Instant ebooks textbook Distributions, volume 3 1st edition jacques simon download all chapters

Page 1


Distributions,

Simon

Visit to download the full and correct content document: https://ebookmass.com/product/distributions-volume-3-1st-edition-jacques-simon/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Continuous Functions, Volume 2 Jacques Simon

https://ebookmass.com/product/continuous-functionsvolume-2-jacques-simon/

Kappa Distributions. Theory and Applications in Plasmas 1st Edition Edition George Livadiotis (Eds.)

https://ebookmass.com/product/kappa-distributions-theory-andapplications-in-plasmas-1st-edition-edition-george-livadiotiseds/

Ryan’s Retina: 3 Volume Set 6th Edition

https://ebookmass.com/product/ryans-retina-3-volume-set-6thedition/

Oceans: Evolving Concepts Guy Jacques

https://ebookmass.com/product/oceans-evolving-concepts-guyjacques/

Comparing Income Distributions: Statics and Dynamics

John Creedy

https://ebookmass.com/product/comparing-income-distributionsstatics-and-dynamics-john-creedy/

A Change of Circumstance (Simon Serrailler) Susan Hill

https://ebookmass.com/product/a-change-of-circumstance-simonserrailler-susan-hill/

Mathematics

Ian Jacques

for

Economics and Business, 10th Edition

https://ebookmass.com/product/mathematics-for-economics-andbusiness-10th-edition-ian-jacques/

The Sermons of John Donne: Volume 3

https://ebookmass.com/product/the-sermons-of-john-donne-volume-3/

German Infantryman on the Eastern Front 1st Edition

Simon Forty

https://ebookmass.com/product/german-infantryman-on-the-easternfront-1st-edition-simon-forty/

Distributions

For his Theory of Distributions, obviously, without which this book could not have existed, but also, and above all, for his kindness and courage.

The clarity of Schwartz’s analysis classes at the École Polytechnique in 1968 made the dunce that I was there happy. Even if I arrived late, even if I had skipped a few sessions, everything was clear, lively and easy to understand. His soft voice, benevolent smile, mischievous eye — especially when, with an air of nothing, he was watching for reactions to one of his veiled jokes, “a tore, from the Greek toro, the tyre”— he made people love analysis.

When master’s students at the university demanded “a grade average for all” in 1969, most professors either complied or slunk away. Not Schwartz. When the results were posted— I was there, to make up easily for the calamitous grades I had earned at Polytechnique— he came alone, frail, in front of a fairly excited horde. He explained, in substance:

“An examination given to all, without any value, would no longer allow one to rise in society through knowledge. Removing selection on the basis of merit would leave the field open to selection by money or social origin”.

Premonitory, alas.

Analysis for PDEs Set

Jacques Simon

First published 2022 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd

27-37 St George’s Road

John Wiley & Sons, Inc.

111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA

www.iste.co.uk

www.wiley.com

© ISTE Ltd 2022

The rights of Jacques Simon to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s), contributor(s) or editor(s) and do not necessarily reflect the views of ISTE Group.

Library of Congress Control Number: 2022936452

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

ISBN 978-1-78630-525-1

1.5.Spaces

2.4.Sequentialcompletenessof

viDistributions

3.4.Thecasewhere E isnotaNeumannspace................

Chapter4.ExtractionofConvergentSubsequences

4.1.Boundedsubsetsof D (Ω; E)

4.2.Convergencein

4.3.Sequentialcompletenessof

4.4.Sequentialcompactnessin

Chapter5.OperationsonDistributions

5.1.Distributionsfields..............................

5.2.Derivativesofadistribution........................

5.3.Imageunderalinearmapping.......................

5.4.Productwitharegularfunction.......................

5.5.Changeofvariables.............................

5.6.Someparticularchangesofvariables...................

5.8.Distributionswithvaluesinaproductspace...............

6.7.Propertiesoftheannihilationdomainandsupport............

6.8.Thespace

7.1.Weightingbyaregularfunction......................

7.2.Regularizingcharacteroftheweightingbyaregularfunction.....

7.3.Derivativesandsupportofdistributionsweightedbyaregularweight.

7.4.Continuityoftheweightingbyaregularfunction............

7.5.Weightingbyadistribution.........................

7.6.Comparisonofthedefinitionsofweighting................

7.7.Continuityoftheweightingbyadistribution...............

7.8.Derivativesandsupportofaweighteddistribution............

7.9.Miscellanouspropertiesofweighting...................

Chapter8.RegularizationandApplications

8.1.Localregularization.............................

8.2.Propertiesoflocalapproximations.....................

8.3.Globalregularization............................

8.4.Convergenceofglobalapproximations..................

8.5.Propertiesofglobalapproximations....................

8.6.Commutativityandassociativityofweighting..............

8.7.Uniformconvergenceofsequencesofdistributions...........

Chapter9.PotentialsandSingularFunctions

9.1.Surfaceintegraloverasphere.......................

9.3.Derivativesofadistributionassociatedwithasingularfunction....

9.4.ElementaryNewtonianpotential......................

9.5.Newtonianpotentialoforder

9.6.Localizedpotential.............................

9.7.Diracmassasderivativesofcontinuousfunctions............

9.8.Heavisidepotential.............................

Chapter10.LineIntegralofaContinuousField

Chapter11.PrimitivesofFunctions

11.1.Primitiveofafunctionfieldwithazerolineintegral..........

11.2.Tubularflowsandconcentrationtheorem................

11.3.Theorthogonalitytheoremforfunctions.................

Chapter12.PropertiesofPrimitivesofDistributions

12.5.Continuousprimitivemapping......................

12.6.Harmonicdistributions,distributionswithacontinuousLaplacian..

viiiDistributions

Chapter13.ExistenceofPrimitives

13.3.Theorthogonalitytheorem........................

13.4.Poincar´e’sgeneralizedtheorem......................

13.5.Currentofanincompressibletwodimensionalfield..........

13.6.Globalversuslocalprimitives.......................

13.7.Comparisonoftheexistenceconditionsofaprimitive.........

Chapter14.DistributionsofDistributions

14.6.Distributionsofdistributionswithvaluesin

Chapter15.SeparationofVariables

15.1.Tensorproductsoftestfunctions.....................

15.7.Permutationofvariables..........................

Chapter16.BanachSpaceValuedDistributions

16.5.DistributionsinaBanachspaceasderivativesoffunctions......

16.6.Non-representabilityofdistributionswithvaluesinaFr´echetspace.

16.7.ExtendabilityofdistributionswithvaluesinaBanachspace.....

16.8.CancellationofdistributionswithvaluesinaBanachspace......

Introduction

Objective. Thisbookisthethirdofsevenvolumesdedicatedtosolvingpartialdifferentialequationsinphysics:

Volume1: Banach,Frechet,HilbertandNeumannSpaces

Volume2: ContinuousFunctions

Volume3: Distributions

Volume4: Integration

Volume5: SobolevSpaces

Volume6: Traces

Volume7: PartialDifferentialequations

Thisthirdvolumeaimstoconstructthespaceofdistributionswithrealorvectorial valuesandtoprovidethemainpropertiesthatareusefulinstudyingpartialdifferential equations.

Intendedaudience. We 1 havelookedforsimplemethodsthatrequireaminimal levelofknowledgetomakethistoolaccessibletoaswideanaudienceaspossible —doctoralstudents,universitystudents,engineers—withoutloosinggeneralityand evengeneralizingcertainresults,whichmaybeofinteresttosomeresearchers.

Thishasledustochooseanunconventionalapproachthatprioritizessemi-norms andsequentialproperties,whetherrelatedtocompleteness,compactnessorcontinuity.

1. We? We,it’sjust“me”!There’snointentionofusingtheRoyalWe,dearreader,butthis modest(?)“we” iscommonlyusedinscientifictextswhenanauthorwishestospeakofthemselves. Itisoutofmodesty thatthewritersofPort-Royalmadethisthetrendsothattheycouldavoid,theysay,thevanityof“me” [Louis-NicolasBESCHERELLE, Dictionnaireuniverseldelalanguefranc¸aise,1845].

xDistributions

Utilityofdistributions. Themainadvantageofdistributionsisthattheyprovide derivativesofallcontinuousorintegrablefunctions,eventhosewhicharenotdifferentiable,andthusbroadenthescopeofapplicationofdifferentialcalculus.Thisis especiallyusefulforsolvingpartialdifferentialequations.

Tothisend,afamilyofobjects,thedistributions,isdefined,withthefollowing properties.

—Anycontinuousfunctionisadistribution.

—Anydistributionhaspartialderivatives,whicharedistributions.

—Foradifferentiablefunction,wefindtheconventionalderivatives.

—Anylimitofdistributionsisadistribution.

—AnyCauchysequenceofdistributionshasalimit.

Thesepropertiesmayberoughlysummarizedbysayingthatthespace D of distributionsisthe completionwithrespecttoderivation ofthespace C ofcontinuous functions.Thisconstruction,duetoLaurentSCHWARTZ,[69]and[72],iscompleted herefordistributionsonanopensubset Ω of Rd withvaluesinaNeumannspace E, i.e.asequentiallycompleteseparablesemi-normedspace.Thisincludesvaluesina BanachorFr´echetspace.

Originality. Thequestforsimplemethods 2 givinggeneralpropertiesledustoproceedasfollows.

—Directlyconsider vectorialvalues,i.e.constructing D (Ω; E) withoutanyprior studyofrealdistributions.

—Assumethat E issequentiallycomplete,i.e.aNeumannspace.

—Use semi-norms toconstructthetopologiesof E, D(Ω), D (Ω; E), etc

—Equip D (Ω; E) withthe simpletopology

—Introduce weighting togeneralizetheconvolutiontoopendomains.

—Explicitlyconstructthe primitives

Separatethevariables usinga“basic”method.

—Onlyuse integration for continuousfunctions

Letustakeacloserlookatthesepointsthatlieoffthebeatentrack.

Vectorvalues. WeconsiderdistributionswithvaluesinageneralNeumannspace E eventhoughthepartialdifferentialequationsinphysicsgenerallyhaverealvalues. Thisisusefulinevolutionequationstoseparatethetime t fromthevariableofspace x. Adistributionover t,x withrealvaluesisthenidentifiedwithadistributionover t withvaluesinaspace E ofdistributionson x,forexample,withanelementof

2. Focusandsimplicity. ThiswasoneofSteveJOBS’favouritemantras:“Simplecanbeharderthan complex:Youhavetoworkhardtogetyourthinkingcleantomakeitsimple.Butit’sworthitintheend becauseonceyougetthere,youcanmovemountains.”[BusinessWeek,1998].

D ((0,T ); E) where E = D (Ω),whichisitselfaNeumannspace.Thisidentification ismadepossiblebythefundamental kerneltheorem,p.312.

AlistofthemostusefulNeumannspacesisgivenonpage43.

Forstationaryequations,therealdistributions(thatis,thecasewhere E = R)are sufficient.Wewilldirectlyworkonthecasewhere E isaNeumannspaceinorder toavoidrepetitions,thegeneralizationoftenconsistingofreplacing R with E andthe absolutevalue || withasemi-normof E inthestatementsandproofs,whenusing appropriatemethods.

Particularfeaturesinthecaseofvectorvalues. Themaindifferencesascompared todistributionswithrealvaluesareasfollows,forageneralspace E.

—Thespace D (Ω; E) isnotreflexiveanditstopologyofpointwiseconvergenceon D(Ω) doesnotcoincidewithitsweaktopology.

—Theboundedsubsetsof D (Ω; E) arenotrelativelycompact.

—Thedistributionsover Ω arenotofafiniteorderoveritscompactparts:theycannot alwaysbeexpressedasfiniteorderderivativesofcontinuousfunctions.

—Variablesmaybeseparatedbyconstructingabijectionfrom D (Ω1 × Ω2; E) onto D (Ω1; D (Ω2; E)) (evenforarealdistribution,i.e.for E = R,thisbringsinvector values,inthiscasein D (Ω2)).

Sequentialcompleteness. Weassumethat E isaNeumannspace,i.e.thatallits Cauchyseriesconverge,sincethisisanessentialconditionforcontinuousfunctionsto bedistributions.Thatis,for C(Ω; E) ⊂D (Ω; E), see section3.4, Thecasewhere E isnotaNeumannspace,p.53.

Thispropertyissimplerthanthecompleteness,i.e.theconvergenceofallthe Cauchyfilters,andisespeciallymoregeneral:forexample,if H isaHilbertspace withinfinitedimensions, H-weak issequentiallycompletebutisnotcomplete[Vol.1, Property(4.11),p.63].

Itisalsosimplerandmoregeneralthanquasi-completeness,i.e.thecompleteness ofboundedsubsets,usedbyLaurentSCHWARTZ [72,p.2,50and52].

Semi-norms. Weusefamiliesofsemi-normsratherthanlocallyconvextopologies, whichareequivalent,inordertobeabletodefine Lp(Ω; E) inVolume4.Indeed,itis possibletoraiseasemi-normtoapower p,butnotaconvexneighborhood!

Thehandlingofsemi-normedspacesissimple,althoughitislessfamiliarthan thatoftopologicalspaces:itfollowsthehandlingofnormedspaces,themaindifferencebeingthatthereareseveralsemi-normsornormsinsteadofasinglenorm. Forexample,webringinthetopologyof D(Ω) throughthefamilyofsemi-norms

ϕ D(Ω);p =supx∈Ω, |β|≤p(x) p(x)|∂β ϕ(x)| indexedby p ∈C+(Ω),whichismuch simplerthanits(equivalent)constructionastheinductivelimitofthe DK (Ω)

Simplytopology. Weequipthespace D (Ω; E) withthefamilyofsemi-norms f D (Ω;E);ϕ,ν = f,ϕ E;ν indexedby ϕ ∈D(Ω) and ν ∈NE (setindexingthe semi-normsof E),i.e.withthetopologyofsimpleconvergenceon D(Ω),asitis well-suitedtoourstudy...andissimple.Thissimplicityisachievedwithout restrictingourselvestoa pseudo-topology asisdoneinseveraltexts.

Inaddition,thistopologyhasthesameconvergentsequencesandthesame boundedsetsasthetopologyofuniformconvergenceontheboundedsubsetsof D(Ω) usedbyLaurentSCHWARTZ.Thereasonsforourchoicesaredetailedonp.45.

Opendomainandweighting. Weconsiderdistributionsdefinedonanopensubset Ω of Rd.Asthesedonotnecessarilyhaveanextensiontoallof Rd,weintroducean operation,wecallitweighting,whichplaysarolefor Ω thatissimilartotherole playedbyconvolutionfor Rd andwhichweconstantlyuse.

Theweighteddistribution f µ ofadistribution f ,definedonanopenset Ω,bya weight µ,whichisarealdistributionon Rd withacompactsupport D,isadistribution definedontheopenset ΩD = {x ∈ Rd : x + D ⊂ Ω}.When f and µ arefunctions, itisgivenby (f µ)(x)= ˚ D f (x + y)µ(y)dy.When Ω= Rd,theconvolutionis recovereduptoasymmetryon µ,andallitspropertiesarerecovereduptoapossible sign.

Primitives. Weshowthatafieldofdistributions q =(q1,...,qd) hasaprimitive f , thatis ∇f = q,ifandonlyifitsatisfies q,ψ =0E forallthetestfields ψ =(ψ1,...,ψd) suchthat ∇ . ψ =0.Itisthe orthogonalitytheorem.Weexplicitly determinealltheprimitivesandamongthesedetermineonewhichdepends continuouslyon q

Wealsodemonstratethatwhen Ω issimplyconnecteditisnecessaryandsufficient that ∂iqj = ∂j qi forall i and j.Itisthe Poincar´e’sgeneralizedtheorem.

Separationofvariables. Weshowthattheseparationofvariablesisbijectivefrom D (Ω1 × Ω2; E) onto D (Ω1; D (Ω2; E)) bymeansofinequalities.Thesearecertainlylaborioustoestablish,buttheyavoidthedifficulttopologicalpropertiesusedby LaurentSCHWARTZ inhisdiabolicalproofofthis kerneltheorem

Theadvantageofthismethodislaidoutinthecommentary Originality... ,p.317.

Integration. Theintegrationofcontinuousfunctionsisessentialtoidentifythemwith distributionsthroughtheequality f,ϕ = fϕ,foralltestfunctions ϕ.Sincethe

theoryofintegrationwasnotdevelopedforvaluesinaNeumannspace,inVolume2 weestablishedresultsrelativetouniformlycontinuousfunctionsthatmeetourrequirements.Weremindthembeforeusingtheminthisvolume.

ThegeneraltheoryofintegrationwithvaluesinaNeumannspacewillbedone inalatervolumeinthecontextof integrabledistributions,whichplaytheroleofthe usual classesofalmostequalintegrablefunctions.Indeed,ithasseemedsimplerto thusconstructgeneralintegration.

Prerequisite. Theproofsinthemainbodyofthetextonlyusethedefinitionsand resultsalreadyestablishedinVolumes1and2,recalledeitherintheAppendixorin thetext,withreferencestotheirproofs.

Thisbookhasbeenwrittensuchthatitcanbereadinanout-of-orderfashionby anon-specialist:theproofsaredetailedandincludeargumentsthatmaybetrivial foranexpertandthenumbersofthetheoremsbeingusedaresystematicallyrecalled. Thesedetailsareevenmorenecessary 3 sincethemajorityoftheresultsaregeneralizations,thatarenew,tofunctionsanddistributionswithvaluesinaNeumannspace ofpropertiesthatareclassicforvaluesinaBanachspace.

Irequestthereadertobelenientwithhowheavythismaymakethetext.

Comments. Unlikethemainbodyofthetext,thecomments,appearinginsmallerfont,mayreferto externalresultsorthosenotyetestablished.Theappendix‘Reminders’isalsowritteninsmallerfontasit isassumedthatthecontentisfamiliar.

Historicaloverview. Whereverpossible,theoriginoftheconceptsandresultsis specifiedinfootnotes 4 .

3. Necessarydetails. AsLaurentSCHWARTZ explainedinthepreambletooneofhisarticles[71,p.88]: “Althoughmanyproofsarerelativelyeasy,wefinditusefultowritethem inextenso,becausewhenever topologicalvectorspacescomeintoplaytherearesomany‘traps’thatgreatrigorisneeded”. GiventhatthegreatandrigorousAugustinCAUCHY hashimselfarrivedatanerroneousresult,wehave nottreatedanydetailtoolightly.Letusrecallthat,in1821,inhisremarkable Coursd’Analysedel’ ´ Ecole RoyalePolytechnique,hedeclaredthathehad‘easily’[18,p.46]proventhatifarealfunctionwithtwo realvariablesiscontinuouswithrespecttoboththevariables,itiscontinuouswithrespecttotheircouple. Itwasnottill1870thatCarlJohannesTHOMAE [89,p.15]demonstratedthatthiswasinexact.

4. Historicaloverview.Objective. Thisisfirstofalltohonourthemathematicianswhoseworkhas madethisbookpossibleandinspireit.Althoughsomemaybemissing,eitherduetolimitedspaceor knowledge.Theotherobjectiveistoshowthattheworldofmathematicsisanancienthumanconstruction, nota“revealedtruth”,andthatbehindeachtheoremthereareoneormorehumans,ourcontemporariesor distantancestorswho—includingtheGreeks—reasonedjustaswellasus,withoutinternet,computers orevenprintingandpaper.

Theforgotten. TheFrenchareprobablyover-representedhere,astheyareinallfrenchlibrariesand teachingand,often,infrenchhearts.AmongtheFrench,Iamover-represented,becausethisbookisthe resultofthirtyyearsofworkIhavecarriedouttosimplifyandgeneralizedistributionswithvectorialvalues.

xivDistributions

Navigatingthisbook.

—The tableofcontents,atthebeginningofthisbook,liststhetopicsdiscussed.

—The index,p.371,providesanotherthematicaccess.

—The tableofnotations,p.xv,specifiesthemeaningofthesymbolsused.

—Thehypothesesareallstatedwithinthetheoremsthemselves.

—Thenumberingiscommontoallthestatements,sothattheycanbeeasilyfoundin numericalorder(forinstance,Theorem2.2isfoundbetweenstatements2.1and2.3, whicharedefinitions).

Acknowledgements. IamparticularlygratefultoEnriqueFERN ´ ANDEZ-CARA who hasproofreadcountlessversionsofthistext,indefatigable,andwhohasgivenme variousfriendlysuggestionsforequallycountlessimprovementsineachversion.

FulbertMIGNOT suggested(amongotherthings)thateachchaptershouldbeprecededbyabriefintroduction.Thiswasveryhelpful:inordertorevealtheguiding principle,Ihadtohighlightitandre-writeseveralsections.

ThemeticulousandknowledgeablereadingscarriedoutbyOlivierBESSON,DidierBRESCH andPierreDREYFUSS contributedsubstantialimprovementstothetext.

J´erˆomeLEMOINE,mydisciple—astigmataandacrosshe’llbearforlife!—, hadthetaskofproofreadingthedemonstrations:heis,thus,entirelyresponsiblefor anyerrorstheremaybe...except,perhaps,thoseImayhaveaddedsince.

JacquesBLUM wasabletoconvincemethatitwastimetopublishthis.Indeed.

Thankyou,myfriends,forallyourhelpandwarmsupport.

JacquesSIMON Chapdes-Beaufort,March2021

LaurentSCHWARTZ,myprimarysourceofinspirationandadmiration,isalsoperhapsover-represented, since,histreatiseshavingnohistoricalnotesduetohisgreatmodesty,Ihaveattributedtohimthetotality oftheircontents.Ontheotherhand,theRussiansandEasternEuropeansareprobablyparticularlyunderrepresented,duetothelanguagebarrier,aggravatedbythemutualignoranceoftheWestandEastduring theColdWarperiod.

Novelties. Attheriskofsoundingimmodest(well, nobodyisperfect)Ihavemarkedoutalargenumberof resultsthatIbelievearenew,bothtoarousethereader’svigilance—it’snotimpossiblethatthisbookmay containsomecarelessmistake—andtodrawtheirattentiontothenewtoolsavailabletothem. Appealtothereader. AnumberofimportantresultslackhistoricalnotesbecauseIamnotfamiliarwith theirorigin.Ibegthereader’sindulgencefortheselacunaeand,aboveall,theinjusticesthatmayresult. AndIcallupontheeruditeamongyoutoflaganyimprovementstomeforfutureeditions.

SPACESOF DISTRIBUTION

D(Ω) spaceoftestfunctions(infinitelydifferentiablewithcompactsupport)...21

DK (Ω) id. withsupportinthecompactset K ⊂ Ω (anothernotationfor C∞ K (Ω))..24

D(Ω; Rd) spaceoftestfields..................271

D (Ω) spaceofrealdistributions...............42

D (Ω; E) spaceofdistributionswithvaluesin E ............42

DK (Ω; E) id. withsupportintheclosedset K ⊂ Ω ...........137

D (Ω; Ed) spaceofdistributionfields...............82

D∇(Ω; Ed) spaceofgradients..................253

D (Ω)-weak D (Ω) equippedwithitsweaktopology...........80

D (Ω; E-weak) spaceofdistributionswithvaluesin E-weak ..........78

D (Ω; E)-unif D (Ω; E) withtopologyofuniformconvergenceonboundedsubsetsof D(Ω)..46

D (Ω1; D (Ω2; E))) spaceofdistributionsofdistributions...........285

SETOFDISTRIBUTIONS

D +(Ω) setofrealpositivedistributions..............111

SPACEOFFUNCTIONS

B(Ω; E) spaceofuniformlycontinuousfunctionswithboundedsupport.....14

C(Ω; E) spaceofcontinuousfunctions..............12

Cb(Ω; E) id. bounded...................12

CK (Ω; E) id. withsupportinthecompactset K ⊂ Ω ..........18

C+(Ω) setofrealpositivecontinuousfunctions...........19

Cm(Ω; E) spaceof m timescontinuouslydifferentiablefunctions;caseof m = ∞ .12,13

Cm b (Ω; E) id. withboundedderivatives,caseof m = ∞ .........12,13

Cm K (Ω; E) id. withsupportinthecompactset K ⊂ Ω ..........18

C(Ω; E) spaceofuniformlycontinuousfunctions...........342

Cb(Ω; E) id. bounded...................13

CD(Ω; E) id. withsupportinthecompactset D ⊂ Rd ..........18

Cm b (Ω; E) space Cm withuniformlycontinuousandboundedderivatives.....13

K(Ω) spaceofrealcontinuousfunctionswithcompactsupport.......57

K∞(Ω) id. infinitelydifferentiable...............24

K(Ω; E) spaceofcontinuousfunctionswithcompactsupport........186

K∞(Ω; E) spaceofinfinitelydifferentiablefunctionswithcompactsupport....178

SETOFFUNCTIONS

Cm(Ω;Λ) setoffunctionsof Cm(Ω; Rd) withvaluesintheset Λ .......100

C1([a,b];Ω) setof“differentiable”functionson [a,b],withvaluesin Ω ......222

SPACEOFMEASURES

M(Ω) spaceofrealmeasures................58

M(Ω; E) spaceofmeasureswithvaluesin E .............58

OPERATIONSONADISTRIBUTION (ORAFUNCTION) f f,ϕ valueofadistributiononatestfunction ϕ ...........42 f extensionby 0E ..................139 f imageunderthesymmetry x →−x ofthevariable........184

˘ f imageunderpermutationofvariables;caseofadistributionofdistributions109,318 f imageundergroupingofvariables.............317 f imageunderseparationofvariables.............309

f |ω restriction....................117

τxf translationby x ∈ Rd ................107

Rnf globalregularization.................176 Lf compositionwithalinearmapping L over E ..........91 f ◦ T compositionwitharegularchangeofvariable T .........101 f µ weightingbyaweight µ;caseofaregularweight;caseoffunctions153,142,144

f ρn localregularization.................170 f µ convolutionwith µ .................155 f ⊗ g tensorproduct(offunctions)...............297 nihil f annihilationdomain.................130 supp f support;caseofafunction..............131,17

DERIVATIVESOFADISTRIBUTION (OROFAFUNCTION) f

f or df/dx derivativeofafunctionofarealvariable............9

∂if partialderivative: ∂if = ∂f/∂xi;caseofafunction.......85,10 ∂β f derivativeoforder β:

f ;caseofafunction....85,11 β positivemulti-integer: β =(β1,...,βd), βi ≥ 0 ........10

|β| derivationorder: |β| = |β1| + ... |βd| ............10

∂0f derivativeoforder 0: ∂0f = f ..............10

∇f gradient: ∇f =(∂1f,...,∂df );caseofafunction........85,9 ∆f Laplacian: ∆f =

2 1

+ +

2

............99 q field: q =(q1,...,qd) ................81

∇ . q divergence: ∇ . q = ∂1q1 + ...∂dqd ............239

∇ 1q primitivedependingcontinuouslyon q ............257

INTEGRALSOFFUNCTIONSANDPATHS

ω f Cauchyintegral..................15

Sn ω f approximateintegral.................15

ω f completedintegral.................54

Sr f ds surfaceintegraloverasphere..............191

Γ q . d lineintegralofavectorfieldalongapath...........222

Γ path......................221 [Γ] imageofapath: [Γ]= {Γ(t): ti ≤ t ≤ te} ..........221

reversepath...................226

concatenationofpaths................228

H homotopy....................231 [H] imageofahomotopy.................231

SEPARATEDSEMI-NORMEDSPACES

E separatedsemi-normedspace...............1 E;ν semi-normof E ofindex ν ................1 NE setindexingthesemi-normsof E ..............1

equalityoffamiliesofsemi-norms..............4

topologicalequality..................5

⊂ → topologicalinclusion..................5

E-weak space E equippedwithpointwiseconvergenceon E ........77 E dualof E ....................76

E sequentialcompletionof E ...............54

Ed Euclideanproduct E × × E ..............8

E1 ×···× Ed productofspaces..................114

SUBSETSANDMAPPINGSOFSEMI-NORMEDSPACES

˚ U interiorofasubset U ofasemi-normedspace..........351 U closureof U

boundaryof U

Lin(E; F ) setoflinearmappings................285

L(E; F ) spaceofcontinuouslinearmappings............356

Ld(E1×...×Ed; F ) spaceofcontinuousmultilinearmappings.........360

POINTSANDSUBSETSOF Rd

Rd Euclideanspace: Rd = {x =(x1,...,xd): ∀i,xi ∈ R} ......354

|x| Euclideannorm: |

x . y Euclideanscalarproduct:

ei i-thbasisvectorin Rd ................10

Ω domainofdefinitionoffunctionsorofdistributions.........8

ΩD domainoftheweighteddistribution: ΩD = {x : x + D ⊂ Ω};figure.142,143

Ω1/n Ω minusaneighborhoodofitsboundary: Ω1/n = {x : B(x, 1/n) ⊂ Ω} ..171

Ω(a) 1/n connectedcomponentof Ω1/n containing a;figures.....235,266,268

Ωn r potato-shapedset: Ωn r = {x : |x| <n,B(x,r) ⊂ Ω} .......33

κn crown-shapedset: κn =Ωn+2 1/(n+2) \ Ωn 1/n ..........33

ω subsetof Rd ....................8

|ω| measureoftheopenset ω ...............364

B(x,r) closedball B(x,r)= {y ∈ Rd : |y x|≤ r} .........353

˚ B(x,r) openball ˚ B(x,r)= {y ∈ Rd : |y x| <r} .........353

Ca,b opencrown Ca,b = {x ∈ Rd : a< |x| <b} ..........364

υd measureoftheunitball: υd = | ˚ B(0, 1)| ...........365

∆s,n closedcubeofedgelength 2 n centeredon 2 ns ........15 compactinclusionin Rd ................176

OTHERSETS 1

N setofnaturalnumbers: N = {0, 1, 2,...}

N∗ setofpositivenaturalnumbers: N∗ = {1, 2,...}

Z setofintegers: Z = {..., 2, 1, 0, 1,

Q setofrationalnumbers................349 R spaceofrealnumbers.................350

integerinterval: m,n

∞ extendedintegerinterval:

(a,b) openinterval: (a,b)= {x ∈ R : a<x<b}

[a,b] closedinterval: [a,b]= {

ANDALSO

∅ emptyset

⊂ algebraicinclusion

setdifference:

SPECIFICFUNCTIONSANDDISTRIBUTIONS

det determinant...................362

δx Diracmass....................59

α,αn partitionofunity;localizingfunction...........34,175

ρn regularizingfunction.................169

ϕ or φ testfunction...................21

ψ divergence-freetestfield................271

ξ elementarypotential: ∆ξ = δ0 .............197

γ localelementarypotential: γ = θξ .............208

η correctorterm: η =2∇ξ . ∇θ + ξ∆θ ............208 e exponentialnumber..............[Vol.1,p.323] log logarithm.................[Vol.1,p.321]

TYPOGRAPHY

endofstatement endofprooforcomment

FIGURES

Pavingofanopenset ω bythecubes ∆s,n (todefinethemeasureandintegral)......15

Coveringof Ω bycrown-shapedsets κn andpotato-shapedsets Ωn 1/n ........34

Domainofdefinition ΩD oftheweighteddistribution f µ ...........142

Domain ΩD goinguptoapartoftheboundary...............143

GraphofthefunctionsinDiracmassdecomposition.............212

Intermediateclosedpaths Γn betweentwohomotopicclosedpaths.........233

Divergence-freetubularflow Ψ ...................240

Connectedcomponent Ω(a) 1/n of Ω1/n containing a ..............266

Connectedopenset Ω forwhichno Ω1/n isconnected.............268

Field q withlocalprimitive θ butnoglobalprimitive.............280

Decompositionofa“projection”onaclosedsubset..............344

1. Notationofnaturalnumbers. Thenotationof N and N∗ followstheISO80000-2standard,seep.349.

Semi-NormedSpaces andFunctionSpaces

Inthischapter,weprovidedefinitionsforthefollowingessentialnotions.

—Semi-normedspacesand,inparticular,Neumann,Fr´echetandBanachspaces(§1.1).

—Topologicalequalityandinclusionofsemi-normedspaces(§1.2).

—Continuousmappings(§1.3)anddifferentiablefunctions(§1.4).

—Spacesofcontinuouslydifferentiablefunctionsandtheirsemi-norms(§1.5).

—TheintegralofauniformlycontinuousfunctionwithvaluesinaNeumannspace(§1.6).

WewillmakeextensiveuseoftheirpropertiesestablishedinVolumes1and2,andrefer,astomakethis bookself-contained,totheirprecisestatementsinthecourseofthetextorintheAppendixwithreferences totheirproofs.

1.1.Semi-normedspaces

Letusdefineseparatedsemi-normedspaces 1 (thedefinitionsofvectorspacesand ofsemi-normsarerecalledintheAppendix,§A.2).

Definition1.1.– A semi-normedspace isavectorspace E endowedwithafamilyof semi-norms { E;ν : ν ∈NE }

Anysuchspaceissaidtobe separated (or Hausdorff)if u =0E istheonly elementsuchthat u E;ν =0 forall ν ∈NE .

1. Historyofthenotionofsemi-normedspace. JohnvonNEUMANN introducedsemi-normedspaces in1935[56](withanunnecessarycountabilitycondition).Healsoshowed[56,Theorem26,p.19]that theycoincidewiththelocallyconvextopologicalvectorspacesthatAndreyKOLMOGOROV previously introducedin1934[46,p.29].

HistoryofthenotionofHausdorffspace. FelixHAUSDORFF hadincludedtheseparationconditioninits originaldefinitionofatopologicalspacein1914[40].

Distributions, First Edition. Jacques Simon

© ISTE Ltd 2022. Published by ISTE Ltd and John Wiley & Sons, Inc.

2Distributions

A normedspace isavectorspace E endowedwithanorm E

Caution. Definition1.1ofaseparatedsemi-normedspaceisgeneralbutnotuniversal.ForLaurent SCHWARTZ [73,p.240],asemi-normedspaceisaspaceendowedwitha filtering familyofsemi-norms (Definition1.8).Thisdefinitionisequivalent,sinceeveryfamilyisequivalenttoafilteringfamily[Vol.1, Theorem3.15].

ForNicolasBOURBAKI [10,editionspublishedafter1981,Chap.III,p.III.1]andRobertEDWARDS [30,p.80],asemi-normedspaceisaspaceendowedwitha single semi-norm,whichdrasticallychangesits meaning.

Letusdefineboundedsubsets 2 ofaseparatedsemi-normedspace.

Definition1.2.– Let U beasubsetofaseparatedsemi-normedspace E,whosefamily ofsemi-normsisdenotedby { E;ν : ν ∈NE }.Wesaythat U is bounded if,for every ν ∈NE , sup u∈U u E;ν < ∞

LetusdefineconvergentandCauchysequences 3 inasemi-normedspace.

Definition1.3.– Let (un)n∈N beasequenceinaseparatedsemi-normedspace E, whosefamilyofsemi-normsisdenotedby { E;ν : ν ∈NE }.

(a) Wesaythat (un)n∈N convergestoalimit u ∈ E,andwedenote un → u,if,for every ν ∈NE , un u E;ν → 0 when n →∞.

(b) Wesaythat (un)n∈N isa Cauchysequence if,forevery ν ∈NE , supm≥n um un E;ν → 0 when n →∞

CAUTION. Wedenote N def = {0, 1, 2,...} and N∗ def = {1, 2,...},conformingtotheISO80000-2standardformathematicalandphysicsnotation(editedin2009).

Anypossibleconfusionwillbeofnoconsequence,apartfromsurprisingthereaderusedtotheopposite notationwhenseeingaterm u0 ofaseriesindexedby N,ortheinverse 1/n ofanumber n in N∗ .

2. Historyofthenotionofboundedset. Boundedsetsinasemi-normedspacewereintroducedin1935 byJohnvonNEUMANN [56].AndreyKOLMOGOROV hadintroducedthemin1934[46]fortopological vectorspaces.

3. Historyofthenotionofconvergentsequence. BaronAugustinCAUCHY gaveDefinition1.3for convergencein R,in1821[18,p.19].NielsABEL contributedtotheemergenceofthisnotion. HistoryofthenotionofCauchysequence. AugustinCAUCHY introducedtheconvergencecriterionof Definition1.3forrealseries,in1821[18,p.115-116],admittingit(i.e.byimplicitlyconsidering R asthe completionof Q).BernardBOLZANO previouslystatedthiscriterionin1817in[6],tryingunsuccessfully tojustifyitduetothelackofacoherentdefinitionfor R

Semi-NormedSpacesandFunctionSpaces3

Letusdefineseveraltypesofsequentiallycompletespaces.

Definition1.4.– Aseparatedsemi-normedspaceis sequentiallycomplete ifallits Cauchysequencesconverge.

A Neumannspace isasequentiallycompleteseparatedsemi-normedspace.

A Fr´echetspace isasequentiallycompletemetrizablesemi-normedspace.

A Banachspace isasequentiallycompletenormedspace.

Neumannspaces. WenamedthesespacesinVolume1inhomagetoJohn VON NEUMANN,whointroducedsequentiallycompleteseparatedsemi-normedspacesin1935[56].Thus,readersshouldrecallthe definitionbeforeusingitelsewhere.Examplesofsuchspacesaregiveninthecommentary Examplesof Neumannspaces,p.43.

Completenessandsequentialcompleteness. Asemi-normedspaceis complete ifeveryCauchyfilterconverges[SCHWARTZ,73,Chap.XVIII,§8,Definition1,p.251].Weshallnotusethisnotion sincesequentialcompletenessismuchsimplerandmoregeneral(completeimpliessequentiallycomplete [SCHWARTZ,73,p.251])andespeciallysincecertainusefulspacesaresequentiallycompletebutnot complete.Forexample,itisthecaseofanyreflexiveHilbertorBanachspaceofinfinitedimensionendowed withitsweaktopology[Vol.1,Property(4.11),p.63].

CompletenessandMetrizability. Recallthat,forametrizablespace, completeness isequivalentto sequentialcompleteness [SCHWARTZ,73,TheoremXVIII,8;1,p.251].Thisiswhysomeauthorsspeakof completenessforBanachorFr´echetspaces,whileinrealitytheyonlyusesequentialcompleteness.

Letusgiveadefinitionofmetrizability.

Definition1.5.– Asemi-normedspaceis metrizable ifitisseparatedandifitsfamily ofsemi-normsiscountableorisequivalenttoacountablefamilyofsemi-norms.

Definitionsoftheequivalenceoffamiliesofsemi-normsandoftheircountability arerecalledonpages4and350(Definitions1.6andA.1).

Justificationforthename“metrizable”. Wereferheretoa metrizable spacesinceeverycountablefamily or,whatleadstothesamething,anysequence ( k)k∈N ofsemi-normscanbeassociatedwitha distance, or metric, d whichgeneratesthesametopology,forinstance d(u,v)= k∈N 2 k u v k 1+ u v k

Definition1.5is,infact,thatofa separatedcountablysemi-normablespace.Weshallabuseterminology andspeakof metrizable spacessincethisequivalentnotionismorefamiliar.Tobeprecise,a metrizable spaceisaspacethatis“topologicallyequaltoametricspace”.

4Distributions

Superiorityofasequenceofsemi-normsoveradistance. Thesemi-normsofametrizablespace E allow ustocharacterizeitsboundedsubsets U by(Definition1.2)

supu∈U u E;k < ∞,forall k ∈ N.

Onthecontrary, if E isnotnormable andif d isadistancethatgeneratesitstopology,itsboundedsubsets arenotcharacterizedby

sup u∈U

d(u, 0E ) < ∞

Whatisworse,isthatno“ball” {u ∈ E : d(u,z) <r},for r> 0,isbounded.Indeed,theexistenceofa non-emptyboundedopensubsetisequivalenttonormability,dueto Kolmogorov’sTheorem 4

1.2.Comparisonofsemi-normedspaces

First,letuscomparefamiliesofsemi-normsonthesamevectorspace.

Definition1.6.– Let { 1;ν : ν ∈N1} and { 2;µ : µ ∈N2} betwofamiliesof semi-normsonthesamevectorspace E.

Thefirstfamily dominates thesecondif,forevery µ ∈N2,thereexistafinite subset N1 of N1 and c1 ∈ R suchthatforevery u ∈ E, u 2;µ ≤ c1 sup ν∈N1 u 1;ν .

Bothfamiliesare equivalent ifeachonedominatestheother.Wealsosaythatthey generatethesametopology.

Terminology. The topology of E isthefamilyofitsopensubsets.Wecansaythattwofamiliesofseminorms generatethesametopology insteadofsayingthatthey areequivalent,sincetheequivalenceofthe familiesofsemi-normsimpliestheequalityofthefamiliesofopensubsets[Vol.1,Theorem3.4],and reciprocally[Vol.1,Theorem7.14(a)and8.2(a),with L = T = Identity].

Letusseehowwecancomparetwosemi-normedspaces(thedefinitionofavector subspaceisrecalledintheAppendix,§A.2).

Definition1.7.– Let E and F betwosemi-normedspaces,whosefamiliesofseminormsaredenotedby { E;ν : ν ∈NE } and { F ;µ : µ ∈NF }.

(a) Wedenote E ≡ ↔ F if E = F andiftheiradditions,multiplicationsandfamiliesof semi-normscoincide.Thatistosay,iftheyhavethesamevectorspacestructureand thesamesemi-norms.

4. HistoryofKolmogorov’sTheorem. AndreyKOLMOGOROV showedin1934[46,p.33]thata topologicalvectorspaceisnormableifandonlyifthereexistsaboundedconvexneighborhoodofthe origin,whichisequivalentheretotheexistenceofaboundedopenset.

Semi-NormedSpacesandFunctionSpaces5

(b) Wesaythat E is topologicallyequal to F andwedenote E = ↔ F if E = F ,if theiradditionsandmultiplicationscoincideandiftheirfamiliesofsemi-normsare equivalent.

(c) Wesaythat E is topologicallyincluded in F andwedenote E ⊂ → F if E isa vector subspace of F andifthefamilyofsemi-normsof E dominatesthefamilyofrestrictions to E ofthesemi-normsof F

Thatistosayif,foreverysemi-norm µ ∈NF ,thereexistafinitesubset N of NE and c ∈ R suchthat,foreverysemi-norm u ∈ E, u F ;µ ≤ c sup ν∈N u E;ν .

(d) Wesaythat E isa topologicalsubspace of F ifitisavectorsubspaceof F and ifitisendowedwiththerestrictionsto E ofthesemi-normsof F or,moregenerally, withafamilyequivalenttothefamilyoftheserestrictions.

Caution. Supposethat E = F andthat,forevery µ ∈NF ,thereexists ν ∈NE suchthat,forevery u ∈ E, u F ;µ = u E;ν

Thisequality doesnotimplytopologicalequality E = ↔ F :itonlyimplies E ⊂ → F .Indeed,itdoesnot ensuretheexistence,forevery ν ∈NE ,ofa µ satisfyingthisequalityorofafinitefamilyof µ suchthat u E;ν ≤ c supµ∈M u F ;µ,whichisnecessaryfortheconverseinclusion F ⊂ → E

Suchanequalityofsemi-normsoccursforexampleinstep3,p.28,oftheproofofTheorem2.12, wherewethusproveaconverseinequalitytogettopologicalequality.

Letusfinallydefinefilteringfamiliesofsemi-norms.

Definition1.8.– Afamily { ν : ν ∈N} ofsemi-normsonavectorspace E is filtering if,foreveryfinitesubset N of N ,thereexist µ ∈N suchthat,forevery u ∈ E, sup ν∈N u ν ≤ u µ

Utilityoffilteringfamilies. Theuseoffilteringfamiliessimplifiessomestatements,bysubstitutinga singlesemi-normtotheupperenvelopeofafinitenumberofsemi-norms.Thisisforexamplethecase withthecharacterizationofcontinuouslinearmappingsfromTheorem1.12whereweconsiderbothcases. Definition1.9ofcontinuousmappingscouldsimilarlybesimplifiedwithafilteringfamily.

Anyfamilyofsemi-normsisequivalenttoafilteringfamily[Vol.2,Theorem3.15],butthisoneisnot necessarilypleasanttouse.

Spacesendowedwithfilteringfamilies. The“natural”familyofsomespacesisfiltering.Forexample, D(Ω) isendowed(Definition2.5)withthefamily,whichisfiltering(Theorem2.7),ofthesemi-norms, indexedby p ∈C+(Ω), ϕ D(Ω);p =sup x∈Ω sup |β|≤p(x) p(x)|∂β ϕ(x)|

Asinglenormalsoconstitutes,onitsown,afilteringfamilyofsemi-norms.

6Distributions

Utilityofnon-filteringfamilies. The“natural”familyofsomespacesisnotfiltering.Forexample, D (Ω) isendowed(Definition3.1)withthenon-filteringfamilyofthesemi-norms,indexedby ϕ ∈D(Ω), f D (Ω);ϕ = | f,ϕ | Iftheaimwastoconsiderfilteringfamiliesonly,then D (Ω) shouldbeendowedwiththesemi-norms |||f |||D (Ω);N =sup ϕ∈N | f,ϕ |

indexedbythefinitesubsets N of D(Ω).Themaximumoverfinitesubsetswouldofcoursedisappearfrom Definition1.9ofcontinuousfunctionsbutitwouldreappearhere.

1.3.Continuousmappings

Wenowdefinevariousnotionsofcontinuity 5 ofamappingfromasemi-normed spaceintoanother.

Definition1.9.– Let T beamappingfromasubset X ofaseparatedsemi-normed space E intoanotherseparatedsemi-normedspace F ,andlet { E;ν : ν ∈NE } and { F ;µ : µ ∈NF } bethefamiliesofsemi-normsof E and F

(a) Wesaythat T is continuousatthepoint u of X if,forevery ν ∈NE and > 0, thereexistafinitesubset M of NF and η> 0 suchthat: v ∈ X, sup µ∈M v u

Wesaythat T is continuous ifitissoateverypointof X

(b) Wesaythat T is uniformlycontinuous if,forevery ν ∈NE and > 0,thereexist afinitesubset M of NF and η> 0 suchthat: u ∈ X,v ∈ X, sup µ∈M v u F ;µ ≤ η

(v) T (u) E;ν ≤ .

(c) Wesaythat T is sequentiallycontinuousatthepoint u of X if,foreverysequence (un)n∈N of X: un → u in E ⇒ T (un) → T (u) in F

Wesaythat T is sequentiallycontinuous ifitissoateverypointof X

5. Historyofthenotionsofcontinuity. AugustinCAUCHY definedsequentialcontinuityforarealfunction onalinesegmentin1821,in[18].BernardPlacidusJohannNepomukBOLZANO alsocontributedtothe emergenceofthisnotion. EduardHEINE definedtheuniformcontinuityofafunctiondefinedonapartof Rd in1870,in[42].It hadalreadybeenusedimplicitlybyAugustinCAUCHY in1823todefinetheintegralofarealfunction[19, p.122-126],andthenexplicitlybyPeterDIRICHLET

Semi-NormedSpacesandFunctionSpaces7

(d) Wesaythat T is bounded ifitsimage T (X)= {T (u): u ∈ X} isboundedin F Thatistosayif,forevery µ ∈NF ,

Recallthatcontinuityalwaysimpliessequentialcontinuity[Vol.1,Theorem7.2] 6 .

Theorem1.10.– Anycontinuousmappingfromasubsetofaseparatedsemi-normed spaceintoaseparatedsemi-normedspaceissequentiallycontinuous.

Theconverseistrueiftheinitialspaceismetrizable[Vol.1,Theorem9.1].

Theorem1.11.– Amappingfromasubsetofametrizableseparatedsemi-normed spaceintoaseparatedsemi-normedspaceiscontinuousifandonlyifitissequentially continuous.

Forlinearmappings,Definition1.9gives[Vol.1,Theorem7.14]:

Theorem1.12.– Let L bealinearmappingfromaseparatedsemi-normedspace E intoaseparatedsemi-normedspace F ,andlet { E;ν : ν ∈NE } and { F ;µ : µ ∈NF } bethefamiliesofsemi-normsof E and F .Then:

(a) L iscontinuousifandonlyif,forevery µ ∈NF ,thereexistafinitesubset N of NE and c ≥ 0 suchthat:forevery u ∈ E,

Lu F ;µ ≤ c sup ν∈N u E;ν .

Thisisalsoequivalenttothestatement: L isuniformlycontinuous.

(b) Ifthefamilyofsemi-normsof E isfiltering,then L iscontinuousifandonlyif,for every µ ∈NF ,thereexist ν ∈NE and c ≥ 0 suchthat:forevery u ∈ E,

Lu F ;µ ≤ c u E;ν

Observethattopologicalinclusionisequivalenttothecontinuityofidentity.

6. Numberingofstatements. Thenumberingiscommontoallthestatements— Definition1.1,..., Definition1.9, Theorem1.10, Theorem1.11,etc.—,tomakeiteasiertofindagivenresultbyfollowing theorderofthenumbers.ItisnotworthwhilethereforetolookforTheorems1.1to1.9,asthesenumbers havebeenassignedtodefinitions.ThereisalsononeedtolookforDefinitions1.10,1.11,etc.

8Distributions

Theorem1.13.– Thetopologicalinclusion E ⊂ → F ofaseparatedsemi-normedspace intoanotherisequivalenttothecontinuityoftheidentitymappingfrom E into F

Proof. Definition1.7(c)oftopologicalinclusioncoincideswiththecharacterization ofcontinuityfromTheorem1.12(a)appliedtotheidentity,i.e.for Lu = u.

Forsemi-norms,Definition1.9gives[Vol.1,Theorem7.11]:

Theorem1.14.– Asemi-norm p onaseparatedsemi-normedspace E withafilteringfamily { E;ν : ν ∈NE } ofsemi-normsiscontinuousifandonlyifthereexist ν ∈NE and c ≥ 0 suchthat:forevery u ∈ E, p(u) ≤ c u E;ν .

Additionandmultiplicationbyarealnumber t formappingswithvaluesina vectorspacearedefinedby

1.4.Differentiablefunctions

Wereservetheterm function foramappingdefinedonasubsetof Rd,whichin generalisdenotedby Ω.Throughoutthebook,thedimension d isaninteger ≥ 1

Recallthatafunctioniscontinuousifandonlyifitissequentiallycontinuous (Theorem1.11,since Rd isnormed).

Gradientbeingdefinedin Ed def = {(u1,...,ud): ui ∈ E, ∀i},recallthatthis productspaceisendowedwiththesemi-norms,indexedby ν ∈NE ,

whichmakesitaseparatedsemi-normedspace[Vol.1,Theorem6.11].

Wedenoteby |z| def =(z2 1 + ··· + z2 d )1/2 theEuclideannormof z ∈ Rd and,for u ∈ Ed , z . u def = z1u1 + ··· + zdud.

Observethat

Semi-NormedSpacesandFunctionSpaces9

Indeed,fromtheCauchy-Schwarzinequalityin Rd,see(A.1),p.354,

. u E;ν ≤

Letusdefinevariouslevelsofdifferentiabilityforafunctionwithvaluesina separatedsemi-normedspace.

Definition1.15.– Let f beafunctionfromanopensubset Ω of Rd intoaseparated semi-normedspace E,whosefamilyofsemi-normsisdenotedby { E;ν : ν ∈NE }.

Wesaythat f is differentiableatthepoint x of Ω,ifthereexistsanelementof Ed,denotedby ∇f (x) andcalledthe gradient of f atthepoint x,suchthat,forevery ν ∈NE and > 0,thereexists η> 0 suchthat,if z ∈ Rd , |z|≤ η and x + z ∈ Ω, then f (x + z) f (x) z . ∇f (x) E;ν ≤ |z|.

Wesaythat f is differentiable ifitisdifferentiableateverypointof Ω,andthatit is continuousdifferentiable if,moreover, ∇f iscontinuousfrom Ω into Ed .

Wesaythat f is m timesdifferentiable,where m ∈ N∗,ifithassuccessive gradients ∇f , ∇2f ,..., ∇mf (theseareelementsof Ed , Ed2 ,..., Edm respectively).

Wesaythat f is m timescontinuouslydifferentiable if,moreover,itssuccessive gradientsarecontinuous.Weextendthisnotionandthepreviousoneto m =0 by denoting

∇0f def = f.

Wesaythat f is infinitelydifferentiable ifitis m timesdifferentiableforevery m ∈ N∗ .

When d =1,thedifferentiabilityof f atthepoint x reducestotheexistenceof anelementof E,denotedby f (x) andcalledthe derivative 7 atthepoint x,such

7. Historyofthenotionofthederivativeofarealfunction. EUCLIDE,inhis Elements [31,BookIII, p.16]wasalreadylookingforthetangenttoacurve.PierredeFERMAT,in1636,foundthetangentforthe curveofequation y = xm withacalculationprefiguringthatofthederivative.IsaacNEWTON introduced in1671the fluxion ofafunction y = f (x) whichhedenotedby y [57,p.76].GottfriedvonLEIBNIZ developed infinitesimalcalculus in1675[51].Thenotionofderivativewasmaderigorousin1821by AugustinCAUCHY [18,p.22].

Historyofthenotation. Thenotation dy/dx wasintroducedbyGottfriedvonLEIBNIZ in1675[51].This waswhatJosephLouisLAGRANGE denotedby fx in1772[49].

Thesymbol ∇ wasintroducedbySirWilliamRowanHAMILTON in1847,byinvertingtheGreekletter ∆,whichhadalreadybeenusedinananalogouscontext(todesignatethe Laplacian);thename nabla was giventohimbyPeterGuthrieTAIT ontheadviceofWilliamRobertsonSMITH,in1870,inanalogytothe formofaGreekharpwhichinAntiquityborethisname(ν ´ αβλα).

10Distributions

that,forevery ν ∈NE and > 0,thereexists η> 0 suchthat,if t ∈ R, |t|≤ η and x + t ∈ Ω,then

Thegradientherehasonlyonecomponent: ∇f (x)= f (x).Thederivativeisoften denotedas df/dx insteadof f ,inparticularwhenwewishtospecifythevariable withrespecttowhichwearedifferentiating.

Utilityofassumingthat Ω isopen. Thishypothesisguaranteestheuniquenessofthegradientatevery pointwhereitexists[Vol.2,Theorem2.2].Ifnot,forexampleif Ω wasjustapoint,theneveryfunction wouldbedifferentiableandwouldadmiteveryelementof E asitsgradient.However,thenotionof differentiabilitycanbeextendedtotheclosureofanopensetwhilepreservingtheuniquenessofthegradient [Vol.2,Definition2.26].

Letusdefinepartialderivatives 8,denotingby ei the i-thbasisvectorof Rd,i.e. (ei)i =1, (ei)j =0 if j = i,

anddenotingby m,n theintervalofintegers {i ∈ N : m ≤ i ≤ n}

Definition1.16.– Let f beafunctionfromanopensubset Ω of Rd intoaseparated semi-normedspace E,whosefamilyofsemi-normsisdenoted { E;ν : ν ∈NE }.

Wesaythat f hasa partialderivative ∂if (x) ∈ E atthepoint x of Ω,where i ∈ 1,d ,ifthefunction xi → f (x) isdifferentiableatthepoint xi withderivative ∂if (x)

Thatistosay,if,forevery ν ∈NE andall > 0,thereexists η> 0 suchthat,if t ∈ R, |t|≤ η and x + tei ∈ Ω,then

(x + tei

Clarification. Moreprecisely, f hasapartialderivative ∂if (x) atthepoint x ifthefunction s → f (x1,...,xi 1,s,xi+1,...,xd), whichisdefinedontheopensubset {s ∈ R :(x1,...,xi 1,s,xi+1,...,xd) ∈ Ω} of R,hasthederivative ∂if (x) atthepoint xi

8. Historyofpartialderivatives. Partialderivativesappearedin1747withAlexisClaudeCLAIRAUT and JeanleRond D’ALEMBERT [24],andin1755withLeonhardEULER [32]. Thesymbol ∂ wasintroducedbyNicolasdeCaritat,MarquisofCONDORCET,in1773[22].

Semi-NormedSpacesandFunctionSpaces11

CAUTION. Afunctionwhichhaspartialderivativesisnotnecessarilydifferentiablenorevencontinuous. Forexample,thefunctiondefinedon R2 by f (x1,x2)= x1x2 (x2 1 + x2 2) if x =(0, 0) and f (0, 0)=0

haspartialderivatives ∂1f and ∂2f ateverypoint,butitisneitherdifferentiablenorcontinuousat (0, 0).

Ontheotherhand,afunctionwhosepartialderivativesarecontinuousiscontinuouslydifferentiable andcontinuous(TheoremA.55).

Weoftenusethenotation ∂f/∂xi insteadof ∂if ,inparticularwhenwewishto emphasizethevariablewithrespecttowhichwearedifferentiating.

Letusnowrecall Schwarz’sTheorem 9 [Vol.2,Theorem2.12]:

Theorem1.17.– Let f beatwicedifferentiablefunctionfromanopensubsetof Rd intoaseparatedsemi-normedspace.Then,forevery i and j in 1,d ,

Sincetheycommute,wecanreordersuccessivepartialderivativestoexpressthem asfollows.Forany β ∈ Nd,wedenote

Andwedenote |β| =

1.5.Spaces Cm(Ω; E), Cm b (Ω; E) and Cm b (Ω; E)

Letusdefinespaces 10 offunctionsthatare m timesdifferentiablewithvaluesin asemi-normedspace.

Definition1.18.– Let Ω beanopensubsetof Rd , E aseparatedsemi-normedspace whosefamilyofsemi-normsisdenotedby { E;ν : ν ∈NE },and m ∈ N

9. HistoryofSchwarz’sTheorem. KarlWEIERSTRASS provedinhisunpublishedteachingsof1861that thesecondpartialderivativesofafunction f commuteateverypoint x wheretheyarecontinuous,namely ∂2f/∂x1∂x2(x1,x2)= ∂2f/∂x2∂x1(x1,x2) HermannAmandusSCHWARZ provedin1873thatthisresultisvalidassoonasoneofthetwomembersis continuous.

10. Historyofthenotionoffunctionspace. BernhardRIEMANN introducedtheconceptoffunction space(ofinfinitedimension)in1892inhisinaugurallecture OntheHypothesesWhichLieattheBasesof Geometry [64,p.276],seetheextractinfrenchcitedin[12,p.176].

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Instant ebooks textbook Distributions, volume 3 1st edition jacques simon download all chapters by Education Libraries - Issuu