:16929–16934.

17 Heyd,J.,Scuseria,G.E.,andErnzerhof,M.(2003).Hybridfunctionalsbasedona screenedCoulombpotential. J.Chem.Phys. 118:8207–8215.

18 Papaconstantopoulos,D.-A.(1986). HandbookoftheBandStructureofElemental Solids.Springer.

19 Madelung,O.(2012). IntroductiontoSolid-StateTheory,vol.2.SpringerScience &BusinessMedia.

20 Wieder,B.-J.,Bradlyn,B.,Wang,Z.-J.etal.(2018).Wallpaperfermionsandthe nonsymmorphicDiracinsulator. Science 361:246.

21 Liu,G.-B.,Shan,W.-Y.,Yao,Y.etal.(2013).Three-bandtight-bindingmodel formonolayersofgroup-VIBtransitionmetaldichalcogenides. Phys.Rev.B 88: 085433.

22 Kane,C.-L.andMele,E.-J.(2005).Quantumspinhalleffectingraphene. Phys. Rev.Lett. 95:226801.

23 Luttinger,J.-M.(1955).Quantumtheoryofcyclotronresonanceinsemiconductors:generaltheory. Phys.Rev. 102:1030.

24 Pikus,G.-E.(1962).Anewmethodofcalculatingtheenergyspectrumofcarriers insemiconductors.I.Neglectingspin-orbitinteraction. Sov.Phys.JETP 14:898.

25 Bir,G.-L.andPikus,G.-E.(1975). SymmetryandStrain-InducedEffectsin Semiconductors.NewYork:Wiley.

26 Ivchenko,E.-L.andPikus,G.-E.(1995). SuperlatticesandOtherHeterostructures. Berlin:Springer.

27 Voon,L.-C.-L.-Y.andWillatzen,M.(2009). ThekpMethod:ElectronicProperties ofSemiconductors.(SpringerScience&BusinessMedia.

28 Liu,C.-X.,Qi,X.-L.,Zhang,H.-J.etal.(2010).ModelHamiltonianfortopological insulators. Phys.Rev.B 82:045122.

29 Zhang,W.,Yu,R.,Zhang,H.-J.etal.(2010).First-principlesstudiesofthe three-dimensionalstrongtopologicalinsulatorsBi2 Te3 ,Bi2 Se3 andSb2 Te3 . NewJ. Phys. 12:065013.

NewPhysicalEffectsBasedonBandStructure

2.1ValleyPhysics

Valleyreferstothelocalminimumintheconductionbandorthelocalmaximum inthevalencebandinthemomentumspace.Giventhesystemswithtwoormore valleys,ifthevalleyscanbepolarizedanddetected,thevalleycanformanewdegree offreedomofcarriersinadditiontochargeandspin.Analogytochargeforelectronicsandspinforspintronics,thepossibilityofutilizingvalleydegreeoffreedomas informationcarriergivesrisetotheconceptofvalleytronics[1–3].Theideaofusing valleydegreeoffreedomdatesbacktothestudiesinthelate1970s,whichinvestigatedthevalleybehaviorandinter-valleycouplinginsiliconinversionlayers[4–6]. Moreover,bytuningtheintravalleyexchangeandcorrelation,theelectronswould preferentiallyoccupythevalleys,therebygeneratingthevalleypolarization.Subsequentlyaftertheworksonsiliconinversionlayer,severalothersystemsliketheAlAs quantumwell,siliconheterostructures,bismuth,anddiamondarealsoshowntofeaturethevalleyfeature[7–11].Despitetheseextensiveefforts,therelacksanintrinsic physicalpropertythatcorrelatedwiththevalleyoccupancy.Thisisinsharpcontrastwiththecaseofspin,wherethemagneticmoment,thespinopticalselection rule,andthespin-orbitcoupling(SOC)canbeemployedastheintrinsicproperties associatingwiththespin.Therefore,theutilizationofthevalleyindexisseverely limitedascomparedwiththespintronics,andtheintrinsicpropertyassociatedwith thevalleyoccupancyisunderexploration.

Therecentriseof2Dmaterials[12–14]providesanunprecedentedopportunityto addresstheaforementionedissues.Thefirst2Dsystemharboringthevalleyphysics isproposedingraphene(Figure2.1)[1].Ingraphenewithbrokeninversionsymmetry,thebandedgesofthebandstructurelieatthe +K and K pointsofthe2D Brillouinzone,formingtwodegeneratebynonequivalentvalleys.Importantly,the carriersinthe +K and K valleysaresubjectedtooppositeBerrycurvaturesand orbitalmagneticmoment.Thesetwoquantitiescanbeusedtodistinguishthevalleys.TheBerrycurvaturecanbehavelikeeffectivemagneticfields,whichwould resultinananomalousvelocityperpendiculartoanelectricfield.ThisisaHall effect,whichisreferredtoasthevalleyHalleffect[15].Whilefortheorbitalmagneticmoment,itresultsfromself-rotating,soanenergyshiftcanbeexpectedunder

CalculationsandSimulationsofLow-DimensionalMaterials:TailoringPropertiesforApplications, FirstEdition.YingDai,WeiWei,YandongMa,andChengwangNiu. ©2023WILEY-VCHGmbH.Published2023byWILEY-VCHGmbH.

1, 0

Figure2.1 Schematicdiagramofthevalleyfilterbasedongraphene.Toppanel: Dispersionrelationinthewideandnarrowregions.Anelectroninthefirstvalley(modes n = 0,1,2, …)istransmitted(filledcircle),whereasanelectroninthesecondvalley(modes n =−1, 2, )isreflected(opencircle).Middlepanel:Honeycomblatticeofcarbonatoms inastripcontainingaconstrictionwithzigzagedges.Bottompanel:Variationofthe electrostaticpotentialalongthestripforthetwocasesofanabruptandsmoothpotential barrier(solidanddashedlines).Thepolarityofthevalleyfilterswitcheswhenthepotential height, U 0 ,intheconstrictioncrossestheFermienergy, E F .Source:Rycerzetal.[1]/with permissionofSpringerNature.

themagneticfield.Itshouldbenotedthat,undertheinversionsymmetry,the +K and K valleyscanbetransformedintoeachother,makingitnotpossiblefordistinguishingthevalleys.Therefore,breakingtheinversionsymmetryisanecessary conditionforutilizingBerrycurvatureandorbitalmagneticmomenttodistinguish thevalleyoccupancy.Currently,severalapproachesareproposedtobreaktheinversionsymmetryofgraphene,includingthecreationofedgemodes[16]anddefect lines[17].However,theseapproachesarechallenginginexperiments,limitingtheir practicalapplications.

Afterdiscoveringthevalleybehaviorsingraphene,themonolayergroup-VItransitionmetaldichalcogenides(TMDs),i.e.MoS2 ,WS2 ,MoSe2 ,andWSe2 ,areidentified asthemostpromisingplatformtostudythenovelvalley-contrastingphysics[18–21]. InmonolayerTMDs,theMatomiclayerissandwichedbetweentwoXatomiclayers,whichbreakstheinversionsymmetrynaturally(Figure2.2a).Moreover,there aretwodegeneratebutnonequivalentvalleyslocatingatthe +K and K points,generatingtwovalleys.Therefore,underanin-planeelectricfield,thecarriersin +K and K valleyswouldbeaccumulatedattheoppositeedgesofthesample,which isrelatedtotheoppositeBerrycurvaturesatthetwovalleys(Figure2.2c).More importantly,asthevalleysaredominatedbythedorbitalsoftheMatoms,thevalleysexperienceavalleyspinsplittingduetothestrongSOCstrengthwithinM-d orbitals[22].Andduetothein-planecharacterofthedorbitalsforthevalleysinthe valencebands,theyhaveaverylargevalleyspinsplitting.Whileforthevalleysin theconductionbands,becauseoftheout-of-planecharacter,thevalleyspinsplitting (a)

Figure2.2 CrystalstructureandvalleyphysicsinmonolayerTMDs.(a)2Dhexagonal lattice.(b)Valleycontrastingopticalselectionrulesina2Dhexagonallatticewithbroken inversionsymmetry.Theinterbandtransitioninvalley K ( K )couplesto �� + (�� )circularly polarizedlightonly(circulararrows).(c)DiagramofthevalleyHalleffectinmonolayer TMDs.Arrowssuggestthepseudo-vectorquantities,i.e.Berrycurvatureororbitalmagnetic moment,ofthecarriers.Source:Xuetal.[18]/withpermissionofSpringerNature.

(b)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.