Full download Upconverting nanoparticles vineet k. rai pdf docx

Page 1


https://ebookmass.com/product/upconverting-nanoparticles-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Nanotechnological Applications in Virology Mahendra Rai

https://ebookmass.com/product/nanotechnological-applications-invirology-mahendra-rai/

ebookmass.com

Chemistry Module III Inorganic Chemistry for IIT JEE main and advanced Vineet Agarwal McGraw Hill Education Vineet Agarwal

https://ebookmass.com/product/chemistry-module-iii-inorganicchemistry-for-iit-jee-main-and-advanced-vineet-agarwal-mcgraw-hilleducation-vineet-agarwal/ ebookmass.com

Science and Applications of Nanoparticles Wagar Ahmed

https://ebookmass.com/product/science-and-applications-ofnanoparticles-wagar-ahmed/ ebookmass.com

New

and Future Developments in ... : Sustainable Agriculture: Advances in

Microbe-based Biostimulants Harikesh Bahadur Singh

https://ebookmass.com/product/new-and-future-developments-insustainable-agriculture-advances-in-microbe-based-biostimulantsharikesh-bahadur-singh/ ebookmass.com

https://ebookmass.com/product/etextbook-978-0134586489-students-bookof-college-english-mla-update-edition-14th-edition/

ebookmass.com

Dark Wine at Dawn (A Hill Vampire Novel Book 9) Jenna Barwin

https://ebookmass.com/product/dark-wine-at-dawn-a-hill-vampire-novelbook-9-jenna-barwin/

ebookmass.com

Elementary and Middle School Mathematics: Teaching Developmentally 9th Edition eBook

https://ebookmass.com/product/elementary-and-middle-schoolmathematics-teaching-developmentally-9th-edition-ebook/

ebookmass.com

Over HIS Knee 3 Scarlett Hill Entertainment (Www.Scarletthill.Com)

https://ebookmass.com/product/over-his-knee-3-scarlett-hillentertainment-www-scarletthill-com/

ebookmass.com

Sovereignty: A Contribution To The Theory Of Public And International Law First Edition. Edition Belinda Cooper

https://ebookmass.com/product/sovereignty-a-contribution-to-thetheory-of-public-and-international-law-first-edition-edition-belindacooper/

ebookmass.com

eTextbook 978-1466583269

https://ebookmass.com/product/etextbook-978-1466583269-naturalwastewater-treatment-systems-second-edition/

ebookmass.com

UpconvertingNanoparticles

FromFundamentalstoApplications

Editor

Prof.Dr.VineetK.Rai IIT(ISM)Dhanbad DepartmentofPhysics

PoliceLineRoad Hirapur,SardarPatelNagar 826004Dhanbad India

CoverImage: ©BAIVECTOR/Shutterstock

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedbythe DeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhis publicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http:// dnb.d-nb.de>

©2022WILEY-VCHGmbH,Boschstraße12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34965-4

ePDFISBN: 978-3-527-83486-0

ePubISBN: 978-3-527-83487-7

oBookISBN: 978-3-527-83488-4

Typesetting Straive,Chennai,India

Printedonacid-freepaper 10987654321

Contents

Preface xv

1IntroductiontoUpconversionandUpconverting Nanoparticles 1 ManishaMondalandVineetKumarRai

1.1Introduction 1

1.2FrequencyConversionandItsVariousProcesses 2

1.2.1StokesEmission 2

1.2.2Anti-StokesEmission 2

1.2.2.1Ground/Excited-StateAbsorption(GSA/ESA) 3

1.2.2.2EnergyTransferUpconversion(ETU) 4

1.2.2.3CooperativeLuminescenceandCooperativeSensitizationUpconversion (CSU) 5

1.2.2.4Cross-relaxation(CR)andPhotonAvalanche(PA) 6

1.3TransitionMetalsandTheirProperties 7

1.4RareEarthsandTheirProperties 8

1.4.1TrivalentRare-EarthIons 9

1.4.1.1ElectronicStructure 9

1.4.1.2InteractionofRare-EarthIons 10

1.4.1.3DiekeDiagram 13

1.4.2DivalentRare-EarthIons 13

1.5ExcitationandDe-excitationProcessesofRareEarthsinSolid Materials 15

1.5.1ExcitationProcesses 15

1.5.1.1f–fTransition 15

1.5.1.2f–dTransition 15

1.5.1.3ChargeTransferTransition 15

1.5.2EmissionProcesses 15

1.5.2.1EmissionviaRadiativeTransitions 15

1.5.2.2EmissionviaNonradiativeTransitions 16

1.5.2.3EnergyTransferProcesses 16

1.6RateEquationsRelevanttoUCMechanism 18

1.6.1RateEquationsinaBasicThree-LevelSystem 18

1.6.2RateEquationRelatedtoPumpPower-DependentUCEmission 19

1.7TheoreticalDescriptionofOpticalCharacteristicsofRare-EarthIons 20

1.7.1Judd–Ofelt(J–O)TheoryandCalculationofRadiativeParameters 21

1.7.2NephelauxeticEffect 22

1.8AnIntroductiontoUpconvertingNanoparticles 22 Acknowledgments 23

References 23

2SynthesisProtocolofUpconversionNanoparticles 31 LakshmiMukhopadhyayandVineetKumarRai

2.1Introduction 31

2.2HostMatrix 32

2.3SyntheticStrategyofUCNanomaterials 33

2.3.1Solid-StateReactionTechnique 34

2.3.2CoprecipitationTechnique 35

2.3.3Sol–GelTechnique 36

2.3.4Hydro(solvo)thermalTechnique 39

2.3.5CombustionTechnique 40

2.3.6ThermolysisTechnique 42

2.3.6.1ThermolysisinOA-BasedMixedSolvents 43

2.3.6.2ThermolysisinOM-BasedMixedSolvents 43

2.3.6.3ThermolysisinTOPO-BasedMixedSolvents 43

2.3.7Microwave-AssistedSynthesisTechnique 44

2.4SynthesisTechniquesforFabricatingCore@shellArchitectures 45

2.4.1Solid-PhaseReaction 45

2.4.2Liquid-PhaseReaction 46

2.4.2.1StöberTechnique 46

2.4.2.2MicroemulsionTechnique 48

2.4.3Gas-PhaseReaction 51

2.4.4MechanicalMixing 52

2.5OtherSynthesisStrategiestoDevelopLanthanide-DopedUCNPs 52

2.6Conclusion 53

References 53

3CharacterizationTechniquesandAnalysis 67 NehaJain,PrinceK.Jain,RajanK.Singh,AmitSrivastava,andJaiSingh

3.1Introduction 67

3.2X-RayDiffraction(XRD) 69

3.3X-rayPhotoelectronSpectroscopy(XPS) 72

3.4FieldEmissionScanningElectronMicroscopy(FESEM) 74

3.5TransmissionElectronMicroscopy(TEM) 76

3.6Energy-DispersiveX-raySpectroscopy(EDS) 79

3.7ThermogravimetricAnalysis(TGA) 81

3.8Ultraviolet–Visible–Near-Infrared(UV–Vis–NIR)Absorption Spectroscopy 82

3.9DynamicLightScattering(DLS) 84

3.10Photoluminescence(PL)Study 85

3.11PumpPower-DependentUC 87

3.12RecognitionofEmissionColorandColorimetricTheory 88 Acknowledgment 89 References 89

4RamanandFTIRSpectroscopicTechniquesandTheir Applications 97 SauravK.OjhaandAnimeshK.Ojha

4.1RamanSpectroscopy 97

4.2FourierTransformInfrared(FTIR)Spectroscopy 99

4.2.1FTIRinTransmissionMode 100

4.2.2AttenuatedTotalReflectance(ATR) 100

4.2.3DiffuseReflectanceInfraredFourierTransformSpectroscopy (DRIFTS) 100

4.3ApplicationsofRamanSpectroscopy 100

4.3.1RamanStudyofMolecularAssociationinHydrogen-Bonded Systems 100

4.3.2Surface-EnhancedRamanSpectroscopy(SERS) 104

4.3.3ResonanceRamanSpectroscopy(RRS) 106

4.3.4RamanSpectroscopyofSemiconducting,Superconducting,and PerovskiteMaterials 107

4.4ApplicationsofFTIRSpectroscopy 108

4.4.1FTIRSpectroscopyofSemiconductor,Superconductor,Hazardous,and PerovskiteMaterials 108

4.5RamanandFTIRSpectroscopyofUpconvertingNanoparticles 109 References 110

5FundamentalAspectsofUpconvertingNanoparticles(UCNPs) BasedonTheirProperties 117 SushilK.Ranjan,SasankPattnaik,VishabKesarwani,andVineetKumarRai

5.1Introduction 117

5.2ElucidationofDynamicsofUCNPsontheBasisofFluorescenceDecay Times 120

5.2.1GeneralUnderstandingofDepopulationProcessesandUCDecay 120

5.2.2DifferentiatingtheESAandETUMechanismBasedontheDecay Profile 121

5.2.3TheoreticalandExperimentalApproachofUnderstandingtheFactors AffectingUpconversionDecay 123

5.3MeasurementofQuantumYieldofUCNPs 131

5.3.1RoleofQuantumYieldinUpconversion 132

5.3.2OpticalMethodsofMeasuringQuantumYieldofUpconverting Nanoparticles(UCNPs) 133

5.3.2.1RelativeMethodofMeasuringQuantumYield 133

5.3.2.2AbsoluteMethodofMeasuringQuantumYield 133

5.3.2.3MeasurementofIntrinsicQuantumYieldofLanthanide-BasedMaterials UsingLifetimes 134

5.3.3SomeOtherMethodsofDeterminingQuantumYield 134

5.3.3.1Photo-acousticSpectroscopy(PAS) 134

5.3.3.2ThermalLensing(TL)Method 135

References 135

6FrequencyUpconversioninUCNPsContainingTransition MetalIons 141

ManishaPrasadandVineetKumarRai

6.1Introduction 141

6.2SynthesisofTransitionMetalIon-ActivatedLuminescent Nanomaterials 143

6.3StructuralandOpticalCharacterizations 143

6.4FrequencyUpconversionandItsVariousMechanisms 144

6.5Applications 144

6.6MechanismofTransitionMetalIonsinCrystalField 145

6.6.1UCMechanismsinMn-BasedSystem 146

6.6.2UCMechanismsinMn4+ -andTi2+ -BasedSystems 151

6.6.3UCMechanismsinCr3+ -BasedSystem 153

6.6.4UCMechanismsintheFe3+ -BasedSystem 155

6.6.5UCMechanismsinCo3+ -andNi2+ -BasedSystem 157

6.6.6UCMechanismsinCu2+ -,Zn2+ -,andZr4+ -BasedSystem 158

6.6.7UCMechanismsinNb5+ -,Mo3+ -,Ru-,andAg+ -BasedSystem 160

6.6.8UCMechanismsinW6+ -andRe4+ -BasedSystem 161

6.6.9UCMechanismsinOs4+ -andAu-BasedSystem 162 References 164

7FrequencyUpconversioninUCNPsContainingRare-Earth Ions 171

SasankPattnaikandVineetKumarRai

7.1Introduction 171

7.2FamiliarizationwiththeSpectroscopicBehaviorofRE3 + Ion-Doped UCNPs 173

7.2.1PhysicsofTrivalentRare-EarthIons 173

7.2.1.1UCMechanismsinYb3+ -andPr3+ -BasedSystems 174

7.2.1.2UCMechanismsinEr-BasedSystems 175

7.2.1.3UCMechanismsinHo-BasedSystems 177

7.2.1.4UCMechanismsinTm-BasedSystems 179

7.2.1.5UCMechanismsinNd-BasedSystems 181

7.2.1.6Tri-DopedSystems 181

7.2.2ColorModulationinUCNPs 184

7.2.2.1RoleofDopantConcentrationandCombinationofRE3 + IonsinColor Modulation 184

7.2.2.2RoleofHost/DopantCombinationinColorModulation 186

7.2.2.3ControllingtheEmissionColorThroughPhononEffects 186

7.2.2.4TuningUCEmissionUsingFRET 188

7.2.3QuenchingMechanismsinUCNPs 190

7.3RoutestoEnhanceUpconversionLuminescenceinNanoparticles 190

7.3.1DyeSensitizationTechniques 191

7.3.2ConcentrationQuenchingMinimization 192

7.3.2.1SuppressionofSurface-RelatedQuenching 192

7.3.2.2RemovalofDetrimentalCross-Relaxation 193

7.3.3ConfinementofEnergyMigration 194

7.3.4OtherTechniquestoEnhanceUpconversionEmission 195

7.3.4.1Crystal-PhaseModification 195

7.3.4.2ConstructinganActiveCore/ActiveShellStrategy 195

7.3.4.3ConjugatingSurfacePlasmonResonanceTechnique 195

7.3.4.4DielectricSuperlensing-MediatedStrategy 196

7.4TechnologicalApplications 197

7.4.1PhotonicApplications 197

7.4.1.1Light-EmittingDiodes(LEDs) 197

7.4.1.2PhotovoltaicApplications 198

7.4.2Bioimaging 199

7.4.3Photo-InducedTherapeuticApplications 200

7.4.3.1PhotodynamicTherapy 201

7.4.3.2PhotothermalTherapy 201

7.4.3.3PhotoactivatedChemotherapy(PACT) 202

7.4.4OtherEmergingApplications 203

7.4.4.1Anticounterfeiting 203

7.4.4.2SensingandDetection 203

7.4.4.3OptogeneticStimulation 205

7.4.4.4NIRImageVisionofMammals 205 References 206

8SmartUpconvertingNanoparticlesandNewTypesof UpconvertingNanoparticles 221 AkhileshK.Singh

8.1Introduction 221

8.2UpconvertingCore–ShellNanostructures 222

8.3HybridUpconvertingNanoparticles 224

8.4MagneticUpconvertingNanoparticles 226

8.5UC-BasedMetal–OrganicFrameworks 228

8.6SmartUCNPsforSecurityApplications 230

8.7SmartUpconvertingNanoparticlesforBiologicalApplications 233

8.8SmartUpconvertingNanoparticlesforSensing 235

8.9Conclusion 236 References 237

x Contents

9SurfaceModificationand(Bio)Functionalizationof UpconvertingNanoparticles 241 YashashchandraDwivedi

9.1Introduction 241

9.2UpconvertingNanomaterials 242

9.3SurfaceModification 245

9.4BiofunctionalizationofUpconvertingMaterialsandApplications 247 References 257

10FrequencyUpconversioninCore@shellNanoparticles 267 RaghumaniS.Ningthoujam,RashmiJoshi,andManasSrivastava

10.1Introduction 267

10.1.1Downconversion 267

10.1.2Upconversion 271

10.2SynthesisofCore@shellandCore@shell@shellUCNPs 272

10.2.1ThermolysisMethod 272

10.2.2HotInjection 276

10.2.3CationExchange 277

10.2.4StructuralCharacterizations 277

10.2.5OpticalCharacterization 281

10.2.5.1NormalConversionProcessinLn-DopedCore@shell Nanoparticles 283

10.2.5.2Loop-TypeandAvalanche-TypeUpconversionProcessesinCore@shell Nanoparticles 289

10.3FrequencyUpconversionandItsVariousMechanisms 291

10.3.1Inorganic-BasedUpconversion 291

10.4Applications 297

10.4.1BioimagingApplications 297

10.4.1.1Luminescence-BasedImaging 297

10.4.1.2OtherImagingProbes(MRI,CT,andSPECT) 299

10.4.2PhotothermalTherapy(PTT) 301

10.4.3PhotodynamicTherapy(PDT) 303

10.4.4TemperatureSensor 306

10.4.5SecurityInk 308

10.5Conclusion 310 Acknowledgment 311 References 311

11UCNPsinSolar,Forensic,SecurityInk,andAnti-counterfeiting Applications 319 KaushalKumar,NeerajKumarMishra,andKumarShwetabh

11.1Introduction 319

11.2UCNPsforSolarCells 320

11.2.1C-SiSolarCells 321

11.2.2AmorphousSiliconSolarCells 323

11.2.3GaAs-BasedSolarCells 324

11.2.4Dye-SensitizedSolarCells(DSSCs) 324

11.3Forensic,SecurityPrinting,andAnti-counterfeitingApplications 325

11.4Biomedicals 331

11.4.1Bioimaging 333

11.4.2Biosensing 336

11.5DisplayandLightingPurposes 339 References 340

12ApplicationofUpconversioninPhotocatalysisand Photodetectors 347 PriyamSingh,SachinSingh,andPrabhakarSingh SunilKumarSingh

12.1Introduction 347

12.2Photocatalysis 349

12.3Photodetector 357

12.4Conclusion 365 References 365

13UCNPsinLightingandDisplays 375 RiyaDey

13.1Introduction 375

13.2MajorFactorsthatAffecttheUCEmissionEfficiency 375

13.3UCMechanismswithRateEquations 378

13.3.1PumpPowerDependenceintheCaseofDominantETU-Assisted UpconversionoverESA 379

13.3.2PumpPowerDependenceintheCaseofDominantESA-Assisted UpconversionoverETU 380

13.4UCNPsinSolid-StateLaser 380

13.5UCNPsinSolid-StateLightingandDisplays 384

13.5.1RequirementsforLEDApplications 384 References 388

14UpconversionNanoparticlesinpHSensingApplications 395 ManojKumarMahata,RanjitDe,andKangTaekLee

14.1Introduction 395

14.2BasicPropertiesofUCNPs 397

14.3WorkingPrincipleofUCNP-BasedpHSensor 400

14.4PhotonUpconversion-BasedpHSensingSystems 401

14.4.1UpconversionNanoparticlesaspHSensors 401

14.4.2Upconversion-BasedpHSensingMembranes 405

14.5Conclusion 410 References 411

15UpconversionNanoparticlesinTemperatureSensingand OpticalHeatingApplications 417 PraveenK.ShahiandShyamB.Rai

15.1Introduction 417

15.2ClassificationofTemperatureSensors:PrimaryandSecondary Thermometers 420

15.3PerformanceofTemperatureSensors 420

15.3.1ThermalSensitivity 421

15.3.2ThermalUncertainty (�� T)421

15.3.3ReproducibilityandRepeatability 422

15.4TemperatureSensingwithLuminescence 423

15.4.1Time-IntegratedSchemes 424

15.4.1.1FluorescenceIntensityRatio(FIR)orBandShape 424

15.4.1.2Bandwidth 426

15.4.2LifetimeTechnique 427

15.5Upconversion(UC)andUC-BasedThermalSensorofLn3+ Ions 427

15.5.1Upconversion(UC)andUpconvertingNanoparticles(UCNPs) 427

15.5.2Single-CenterUCNanothermometersandMulticenterUC Nanothermometers 428

15.5.3ComplexSystems 430

15.6OpticalHeating 433 References 437

16UpconvertingNanoparticlesinPollutantDegradationand HydrogenGeneration 449

WanniWang,ZhaoyouChu,BenjinChen,andHaishengQian

16.1Introduction 449

16.2DegradationofOrganicPollutants 450

16.2.1DegradationofRhB 451

16.2.2DegradationofMB 455

16.2.3DegradationofMO 460

16.2.4DegradationofVariousOrganicPollutants 462

16.2.5Others 467

16.3DegradationofInorganicPollutants 469

16.4PhotocatalyticHydrogenProduction 473

16.5Conclusion 481 References 481

17UpconvertingNanoparticlesintheDetectionofFungicides andPlantViruses 493

VishabKesarwaniandVineetKumarRai

17.1Introduction 493

17.2VisualDetectionofFungicides 495

17.2.1DetectionMechanisms 495

17.2.1.1ForsterResonanceEnergyTransfer(FRET) 495

17.2.1.2InnerFilterEffect(IFE) 496

17.2.1.3PhotoinducedElectronTransfer(PET) 499

17.2.1.4ElectronExchange(EE) 500

17.2.2SignificantWorksonUpconversion-BasedFungicideDetection 500

17.3DetectionofPlantViruses 505

17.3.1PlantVirusDetection/ManagementStrategies 505

17.3.1.1DirectInteractions 505

17.3.1.2IndirectInteractions 505

17.3.1.3NPsasBiosensorsforVirusDetection 507

17.3.1.4RNAiProcessforAntiviralProtection 507

17.3.2SignificantWorksonPlantVirusDetectionBasedonUCNPs 507

17.4FutureChallengesRegardingNP-BasedFungicideandPlantVirus Detection 509

References 510

18UpconversionNanoparticlesinBiologicalApplications 517 PoulamiMukherjeeandSumantaKumarSahu

18.1Introduction 517

18.2UpconversionNanoparticlesinBioimaging 518

18.2.1CellImaging 518

18.2.2MultimodalImaging 520

18.3UpconversionNanoparticlesinDrugDelivery 522

18.3.1DifferentTypesofSurfaceModification 524

18.3.1.1PolymerCoating 524

18.3.1.2SilicaCoating 524

18.3.1.3MetalOxide-CoatedUCNPs 525

18.3.1.4FunctionalizationofUCNPs 525

18.3.1.5Metal–OrganicFrameworkCoating 525

18.3.2DrugRelease 526

18.3.2.1NIR-TriggeredDrugDeliverySystem 526

18.3.2.2pHandThermoresponsiveDrugRelease 526

18.4UpconversioninPhotodynamicTherapy 526

18.4.1SurfaceModificationofUCNPsforPDT 529

18.5PhotothermalTherapy 531

References 533

Index 539

Preface

Theconversionoflow-energyphotonsintohigh-energyphotons,knownas “frequencyupconversion,”usingadvancedopticalmaterialshasbecomeanemergingresearchfieldwithwideconsequenceandimpactinvariousscientificareas rangingfromhealthcaretoenergyandsecurity.Thematerialsshowingfrequency upconversionpropertiesareknownasupconversion(UC)materials.UCmaterials revealvarietyofapplicationsindifferentfields,viz.colordisplay,two-photon imaginginconfocalmicroscopy,WLEDs,high-densityopticaldatastorage,upconvertors,underseacommunications,solid-statelighting,sensors,photovoltaics, photocatalysis,foodindustry,indicators,anti-counterfeiting,bioimaging,cancer therapyandotherbiologicalfields.Itisknownthatincomparisontoultraviolet (UV)andvisiblelightthenear-infrared(NIR)lightisabundantandnon-destructive innature.Ithasdeeppenetrationintheorganismsandlessharmfulquality. UCluminescentmaterialsinnanosizerangeareknownasUCnanomaterials orUCnanoparticles(UCNPs).UCNPsexcitedwithnon-destructiveNIRlight areabetterchoicethantheconventionaldownconversionnanoparticlesbecause theyarefreefromautofluorescence,havelowlightpenetration,andcauseless severephoto-damagetolivingorganisms.Itisnotabletomentionthatthelow efficiencyofUCmaterialsdefinitelybecomesamajorbarrierfortheirapplication inawiderange.Forresearchers,itisatopprioritytoovercomethisproblem. SeveralengineeredUCNPs,e.g.organic,inorganic,hybrids,andthinfilms,have beenexploredwidelytoobtainhighlyefficientUCluminescentmaterials.Usually, organicluminescentmaterialssufferpoorstabilityunderharshconditionsandhave poorlong-termreliability,buthaveagreaterductilitythaninorganicmaterials. Theinorganicluminescentmaterialsaremoredurableandpossesshighthermal stability.So,thehybridmaterialsconsistingofbothinorganicandorganiccomponents,namely,metalorganicframeworks(MOFs),haveattractedresearcherswith enhancedluminescencepropertiesascomparedtothebareorganicandinorganic materials.Toenhancetheupconversionefficiency,sphericalmetalnanoparticles showingplasmonresonanceincloseproximityoftheUCNPsareutilized.The plasmonicnanostructuresarewidelyusedtoevolvetheUCNPswithimproved electronic,metallic,andopticalproperties.Whenthesurfaceplasmonresonance wavelengthofthemetallicnanostructurematcheswiththeexcitationwavelength ofupconversionmechanism,signalenhancementoccurs.Usually,thecoatingof

gold(Au)andsilver(Ag)nanoparticlesisusedtotunetheluminescenceproperties ofUCNPs,thoughthenanoparticlesexhibitplasmonabsorptionin400–600nm range.

Theupconversionemissionefficiencycanbeenhancedbyseveralways,includingdopingwithsensitizer,non-lanthanides,andcoatingwithinorganicshell. Thenon-lanthanideco-dopinginUCNPshasalsobeenusedfrequentlyinorder togetenhancedluminescenceintensityalongwiththeuseofsensitizerion. Theco-dopingofactivatorandsensitizerionswithproperconcentrationinan appropriatehostmatrixisessentialtoachievehighlyefficientUCemissionas theconcentrationquenchinghasaprejudicialeffectontheluminescenceintensity.Thephononfrequency,stability,costeffectiveness,non-hygroscopic,and non-toxicnatureoftheUCmaterialsareofutmostimportance.Thesecurityofany importantdata,currency,etc.hasbecomeverycrucialtopreventcounterfeiting. UCNPswithhighluminescenceintensitycanbevalidatedinanti-counterfeiting applications.Thesematerialsarealsoutilizedforvisualexposureoffungicides, thiram,etc.,whichcanbebroadlyappliedinsoybeans,apples,winefarming, etc.,toavoidcropdiseasesandexcessiveuseofpesticides.Rare-earth-ions-based UCemissionhastremendousadvantagesintermsoflongexcitedlifetime,sharp emissionbandwidth,lowautofluorescence,highphotostability,highresolution, lowtoxicity,etc.Rare-earthionsarefoundtobeverysensitivetoevensmallchanges inchemicalsurroundings.Therefore,itbecomesessentialtogetinformation aboutthesymmetry,bondingoftheprobeion,andhowtheychangetheiroptical propertieswithchemicalcompositionofthehostmaterials.Forgettingthehigh quantumefficiency,concentrationofthedopantsshouldbehigh,butitmaycause concentrationquenchingduetotheinteractionbetweentheexcitedandunexcited neighbors.Therefore,thenano-structuredmaterialscontainingmetallicnanoparticlesareofparticularinterestbecausethelargelocalfieldaroundtherare-earth ionspositionednearthenanoparticlesmayincreasetheluminescenceefficiency. Amongseveralstrategies,thecoatingofupconversionnanoparticleswithinorganic materialsshellisaneffectivemethodtogetenhancedUCluminescence.The core@shellapproachoffersshieldingtothesurfaceparticlesandthusreducesthe surfacedefectsandpossibilityofquenching.Thiscore@shellarchitectureisvery muchbeneficialinbiomoleculeconjugationandthussuitableformanybiological applications.Differentcoatingstrategieshavebeenemployedaccordingtothe requiredapplicationpurposes.UCNPsprobescanfunctionasmultiplecontrast agentsforconcurrentuseinalteredmedicinalimagingmodalitiesbyproviding correspondingdiagnosticinformation(i.e.MRIandCT).Bio-conjugationonthe surfaceoftheUCNPsshowsamuchenhancedimagingperformanceincomparison totheclinicallyusedfluorescentdyes.Innovativebio-imagingmethodsarebeing establishedbycombiningtheconventionalmedicalimagingmodalitiesusing core-shellstructuredUCNPs.

Thebookentitled UpconvertingNanoparticles:FromFundamentalstoApplications iscompletelydifferentfromthepreviouslypublishedbooksinallrespects, includingthebasics,scientificandtechnologicaldemands.Itisdividedinto eighteenchapters.Chapter1,authoredbyMondalandRai,introducesthebasic

Preface xvii conceptsofupconversion,andupconversionofnano-particles.Theintroductionto frequencyupconversionanditsvariousmechanisms,excitationandde-excitation processesinhostscontainingrare-earthionsalongwiththespectroscopicproperties ofrare-earthions/transitionmetalsaredescribedinthischapter.Therateequations relevanttoexcited-stateabsorptionandenergytransferprocesseswithanoverview oftheUCNPshavebeenintroduced.Chapter2,authoredbyMukhopadhyayand Rai,describesthesynthesisprotocolofupconversionnanoparticles.Inthischapter introductiontohostmaterialsandsynthesisstrategiesofUCnanomaterialslike solid-statereaction,co-precipitation,sol–gel,hydrothermal,combustion,thermolysis,microwave-assistedsynthesis,core@shellsynthesistechniques,etc.havebeen described.Chapters3and4,authoredbyJainetal.;OjhaandOjha,refertocharacterizationtechniquesandanalysis;RamanandFTIRspectroscopictechniques andtheirapplications,respectively.Variousstructuralandopticaltechniquesfor thecharacterizationofUCNPs,viz.X-raydiffraction(XRD),X-rayphotoelectron spectroscopy(XPS),fieldemissionscanningelectronmicroscopy(FESEM),transmissionelectronmicroscopy(TEM),energy-dispersiveX-rayspectroscopy(EDS), thermogravimetricanalysis(TGA),ultraviolet–visible–nearinfrared(UV–Vis–NIR) absorptionspectroscopy,dynamiclightscattering(DLS),photoluminescence, Fouriertransforminfrared(FTIR),havebeenreported.Chapters5,6and7,authored byRanjanetal.;PrasadandRai;andPattnaikandRai,summarizethefundamental aspectsofUCNPsbasedontheirproperties,frequencyupconversioninUCNPs containingtransitionmetalions,andfrequencyupconversioninUCNPscontaining rare-earthions,respectively.AlongwithintroductionthedynamicsofUCNPs onthebasisoffluorescencedecaytimes,quantumyieldmeasurementofUCNPs, frequencyupconversionanditsvariousmechanismshavealsobeeninterpreted. Thevariousroutestoenhancetheupconversionluminescencealongwiththe technologicalapplicationsofUCNPshavebeendescribed.

Chapters8,9,and10,authoredbySingh;Dwivedi;andNingthoujametal.,are devotedtothesmartandnewtypeofupconvertingnanoparticles;surfacemodificationand(bio)functionalizationofupconvertingnanoparticles,andfrequency upconversionincore@shellnanoparticles,respectively.Thesechaptersoutline theupconvertingcore@shellnanostructures,hybridupconvertingnanoparticles, magnetic-upconvertingnanoparticles,UC-basedmetal–organicframeworks,surfacemodification,bio-functionalizationofupconvertingmaterials,synthesisof core@shellandcore@shell@shellUCNPs,anduseofUCNPsforsecurity,biological, andsensingapplications.Chapters11,12,13,14,and15,authoredbyKumar,Mishra andShwetabh;Singhetal.;Dey;Mahata,DeandLee;andShahiandRai,dealwith theUCNPsinsolar,forensic,securityink,andanti-counterfeitingapplications; applicationofupconversioninphotocatalysisandphotodetectors;UCNPsin lightinganddisplays;upconversionnanoparticlesinpH-sensingapplicationsand upconversionnanoparticlesintemperature-sensingandopticalheatingapplications,respectively.Chapters16,authoredbyWangetal.,throwsthelightonUCNPs applicationsindegradationoforganicandinorganicpollutantsalongwiththe photocatalytichydrogengeneration.Thevisualdetectionoffungicidesandplant virusesalongwiththefuturechallengeshavebeenexplainedbyKesarwaniand

RaiinChapter17.Chapter18,authoredbyMukherjeeandSahu,involvesthe applicationofUCNPsinbio-imaging,drugdelivery,photodynamictherapy,and photothermaltherapy.

Thepresentbookisoutcomeoftheuntiringeffortsofallthecontributingauthors. Itwillbeverymuchhelpfultotheresearchersaswellastheundergraduateand post-graduatestudentsstudyingphysics,chemistry,materialsscience,biology, engineering,etc.ingainingaproperunderstandingabouttheupconversion luminescence.Itwaspossibletocompletethisbookonlyduetothegreataffection andblessingsofGurudevPt.ShriRamSharmaAcharyaandGurumatajiMataBhagawatiDeviSharma.Specialthankstoallmyfamilymembersandresearchscholars fortheirmotivationandkindsupport.IwouldalsoliketothanktheWileyteam involvedfromthebeginningtillthecompletionofthebookproposal.Asalarge numberoftopicsrelatedtotheUCNPsandtheirapplicationshavebeencoveredin thisbook,therecouldbethepossibilitythatsomeoftheminuteglitcheshavebeen missedout.Therefore,genuinesuggestionsandcommentsfromthereadersare welcome.Overall,theresearchdevelopmentsonUCNPsandtheirusesindifferent fieldsstartingfromverybasicstoadvancedlevelmakethepresentbookunique.

DepartmentofPhysics

IndianInstituteofTechnology (IndianSchoolofMines), Dhanbad,India

Professor(Dr.)VineetK.Rai

IntroductiontoUpconversionandUpconverting Nanoparticles

ManishaMondal 1,2 andVineetKumarRai 1

1 IndianInstituteofTechnology(IndianSchoolofMines),DepartmentofPhysics,LaserandSpectroscopy Laboratory,Dhanbad826004,Jharkhand,India

2 TezpurUniversity(CentralUniversity),DepartmentofPhysics,Napaam,Tezpur,Sonitpur784028,Assam, India

1.1Introduction

Spectroscopyalmostdealswiththeinteractionoflightandmatter.Itprovidesinformationaboutsplittingofelectromagneticradiationintoitsconstituentwavelengths. Thebeginningofspectroscopyliessincetheobservationoflightdispersionthrough prismbySirIsaacNewton.Amongdifferentspectroscopytechniques,opticalspectroscopydeliversanexceptionaltoolbywhichonecanfinddetailedinformation regardingtheabsorbingandemittingatoms,ions,molecules,defects,theirlocal surroundings,etc.Inaterm,opticalspectroscopyallowslighttopenetrateinside materials.Opticalspectroscopycanbecharacterizedintofourparts:absorption, luminescence,reflection,andscattering.Amarvelousdimensionofresearchcarried outinfindingnovelluminescentmaterialsplaysanimportantroleinopticalcommunication,lighting,medicaldiagnosis,etc.(BerthouandJörgensen1990;Cheng etal.2013;Jiangetal.2016;Linetal.2016;Youetal.2016;DeyandRai2017;Mehra etal.2020).Whenanatomicsystemafterabsorbingthephotonsofappropriate frequencytransitsupwardtoahigherstateandthenbythespontaneousemission process,itmayreturntothegroundstate.Thisde-excitationrouteisfamiliarasthe luminescenceprocess.Theoccurrenceofluminescenceduetoexcitationoflightis knownasphotoluminescence.Ontheotherhand,luminescenceduetoexcitation ofanelectronbeamistermedascathodoluminescence,whichhelpstoidentify impurities,latticedefects,andcrystaldistortions.Radioluminescenceoccursdue toexcitationthroughthehighlyenergeticelectromagneticradiations(i.e. α rays, β rays,and γ rays).Thethermoluminescencephenomenaareusedinradiation dosimetry,datingofmineralsandoldceramics,materialscharacterization,biology, forensic,etc.Itoccurswhenamaterialradiateslightasaconsequenceofrelease ofenergykeptintrapsbythermalheating.Electroluminescenceoccursduetothe passageofelectriccurrentoveramaterial.Theemissionoflightduetomechanical disturbanceoriginatestriboluminescence.Conferringtothediversepositionsof UpconvertingNanoparticles:FromFundamentalstoApplications,FirstEdition.EditedbyVineetK.Rai. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

1IntroductiontoUpconversionandUpconvertingNanoparticles

theexcitationandemissionbands,theluminescentmaterialscanbecategorized intoStokes-andanti-Stokes-typeluminescentmaterials.Theseprocessesare typicallyexemplifiedbytheJablonskidiagram(Jablonski1935;Jablonski1993). Theluminescentmaterialsarecommonlyknownasphosphors,whichmeans “lightbearer,”thatconsistofhostanddopants.Intheseconstituents,lanthanide materialsaremainlyintroducedintothehostmatrix.Lanthanideshavethemost complicatedelectronicstructuresbecauseoftheirlargenumberofincomplete4f energylevels.Thepresentchapterpresentsabriefoutlookonunderstandingthe frequencyconversionmechanisms,electronicenergylevelsofrare-earth(RE)ions, transitionmetalions,theoreticaldescriptionoftheopticalcharacteristicsofRE ions,andUpconvertingnanoparticles(UCNPs).

1.2FrequencyConversionandItsVariousProcesses

Thephotoluminescentmaterialsareabletodisplayvisibleemissionsviasuitable ultraviolet(UV)ornear-infrared(NIR)excitations.Inthemajorityofcases,excitationenergyisgreaterthanemittedphotonenergy;thisemissioniscalledasStokes emission,andthecorrespondingenergylossisknownasStokesshift.Incertain circumstances,emittedenergyishigherthanabsorbedenergy;thisisknownas anti-Stokesemission.

1.2.1StokesEmission

TheStokes-typeemissionprocesspossessestwotypesoffeaturessuchasdownconversionandquantumcutting(Huangetal.2013;Looetal.2019).Inquantumcutting process,twoormorelowerenergyphotonsareemittedforeachincidenthigh-energy photonabsorption.Inthisprocess,two,threeorfourlow-energyphotonsareemitted becauseoftheabsorptionofoneNIR,visible,orultravioletphoton.Inthisprocess,theconversionefficiencyismorethan100%.Incurrentyears,quantumcuttinghasacknowledgedconsiderabledevotionasabuddingmethodtoimprovethe photovoltaicconversionefficiencyofsolarcells.Ontheotherhand,inthedownconversionprocess,emissionofonelowerenergyphotontakesplacebecauseofthe absorptionofonehigherenergyphoton;thus,theconversionefficiencywillnotgo beyond100%.

1.2.2Anti-StokesEmission

Theanti-Stokesemissionprocessoccurviathreeprocesses:two-photonabsorption (TPA),secondharmonicgeneration(SHG),andupconversion(UC)(Figure1.1) (Pollnauetal.2000;GamelinandGudel2000;Suijver2008;Grzybowskiand Pietrzak2013;Chenetal.2015;Nadortetal.2016).TPAisatypeofnonlinear absorptionprocessthatcanbedefinedasthesimultaneousabsorptionoftwo photonsofsameordifferentfrequenciesbyanatom,ion,ormolecule.Inthis process,theelectronispromotedfromlowenergylevel(i.e.groundstate)toexcited

Figure1.1 Basicenergy-leveldiagramsdepictingtypicalanti-Stokesprocesses.

level,andtheenergyoftheemissiontransitionisequaltothesumoftwo-photon energies.Asthisisathird-ordernonlinearprocess,itiseffectiveatprecisehigh intensities.TPAwasinitiallyanticipatedbyMariaGoeppert-Mayarintheyear 1931.Thiswasexperimentallyverifiedbythelaserafteritsdiscovery.Anumberof techniquesareusedtomeasureTPA,suchastwo-photonexcitedfluorescence,zscan,nonlineartransmission,etc.Ontheotherhand,SHG,“anopticalnonlinear process,”occursfromavirtualstateinamediumhavingsecond-ordernonlinear susceptibility.ThiswasrevealedandexperimentallyverifiedbyFrankenetal. (1961).Theydetectedthesecondharmoniclightwhenanintensebeamof6943Å fromtherubylaserwaspassedthroughthequartzcrystal.Inthisprocess,two photonsofthesamefrequencyinteractwithanonlinearmaterial(i.e.medium)and giverisetoanewphotonofdoublethefrequencyorenergyoftheincidentphotons. Furthermore,UCisalsoananti-Stokesprocessthatconvertsthelowerenergy photonsintohigh-energyphotons,e.g.infraredtovisibleorUVlight(Figure1.1). Itisastepwiseabsorptionprocessinvolvingintermediatestates(Auzel1966; OvsyakinandFeofilov1966).Basically,amongthesethreeprocessesofconverting lowerenergyphotonsintohigherenergyphotons,TPAandSHGneedacoherent beamaswellasaveryhighexcitationbeamintensity.IntheUCprocess,coherent pumpingandhighintensityoftheexcitationbeamarenotnecessarilyrequired. Itoccursevenatlowintensityoftheexcitationbeambecauseofthepresenceofreal intermediatestates(generally,ofmetastablenature).

ThematerialsthatexhibittheUCpropertiesareknownasupconvertingmaterials.Inrecentyears,theseupconvertingmaterialsareextensivelyusedinsensing, infraredcounters,solid-statelasers,solarcells,fingerprintdetection,securityink, upconverters,biologicalfields,etc.(Digonnet1993;Wadeetal.2003;Rai2007;Wang andLiu2009;Guetal.2013;Lietal.2013;WangandZhang2014;Chenetal.2014; MondalandRai2020).Generally,theUCphenomenonobservedinthesematerialsisnotassimpleasdepictedinFigure1.1.SeveralprocessesaccountableforUC mechanismsareasfollows.

1.2.2.1Ground/Excited-StateAbsorption(GSA/ESA)

Ground-stateabsorption(GSA)isoneofthesimplestroutesforUCmechanism (Auzel1973,2004;Garlick1976;Raietal.2013;Reddyetal.2018).Theprocessin whichtheground-stateions(i.e.electrons)afterabsorbingtherequisiteenergyfrom thepumpphotonsarepromotedtothefirstintermediatelevelisknownastheGSA

1IntroductiontoUpconversionandUpconvertingNanoparticles

Energy transfer upconversion (different ion)

Cooperative luminescence

Cross-Relaxation (same ions)

Cross-Relaxation (different ions) Photon avalanche

Figure1.2 SchematicrepresentationofpossibleUCmechanisms:(a)GSA/ESA, (bandc)ETU,(d)cooperativeluminescence,(e)cooperativesensitization,(fandg)CR, and(h)PAprocesses.

process.Conversely,sequentialabsorptionoftwolightquantabyaparticularionis knownasESAprocess(Auzel1973,2004;Garlick1976;Raietal.2013).Inthecaseof ESAprocess,theionpresentintheintermediatestateabsorbsthesecondphotonand transitsupwardtothenexthigherstate.Forexample,theenergy-leveldiagramsfor GSAandESAmechanismsarepresentedinFigure1.2a.Hereatfirst,anionabsorbs thepumpphotonofenergy(=h�� ,where“h”isPlanck’sconstantand“�� ”isthefrequencyoftheincidentphoton)andreachestotheintermediatestateE1(exhibit longlifetime)fromthegroundstateGviatheGSAprocessandthenasecondpump photon(ofthesameenergy)excitestheionfromE1statetothenexthigherstate E2.Aradiativedecayoftheionfromtheexcitedstate(E2)tothegroundstate(G) resultsinUCemission.Thus,asingleionisinvolvedinthewholeESAprocess.For gettingproficientUCemissionthroughtheESAprocess,aladder-likeenergy-level arrangementinionsisessential.

1.2.2.2EnergyTransferUpconversion(ETU)

LiketheESAprocess,theenergytransferupconversion(ETU)processalsoinvolves successiveabsorptionoftwoenergyquantabytheionstooccupytheintermediate (i.e.metastable)state(Figure1.2).AsintheESAprocessthereisaninvolvement

1.2FrequencyConversionandItsVariousProcesses 5 ofsingleion,however,ETUoperateswithintwo(similarordifferent)ions.Inthis mechanism,theinvolvedtwodopantionsaretermedassensitizerandactivator (Heeretal.2003;Boyeretal.2007;Shanetal.2007;Sonietal.2015;Mukhopadhyay andRai2020;PattnaikandRai2020).Atfirst,boththe(different)ionsabsorbthe pumpphotonsfromthegroundstateandthenmovestotheirrespectivemetastable states(E1′ andE1,whereE1′ ≅ E1)throughtheGSAprocess(Figure1.2b).After that,thesensitizerion(presentinE1′ state)handoversitsexcitationenergytothe neighboringactivatorion(presentinE1state)andrelaxesbacktothegroundstate. Theactivatorionaftergainingthisexcitationenergyfromthesensitizerreachesto thenexthigherenergystate(E2).

Whenthetwoinvolveddopantionsaresimilar,thesetwoionsareinitially excitedtotheintermediatestate(E1)afterreceivingtheenergyfrompumpphotons (Figure1.2c).ThetwoionspresentintheE1stateexchangetheirenergyinsuch awaythatoneion(i.e.donor),aftertransferringitsexcitationenergytotheother excitedion(i.e.acceptor),decaysnonradiativelytothelowerenergylevel(G). Theotherion(i.e.acceptor)aftergettingexcitationenergyfromthefirstone(i.e. donor)ispromotedtothenexthigherenergystate(E2).Aradiativetransitionfrom stateE2tothegroundstate(G)generatesaphotonofenergy(=h�� 1 ),whichishigher thantheincidentphotonenergy(=h�� )(Figure1.2).ThisETUprocessisthemost efficientUCemissionprocess(Auzel2004;Raietal.2007,2008).Inthisprocess, thedopantionconcentration(whichregulatestheaveragedistanceconcerning adjacentdopantions)playsakeyroleintheUCemissionintensity.

1.2.2.3CooperativeLuminescenceandCooperativeSensitization

Upconversion(CSU)

UCemissionbyacooperativeenergytransferprocessinvolvestwoions(oneactsas adonorandtheotherionasanacceptor).Inthecooperativeluminescenceprocess, twoionsabsorbthepumpphotonssuccessivelyandreachthehigher(intermediate) stateE1(Figure1.2d).Inthisintermediatelevel,thesetwoionstransfertheir energyinsuchawaythatoneion(donor)transfersitsexcitationenergytotheother one(acceptor)andthedonorreturnstothegroundstate(G).Theacceptor,after gainingtheexcitationenergyfromthedonor,transitsupwardtoahigherenergy state,“whichisavirtualstate.”Thisvirtualstateisalsoknownasthecooperative energystate(Leeetal.1984;Macieletal.2000;Diaz-Torresetal.2005).Fromthis virtualstate,itrelaxesradiativelytothegroundstate(G)viaemittingaphotonof energylargerthantheincidentphotonenergy(Figure1.2d).Ontheotherhand,in thecooperativesensitizationprocess,whentheenergyofthetwoexcitedionsare transferredtoathirdion(ion2),thenitgoesfromthegroundstatetoanexcited statehavingenergyequaltothesumoftheenergiesofthetwoindividualions (Martínetal.2001;Salleyetal.2001,2003).InFigure1.2e,theexcitationenergyof thetwoexcitedions(ion1)presentinthestateE1istransferredtoathirdion(ion2). Thethirdion(ion2)presentinthegroundstate(G),afterabsorbingtheexcitation energycorrespondingtothetwoexcitedions(ion1),movestoitshigherstate(E2). Afterthat,thethirdionfromtheexcitedstate(E2)relaxesradiativelytothelower levels(saygroundstate)viaemittingthephotonsofenergyhigherthanthatof

1IntroductiontoUpconversionandUpconvertingNanoparticles theincidentphoton.Thisprocessisknownascooperativesensitization,andthe emittingstate(E2)inthisprocessisarealstate(Figure1.2e).Thus,thecooperative sensitizationismoreeffectivethancooperativeluminescencebecauseitmay compensatethelowUCemissionefficiency(Dwivedietal.2007;Liangetal.2009).

1.2.2.4Cross-relaxation(CR)andPhotonAvalanche(PA)

Thecross-relaxation(CR)processoccursduetoion–ioninteraction(ionsmay besimilarordifferent)(Chenetal.2014;PattnaikandRai2020)(Figure1.2f,g. Thecross-relaxationbetweentwoidenticalions/moleculesisresponsiblefor self-quenching(Figure1.2f).Intheself-quenchingprocess,theintermediatestates ofboththeions(ion1)havethesameenergy(E1).Whenthecross-relaxationoccurs betweentwodifferentions(Figure1.2g),thefirstionsharesapartofitsexcitation energytothesecondionbytheprocessE2(ion1) + G(ion2) → E1(ion1) + E1′ (ion2)(Figure1.2g).Inthisprocess,thefirstion(ion1)initiallypresentinthe excitedstate(E2)interchangesapartofitsexcitationenergytothesecondion(ion2) thatisinitiallyavailableinthegroundstate(G).Bythisway,thedecreaseinthe energyofthefirstion(ion1)isequaltotheincreaseintheenergyofthesecondion. Thisresultsinboththeions/moleculeschangingsimultaneouslytotheexcitedstate (E1andE1′ ).AmongtheotherUCprocesses,themostexcitingprocessisphoton avalanche(PA),whichwasfirstexperimentallyobservedinPr3+ -dopedinfrared quantumcounters(Chivianetal.1979).Generally,thisPAprocessoccurswhenthe excitationenergyexceedsitsthresholdlimit.Whentheexcitationenergyislower thanthethresholdenergy,theemittedintensityisverypoor,butasitexceedsthe limit,theemittedintensitybecomesenormouslygreater(Joubert1999;Singhetal. 2011;Zhuetal.2012;Mondaletal.2016).ForoccurrenceofPAprocess,atfirst, theintermediatelevelandtheupperexcitedlevelarepopulatedbytheGSA,ESA, andETUprocesses.BytheCRprocessbetweentheseupperexcitedlevelandthe groundstateofaneighboringion,twoionsaregeneratedintheintermediatelevel E1(Figure1.2h).Now,twoionsareavailableintheintermediatestatefortheESA process.Thus,withthefeedbackloopingofESAandCRprocessessimultaneously, thenumberofionsintheintermediatelevelincreases,whichgiverisetostrongUC emission.

ThePAprocessisanunusualpumpingprocessbecauseitmayleadtostrong UCemissionfromtheupperexcitedstateE2withoutanyresonantGSAfromthe groundstate(G)totheintermediatestate(E1)ofion2(Figure1.2h).Thefrequency ofincidentphotonisinresonantwithstateE1′ ofion1andtheupperexcitedstate E2ofion2.AnefficientCRprocess,i.e.E2(ion2) + G(ion1) → E1(ion2) + E1 (ion1),occursbetweenion1andion2.Thisresultsinboththeionstooccupythe intermediatestateE1.ThesetwoionsreadilypopulatethelevelE2throughESA tofurtherinitiatethecross-relaxation.Withthefeedbackloopingoftheseefficient cross-relaxationandESAprocesses,thenumberofionsintheintermediatestateE1 increasesrapidly,whichresultsfurtheranenormousincreaseinthepopulationof levelE2.Thus,inthePAprocess,astrongUCemissionfromstateE2totheground stateG(ofion2)hasbeenobserved.

1.3TransitionMetalsandTheirProperties

Theopticalcentersarenecessaryfortheperfectcrystalstoexhibittheoptical spectra.Dependingontheabsorptionandemissionbandsoftheopticalcenters presentinthepurecrystals,theyarepertinentfordiverseapplications,such asopticalamplifiers,solid-statelasers,colordisplays,absorbers,improvingin luminescencebrightness,fibers,opticalswitches,etc.Anyelementintheperiodic tablemayactasaforeignelementinthecrystal.However,essentially,afewnumber ofelementscanbeionized,whichcangenerateenergylevelsandthusyieldoptical features.Forindustrialapplications,thetwoextremelyimportantelementsare transitionmetalsandREsintheperiodictable.Transitionmetalionsareespecially usedasopticallyactivedopantsintunablesolid-statelasers(Soléetal.2005).These ionsbelongtothefourthperiodoftheperiodictablewithelectronicconfiguration 1s2 2s2 2p6 3s2 3p6 3dn ,where“n (variesfrom1to10)”isthenumberof3delectrons presentinthetransitionmetalions.Generally,valenceelectronsareresponsible foropticaltransitions;hence,inthecaseoftransitionmetals,3delectronsare accountable.Becauseofthelargeradiusoftransitionmetalionsascomparedto lanthanidesandnoshieldingofvalenceelectrons,strongfieldeffectoccurs;hence, theyexhibitthebroadbands.

TheSugano–Tanabediagramexplainstheenergy-leveldiagramforthetransition metalions(Figure1.3)(TanabeandSugano1954a,b).Thespectroscopictermsforthe freeionstatesofthetransitionmetalionsduetotheL-Sinteractionaredescribed

Figure1.3 Tanabe–Suganodiagramforthed3 electronconfigurationintheoctahedral crystalfield.Source:Briketal.(2016).ReprintedwithpermissionofTheElectrochemical Society.

1IntroductiontoUpconversionandUpconvertingNanoparticles

as 2S+1 LJ ,where, L, S,and J denotethetotalorbitalangularmomentum,totalspin angularmomentum,andtotalangularmomentum,respectively.Theenergyseparationamongthe 2S+1 L states,i.e.thestrengthoftheelectron–electroninteraction, canbecalculatedwiththehelpofRacahparameters(A,B,andC)(Soléetal.2005). Onthebasisofoctahedralcrystallattice,SuganoandTanabeexplainedtheoccurrenceofenergylevelsinthecaseoftransitionmetalions,butbyusingthisdiagram, onecanalsointerprettheopticalspectraarisingfromthetransitionmetalionsin differenttypesofhostlattices.

Thisdiagramexplainsthesplittingof 2S+1 L freeionenergystateswiththeratio betweenthestrengthofthecrystalfieldandtheelectron–electroninteraction strength(symbolizedasDq/B)versusthefreeionenergylevels(E/Bunits).Inthis diagram,the y-axisisintermsofenergy“E”scaledbyB(oneoftheRacahparameters).Thesplittedtermsfor 2S+1 L energystatesaretermedasA,T,andElevels.This Sugano–Tanabediagramalsoexplainsthenatureoftheopticalbandsfortransition metalions.Inthecaseofstrongcrystalfieldapproximation,thecrystalfieldeffect dominatesovertheelectron–electroninteractionamong3dions.Accordingly,there arethreesingle-electronorbitalsforeachorbital.Furthermore,accordingtothe Sugano–Tanabediagram,forlowcrystalfieldstrength,theemissionbandisshifted towardthelowerenergyside.Forthisspecificnature,theemissionwavelength inthetransitionmetalionsdependsonaparticularhostmaterial.Thus,doping oftransitionmetalionsindifferenthostmaterialsdirectedtotheadvancementof countlessvarietiesoftunablesolid-statelasers.Mostofthetransitionmetalions areincorporatedintheoctahedralcrystalhostmatrix,sotheirenergylevelcan beexplainedonthebasisofSugano–Tanabediagram(TanabeandSugano1956). However,insomecases,suchasNi2+ ,Co2+ ,andCr2+ ions,thesetransitionmetal ionsareincorporatedinthetetrahedralcrystallatticefordifferentapplications; therefore,theKonigandKremerdiagram(KonigandKremer1997)isapplicablein explainingtheenergylevelsoftransitionmetalionsotherthantheoctahedralone.

1.4RareEarthsandTheirProperties

Mostofthelasers,phosphors,amplifiers,etc.,compriseREelements.Surprisingly, theglobalapplicationsofRE-basedmaterialsareincreasingfromindustryapplicationstomedicalapplications.Thereare15lanthanideelementsalongwithtwomore elementsi.e.scandium(Sc)andyttrium(Y).These15lanthanideelementsarecommonlynamedaslanthanum(La),cerium(Ce),praseodymium(Pr),neodymium (Nd),promethium(Pm),samarium(Sm),europium(Eu),gadolinium(Gd),terbium (Tb),dysprosium(Dy),holmium(Ho),erbium(Er),thulium(Tm),ytterbium(Yb), andlutetium(Lu).MostoftheREelementsareentitledasperthenameofthe inventorsorthenameoftheirrevealedplaces.TheseREelementsareincorporated indifferenthostmaterialsintheirionized(eitherdivalentortrivalent)form. ThedivalentREions{Eu(+2),Yb(+2),andSm(+2)}possessonemoreelectron comparedtothetrivalentionsandthusexhibitdifferentopticalfeaturesandtreat differently.

1.4.1TrivalentRare-EarthIons

TheoutermostelectronicconfigurationsofdivalentandtrivalentREionsare5d 4f n 5s2 5p6 and4f n 5s2 5p6 ,respectively,where n (variesfrom n = 0to14)specifies thenumberofelectronsintheunfilled4fshell.These4f n electronsarethevalence electronsthatareaccountableforthespectroscopictransitions.

1.4.1.1ElectronicStructure

Thepresenceofvalenceelectronsinthe4fshellmakestheREionsasluminescent centersofanyphosphormaterial.Thegroupof15elementscomprisingatomic numberstartingfrom57to71inthesixthperiodoftheperiodictabletogetherwith scandium(Sc)andyttrium(Y)areknownasREelements.WhentheseREelements areintroducedintothehosts,theyeasilyconvertintotheireitherdoublyortriply ionizedstatestoacquiretheirstableelectronicconfigurations.Theoutermost electronicconfigurationsoflanthanum(La,atomicnumberZ = 57)andthelast elementlutetium(Lu,Z = 71)intheirtriplyionizedstateare4f 0 5s2 5p6 and4f14 5s2 5p6 ,respectively.Therearefifteenpossibilitiesforfillingthese4forbitalsasthe forbitalcontainssevensuborbitals.Actually,theseunfilled4fvalenceelectronsare incontrolforopticaltransitions.Table1.1presentstheelectronicarrangementsand groundstatesofeachtriplyionizedREelement.Theactualelectronicconfiguration ofthe15REelements(i.e.fromLatoLu)is[Xe]5d1 6s2 4f n (n = 0to14).However,in

Table1.1 ElectronicconfigurationoftrivalentionicstatesofREelements(Shionoyaetal. 1998).

Numberof4f

La3+ 570and[Xe]4f 0 000

Ce3+ 581and[Xe]4f1 1/235/2

Pr3+ 592and[Xe]4f2 154

Nd3+ 603and[Xe]4f3 3/269/2 4 I9/2

Pm3+ 614and[Xe]4f4 264 5 I4

Sm3+ 625and[Xe]4f5 5/255/2 6 H5/2

Eu3+ 636and[Xe]4f6 330 7 F0

Gd3+ 647and[Xe]4f7 7/207/2 8 S7/2

Tb3+ 658and[Xe]4f8 336

Dy3+ 669and[Xe]4f9 5/2515/2 6 H15/2

Ho3+ 6710and[Xe]4f10 268 5 I8

Er3+ 6811and[Xe]4f11 3/2615/2 4 I15/2

Tm3+ 6912and[Xe]4f12 156 3 H6

Yb3+ 7013and[Xe]4f13 1/237/2 2 F7/2

Lu3+ 7114and[Xe]4f14 000 1 S0

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Full download Upconverting nanoparticles vineet k. rai pdf docx by Education Libraries - Issuu