Instant ebooks textbook Nuclear electronics with quantum cryogenic detectors vladimir polushkin down

Page 1


Nuclear Electronics with Quantum Cryogenic Detectors Vladimir Polushkin

Visit to download the full and correct content document: https://ebookmass.com/product/nuclear-electronics-with-quantum-cryogenic-detectors -vladimir-polushkin/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Quantum Computing by Practice: Python Programming in the Cloud with Qiskit and IBM-Q Vladimir Silva

https://ebookmass.com/product/quantum-computing-by-practicepython-programming-in-the-cloud-with-qiskit-and-ibm-q-vladimirsilva/

Hacking Electronics: Learning Electronics with Arduino and Raspberry Pi, 2nd Edition Simon Monk

https://ebookmass.com/product/hacking-electronics-learningelectronics-with-arduino-and-raspberry-pi-2nd-edition-simon-monk/

Quantum Bullsh*t: How to Ruin Your Life with Advice from Quantum Physics Chris Ferrie

https://ebookmass.com/product/quantum-bullsht-how-to-ruin-yourlife-with-advice-from-quantum-physics-chris-ferrie/

Introduction to Quantum Field Theory with Applications to Quantum Gravity 1st Edition Iosif L. Buchbinder

https://ebookmass.com/product/introduction-to-quantum-fieldtheory-with-applications-to-quantum-gravity-1st-edition-iosif-lbuchbinder/

Nuclear Physics 1: Nuclear Deexcitations, Spontaneous Nuclear Reactions Ibrahima

https://ebookmass.com/product/nuclear-physics-1-nucleardeexcitations-spontaneous-nuclear-reactions-ibrahima-sakho/

Cryogenic Valves for Liquefied Natural Gas Plants Karan Sotoodeh

https://ebookmass.com/product/cryogenic-valves-for-liquefiednatural-gas-plants-karan-sotoodeh/

Quantum Communication, Quantum Networks, and Quantum Sensing Ivan Djordjevic

https://ebookmass.com/product/quantum-communication-quantumnetworks-and-quantum-sensing-ivan-djordjevic/

The Wretched Atom: America's Global Gamble with Peaceful Nuclear Technology Hamblin

https://ebookmass.com/product/the-wretched-atom-americas-globalgamble-with-peaceful-nuclear-technology-hamblin/

YO ESTOY CONTIGO J. Vladimir Polanco

https://ebookmass.com/product/yo-estoy-contigo-j-vladimirpolanco/

NuclearElectronicswithQuantumCryogenicDetectors

NuclearElectronicswithQuantumCryogenicDetectors

SecondEdition

Thissecondeditionfirstpublished2022

©2022JohnWiley&SonsLtd

EditionHistory

JohnWiley&SonsLtd(1e,2004)

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerial fromthistitleisavailableathttp://www.wiley.com/go/permissions.

TherightofVladimirPolushkintobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsinstandardprintversions ofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowofinformationrelatingtothe useofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertor instructionsforeachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusage andforaddedwarningsandprecautions.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties, includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextended bysalesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductis referredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe informationorservicestheorganization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwiththe understandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmay havechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanyloss ofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationDatahasbeenappliedfor

ISBN9781119834687(Hardback);9781119834694(AdobePDF);9781119834717(e-Pub)

CoverDesign:Wiley

CoverImage:©AlexanderRaths/Shutterstock

Setin9.5/12.5ptSTIXTwoTextbyStraive,Pondicherry,India

Contents

PrefacetotheSecondEdition xi

PrefacetotheFirstEdition xv

1InteractionoftheNuclearRadiationwithDetectorAbsorbers 1

Introduction 1

1.1 The IntrinsicQuantumEfficiencyofRadiationDetectors 3

1.2DetectionofChargedParticles 4

1.2.1Light-ChargedParticles 5

1.2.2TheContinuous “Braking” Radiation(Bremsstrahlung) 9

1.2.3BackscatteringofChargedParticles 9

1.2.4Heavy-ChargedParticles 10

1.3PrimaryInteractionsofX-and γ-RayPhotonswithSolid-StateAbsorbers 12

1.3.1PhotoelectricEffect 12

1.3.2ComptonScattering 13

1.3.3ThePairProduction 14

1.3.4AttenuationofPhotonRadiationinSolid-StateDetectorAbsorbers 15

1.4DetectionofNeutronswithSolid-StateRadiationSensors 16

1.4.1 10B(n,α)7LiNuclearReaction 17

1.4.2 6Li(n,α)3Η NuclearReaction 18

1.5HeatGenerationinAthermalQuasiparticleAbsorbers 20

References 20

2RadiationDetectorswithSuperconductingAbsorbers 23 Introduction 23

2.1 Selected TopicsoftheSuperconductivityTheory 25

2.1.1TheElectron –PhononInteractionandCooperPairingMechanisms 25

2.1.2TheBehaviorofSuperconductorsintheMagneticField 27

2.1.3TheTunnelJosephsonJunction 28

2.1.4TheSuperconductingTransmissionLine:TheKineticInductance 30

2.2SuperconductingAbsorbers:TheDown-ConversionofParticleEnergyandIntrinsicEnergyResolution 35

2.2.1TheEnergyDown-ConversionProcessinSuperconductingAbsorbers 35

2.2.2TheIntrinsicEnergyResolutionofQuasiparticleDetectorswithSuperconductingAbsorbers 37

2.3TransportintheNonequilibriumSuperconductors:IncompleteChargeCollectionMechanisms 38

2.3.1TheRecombinationTimeofQuasiparticlesinSuperconductorAbsorbers 39

2.3.2TheRothwarf–Taylor(R–T)PhenomenologicalFramework 40

2.3.3TheDiffusionofQuasiparticlesinThin-FilmSuperconductingAbsorbers:IncompleteChargeCollection 41

2.3.4NoiseEquivalentPower(NEP)ofSuperconductingAbsorbers 43

2.4QuasiparticleRadiationDetectorswithSuperconductingTunnelJunction(STJ)Readout 45

2.4.1TheBandgapEngineeringandFabricationofSTJDetectors 45

2.4.2TheGiaeverI–VCurveoftheSTJs 46

2.4.3TheTunnelingMechanismsinSTJs 49

2.4.4PileupandCountRateCapabilityoftheSTJDetectors 50

2.5QuasiparticleRadiationDetectorswithMicrowaveKineticInductanceSensors(MKID) 54

2.5.1TheOperatingPrincipleofMicrowaveKineticInductanceSensors 54

2.5.2TheDROIDX-rayDetectorwithMicrowaveKineticInductanceSensorReadout 62

2.6IntegrationofSTJDetectorswithMicrowaveSQUIDMultiplexedReadout 66

2.6.1BandwidthConsiderations 67 References 68

3RadiationDetectorswithNormalMetalAbsorbers 73

Introduction 73

3.1 Spectrometer sBasedonTransition-EdgeSensor(TES)Microcalorimeters 73

3.1.1FundamentalsofTESDesign 73

3.1.2TheElectrothermalFeedbackinTESMicrocalorimeters 78

3.2TESMicrocalorimeterswithMicrowaveSQUIDReadout(μMUX):ImagingCameras 83

3.2.1TheQuantumEfficiency 84

3.2.2TheEnergyResolution 85

3.2.3TheThroughput 85

3.2.4TheBandwidthPertheCoreTESChannel 86

3.3HotElectronMicrocalorimeterwiththeNISTunnelJunctionThermometer 88 References 92

4RadiationDetectorswithSemiconductorAbsorbers 95

Introduction 95

4.1 SemiconductorTransport 96

4.1.1ValenceBondandEnergyBandModels 96

4.1.2CarrierScatteringMechanismsandMobilityinSemiconductorBulkMaterials 104

4.1.3CarrierGenerationandRecombination(G–R)Processes 108

4.1.4EffectsoftheG–RTransportonthePerformanceofRadiationDetectors 117

4.1.5Tunneling-AssistedTransportinSemiconductorMaterials 118

4.1.6TunnelingTransportAcrosstheThinDielectricBarrier 122

4.1.7TheSemiconductor–VacuumInterface:SurfaceTransport 125

4.2MacroscopicModelingofSemiconductorDevices 129

4.2.1MicroscopicTransportModelsBasedontheSchrödingerEquation 131

4.2.2TheSemiclassicalTransportModels 132

4.2.3TheInitialandBoundaryConditionsinDeviceModeling:TheRamo–ShockleyTheorem 139

4.3FrontWindowsinSemiconductorRadiationDetectors 141

4.3.1EntranceWindowBasedonSchottkyBarrierJunction 142

4.3.2FrontWindowBasedonMetal–Insulator–Semiconductor(MIS)Junction 150

4.3.3Thep–nJunction-BasedFrontWindowinRadiationDetectors 156

4.4FabricationofSiliconDriftDetectors(SDD) 164

4.4.1TheEpitaxiallyGrownUltra-shallowp+nJunctionEntranceWindows 165

4.4.2ThePureBoronTechnologyforUltra-shallowEntranceWindows 166

4.5SemiconductorDriftDetectors 167

4.5.1SemiconductorDetectors:OperationPrincipleandPerformanceSpecifications 167

4.5.2TheIntrinsicEnergyResolutionofSemiconductorDetectors 170

4.5.3TimeResponseofSDDs 173

4.6TheQuantumCalorimetricElectron–HoleDetectorwithSemiconductorAbsorber 174

4.6.1ThePhononSystemDynamicsinSemiconductorMaterials 175

4.6.2TheDesignandPerformanceoftheQuantumElectron–HoleDetector 176 References 178

5Front-EndReadoutElectronicCircuitsforQuantumCryogenicDetectors 183

Introduction 183

5.1 JFET TransconductancePreamplifiers 184

5.1.1PrinciplesofJFETTransconductanceAmplifiers 185

5.1.2SettlingTimeofPreamplifiers 187

5.2DynamicsandNoiseofJFETAmplifiers 189

5.2.1StaticandDynamicParametersofJFETs 191

5.2.2NoiseCharacteristicsofJFETs 193

5.2.3PentaFET:HighPrecisionResetMechanism 195

5.2.4TheJFETCascodeStage 196

5.2.5TheSourceFollower-BasedCharge-SensitivePreamplifier 197

5.2.6TheDifferentialStageBasedonMatchedJFETs 198

5.3TheLowNoiseAmplifiersBasedonHighElectronMobilityTransistor(HEMT) 200

5.4ThedcSQUIDCurrentAmplifiers 204

5.4.1ThedcSQUIDasaSuperconductingParametricAmplifier 204

5.4.2ThedcSQUIDwithanIntermediaryInputTransformer 207

5.4.3TheCoupledEnergyResolutionofaDoubleTransformerdcSQUID 209

5.4.4ThedcSQUIDReadoutElectronics 212

5.4.5TheSQUIDwiththeDigitalBodeFLLController 216

5.4.6ThedcSQUIDAmplifierintheSmall-SignalLimit(Noise) 219

5.4.7SQUIDCurrentAmplifierintheLargeSignalLimit(Dynamics) 223

5.4.8SQUIDCurrentAmplifierintheLargeSignalLimit(Noise) 226

5.5ThedcSQUIDCurrentAmplifieratUltralowTemperature(ULT) 228

5.5.1ADouble-StageAmplifierwithaSingleFrontULTSQUID 228

5.5.2ADouble-StageAmplifierwiththeFrontULTSQUIDArray 233

5.6MicrowaveSQUIDParametricAmplifiers 234

5.6.1OperationPrincipleofMicrowaveSQUIDswithExternalPumping(MSQUIDs) 234

5.6.2TheNonlinearitiesintheMSQUIDReadout 236

5.6.3TheFluxRampModulationMethodology 237

5.6.4PerformanceofMSQUIDCurrentAmplifier 238

5.7DesignMethodologyofAnalogCircuitries 242

5.7.1TheLaplaceTransform:TransferFunctionsofElectronicNetworks 242

5.7.2DesignofAnalogPulse-ShapingFilterCells 246

5.7.3DesignofLow-PassFilters 253

5.7.4GraphicalMethodsofAnalysisandSynthesisintheFrequencyDomain 259

5.7.5TheDescribingFunctionofNonlinearElementsintheFrequencyDomain 271

5.7.6SystemswithSynchronousMultipliers 274 References 280

6TheEnergyResolutionofRadiationSpectrometers 285

Introduction 285

6.1 Signal-to-NoiseRatio,EquivalentNoiseChargeofRadiationSpectrometers:GeneralDefinitions 287

6.2EnergyResolutionofQuasiparticleDetectors(STJs,SDDs) 290

6.2.1TheTunnelJunctionCoupledtoaJFETTransconductanceAmplifier 290

6.2.2EnergyResolutionofSTJSensorsReadoutwithSQUIDCurrentPreamps 296

6.3OptimalFiltrationinRadiationSpectrometers 300

6.4EnergyResolutionofTESMicrocalorimeters 302

6.5MatrixReadoutMultiplexingofSTJDetectors 306

6.5.1MatrixReadoutofSTJSensorswithJFETTransconductanceAmplifiers 306

6.5.2MatrixReadoutwithSQUIDCurrentAmplifiers 307

6.6Time-DivisionMultiplexor(TDM) 309

6.7FrequencyDivisionMultiplexingwithMicrowaveSQUIDs(μMUX) 311

6.8CodeDivisionMultiplexing(CDM):Spread-SpectrumModulation(SSM) 314 References 317

7SignalProcessinginRadiationSpectrometers 321

Introduction 321

7.1 Signal ConditioningUnits 322

7.1.1OverviewoftheDigitalPulseProcessingArchitectures 322

7.1.2AC-CoupledDigitalSpectrometers 325

7.1.3DigitalPulseProcessingwiththeMovingWindowDeconvolution 328

7.1.4DC-CoupledDigitalPulseProcessors 329

7.1.5DC-CoupledDigitalPulseProcessorswithaSlidingWindowSignalConditioner 330

7.2Analog-to-DigitalConversion 332

7.2.1Analog-to-DigitalConverters:BasicInformation 332

7.2.2TheQuantizationNoiseModelofADC 332

7.2.3NonlinearitiesofADC 335

7.2.4ApertureTimeofADCs 337

7.2.5ApertureUncertaintyofADCs 338

7.2.6ReductionoftheDifferentialNonlinearitywiththeSlidingScaleMethod 339

7.3DigitalFiltration 340

7.3.1 Z-TransformMethodology 340

7.3.2DesignofDigitalFilterswith Z-transform 347

7.3.3TheStabilityofDigitalFilters 351

7.3.4TrapezoidalPulse-ShapingDigitalFilter 352

7.3.5MovingAveragePulseProcessing 354

7.4ThroughputofDigitalSpectrometers 355

7.4.1PulseRecognitionChannel:PileupDetection 355

7.4.2TimingResolutionofDigitalSpectrometers 357

7.4.3ThePileupDecodinginDigitalPulseProcessors 359

7.4.4DigitalRise(Fall)TimeDiscrimination 360

7.5SelectedTopicsoftheHardwareDesign 363

7.5.1NoiseReductioninSystemswithSwitchingPowerSupplies 364

7.5.2PCBLayout 366

7.5.3Layout,Decoupling,andGroundingofADCs 368

7.5.4GroundingAspectsoftheSystemDesign 369 References 371

8UltralowTemperature(ULT)CryogenicArrangements 373 Introduction 373

8.1 Cooling TechnologiesforSub-1KTemperature 374

8.1.1The 3HeRefrigerator 375

8.1.2TheAdiabaticDemagnetizationRefrigerator(ADR) 376

8.1.3TemperatureControlinADRs 381

8.2MagneticShieldingatLowTemperature 384

8.2.1The μ-MetalShields 384

8.2.2TheSuperconductingShielding 386

8.2.3SolenoidInsideaCylindricalSuperconductingShield 387

8.3ThermalLoadonULTCoolingStages 388

8.3.1ThermalConductionThroughSolids 389

8.3.2ThermalConductionThroughtheGas 390

8.3.3ThermalRadiation 391

8.4CryogenicPackagingfortheFocalPlaneArray(FPA)Unit 391

8.4.1DesignoftheFPAUnitImplementingtheTDMTechnique 392

8.4.2TheCollimationoftheFPAUnit 395

8.4.3SolidAngleoftheNuclearRadiationSpectrometer 396

8.4.4FocusingPolycapillaryX-rayOptics 397

8.4.5WiringatmKTemperatures 400

8.5CryogenicDesignforDetectorswithMicrowaveFrequency-divisionMultiplexing 401

8.6TheCollectionEfficiencyofRadiationSpectrometers 404

References 407

9ApplicationsofRadiationSpectrometersBasedonQuantumCryogenicDetectors 409

Introduction 409

9.1 Nanoanal yticalChemistrywiththeSEMElectronProbe 411

9.1.1TheSEM-BasedEnergy-DispersiveSpectroscopy(EDS) 411

9.1.2TheDualArrayTES-BasedEDS 416

9.1.3ComplementaryTechniquesintheElectronProbeNanoanalysis:TheAugerSpectroscopy 417

9.1.4ComplementaryTechniquesintheElectronProbeNanoanalysis:TheWavelengthDispersiveSpectrometers 418

9.2Energy-DispersiveMALDI–TOFMassSpectrometryforBiochemicalAnalysis 420

References 425

Index 427

NuclearElectronicsasascientificfieldmakesavitalcontributiontooureverydaylife.Eventhenon-technicalgeneralpublic wouldrecognizemanyapplicationsofthedisciplineandtheirsignificanceforoursociety,e.g.systemsthatsustainoperation andsafetyofnuclearreactorsinpowerstations,shipengines,orsubmarines,NuclearMagneticResonanceImaging(MRI) machines,ComputedControlledTomographyScannersinmedicine,largetelescopesinAstrophysics.Lessknown,but equallycriticallyimportantnuclearanalyticalinstrumentsensurethefoodsafetyonsupermarketshelves,securityof ourairports,forensicinvestigationsofresiduesincriminalistics,monitoringpetrolquality,andmanyotherimplementations.Thetechnologicaladvanceinnanotechnology,lifescience,biochemistry,ecology,medicine,semiconductors,remote sensinghasbecomemoreandmoredependentontheinformationwhichcomesuniquelyfromthenuclearradiationsensors.Theinformationtheyproducecaneitherbeachemicalcompositionofvarioussamples,oracrystalstructure,ora surfacemorphology,orrecognitionandcharacterizationofindividuallayersinamultilayerformation,oramassdistributioninmolecularspecimens,orDNAstructure.Thepossibilities,alreadyveryimpressive,stillexpandrapidly,practicallyon thedailybasis.Besides,inalmostallalreadyknownapplications,thereisanever-pressingdemandformoredetailedanalysiscombinedwithimprovedproductivitytoscanincreasingvolumesofsamplesperunittime.Tomeetthisdemand, NuclearElectronicsspecialistsconductcontinuousresearchintonewmoreadvanceddetectiontechniquesandperfect thosethatalreadyexisttodeliverthebestpossibleresolution,throughput,detectionefficiency,performancestability, anddatareproducibility.

NuclearElectronicsevolvedfromthestartasadistinctscientificfieldalongsidethelarge-scalenuclearphysicsprojects primarilybecausethemainstreamelectronicindustrydidnotaddressspecificrequirementsandregulations.Examples include,forinstance,theexceptionalpurityrequirementfordetectormaterials,moredemandingelectroniccomponent performancespecifications,reliability,theoperationinextremeenvironments,speciallytailoreddesigntoolsand manufactureprocesses,etc.Thedetachmentofthedisciplinehasbeenfromthestartandremainstothistime.Nosingle general-purposefoundrywillacceptdesignsinvolvingthemanufactureofasystem-on-chipthat, e.g.combinestheultrashallowblockingjunctiondriftdetectorsandassociatedreadout/processingelectronicsonthehighpuritysemiconductor wafer.Thistypeofworkrequiresspecializedequipmentandappropriatelytrainedpersonnel.Therefore,itisadvisablefor engineersandscientistsenteringthefieldtoacquireinterdisciplinaryskillsinadditiontothoseattributednormallytomainstreamelectronics.Theseskillsarenecessaryfornegotiationswithfoundrystaff,sub-contractors,applicationspecialists. Themostcriticaltechnologiesarenormallybeingdevelopedin-house.Fig.p1givesasummaryofcompetenciesassociated withtheRadiationMeasurementInstrumentation,aspecificbranchofNuclearElectronics,whichwillbedealtwithinthis manuscript.

Thecryogenicsolid-statedetectorsusedforhighprecisionradiationmeasurementscanbeclassifiedintotwogroups:

1)Ultra-LowTemperature(ULT)Detectorsoperatinginasub-1Krange(Chapters2,3);

2)Semiconductor-basedDriftChambersorCCDs(ChargeCoupledDevices)moderatelycooledbelowroomtemperature, normallyabovealiquidnitrogen77K(Chapter4).

Thesub-1Ksuperconductingdetectorstendtoservethemostchallengingapplicationsintermsoftherequiredenergy resolution,whereaslessprecisesemiconductorcounterpartsareoftenreferredtoasthe “workinghorse” oftheSpectroscopicIndustries.Manypublicationsperceivethesetechnologiesascompetitive.Inreality,theyco-existcomplementarily. Thestate-of-artSiliconDriftDetectors(SDDs)withanareaupto200mm2,energyresolutionof125eV(MnKα),andcount

ratecapabilityabove106 countspersecond(cps)[1,2]arenaturalcandidatesforthewide-anglecameras.Thesecameras collectbroaddatafromlargeareasof,forinstance,skyorspecimens,whereasthenarrow-anglecamerasbuiltonthebaseof ULTdetectorsextendthecapabilitiesofSDDsbyzoomingintopointsofparticularinterest.Thebestsuperconductingdetectorshaveasmallerfocalplanecoveragebutdemonstratedanenergyresolutiondownto(2to5)eVatMnKα forafewhundredcpsperpixel[3].Fig.p2illustratesthecomplementarityofthesetwosensingtechnologies(reproducedfrom[8]with permissionofSpringerNature,license5125391328507).ItshowsacombinedX-rayenergyspectrumdiagrammeasuredona coppersamplewitha2MeVprotonexcitationbeamwithSDDandTES-basedspectrometers.Thearrangementforthis ParticleInducedX-rayEmission(PIXE)experimentisdescribedinthemanuscript(seeFig.8.4.1andrelatertext).ThebenefitfromusingtheintegratedSDD/TESinstrumentintermsofimprovementintheresolvingpowerandspeedisevident. Wecontinuouslygetnewconfirmationstoitfromthelatestcomparativestudies,e.g.theXANES(nearedgestructure)analysisofdilutesamplesandtraceelementsdescribedin[9].

Figurep2 ThecombinedCu-sampleX-rayspectraexitedwith2MeVprotonbeamandmeasuredwithTESandSDDdetectors.Inset showsthesamedatainlogarithmicscaletorevealdetailsintheresolvingpower(reproducedfrom[8]withpermissionofSpringerNature, license5125391328507).

Figurep1

Duetothecompatibilityofsemiconductorandsuperconductortechnologies,itfeltreasonabletoaddanewChapter4on SDDsinthissecondedition.Thisshouldgiveamorebalancedoverviewoftheentirefield.Besides,modernsemiconductor devicesundoubtedlybelongtotheclassofquantumcryogenicdevicesbydefinitionforatleasttworeasons:

1)insemiconductortechnologywithcontinuouslyreducingfeaturesandsharpinterfaces,thequantummodelshierarchy (orimportanceofquantumcorrectionstosemi-classicalmodels)isincreasing[4],

2)Siliconisreadilyavailableinthehighlypurifiedcrystallineformwitharesistivityupto50kΩ m.Suchhighresistivity togetherwithmodernprocessingtechniquesreducingthedensityofunsaturatedchargestatesattheSi-SiO2 interface downtojust5x108 cm-2,450 μmthickSDDsdemonstrategoodperformancealreadyatfewtensdegreesbelow0 C. However,extendingtheenergyrangeofmeasurednuclearradiationwiththemaximizedquantumefficiencywillrequire thickerSiwafersormaterialswithahigheratomicnumberZ.ThequantumefficiencyscalesapproximatelyasZ5 GermaniumwithZ=28enablessubstantialimprovementoversilicon(Z=14)andhasexcellentprospectsasamaterial ofchoiceforfurtheradvancingthedriftchamberperformancespecifications.Ithasasmallerenergygapof0.66eV(as oppositeto1.12eVforSi)whichobviouslywillimprovetheenergyresolvingpower.Gemaywellbecomethematerialof choiceforthenextstageofthelarge-scaledevelopmentinsemiconductordetectors.Similartosilicon,theCzochralski techniqueforhighpuritycrystallineGegrowthhasalreadybeendeveloped[5],thebasicprocessingtechniquesand foundryservicesalsoexist.GeDriftDetectorswillrequirecoolingtolowertemperaturesdowntoatleast90K.However, SEMcompatiblesingle-stage/lowvibrationpulsetubecoolers,usedwiththebulkLithiumCompensatedSi,caneasilybe recycledforthisapplications.

NuclearElectronics,asascientificdiscipline,isnotlimitedtojustdesigningandperformanceverificationofprimary sensors.Italsoinvolvesothersystemizationtopicssuchasequivalentcircuitsmodellingthesignalformationandnoise sources,lownoisereadoutpreamplifiers,multiplexingthelargeformatsensorarrays,theoptimumfiltrationmaximizing thesignal-to-noiseratio,signalprocessing/recognitioninanalogueanddigitalforms,timemeasurementandtriggering, dataacquisition,etc,aslistedinFig.p1.ThesetopicswillbepresentedinthesubsequentChapters5to7.

Chapter8isdedicatedtothesystematizationissuesofthenuclearradiationspectrometerswithemphasisontheultra-low temperaturedesign.Itwillincludetopicslikecoolingtechniques,magneticshielding,front-endassemblypackaging,collimation,windowing,thedefinitionofthesolidangle,X-rayoptics,andspecificsofmicrowaveconnectivityoftheULT/ roomtemperatureinterface.

UptonowthefundamentalresearchinparticlephysicsandastrophysicshasdrivenprogressinRadiationDetection. Presently,however,weobserveadefiniteshiftofinteresttowardsindustrialapplications(nano-materialscience, biochemistry,medicalimaging,environmentalcontrol,security,etc.).Amongalltypesoflow-temperaturesuperconducting detectors,theSuperconductingTunnelJunctions(STJs)andtheTransitionEdgeSensor(TES)quantumcalorimetersare theclosestcandidatesforcommercialization.Systemsontheirbasehavealreadydemonstratedasub10eVenergyresolutionFWHM(thefullwidthatthehalfmaximum)for5.9keVX-raydetectionandupto5to10kcpscountingspeed.The speedcanbefurtherimprovedbyconfiguringtheminamultiplexedarchitecture.Theprogressinthedevicemultiplexabilitywasthemostremarkableovertheperiodbetweenthetwoeditions.Themicrowavefrequencymultiplexingofsinglejunctionquantuminterferometers(μMUX)enableshundredsofdetectorstobebundledtoasinglecoaxialcablewitha bandwidthof4to6GHzprovidedbymodernlownoiseHEMTpreamps.Theresultsofthenewtechnologydemonstrations weresoimpressivethatitisnowbeingconsideredforbuildingaspacetelescopewithahundredofthousands(yes100,000!) pixelarray.

Theoverallperformanceofdetectorarraysisgettingbetterasthetechnologybecomesmoremature[3].Thecryo-spectrometershavealreadygonethroughrigorousapplicationtests.W.Doriese etal reportedabouttwelveTESbaseddetector systemsinstalledinlargeX-raylaserfacilitiesforthesynchrotron-basedabsorption/emissionspectroscopyandenergyresolvedscattering;accelerator-basedspectroscopyofhadronicatomsandparticle-induced-emissionspectroscopy;laboratory-basedtime-resolvedabsorptionandemissionspectroscopywithatabletop,broadbandsource;andlaboratory-based metrologyofX-ray-emissionlines[3].M.Frank, etal,R.Wenzel etal havepublishedresultsontheSTJperformanceas iondetectorsintheenergydispersiveMatrix-assistedlaserdesorption/ionizationTime-Of-Flightmassspectrometry (Maldi-TOF)in[6]and[7],respectively.Anearly100%efficiencyresponsetothedetectionoflargemassparticleshasbeen verifiedupto1.5MDa.Thesecondgenerationofinstrumentswillbeupgradedwithlarge-formatarraysofcryogenicdetectorsimplementingawide(4-6GHz)bandwidthmicrowavefrequency-divisionmultiplexors.Thesesystemsshoulddeliver unprecedentedlyhigh-qualityspectraenablingnewapplicationareasfortheMALDI-TOF,inparticular,thecritically importantfieldslikeviralandbacterialresearchwherethesesystemscangenerateanalyticalresultswithmuch-improved productivity.

Laboratorytestsconfirmedthecapabilityofsuperconductingdetectorsinstalledinallmentionedfacilitiestomaintain theirhigh-performancepotentialanddeliverexceptionalqualityinformation,whichcannotbeobtainedwithanyother techniques.Chapter9willbededicatedtothediscussionofLow-TemperatureEnergyDispersiveandMaldi-TOFSpectrometersaswellasoutlinesomeotherpotentiallyveryinterestingapplications.

Anotherissueusuallyperceivedasproblematicisthatthesuperconductingtechnologyneedsliquidcryogenstoprovide thesub1Ktemperatureenvironment.Thecryogenicpartisassociatedwiththehighermaintenancecost,thenecessityfor trainedcryogenicpersonnel,boilingliquidandevaporatinggasinterferingwithtechnologicalprocesses.The “dry” pulsetubecoolers,nowcommerciallyavailable,solvedtheproblembyeliminatingcryogenliquidsatallorbycondensingandrecirculatingitonsite.Thecryogenicsisfullycomputer-controlled.Fromtheuser’sperspective,theULTinstrumentsare indistinguishablefromtheirroomtemperaturecounterparts.Thisencouragestheindustriestograduallyacceptnewsuperconductingdetectortechnologyandbenefitfromitsextendedcapabilities.

Toconcludethepreface,onecanpredictwithoptimismthatanewgenerationofexceptionallytalentedscientists,engineers,andpost-graduatestudentswillbejoiningthischallenging,butexcitingscientificfieldeitherassystemdevelopersor application/maintenancespecialists.Themajorgoalofthisbookistobringallaspirantsuptospeedinthesubjectasquickly andpainlesslyaspossible.Particulareffortwasundertakentomaketheoverviewpossiblycompleteandself-containedso thatitcouldserveasasingleinformationsourceonallimportantfundamentalissuesofNuclearElectronicswithCryogenic QuantumDetectors.Certainly,itwasnotfeasibleinpracticetoaccommodatealldevelopmentsinthefieldorgointoagreat depthofeachparticulardevelopmentinonebook.Whereasthededicatedconferencereviewmanuscriptssummariseoften thelatesttrendsintheprimarysensors,thesystemintegrationissuesareusuallyscatteredinmultiplepapersorhavenot beenaddressedproperlyatall.Anefforthasbeenmadetobalanceit.Allpublicallyavailablemajormaterialsonthe topicwereanalyzed,systemized,andexistinggapswerefilledusingmypersonaltechnicalexperienceorthrough communicationswithcolleagues.Iwouldliketothankallofthemheartily.

References

1 G.Lutz.SilicondriftandpixeldevicesforX-rayimagingandspectroscopy. JournalofSynchrotronRadiation 13, 99(2006).

2 E.Kenik.EvaluatingtheperformanceofacommercialSiliconDriftDetectorforX-raymicroanalysis. MicroscopyToday May,40(2011).

3 W.Doriese,P.Abbamonte,B.Alpert,etal.ApracticalsuperconductingmicrocalorimeterX-rayspectrometerforbeamlineand laboratoryscience. ReviewofScientificInstruments 88, 053108(2017).

4 A.Juengel. TransportEquationsforSemiconductors.Springer,2009.

5 G.Wang,H.Mei,D.Mei,Y.Guan,G.Yang.Highpuritycrystalgrowth. JournalofPhysics 606, 012012(2015).

6 M.Frank,S.Labov,GWestmacott,H.Benner.Energy-sensitivecryogenicdetectorsforhigh-massbiomoleculemass spectrometry. MassSpectrometryReviews 18,155(1999).

7 R.Wenzel,U.Matter,L.Schultheis,R.Zenobi.AnalysisofmegadaltonionusingcryodetectionMALDItime-of-flightmass spectrometry. Anal.Chem. 77,4329(2005).

8 M.Palosaari,K.Kinnunen,J.Julin,et.al.TESforparticleinducedX-rayemissionmeasurements. J.LowTemp.Phys. 176, 285(2014).

9 S.Yamada,Y.Ichinoe,H.Tatsuno,et.al.BroadbandhighenergyresolutionhardX-rayspectroscopyusingTESatSpring-8. Rev. Sci.Instrum. 92,013103(2021).

Thenuclearelectronicsisoftenassociatedprimarilywiththefundamentalresearchconductedinnuclearlaboratoriesand astrophysics.Yetmanywouldbequitesurprisedtofindoutanextentitdirectlyaffectsoureverydaylife.Thefoodsafety,the securityatairports,medicalexaminations,dopingtests,forensicinvestigationsandsoonareallprovidedwiththenuclear analyticalinstrumentation.Thetechnologicaladvanceinthelifescience,biology,ecology,medicine,semiconductors, remotesensingandmanyothersrelayheavilyupontheinformationwhichcomesuniquelyand,whatisparticularlyimportant,non-destructivelyfromnuclearsensors.Thisinformationcanbeeitherachemicalcompositionofamaterialdealt with,oracrystaloratomicstructure,orthethicknessofindividuallayersinamultilayerformationofacomplexshape, orthemassofmolecules,oraDNAstructure.Thenumberofpossibleapplicationsiswideandexpandingrapidlyalmoston adailybasis.Besides,evenintraditionalareasoftheresearchanddevelopmentspecialistsneedtoobservesmallerfeatures, alesserpercentageofcontaminations,etc.,but,atthesametime,scanninglargerareasorvolumes.Therefore,thenuclear electronicsasadisciplinemustcontinuouslyevolveinitssearchfornewdetectionmethodsormoreelaborateprocessing techniquesinordertodelivermuchneededsystemswithabetterresolution,accuracy,reproducibilityandthespeedof operation.

Abigstepintheradicaladvanceofthenuclearanalyticalinstrumentationwillundoubtedlybethecommercialisationof cryogenicparticleandradiationdetectors.LeadingrepresentativesofthesedevicesaretheSuperconductingTunnelJunction(STJ)andquantumcalorimeters.Bothtypeshavealreadydemonstratedasub10eVenergyresolutionFWHM(thefull widthatthehalfmaximum)at5.9keV(MnKα)asoppositeto125eVachievedwiththebestsemiconductordetectors.Initial laboratoryexperimentshaveproventhenewclassofdetectorstobeveryaccurate,stable,adequatelyfastandwellsuitedfor thehigh-densitymultipixelintegration.Theonlydisadvantageassociatedwiththesuperconductingtechnologywasaneed inliquidcryogensastheonlymeanstoensurethesub1Ktemperatureenvironmentrequiredfortheiroperation.Besides theinconvenienceandthemaintenancecost,thepresenceofacryogenoritsevaporatedgascouldinterfereadverselywith someoftechnologicalprocesseswhichinstrumentsweresupposedjusttomonitor.Arecentcommercialintroductionof “dry” pulse-tubecoolers,however,hasaddressedtheproblemand,infact,changedprioritiesinthehighprecisionnuclear measurements.Onecanseethattheindustrystarteddivertingapartofthedevelopmentbudgetintoadvancingthesenew technologies.Despitetheextracostassociatedwithcryogenics,anaddedvaluesuchasamorethanoneorderofmagnitude increaseinresolvingcapabilitiesfullyjustifiesit.

Tosummarisethisbriefpreface,itiseasytopredictthatanincreasingnumberofscientists,engineersandpost-graduate studentsisexpectedtobeinvolvedinthenuclearmeasurementsbasedoncryogenicdetectorswhomaywishtoupdateor refreshtheirskillsonthesubject.Whereastheinformationonsensorsandthephysicsbehindthemisscatteredinthousands ofpapers,somesystemintegrationissueshavenotbeenaddressedsofaratall.Theprimegoalofthisbookistosystematise thepublishedmaterialonthesubjectofinterestandpossiblyfillinexistinggaps.Wewillavoidreprintingcomplexexpressionsofthemicroscopicsuperconductivityortheinformationtheory.Forthoseinterestedingainingadeeperbackground intheseandsomeotherrelevantissues,appropriatereferenceswillbegiventhroughoutthebook.

ThebookisprimarilybasedonresearchwhichwasdoneincollaborationwithmycolleaguesattheJointInstitutefor NuclearResearch(Dubna),Physikalisch-TechnischeBundesanstalt(Berlin)andThinFilmGroupofOxfordInstruments (Cambridge)aswellasaresultofmultiplediscussionsofthematterwithmyfriendsandcolleaguesfromotherinstitutions worldwide.Iwouldliketoexpressmygratitudetoallofthemhopingthebookwillbeusefulintheirfurtherresearch.

InteractionoftheNuclearRadiationwithDetectorAbsorbers

Introduction

Radiationsensorsareintendedforthequalitativedetectionofvariouselementarynuclearparticlesand,inmanyapplications,measuretheirquantitativecharacteristicparameters,suchasflux,energydistribution,positioncoordinates,timing information,etc.Thedetectionstartsfromamomentwhenanincomingparticleinteractswiththesensor’sactivevolume. Insomepublicationsontheradiationmeasurements,theauthorsproceeddirectlytothedown-conversionprocesstransformingdepositednuclearparticleenergy Ep intoeitheracorrespondingnumberofquasiparticles Nqp in nonthermal devicesoratemperaturerise ΔT in thermalcalorimeters inproportionto Ep.Ifthatwastrue,detectorsexposedtothemonochromaticbeamwouldbeproducingasinglepeakoutputontheenergyspectrumcenteredat Ep.Inpractice,however,we normallyobservespectraenrichedbyexcitationsofsecondarycharacteristicradiations,backgroundevents,escapeordoublepeaks,tales,etc.Thisenrichmentisfurthersuperimposedbytheincompletechargecollectionduetovarioustransport lossmechanismsandsensor/readoutnoise.Veryoften,wehavetoapplyquitecomplexmathematicalmodelssolving inverseproblemstorestoreenergyandtiminginformationofincomingnuclearparticles.Todothatefficiently,itisuseful todividethedetectionprocessintofourphases:

1)Theprimarynuclearreactionofaparticlewiththeabsorbermatter,whichwillbethetopicofthepresentchapter.

2)Theenergydown-conversionprocessgeneratingaresponseinproportiontotheenergydepositedintheactivevolume.

3)Thedrift/diffusionofgeneratedinformativecarrierstowardthesensorcollectionelectrodes.

4)Themeasurementprocessofasignalgeneratedbyaradiationabsorberwithoneofthesensortypes,e.g.thetunnel junction,transitionedgethermometer,kineticinductance,semiconductorbarrier,etc.

Thedown-conversionandtransportinsuperconducting,semiconducting,andnormalmetalabsorberswillbediscussed inthecorrespondingsectionsofChapters2,3,and4.

Thequantumcryogenicsensorspresentedinthismanuscriptarecapabletorespondtopracticallyalltypesofknown radiations:chargedparticles,opticalphotonsfrominfraredtoX-raysand γ-rays,andunchargedparticles,e.g.neutrons andweaklyinteractingmassiveparticles(WIMPs).Amongthesetypes,onlyelectronsarecapabletoinitiateandparticipate directly intheenergydown-conversionprocessthroughtheinelasticelectron –electronandelectron–phononinteractions. Detectiontechniquesofotherparticlesinvolve indirect energycascades.Intheindirectcascades,theprimaryinteractions liberatenormallyenergeticatomicelectrons(δ-ray),whichfurtheractaslightchargeparticlescreatingontheirpathameasurableamountofquasiparticlesinachainofsecondaryprocesses:ionization(semiconductors),ortheCooperelectron pair-breaking(superconductors),orhot-electroncarriergeneration(normalmetalabsorbers).

Therearetwobasicenergyexchangereactionmechanismsbetweentheprimarynuclearparticlesandtargetatoms:the absorption andthe inelasticscattering.Theinelasticscatteringeventstakeplacewhenincomingparticlessharetheirkinetic energywithatomicandfreeelectronsbyelectromagneticinteractions.

Figure1.1.1illustratesschematicallytheabsorptionprocess,inwhichanincidentparticledisappearscompletelycaptured bythetargetmatter.Theseinteractionsaremoretypicalforthephotonbeams,althoughchargedparticlescanequallybe absorbedinnuclearreactionstogenerateothertypesofsecondaryradiation.Aphotonenteringthesensitivepartofdetectorsnormallyencountersandtransferselectromagneticallyallitsenergy Eph toanatomicphotoelectron.Dependingona

2 1InteractionoftheNuclearRadiationwithDetectorAbsorbers

Incident particle Target atom

Recoiling target

The pre-interaction state

The post-interaction state

valueof Eph,theexcitedphotoelectroncan(i)raisetoahigherboundstateandgeneratesecondaryphotonsduringthe relaxationprocess,(ii)leaveatomcompletely(theionization)andinitiate/participateintheenergyconversion,and (iii)stayintheoriginalboundstate,butgeneratephononparticlesthat,inthecaseofsuperconductors,contributeto theCooperpair-breakingprocessorgenerateinformativeheatinnormalmetalcalorimetricabsorbers.Thephenomenon isoftenreferredtoas thephotoelectriceffect.WewillreturntoitinSection1.3.1.

Aswementionedearlier,someofchargedparticlesandneutronsintheincidentbeamscomeveryclosetotargetnuclei thatmayresultinthenuclearparticlereactions.Onecandistinguishbetweentwotypesofnuclearreactions:(i)interaction ofincomingparticleswithnucleonsand(ii)penetrationofincomingparticlesintothetargetnuclei(theradiativecapture). Bothnuclearreactionsleavetherecoilnucleiinanexcitedstate,whichsubsequentlyrelaxesbyemittingnewparticlesor/ andtransmutationintodifferentnuclearspecies.Thesecondarynuclearreactionproducts,i.e.photonsandchargedcarriers,canbemeasuredbyradiationdetectors.Forthat,theyarebuiltas “sandwiches” includingnuclearreactionlayerson topoforinthemiddleofthesensingdeviceabsorber.Providedthatthenatureofnuclearreactionsinvolvedisknown, measurementdatafromthesecondarysensorcanbeusedtorestoreinformationabouttheprimaryparticlesofinterest. WewillgivemoredetailsonthatinSection1.3whenwetalkaboutdetectingneutronsandinChapter4whenwediscuss WIMPhybridsemiconductor – transitionedgesensor(TES)detectors.

Thescatteringinteractionsarecharacterizedbythefractionalenergyand/ormomentumexchangebetweenparticlesand recoilingtargets.Intheseinteractions,particlesthemselvesexistasindependentobjectsbeforeandaftercollisions.Sometimes,theabsorptionprocessofaparticleby,e.g.nucleus,whichisfollowedbysubsequentexpelofthesameparticleor anothersimilarparticle,isalsoreferredtoasscattering.

Figure1.1.2demonstratestwotypesofscatteringinteractions.In theelasticscattering (Figure1.1.2a),thetotalkinetic energyofaparticleandaparticipatingtargetdoesnotchangebeforeandaftercollisions.Thecollisions,inwhichthekinetic energyischanneleddowntotheexcitationoftargetatoms,arereferredtoas theinelasticscattering (Figure1.1.2b).Inboth cases,thestrongCoulombforcesoftargetatomsdiverttheinitialtrajectoryofcollidedparticlesbyasuccessionofangles, whicharecalled thescatteringangles

Withthesebasicdefinitions,wecannowdiscussselectedaspectsofprimarynuclearreactionsinmoredetail.Thegeneric scopeofthistopicissimplyenormous.Therearemultiplenuclearphysicsmanuscriptsdedicatedtoit.Alotofusefulquantitativeinformationcanbefound,forinstance,inthebooksandscientificpapersontheparticleprobeanalyticalchemistry. ThemoderncomputationpowerhasbroughttheMonteCarlosimulationroutinetoeverylaboratory.Thepassageof radiationthroughmattercannowbemodeledbydedicatedparticlephysicssoftwaretoolkits,likeGEANT4[1].Modern softwareisveryadvancedintermsofcomputationaccuracyandinputinterface.Itshouldtakecareofthemajorityof possiblenuclearreactionsandinteractionmechanisms.Still,theresearchersandengineersmusthaveadetailedunderstandingofmodelsemployedtogivetherightinterpretationstothesimulationresultsandmakesuresimulateddatadoes notunder-/overshoottheexpectedballparkvaluesduetothecodeinstability.

Section1.1willdefinetheintrinsicquantumefficiency(IQE)oftheradiationdetectors.Thefollowingtextwillbestructuredaroundselectedaspectsofparticleinteractionwithsolid-stateabsorberstocharacterizedetectorsintermsofthecollectionefficiency,requiredgeometry,transportmechanisms,etc.Itisessentialforthequantitativemeasurementswith radiationdetectorstoeithercontainthefullenergydepositedbyanincomingbeamoratleastawell-knownpartofit tobeabletodeliveraccurateresults.Section1.2willdealwithchargedparticles.Wewilldifferentiatebetweenthelight andheavyparticlesanddefinetheirpenetrationdepthdependingontheirenergies.Section1.3willfocusonthephoton measurements.ThedetectionofneutronsandWIMPswillbethesubjectsofSections1.4and1.5,respectively.

Figure1.1.1 Schematicrepresentationofthenuclearparticleabsorptionprocess.

Recoiling target

Target atom

Incident particle

The pre-interaction state

Incident particle

Scattering angle

Elastic scattering Scattered particle

The post-interaction state

The pre-interaction state

Scattering angle

The post-interaction state

Figure1.1.2 Twotypesofscatteringinteractionsbetweentheincomingparticleandthetargetatom.(a)Thekineticenergyofthe particleintheelasticscatteringdoesnotchangebeforeandaftercollisions.(b)Intheinelasticscattering,thekineticenergyispartially channeledtowardtheexcitationorionizationoftheatom.

1.1TheIntrinsicQuantumEfficiencyofRadiationDetectors

TheIQEcanbedefinedingeneraltermsasthepercentageofincidentnuclearparticlesthattheabsorberconvertsinto informativechargecarrierssampledbysensingdevice[2].Forthefirstphaseofthedetectionprocess,asoutlinedin theIntroductionearlier,thequantumefficiency(QE)isquantifiedby theintensityattenuationfunction and theincomplete chargecollection.Theattenuationfunctionisdefinedas α

where I0 and I(tabs)representintensitiesoftheincidentradiationbeamandradiationpassedthroughtheabsorberwithout interaction,respectively,and tabs denotesthethicknessoftheabsorber.Bytheintensityofradiation,wemeanthenumberof nuclearparticlespassingthroughaunitareaperunittime(thebeamcurrent).TheIQEdependsonthetypeofradiation, energydistributioninthebeam,absorbermaterial,anditsgeometricaldimensions.

Providedthateachparticleinthebeamcurrenttransfersitsenergyinasinglecollisionandthendisappears(theabsorptionprocess),theintensityattenuationfunctiontakesthefollowingform:

where μabs istheabsorptioncoefficientreciprocaltothelinearattenuationfactor λabs.Both μabs and λabs aretabulatedforthe majorityofmaterialsutilizedinradiationdetectors(see,forinstance[3]).

Themajorityofincomingchargedparticlestendtorelaxthroughmultiplescatteringeventsbeforetheydisappearfrom thebeam.Therefore,appropriatecorrectionfactorsmustbeintroducedinEq.(1.1.2)totakeintoaccountthedifferencein behavior.Wewilldiscussthesecorrectionsinthefollowingsections.

Passivation layer

Sensitive volume

Quasiparticle clouds

Figure1.1.3 Thelowenergytailoriginatedfromthesplittingofthequasiparticleenergydown-conversionspheresbetweenthe passivation/insulationlayerandthesensitivevolumeoftheabsorber.Thedown-conversionprocesseslocatedwhollyinthepassivation andthesensitivevolumecontributetothezeroandmainpeaks,correspondingly.

Theincompletechargecollectiontakesplaceinallthreephasesofthedetectionprocess.Onemechanism,relevanttothe primarynuclearreaction(thephase1underconsideration),relatestothesplittingofelectroncloudsformedbytheenergy down-conversionchannels.Thecloudsgetdividedbetweenthesensitivepartoftheabsorberandthesurfacepassivationor thegateinsulationlayer.Figure1.1.3illustratesthismechanism.Theinteractionsphereslocatedwhollyinthesensitive volumeoftheabsorbercontributetothedesirablemainpeakoftheenergyspectrum.Sincetheinsulationmaterialshave largeenergygaps,thepassivationlayernormallygeneratessignificantlyfewernonthermalquasiparticlesthantheabsorber material.Therefore,dividedinteractionspherescontainapartialamountofchargecarriers.Theycontributetothelow energytailthatneedstobeminimized.Thespheressituatedentirelyinthepassivationlayertendtoformnear-zeropeaks. Concerningphotons,theirdensityabsorbedbythepassivationlayer Nabs canbeevaluatedusing(1.1.2)as N abs = N ph 1 exp μpl t pl

where Nph isthephotondensityintheoriginalbeamand μpl and tpl denotetheabsorptioncoefficientandthicknessofthe passivationlayer.Again,Eq.(1.1.3)shouldbeadaptedforthechargedparticlebeams.

1.2DetectionofChargedParticles

Asmentionedintheintroduction,theinelasticcollisionofachargedparticlewithavalenceelectroninthetargetatom resultsineitherthedirectionizationorexcitationoftheatom.Theexcitationmayelevateboundelectronstohigherenergy shellsinthevalenceband,whereastheionizationremovesatleastoneofthemfromtheatomcompletelycreatingafree electron–holepair.Inotherwords,directionizationtakesplaceifachargedparticletransferstothevalenceelectronenergy thatexceedstheionizationpotentialoftheatomintheaffectedcovalentbond(inthecaseofthecovalentsemiconductors). Theactualenergytransferismediatedbyelectromagneticfieldssurroundingtheinteractingatoms.Duetothelongrangeof theelectromagneticforces(mainlytheelectricCoulombforcethatdecaysas1/r2,with r beingthedistancebetweenparticles),theionizinginteractionsmayoccurevenwhentheincidentparticledoesnotpassthetargetatomincloseproximity. Thekineticenergyoffreedelectronsisestimatedas

E el = E t Δ 1 2 1 where Et istheenergytransferredtoavalenceelectronasaresultoftheinelasticcollisionand Δ isthebinding(orgap) energy. Eel canbesufficientforthefreedrecoilelectronstoinitiatesubsequentchainsofexcitationandionizationevents. Secondaryelectronsareessentiallylight-chargedparticlesthemselveswithsimilarphysicsbehindtheirrelaxationprocess.

1.2DetectionofChargedParticles

Light particles

particles Super-heavy ions

Heavy nuclei

Biomolecules

microorganisms

-Particles

Chargedparticleswithenergiesbelowtheatomionizationpotentialcanstillproduceameasurableamountofinformative quasiparticlesthroughthephonongeneratingmechanisminthesuperconducting(athermal)andnormalmetalabsorbers attachedtolow-temperaturedetectors(thermalhotelectrons).

Conditionally,allchargedparticlescanbedividedintothreegroups[4].Thefirstgroupcompriseslightparticles,e.g. electrons, β -particles,andpositrons.Thesecondgroupincludesheavy-chargedparticles,suchasprotons, α-particles,heavy ions,mesons.Super-heavyionizedbiomolecularparticlesandmicroorganismsconstitutetheirseparategroup.Figure1.2.1 summarizestheclassificationinadiagramform.Inthefigure,wedistinguishtheelectronfromthe β -particletoemphasize itsdualnature.Theterm “β -particle” referstoanelectronspecificallyreleasedfromnuclei.

1.2.1Light-ChargedParticles

Theinelasticcollisionsoflight-chargedparticleswithabsorbermediaproduceaseriesofcharacteristicradiations.Theseare asfollows:

– Thesecondaryelectrons;

– TheAugerelectrons;

– Thediffractedelectrons;

– Thebackscatteredelectrons;

– ThecharacteristicX-rays;

– Thebremsstrahlung(brakingradiation);

– Others.

Figure1.2.2givesaschematicillustrationoftheprimaryandsecondaryvolumesinwhichincomingchargednuclear particlesinteractwitharadiationdetectionabsorber.Thedrawingalsodefinessub-volumeswherespecificnuclearreactionsgenerateeachofthepreviouslylistedcharacteristicproducts.Callingtheradiations’“characteristic” meansthatthey containimportantinformationaboutthephysicalpropertiesandchemicalcompositionofthetargetmaterial.Theyare fundamentalformultiplenuclearanalyticalmethodologiesandtoolsusedwidelyinelectronmicroscopy,chemicalanalysis, crystallography,medicine,radiometry,etc.Themajorityoftheseanalyticalinstrumentsutilizethesemiconductorand superconductorradiationsensors,whichwewilldiscussinthefollowingchaptersofthismanuscript,duetotheirsuperior performancespecifications. Charged

Figure1.2.1 Theclassificationofchargednuclearparticles.

Characteristic X-rays

Bremsstrahlung Primary interaction volume

Auger electrons

Secondary electrons

Backscattered electrons

Figure1.2.2 Aschematicvisualizationofprimaryandsecondaryvolumeswheretheinteractionofincomingchargednuclearparticles withradiationdetectionabsorbertakesplace.

Sincethecryogenicdetectorsdemonstratesensitivitytoalltypesofradiations,thelight-chargedparticlesbombardingthe detectionmediumofsensorsexcitesimilarcharacteristicproductsintheabsorber’ssensitivevolumeitself,asshownin Figure1.2.2.Theseexcitationsborrowenergyfrommaininformativepeaks,giverisetoadditional(unwanted)peaks, absorptionminimums,lowenergytails,backgrounds,andothertracesintheradiationspectrometeroutputontheacquired energyspectrumdiagram.Therefore,agoodunderstandingofallnuclearreactionsinaparticularabsorber’smaterialof choiceisabsolutelyimportantforachievinghighaccuracyintheradiationmeasurements.Modelingthedetectorresponse canassistinselectingtherightabsorbertype,optimizationoftheoveralldetectordesign,anddevelopingtheappropriate mathematicalmodelstointroducecorrectionstotheacquiredrawdata.

Attheverybeginningoftheenergydown-conversioncascade,theincidentchargedparticlestendtolosetheirenergy(ifit isaboveafewkeV)mainlythroughthelong-rangecollisionswithtargetatomsandcontinuousradiation(bremsstrahlung). Then,thequasiparticlegenerationprocessproceedsthroughmultiplechainsoftheenergypartitionsbetweenelectron–electronshort-rangeandelectron–phononlonger-rangeinteractions.Attheendoftherelaxationprocess,theathermal detectorabsorbershouldcontainquasiparticleswithaninformativedensity Nqp thatcorrelateswiththeenergydeposited byincidentevents.Variousenergylossmechanisms,includingallthecharacteristicradiationproductsplustheenergy storedinthephononsystemattheendofthedown-conversion,influencethemajordetectorperformancespecifications, e.g. εqp and F.Here, εqp istheaverageenergyrequiredtogenerateasingleinformativequasiparticle(oftenreferredtoasthe ionizationpotentialinsemiconductordetectors),and F denotestheFanofactor. εqp and F definethestatisticalintrinsic energyresolution(seeChapter2).Someofthecharacteristicradiations,especiallybremsstrahlung,contributesignificantly tothebackgroundnoise,furtherlimitingtheresolvingpowerofdetectors.

1.2.1.1AttenuationFunctionforChargedNuclearParticles

Now,wewillgiveanestimatefortheIQEofabsorbersintendedtocapturethechargedparticlesandtransformtheirenergy intoinformativequasiparticlescollectedbythecharge-sensitivepreampeitherdirectlyorthroughtheattachedsensing devices,e.g.superconductingtunneljunctions.Aswementionedbefore,chargedparticlesundergomultipleelasticand inelasticcollisions,inwhichtheycorrespondinglyloseonlyfractionsoftheirenergiesremaininginthebeamforsometime (seeFigure1.2.3).Thepenetrationdepthforeachparticlevaries,but,statistically,thereexistsanaveragepropagationdistanceovertheensemble,whichisusuallyreferredtoas therange, R.Attheendofthestraight-linelength, R,particlesare assumedtobestatisticallyrelaxedtothethermalequilibrium.Intermsofthequasiparticleresponsetotheincoming

Interaction volume

Figure1.2.3 Penetrationofparticlesintotheinteractionmediumofasolid-stateradiationdetector.

chargedparticleitself,aspecificallydefined ionizationrange canbeofinterest.Theionizationrangecharacterizesparticle trajectoriesfromapointwithaninitialenergy Ep toapoint wheretheparticlerelaxestoathresholdenergylevelof ~3/2Δ sothatonefinalscatteringfromthevalenceelectron removesitfromthebeam.Theattenuationfunctioncanthen beapproximatedeitherbytheshiftedexponent,i.e. I = I 0 at0< x < R

ortheGaussianfunction(see,forinstance[5]).Inthelatter case, R representsthemeanvalueofthedistributionatthehalf maximum,asshowninFigure1.2.4.Astatisticaldistribution of R isoftenreferredtoas therangestruggling. Forsimplifiedballparkevaluations,onecanuseasemiempiricalformulaforthemeanrangegivenby[4]:

The beam current

Figure1.2.4 Radiationintensityasafunctionofthecharged particlepenetrationdepth. R representsthemeanpenetration rangeoftheradiation. 1.2DetectionofChargedParticles

R (mean range) I(0) I(0)/2 x

Inthisequation, Emin istheminimumenergyatwhichtheBethe–Blochtheoreticalmodelingisvalid.Forincomingcharged particleswithenergiesaboveafewkeV,theBethe–Blochformulaforthelinearenergytransferasafunctionofthepenetrationdepth, x,isgivenby[5]

with Na beingtheAvogadronumber, A and ρ aretheatomicmassanddensityofthedetectionmedium, Z istheatomic number, re =2.817×10 13 cmistheclassicalelectronradius, me =9.108×10 31 kgistherestmassofanelectron, c isthe

velocityoflight, β = v c , ek = E k me c2 denotethedimensionlessreducedvelocityandthekineticenergyoftheincident

particle,respectively, Ip isthemeanexcitationpotential,and δ, C representthedensityandshellcorrectionfactors.Sincethe massesofinteractingobjectsintheinelasticscatteringarealmostthesame(nottrueforrelativisticparticles),themaximum energytransferpercollisioncannotexceedhalfofthekineticenergyoftheincidentchargedparticle.Thus,thefunction F(ek)takesthefollowingforms:

a)Forelectronsand β -particles,

b)Forpositrons,

Forthosewhopreferevensimplersolutions,anempiricalexpressionhasbeenderivedforacaseof E>Emin [6,7]:

Equation(1.2.7)providesadequateaccuracyforthedetectorefficiencyevaluationinanenergyrangeof10–1000keV. Forlight-chargedparticleswithenergies10eV< Ep <10keV,thetotalnumberofcollisionsperparticleisinsufficientto justifytheusageoftheBethe–Blochstatisticalformalism.TheenergylossinsolidscanbeestimatedusingtheLindhard dielectricresponseofamediumtoapassingparticletransferringitskineticenergy ℏω andchangingitsmomentumby ℏk onitsway[8,9].Themeanrangeforcontinuousenergylossfrom Ep ~10keVto10eVisgivenby[10]:

where S(E)istheenergylossperunitpathlengthorstoppingpoweroftheabsorbermaterial.Calculated R(Ep)and S(E)for 58elementalmaterialsincludingthosethatarenormallyusedinradiationdetectorsarepublishedinTanumaetal.[11,12].

Figure1.2.5givesanexampleofthemeanrangeasafunctionofchargedparticleenergy R(Ep)inarangefrom50eVto5keV calculatedusingdatafromTanumaetal.[11].

Anaveragenucleusdiameterisonlya10 5 fractionofthe atomsize.Theremainingvolumeisoccupiedbytheorbital electrons(electrongas).Thisimpliesthattheprobability forachargedparticletointeractwithanucleusinthe close-rangecollision(nuclearreaction)ismuchsmaller comparedwiththeprobabilityofinteractionwithvalence electrons.Forsilicon,scatteringsfromthevalenceelectronsrepresentthemajorlossmechanismattheelectron energiesfrom10eVto10keV.Below10eV,ionizationcollisionratedropsexponentiallyreachingavalueof5×1010 s 1 at2eV.Furtherrelaxationisdominatedbythefastinelasticelectron–phononinteractions.

Itisimportanttoreemphasizeagainthatthesecomputationsarenormallyperformedwithdedicateddesign/simulationtools.Givingtheseequations,wearenottryingto advocateperformingcalculationsintheold-fashioned style.Weratherhighlightthepointthatallsimulationtools employspecificmodelsthathavetheirlimitations.Engineerscanonlyrelyonthemifallissuescomplicatingthe analysisandtheapplicabilityofbuilt-inmodelsforachievingcorrectresultsarewellunderstood.

Figure1.2.5 Aplotofthemeanrangeasafunctionofcharged particleenergy R(Ep)inarangefrom50eVto5keVcalculatedusing datafromTanumaetal.[11].

1.2.2TheContinuous “Braking” Radiation (Bremsstrahlung)

Thelong-rangeCoulombforcesofnucleiexertastronginfluence onchargedparticletracks.Evenelasticscatteringeventsaffect detectorquantumefficiency.Theydivertparticlesfromtheir originaldirectioncausingbremsstrahlungorbackscatteringof particlesfromthedetectorabsorber.Theinteractionvolumealso emanatesAugerelectronscreatedasaresultoftheinelasticcollisionsneartheentrancewindowregion(Figure1.2.2).

1.2DetectionofChargedParticles

Bremsstrahlung

Kramer’s law

Photon energy

Duane–hunt limit

Emax

Thechargedparticlesdecelerateprimarilythroughthedeflectionbythenucleus’ sstrongelectricfield(althoughthescreeningeffectfromvalenceelectronsalsoplaysitspartinthe process).Adeflectedparticlelosessomeofitskineticenergy thatisemittedasabreakingphoton,i.e. hv = Ep( before ) Ep( after ).Here, hv istheenergyofthephotonand Ep( before )and Ep(after )denotetheparticlekineticenergybefore andafterthedeflection.

Freeelectronsandpositronsdonothavediscreteallowedenergylevels.Therefore,the “braking” radiationhasacontinuousenergyspectrumextendingfromnear-zerotothemaximumenergyofincomingchargedparticlesminusthebinding energy Δ oftheabsorbermaterial.Sincetheemitteddecelerationphotonsgenerateanincreasingnumberoffreecarriers withprogressivelysmallerenergies,theircontinuumdistributionfunctionhasashapeasshowninFigure1.2.6.Thecurve wasderivedfromtheKramer’sequationfortheintensityinphotonspersecondperunitenergyintervalperincidentelectron[13]:

where E isanenergyofinterest.

Thepartitionofthetotalstoppingpowerofthematerial dE dx Σ between dE dx col duetoinelasticcollisionsand dE dx brem dueto bremsstrahlungvarieswithenergy.Inthelowenergyrange,particlestendtorelaxmostlyviainelasticscatteringfromatom electrons,i.e. dE dx Σ dE dx coll.Atveryhighenergies,theenergylossisdominatedbybremsstrahlung,i.e. dE dx Σ dE dx brem Contributionsfrombothmechanismsmustbetakenintoaccountforchargeparticlesacceleratedtointermediaryenergies. Thereisacrossoverenergy Ec atwhichthesecontributionsbecomeequal, dE dx coll = dE dx brem.Fortheinteractionofelectrons withsemiconductors,acrossoverpoint Ec ~fewtensofMeV.

Counts per channel

Si Kα

Characteristic X-ray

Bremsstrahlung

Duane–hunt limit

Emax

1.2.3BackscatteringofChargedParticles

Thedeflectionofchargedparticlesfromtheiroriginaldirections bytheCoulombforcesofnucleiwithstrongfieldgradients hasotherimplicationsonthedetectionprocessbesides

Figure1.2.6 Thedistributionfunctionofcontinuum photonscausedbybremsstrahlung. 246810 1214161820

Bremsstrahlungmanifestsitselfasabackgroundcontinuumontheenergyspectrumhistogram.Anexampleofsucha diagramexperimentallyobtainedfromthepurebulksiliconisshowninFigure1.2.7.TheX-rayattenuationatlow energiesseeminglyopposestheKramer ’ sfunction.Inreality, thisresultsfromphotonabsorptionbymatter.Thesephotons existbutsimplydonotreachthedetectormeasuringtheX-ray irradiation.Todemonstratetheintensityofthebrakingradiation,Figure1.2.7alsoincludesastrongSi K α characteristicpeak. Onecanseethatapartofthepeakissmeared.Thebackground continuummaymaskcompletelysomeofthelower-intensity signalsgeneratedbythemeasuredradiation.Italsocomplicates theseparationofcloselyspacedpeaksontheenergyspectrum. Bothproblemsbecomeparticularlyseriousinthelow-energy region.

Photon energy (keV)

Figure1.2.7 Bremsstrahlungmanifestsitselfas backgroundcontinuumontheenergyspectrumhistogram. LowenergyattenuationasoppositetotheKramer’sfunction isduetothephotonabsorptionbymatter.

Particle escape

By deflection (a) (b) By backscattering

Figure1.2.8 (a)Alarge-anglescatteringeventneartheedgedivertsan incomingparticleoutofthedetectionvolumebeforeitsrelaxationhasbeen completed.(b)Thebackscatteringeffectwhenthetotaldeflectionangle becomeslargerthan π /2,sothattheparticleisejectedbackfromthe detectorfrontsurface.

bremsstrahlung.Multipleelasticinteractionsshapepropagationpathsintomeander-likeformsthatincreasetheinteraction volumeandcanmoveittowardsurfaceswithalargedensityoftrappingstates.Alarge-anglescatteringeventneartheedge candivertanincomingparticleoutofthedetectionvolumebeforeitsrelaxationhasbeencompleted(orevenstarted).

Figure1.2.8aillustratesthiscase.Asuccessionofseveralelasticcollisionsmayleadto thebackscatteringeffect.Ithappens whenthetotaldeflectionanglebecomeslargerthan π /2sothattheparticleisejectedbackfromtheentrancewindowofthe detector.ThebackscatteringeffectisillustratedinFigure1.2.8b.Freeelectronsproducedbytheionizationprocesscanalso escapefromthedetectorasthesecondaryandAugerelectrons.Tobeabletoleavethedetectionvolume,theirenergiesneed tobelargerthanthesurfaceworkfunction, Fw,ofthesurfacematerial(ormaterialsiftheentrancewindowcontainsseveral layers).Byconvention,onlyelectronswithenergiesbelow50eVemittedfromadepthlessthan1nmarereferredtoas secondary.Theyaredistinguishedfromothers,moreenergeticelectronsthatcancomeoutfromadepthupto50nm.

Thebackscatteringprocessisnormallyquantifiedby thebackscatteringcoefficient,whichrepresentsthefractionofthe totalnumberofincidentparticlesthatthedetectoremitsbackfromthefrontsurfaceto,i.e.

Thecoefficientdependsontheatomicnumberofthemedium.Forallelementalmaterialsusedasradiationabsorbers, ηbs increasesastheparticleenergiesbecomelower.Highenergyparticlestendtopenetratedeeplyintothemedium(R >50nm) whereevenscatteredathighanglestheycanbereabsorbedefficientlybythelattice.

Thebackscatteringofparticlesoutofthedetectionvolumebeforetheyhaverelaxedtobelow Δ leadsto thechargecollectiondeficit.Itaffectsthelowenergyquantumefficiencyofdetectors.Inaddition,theincompletechargecollectionmarks itspresencethroughtheshiftandbroadeningofmajorinformativepeaksontheenergyhistogram.Italsoaddsspurious peaksandvoidstothebremsstrahlungcontinuum.

1.2.4Heavy-ChargedParticles

Theclassofheavy-chargedparticlesincorporatesallelementaryparticleswithmassesexceedingtheelectronmass,i.e.protons, α-particles,muons,pions,lightnuclei,etc.Theprinciplebehindtheirinteractionphysicswithsolid-stateabsorbersis similartothatofelectronsandpositronsthatweanalyzedinSection1.2.1.Thus,inadditiontowhatwasdiscussed,weonly needtointroducesomequantitativecorrectionsintoequationsdescribingtheenergychannelingprocess.

Theinitialvelocityofaheavy-chargedparticleisapproximately M me timeslowerthanthevelocityoftheelectronwiththe sameenergy(M isthemassofaheavyparticleunderconsideration).Thisreductioninthevelocityextendstheinteraction timebetweenparticlesandatoms,whichleadstoincreasedenergylosspercollision.Thevalenceelectronsofinteracting targetatomshaveenoughtimetoacquireenergyclosetoamaximumvaluethatisevaluatedas[14]

where s = me M , η = βγ , γ = 1 1 β 2 .Moreefficientinelasticscatteringshavetwopositiveconsequencesfordetector designers:(i)therangeofheavy-chargedparticlesbecomesshorterand(ii)betterdefinedatthesametime(reducedthe rangestruggling).

Providedthat β >0.1,theBethe–Blochequationforthelinearenergytransferhasthefollowingmodifiedform[4]:

where z isthechargeofanincidentparticleinunitsofelementaryelectroncharge, e0

Statistically,equallychargedparticlesexperienceanaverageCoulombdecelerationforcefromnuclei, F b .Thisforceis responsibleforthebrakingradiation dE dx brem .Thedeceleration, d ,isinverselyproportionaltothesquareoftheparticle mass, M,i.e. d F b M 2 .Thismeansthattherelativecontributionof dE dx brem tothetotalstoppingpowerreducesinproportionto 1 M 2 aswell.Inotherwords,theinelasticscatteringfromvalenceelectronsisthemajorenergylossmechanismfor heavy-chargedparticlesinasolid-statemediumintheenergyrangeuptoafewGeV:

Intuitively,thepathofaheavyparticleinthemattershouldbelessperturbedbylarge-angledeflectionscomparedwith thatofelectronsorpositrons.Indeed,collisions,inwhichparticlescanlose 4 me M fractionoftheirenergyasamaximum, cannotincuranysubstantialscatteringangle.TheaveragescatteringanglebytheCoulombforcesfromnucleialsohasa downwardtrendinproportiontothesquareoftheparticlemassmultipliedbythescreeningeffectfromsurrounding electrons.

Aquasi-straighttrack,thereducedmeanfreepath(reciprocaltothenumberofcollisionsperunitlength

in totalduringtheparticlepassage),andabetter-definedenergylossratepercollisionenabletherangetobepredictedwitha verygoodaccuracyusingsimpleanalyticalexpressions.PlotsinFigure1.2.9presentrangesof α-particlesandprotonsin comparisonwiththeelectronrangesforSi(a)andGe(b)absorbers.Similarplotsfortheseparticlesindetector-sensitive volumesmadeofothermaterialscanbeevaluatedfollowingtheempiricalBragg–Kleemanrule[15]:

where Rdet, ρdet,and Adet denotetherange,density,andatomicweightofadetectormediumofinterestand RSi, ρSi,and ASi aretherespectivevaluesforSi.Inthecaseofcompoundmaterial, Adet denotesaneffectiveatomicweight,whichis definedas

where η1 and η2 aretheatomicfractionsofchemicalelementsinthecompoundwithatomicweights

Somelow-energyparticleschargedpositively(includingthosethatlosttheirenergyincollisions)canattractfreeelectrons fromthemediumforsomeperiodoftimeand,thereby,usingtheirscreeningeffectpropagatemuchdeeperintheabsorber asaquasi-neutralparticle.Thismayresultinthechargecollectiondeficitifparticlesleavetheinteractionvolumebeforethe thermalizationprocessiscompleted.Thephenomenonisparticularlypronouncedinthenormalmetalandsuperconductingabsorbers.Insemiconductordetectors,interactionvolumesaredepletedoffreecarriers.Therefore,positivechargeparticlescanonlyattractelectronsunboundedasaresultoftheirinelasticscatteringevents.Thismeansthatthephenomenon isinfluencedbytheenergyofincomingparticlesandthebeamintensity.

1.3PrimaryInteractionsofX-and γ-RayPhotonswithSolid-StateAbsorbers

Thedualnatureofmatterbecomesparticularlyevidentwhenwedealwiththelight.Infrared,visiblelight,ultraviolet,X-rays, and γ-raysdemonstratewavelikephenomenasuchasinterference,diffraction,andpolarization.Atthesametime,wetreat themasphotonparticles(i.e.packetsofelectromagneticwaves),toexplainthefollowingquantummechanicaleffects:

1)Thephotoelectriceffect; 2)TheComptonscattering; 3)Thepairproduction.

Theseeffectsrepresentthemajorinteractionmechanismsbetweenphotonsandabsorbermaterials.Theyalsoconstitutethe basefortheX-and γ-raydetectionmethodologies.Sincephotonshavenocharge,thelistedabovethreeeffectsinitiateindirectionizationenergycascadesbytheejectionofenergeticprimaryphotoelectrons.Afterthat,theprimaryphotoelectrons startparticipatingintheenergydown-conversionprocesssimilartotheprocessinitiatedbythelight-chargedparticlesdiscussedinSection1.2.Inthisrespect,thereisnoneedtorepeattheanalysisofthecompleteinteractionroutine.Wewillfocus primarilyontheprimarynuclearreactionmechanisms.

1.3.1PhotoelectricEffect

Thephotoelectriceffecttakesplaceattheabsorptioncollisionsbetweenincomingphotonsandtargetatoms.Atthefirst collision,photonstendtotransferalltheirenergies Ex andmomentums Mph tothetargetatomsanddisappearfromthe beam.Theabsorbedphotonenergyisthenforwardedtooneoftheboundelectrons,whereasthenucleuscaptivatesthe recoilmomentum,asshowninFigure1.3.1a.Providedthatthecondition Ex > Ej holds,theatomejectsaphotoelectron withkineticenergygivenby E e = E x E j 1 3 1 where Ej isthebindingenergyofthe jthshell.

Figure1.3.1bshowsthecaseof Ex >> Ek whentheoutgoingelectronleavestheinnerKshelloftheatoms.Thisenergetic photoelectroninitiatesasubsequentionization(orthepairbreakinginacaseofsuperconductingabsorber)energycascades. TheremainingtwodiagramsofFigure1.3.1c,dillustratethede-excitationprocessintheatominwhichtheelectronstructurerearrangesitselftooccupythelowestenergystatesavailable.ThetransitionsfromLshelltoKshellandfromMshellto LshellarefollowedbyemissionofcharacteristicX-rayswiththefollowingenergies:

ThecharacteristicX-raysmayparticipateintheirownphotoelectricinteractionsfollowedbycorrespondingdownconversionprocesses.ThismeansthataradiationdetectorexposedtoamonochromaticX-and γ-raybeamproducesan energyspectrumenrichedbymultiplepeaksfromcharacteristicX-rayemissions.Theoverallenergyofthesepeakstogether withotherartifactsdiscussedinSection1.2isborrowedfromthemaininformativepeakatthephotonenergy Ex.Toimprove measurementaccuracytheborrowedenergydeficitneedstobereturnedbacktothe Ex linebyapplyingappropriatecorrectionfactorsderived,e.g.,fromtheMonteCarlomodeling.

Thechainofpossiblephotoelectriceventslastsuntilenergiesofremainingphotonsandenergeticquasiparticlesbecome insufficienttofreeinnershellvalenceelectrons.Ifthephotoelectriceffectistheonlyprimaryinteractionmechanism

1.3PrimaryInteractionsofX-and γ -RayPhotonswithSolid-StateAbsorbers

Characteristic

Characteristic

Figure1.3.1 TheshelldiagramsillustratingX-rayphotoninteractionwiththetargetatomthroughthephotoelectriceffect.(a)The photontransferringallitsenergytothek-shellelectron;(b)theelectronwithkineticenergy Ex Ek vacatesthek-shelloftheatom;(cand d)theelectronstructurerearrangementwiththecharacteristicX-raysemissions.

betweenphotonsandthemedium,thecombinedenergyof photoelectronsapproachesveryclosetotheenergyofincomingparticles,i.e.

e Σ ≈ E x 1 3 4

Equation(1.3.4)representsthenecessaryconditionthatdefines theaccuracyofsolid-stateradiationdetectorswithregardto X-and γ-raymeasurements[16].AgenericexampleofacorrectedphotoelectricspectrumispresentedinFigure1.3.2. Moreinformationonmathematicalmodelingofthephoton interactionwithmattercanbefoundinliteraturediscussing theX-rayprobeanalysistechniquesanddescriptionofthe specializedsimulationsoftware,e.g.GEANT4.

1.3.2ComptonScattering

ThephotoelectriceffectismorecommonforrelativelylowenergyX-rays.InthemiddleoftheX-and γ-rayenergyrange, someoftheincomingphotonsrelaxviainelasticscatterings fromouterlooselycoupledatomicelectrons.ThephenomenonisnamedafterArthurH.Comptonwhowasthefirst toobserveandexplainitin1923[17].Figure1.3.3illustrates theessenceoftheComptonscatteringmechanism. Letusassumethatanelectronwithamass me restsjust beforetheinteractionevent.Then,anincidentphotonwith energy Eγ andmomentum kγ collideswiththeelectron.This resultsintheelectronrecoilingwithanenergy Ee and momentum ke andthephotonscatteredintoanewstatewith

Counts

Figure1.3.2 Anenergyspectrumrepresentingthecorrected primaryphotoelectriceffect.

Figure1.3.3 AschematicrepresentationoftheCompton scattering.

energy Ep andmomentum kp.Theconservationlawofthe energyandmomentumgivenby

suggestthatthephotonisscatteredwithareducedenergy Ep < Eγ orincreasedwavelength λp > λγ (accordingtothe Planckrelation: E = h c λ,with h beingthePlanckconstant and c isthelightvelocity).Comptondiscoveredthatthe wavelengthshiftcorrespondsto

where λc = h me c istheComptonwavelength.

Combiningallthreeequations(1.3.5)–(1.3.7),thekinetic energyoftherecoilelectrontakesthefollowingform:

Counts

Thescatteringangle θ canbeofanyvaluefrom0to π .Therefore,asolid-statedetectorexposedtomiddlerangeX-and

-rays willyieldanenergyspectrumthatshouldlooklikeacontinuumextendingfromthezerolinetotheComptonedge. Figure1.3.4givesanillustrationoftheenergyspectrumincludingtheComptoncontinuum.TheComptonedgecorresponds tothemaximumenergyimpartedfromthebackscatteredincomingphotontotherecoilelectron(θ = π ),whichisgivenby

UnlesstheComptonscatteringisinformative(i.e.usedasadetectionmethodcharacterizingpropertiesofincomingparticles),ittendstodegradethedetectorperformance.Thecontinuumcanmasklow-intensitypeaksintherangewhereitis pronouncedandhaveasignificantimpactontheintensitiesandpositionsofphotoelectricpeaksborrowingenergyfrom down-conversionchannelsthatotherwisewouldcontributetotheintensityofphotoelectriclinesinthehistogram.Onthe positiveside,theComptonscatteringmechanismiswellunderstoodandquantifiedtoveryhighaccuracy.Modernquantum microscopicmodelsarecapabletodeliverasetofhighprecisionspectrumcorrectionfactorstoreduceitsinfluenceonthe finalmeasurementresultifnecessary.

ItisworthmentioningthatingeneraltheComptoneffectmaymanifestitselfinamoresophisticatedformcomparedwith theclassicalrepresentationbyEq.(1.3.7).Dependingonthematerial,thespectrumcontinuumcantakevariousshapesand containmultiplepeaksoriginatingfromassociatedsubtleeffects.Wewillnotgodeeplyintothistopic.Numerousdedicated papersandmanuscriptsdiscussitingreatdetail.Forexample,interestedreaderscanfindagoodoverviewofthesubject in[18,19].

Thedesignandsimulationtoolsshouldalsoincorporatemoreinclusivequantummechanicalmodelscomparedto Eq.(1.3.7).Foragoodaccuracyoftheanalysis,itwouldbeusefultotakeintoconsiderationmorerealisticinitialconditions, forinstance,thefactthattheatomelectronsarenotrestingbeforeandduringtheinteractionevents.Incomingphotons interactratherwiththeplasmaelectroncloudaroundthetargetatoms(quasiparticles)ratherthanwithstandaloneelectrons.Thismeansthatexcitedquasiparticlescanalsotransfertheirkineticenergytothelow-energyphotonsandboosttheir energylevels.Inthiscase,therightsideofEq.(1.3.7)takestheoppositesignimplyingthatthewavelengthoftheoutgoing photonbecomesshorter.Thisphenomenonisalsoknownas theinverseComptonscattering.Forinstance,infraredphotons incollisionswithrelativisticelectronscanbeboostedwellbackintotheX-rayregion.TheinverseComptonscatteringalso influencesthedetectorperformance.Someoftheinteractionelectronswith E > Eg restoreionization(pairbreaking)capabilityoflowenergyphotons,whichotherwisewould “quietly” relaxthroughthephononsystem.Theseboostedphotonsadd countstothebackgroundcontinuuminawaysimilartobremsstrahlung.

1.3.3ThePairProduction

Thepairproductionreferstothetransformationofphotonsintotheelectron–positronpairsintheCoulombfieldofnuclei. ThetransformationisillustratedinFigure1.3.5.

Photoelectric
Figure1.3.4 TheComptoncontinuumontheenergyspectrum diagram.

1.3PrimaryInteractionsofX-and

Theminimumenergyrequiredforthiseffecttotakeplaceisderived fromthemassandenergyconservationlaw,i.e.

where mn isthemassofthetargetnucleus,2mec 2 isthecombinedrest mass–energyoftheelectron–positronpair.Inpractice, mn me,which enablesthecondition(1.3.10)toberewritteninasimplifiedformas

Theexcessenergy Eγ 2mec 2 isdividedequallybetweenthefreedelectronandpositron.Withthisenergy,bothparticles,iftheystayinsidethe detectorabsorbervolume,continueparticipatingintherelaxationprocesssimilartolight-chargedparticlesasdiscussedinSection1.2.

Thelifetimeofthepositronisquiteshort.Within1nsitisusuallycapturedbyelectronclouds.Twoanti-particlesannihilatewiththeemission oftwo mec 2 photonsinoppositedirections.TheprocessoftheannihilationandreconversionintophotonsisillustratedinFigure1.3.6a,b, respectively.Theannihilationphotonseitherrelaxintheinteraction withmediumelectronsbytheComptonandphotoelectricprocesses orescapefromthedetectionvolumealtogether.Aspectralresponse exampleoftheradiationdetectorexposedtohigh-energy γ-rayphotons ispresentedinFigure1.3.7.Itcontainsthreephotoelectricpeaks.The singleescapeanddoubleescapepeakscorrespondtocaseswhenone andbothrespectiveannihilationphotonsdepositedalltheirenergies inthedetectionvolumethroughthephotoelectricnuclearreaction.

1.3.4AttenuationofPhotonRadiationinSolid-State DetectorAbsorbers

Letusconsideracasewhentheparallelbeamofmonoenergeticphotons penetratesadetectorabsorberofathickness, x,asshowninFigure1.3.8. Afractionofincomingphotonsinteractswiththemedium,sothatthe intensityofthetransmittedbeam, I,issmallerthantheintensityof theincidentbeam, I0.Iftheenergyabsorptionoccursbyeitherthephotoelectriceffectorthepairproduction,photonstransferalltheirenergy anddisappearfromthebeamontheirfirstinteraction.Inthiscase, Eq.(1.1.2)describesthetransmissionadequately.Itcanberewritten intermsofbeamintensitiesasfollows:

where

Figure1.3.5 Thepairproductionprocess.An incomingphotonistransformedintotheelectron–positronpairintheCoulombfieldofthenucleus. (a) (b)

Figure1.3.6 Theprocessofelectron–positron annihilation(a)andreconversionintophotons(b).

isthetotallinearattenuationcoefficient.Bydefinition,thetotallinearattenuationcoefficientcombinestheindividualattenuationcoefficientsforphotoelectric,pairproductionprocesses,andtheComptonscattering,i.e.

Indoingso,however,oneneedstorememberthattheComptonscatteringdoesnotremoveaphotonfromthebeamina singlecollision.Similartochargedparticles,photonsrelaxingviatheComptonmechanismalonewouldhavetobecharacterizedbytherangefunctionsimilartothechargedparticletreatment.

Theinteractionofparticleswithmatterisoftentabulatedintermsoftheindividualortotalcrosssections.Thecross sectionisdefinedastheinteractionprobabilitypertargetatom.Itsrelationtothelinearattenuationcoefficientisgivenby

where

Σ = σ ph + σ pp + σ C, σ ph, σ pp,and σ C representindividualcrosssectionsofthephotoelectric,pairproduction, andComptonprocesses,respectively.

1.4DetectionofNeutronswithSolidStateRadiationSensors

Theneutronisafundamentalparticlewithamassof1 amu,whichequalsapproximatelytotherestmassof 1839electrons.Theparticleiselectricallyneutraland, therefore,notcapabletodirectlyionizeatomsvialongrangeCoulombforces.Instead,penetratingthematter,it undergoesshort-rangeinteractionswithatomicnuclei (nuclearreactions).Fornon-relativisticneutrons,onecan distinguishthreemajortypesofnuclearreactions.These areasfollows:

1)Theabsorptionofneutronsbynuclei; 2)Theelasticscatteringsfromnuclei; 3)Theinelasticscatterings.

Inthescatteringcollisions,theneutronimpartsonlya fractionofitsenergyand,thus,mayinteractwithmultiple targetnucleionitstrack.Thenucleusconvertstheexcitationenergyreceivedfromtheneutronintosomeformof radiativeemission,e.g.X-ray, γ-rayphotons,chargedparticle.Ifthethicknessoftheabsorberpermits,thereaction chainlastsuntiltheparticleeitherhasbeencapturedbya nucleusordisintegratesintoaproton, β -particle,andneutrinoattheendofitslifetime.

Thetotalcrosssection(ortheprobabilityforparticlesto interactwiththedetectorsensitivevolume)includesall crosssectionsresponsibleforeachnuclearreactionmechanism,i.e.[4]

Figure1.3.7 Atypicalspectralresponseofradiationdetectors exposedtohighenergyphotonsinitiatingthepairproduction events.Thehistogramcontainsthreephotoelectricpeaks.The singleescapeanddoubleescapepeakscorrespondtocaseswhen oneandbothannihilationphotonsescapefromthedetection volumewithoutinteractions,respectively.

Interaction volume x

Figure1.3.8 Theinteractionofaphotonradiationbeamwiththe solid-stateabsorber. I0 and I representtheincomingandtransmitted beamcurrents.

Itdependsstronglyonthekineticenergy, Ek (orvelocity, v)ofneutronsinthebeam.Forinstance,theabsorptionprobability increasesinproportiontothetimedurationitspendsinthecloseproximity(~10 15 m)withnuclei,i.e.

Thistypeofnuclearreactionislikelytobedominatingfor slow neutronswith Ek <1eV,while fast neutronswith Ek >100keVtendtotransfertheirenergypredominantlyviascatteringmechanismsuntiltheybecome moderated toan energy Ek <1eV.

Figure1.4.1presentsamorecompleteclassificationofpossiblenuclearreactiontypesbetweenneutronsandnuclei.The fourmechanismsaddedtotheabsorptionandelastic/inelasticscatteringsmakesignificantcontributionsforhighenergy (relativistic)particles.Wewillnotbediscussingtheminthismanuscript.Interestedreaderscanfinddetailedinformationin specializedliterature,e.g.[20].

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.