Immediate download Clathrate hydrates: molecular science and characterization, 2 volumes john a. rip

Page 1


Clathrate

Molecular

and Characterization, 2 Volumes John A. Ripmeester

Visit to download the full and correct content document: https://ebookmass.com/product/clathrate-hydrates-molecular-science-and-characteriz ation-2-volumes-john-a-ripmeester-2/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Clathrate Hydrates: Molecular Science and Characterization, 2 Volumes John A. Ripmeester

https://ebookmass.com/product/clathrate-hydrates-molecularscience-and-characterization-2-volumes-john-a-ripmeester/

Molecular Characterization of Polymers A Fundamental Guide : A Fundamental Guide Muhammad Imran Malik

https://ebookmass.com/product/molecular-characterization-ofpolymers-a-fundamental-guide-a-fundamental-guide-muhammad-imranmalik/

Molecular Characterization of Polymers: A Fundamental Guide 1st Edition Muhammad Imran Malik

https://ebookmass.com/product/molecular-characterization-ofpolymers-a-fundamental-guide-1st-edition-muhammad-imran-malik/

Organogermanium Compounds: Theory: Experiment, and Applications, 2 Volumes Lee V.Y. (Ed.)

https://ebookmass.com/product/organogermanium-compounds-theoryexperiment-and-applications-2-volumes-lee-v-y-ed/

Reservoir Characterization: Fundamentals and Applications. Volume 2 Fred Aminzadeh

https://ebookmass.com/product/reservoir-characterizationfundamentals-and-applications-volume-2-fred-aminzadeh/

Science of Weather, Climate and Ocean Extremes (Volume 2) (Developments in Weather and Climate Science, Volume 2) 1st Edition John E. Hay

https://ebookmass.com/product/science-of-weather-climate-andocean-extremes-volume-2-developments-in-weather-and-climatescience-volume-2-1st-edition-john-e-hay/

Natural Gas Hydrates: A Guide for Engineers 4th Edition

John Carroll

https://ebookmass.com/product/natural-gas-hydrates-a-guide-forengineers-4th-edition-john-carroll/

https://ebookmass.com/product/wideband-microwave-materialscharacterization-john-w-schultz/

Nanotechnology-Based Additive Manufacturing: Product Design, Properties, and Applications Volumes 1-2 1st Edition Kalim Deshmukh

https://ebookmass.com/product/nanotechnology-based-additivemanufacturing-product-design-properties-and-applicationsvolumes-1-2-1st-edition-kalim-deshmukh/

Wideband Microwave Materials Characterization John W. Schultz

ClathrateHydrates

ClathrateHydrates

MolecularScienceandCharacterization

Volume1

ClathrateHydrates

MolecularScienceandCharacterization

Volume2

Editors

Dr.JohnA.Ripmeester NationalResearchCouncilofCanada

100SussexDr. K1A0R6NK Canada

Dr.SamanAlavi UniversityofOttawa DepartmentofChemistryand BiomolecularSciences STEMComplex,150Louis-PasteurPvt. Ottawa,ON,K1N6N5 Canada

CoverImages: ©Structureillustration providedbyDr.SatoshiTakeya;inset image©metamorworks/Shutterstock

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>

©2022WILEY-VCHGmbH,Boschstr.12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-33984-6

ePDFISBN: 978-3-527-69508-9

ePubISBN: 978-3-527-69506-5

oBookISBN: 978-3-527-69505-8

Typesetting Straive,Chennai,India PrintingandBinding

Printedonacid-freepaper 10987654321

TomywifeBethanddaughtersHeatherandWendywhoputupwithmy science-orientedadventuresthatsometimesgotinthewayoffamilytime,tothe memoryofmyparents,JohnandThea,who,whileraisingtheirrecentlyemigrated family,encouragedmetopursuehighereducation.

TomywifeDorothyforhersupportandpatienceduringmynever-endingscientific activities,tomymotherZariforherencouragementonourpathtohighereducation, andtothememoryofmyfatherMohammadwhomotivatedmetobecomeachemist.

Contents

Volume1

Preface xiii

1AnIntroductiontoClathrateHydrateScience 1

JohnA.Ripmeester,SamanAlavi,andChristopherI.Ratcliffe

1.1Introduction 1

1.2SelectedHighlightsofClathrateHydrateScienceResearchUptothe Present 4

1.3ClathrateHydrateResearchattheNRCCanada 10

1.4ContributorstoNRCClathrateHydrateResearch 21

1.5ReviewArticlesandBooksonClathrateHydrates 23

1.6ConferenceProceedings 25

1.6.1CanadianPermafrostConference 25

1.6.2PhysicsandChemistryofIce 25

1.6.3InternationalConferenceonGasHydrates(IGCH)Proceedings 26

2AnIntroductiontoClathrateHydrates 27

JohnA.RipmeesterandSamanAlavi

2.1Introduction 27

2.2TheFirstGasHydrates 28

2.3ThePhaseRule 34

2.4deForcrandandVillard–CareerGasHydrateResearchers 38

2.5NikitinandvonStackelberg 48

2.6SolvingtheGasHydratePuzzle 50

2.7ClathrateHydrateScience–ANewEra 54

2.8ClathrateHydratesinEngineering 54

2.9ClathrateHydratesinNature 55

2.10SummaryandObservations 56 References 57

3ClassificationofClathrateHydrates 65

JohnA.Ripmeester,SatoshiTakeya,andSamanAlavi

3.1Introduction 65

3.2HydratesasClathrates 65

3.3ClathrateandRelatedHydrates–GuestChemistry 66

3.4TheCanonicalClathrateHydrates 72

3.4.1PolyhedraandFillingThree-DimensionalSpace 73

3.4.2FillingthePolyhedra 75

3.5PhaseEquilibria 85

3.5.1SimpleHydrates 85

3.5.2DoubleandMixedHydrates,NaturalGasHydrates 90

3.6TabulationofHydrateProperties 97

3.6.1SimpleClathrateHydrates 97

3.6.2CS-II(sII)DoubleHydrates(GueststhatRequireaHelpGasfor Stability) 98

3.6.3HS-III(sH)HydrateGuests 98

3.7Summary 98 References 98

4SynthesisofClathrateHydrates 123

JohnA.RipmeesterandSamanAlavi

4.1Introduction 123

4.2GeneralConsiderationsintheSynthesisofClathrateHydrates 123

4.2.1AComplexProcess 123

4.2.2AirEntrainment 124

4.3SynthesisofHydrateswithWater-SolubleGuestsNearAmbient Conditions 125

4.3.1HydrateswithCongruentMeltingPoints 125

4.3.2HydrateswithIncongruentMeltingPoints 125

4.4SynthesisofHydratesofGuestswithLowSolubilityinWater 126

4.4.1Low-PressureMethods:Water–LiquidGuestandWater–GaseousGuest Reactions 126

4.4.2PowderedIceReactionswithLiquidorGaseousGuests 127

4.5SynthesisofClathrateHydratesofStronglyHydratedorReactive Guests 128

4.6PureHydrates–KineticandThermodynamicControl 128

4.7High-PressureReactors 131

4.7.1StirredReactors 131

4.7.2Stationary(Non-stirred)Reactors 131

4.7.3OtherSetupsforHydrateSynthesis–BubbleColumns,Spray Reactors 131

4.8SynthesisofSingleCrystals 134

4.9Summary 137 References 138

5StructuresofCanonicalClathrateHydrates 141

JohnA.Ripmeester,SatoshiTakeya,andSamanAlavi

5.1Introduction 141

5.2TheCanonicalClathrateHydrates 141

5.2.1GeneralStructuralProperties 141

5.2.2GeometryofUnitCellsandCages:CS-I,CS-II,andHS-III 147

5.2.2.1StructuralFeaturesCS-I,CS-II,andHS-IIIClathrateHydrates 147

5.2.2.2CorrelationofGuestSizewithUnitCellDimensions 151

5.2.2.3FlexibleGuestMoleculesShowingConformationalIsomerism 152

5.2.2.4LocationofGuestMoleculesintheCages 153

5.2.2.5EffectsofHydrogenBondingonCageStructureandGuest–Water Interactions 158

5.2.2.6Halogen–WaterInteractionsinClathrateHydrates(Chlorine) 160

5.2.2.7Polymorphism 161

5.2.3GeometryofUnitCellandCages:TetragonalBromineHydrate (TS-I) 164

5.2.4GeometryofUnitCellandCages:DimethylEtherHydrate(TrS-I) 165

5.2.5GeometryofUnitCellandCages:XeHydrate(HS-I) 166

5.3SomeGeneralStructuralConsiderations 168

5.3.1TilinginThree-DimensionalSpace–Frank–KasperandWeaire–Phelan Polyhedra 168

5.3.2SchlegelDiagrams 177

5.3.3Polytypism 178

5.3.3.1HydrateStructuresasLayeredPolytypes 178

5.3.4MaterialswithStructuralFeaturesinCommonwithClathrate Hydrates 181 References 182

6StructuresofNoncanonicalClathratesandRelated Hydrates 189 JohnA.Ripmeester,SatoshiTakeya,andSamanAlavi

6.1Introduction 189

6.2AmineHydrates 189

6.3IonicClathrateHydrates 194

6.3.1SaltHydrates 194

6.3.1.1SaltHydrates–CationsasLargeCageGuests 194

6.3.1.2SaltHydrates–CationsasLargeCageGuests,NeutralSmallCage Guests 199

6.3.1.3SaltHydrates–CationsasSmall-CageGuests 201

6.3.2HydratesofStrongAcids 202

6.3.3HydratesofStrongBases 204

6.3.4IonicClathrateHydrateswithHeterogeneousFrameworks 209

6.3.5ClathrateswithH2 O–NH4 FSolidSolutionFrameworks 209 References 211

7ThermodynamicsandStatisticalMechanicsofClathrate Hydrates 219

JohnA.RipmeesterandSamanAlavi

7.1Introduction 219

7.2ClathrateHydrationNumbersandCageOccupancies 219

7.2.1DirectMeasurementofHydrationNumbers 220

7.2.2ThermodynamicMethodstoDetermineGuestOccupancy 228

7.2.2.1TheClapeyronandClausius–ClapeyronEquationsandtheUseofPhase Equilibria 228

7.2.2.2TheMiller–StrongMethodandEffectsofSolutesonPhase Equilibria 230

7.2.2.3CalorimetryandOtherInstrumentalMethodsinConjunctionwith ThermodynamicMethods 230

7.3EnthalpyofDissociationofHydratePhases 231

7.4StatisticalMechanicsofClathrateHydrates:Thevander Waals–PlatteeuwSolidSolutionModelforClathrateHydrate Formation 232

7.5ApplicationofthevanderWaals–PlatteeuwTheorytoDetermining HydrateEquilibriumComposition 237

7.5.1UsingvanderWaals–PlatteeuwTheorytoDetermineCage Occupancies 237

7.5.2InstrumentalMethodsinConjunctionwiththevanderWaals–Platteeuw TheorytoDetermineOccupationFractions 239

7.5.2.1Solid-StateNMR 240

7.5.2.2RamanSpectroscopy 243

7.5.2.3DiffractionMethods 243

7.5.3SomeGeneralConclusionsandNonstoichiometryofClathrate Hydrates 246

7.6ComputationalPredictionsofHydrateDissociationPressuresUsingthe vanderWaals–PlatteeuwTheory 247

7.7ExtensionsofthevanderWaals–PlatteeuwTheory 254

7.7.1MultipleCageOccupanciesandGuestMixtures 254

7.7.2RelaxingSomePositionRestraintsonCageWaterMolecules 255

7.7.3RelaxingtheConstraintofConstantVolumeontheHydratePhase 255

7.7.4ValidityoftheBasicvanderWaals–PlatteeuwTheory 258

7.8OtherThermodynamicTopics 260

7.8.1EncagementEnthalpy 260

7.8.2ThermodynamicInhibitorstoHydrateFormation 263

7.8.3CompositionalTuninginClathrateHydrates 265

7.8.4TransitionsBetweenBinaryCS-IIandHS-IIIBinaryHydratestoPure CS-IHydratesforSmallGuestMolecules 266

7.8.5ALowerCriticalDecompositionTemperature 270

7.9Conclusions 271

References 272

Volume2

Preface xv

8MolecularSimulationsofClathrateHydrates 283

SamanAlaviandJohnA.Ripmeester

9X-rayandNeutronDiffractionandScatteringofClathrate Hydrates 369

JohnS.Tse,DennisD.Klug,andSatoshiTakeya

10CharacterizationofClathrateHydratesUsingNuclear MagneticResonanceSpectroscopy 417

ChristopherI.Ratcliffe,IgorL.Moudrakovski,andJohnA.Ripmeester

11SpecializedMethodsofNuclearMagneticResonance SpectroscopyandMagneticResonanceImagingAppliedto CharacterizationofClathrateHydrates 467

IgorL.Moudrakovski,ChristopherI.Ratcliffe,andJohnA.Ripmeester

12ReorientationandDiffusioninClathrateHydrates 513

JohnA.Ripmeester,ChristopherI.Ratcliffe,IgorL.Moudrakovski,and SamanAlavi

13IRandRamanSpectroscopyofClathrateHydrates 569

TsutomuUchidaandAmadeuK.Sum

14KineticsofClathrateHydrateProcesses 631

PeterEnglezos,SamanAlavi,andJohnA.Ripmeester

15MechanicalandThermalTransportPropertiesofClathrate Hydrates 717

JohnS.TseandDennisD.Klug

16ApplicationsofClathrate(Gas)Hydrates 749

PeterEnglezos

Index 783

Contents

Volume1

Preface xiii

1AnIntroductiontoClathrateHydrateScience 1

JohnA.Ripmeester,SamanAlavi,andChristopherI.Ratcliffe

2AnIntroductiontoClathrateHydrates 27

JohnA.RipmeesterandSamanAlavi

3ClassificationofClathrateHydrates 65

JohnA.Ripmeester,SatoshiTakeya,andSamanAlavi

4SynthesisofClathrateHydrates 123

JohnA.RipmeesterandSamanAlavi

5StructuresofCanonicalClathrateHydrates 141

JohnA.Ripmeester,SatoshiTakeya,andSamanAlavi

6StructuresofNoncanonicalClathratesandRelated Hydrates 189

JohnA.Ripmeester,SatoshiTakeya,andSamanAlavi

7ThermodynamicsandStatisticalMechanicsofClathrate Hydrates 219

JohnA.RipmeesterandSamanAlavi

Preface xv

8MolecularSimulationsofClathrateHydrates 283

SamanAlaviandJohnA.Ripmeester

8.1Introduction 283

8.2MolecularSimulations 284

8.2.1ClassicalMolecularDynamicsSimulations 284

8.2.2MonteCarloSimulationsofClathrateHydrates 287

8.2.3AbInitioMolecularDynamicsSimulations 288

8.2.4ClassicalInteractionPotentialsforSimulatingClathrateHydrates 289

8.2.5ProtonArrangementsintheClathrateHydrateSimulations 293

8.3StructuralCharacterizationofClathrateHydrateswithSimulations 295

8.3.1RadialDistributionFunctions 296

8.3.2LatticeConstantsandThree-PhaseEquilibriumLines 298

8.3.3GuestDistributionandStructureinCages 299

8.3.4OrderParametersandCharacterizationofClathrateHydrate,Ice,and WaterPhases 302

8.3.5Guest–HostHydrogenBondinginClathrateHydrateCages 307

8.4DynamicCharacterizationsofGuestMotioninCages 308

8.4.1VelocityandOrientationAutocorrelationFunctions 309

8.5SimulationsofClathrateHydrates 311

8.5.1MechanismsofHydrateDecomposition,Nucleation,andGrowth 312

8.5.2EnthalpyofFormation,Decomposition,andEncagementfrom MolecularSimulations 331

8.6AbInitioQuantumMechanicalCalculationsofClathrateHydrates 334

8.6.1StationaryQuantumStatesofSmallGuestsinCages 335

8.6.2AbInitioMolecularDynamics 340

8.7ConclusionsandOutlook 341 References 342

9X-rayandNeutronDiffractionandScatteringofClathrate Hydrates 369 JohnS.Tse,DennisD.Klug,andSatoshiTakeya

9.1Introduction 369

9.2CrystallographyandX-rayDiffraction 370

9.2.1CommentsonDiffractionasAppliedtoHydrateStructure Determination 373

9.2.1.1Single-CrystalDiffraction 373

9.2.1.2PowderDiffraction 374

9.3Instrumentation 375

9.4StructuralCharacterizationwithDiffractionMethods 379

9.4.1DiffractionandStructure–GuestSizeRelationship 380

9.4.2UnconventionalApplicationsofDiffraction 384

9.5NeutronDiffractionorElasticNeutronScattering 390

9.6InelasticNeutronScattering 396

9.7InelasticX-rayScattering 400

9.8Summary 407 References 407

10CharacterizationofClathrateHydratesUsingNuclear MagneticResonanceSpectroscopy 417 ChristopherI.Ratcliffe,IgorL.Moudrakovski,andJohnA.Ripmeester

10.1Introduction 417

10.2NMRInteractions 418

10.2.1TheZeemanInteraction 418

10.2.2OtherInteractions 420

10.2.2.1TheShieldingInteraction(σ)andChemicalShift(δ) 420

10.2.2.2TheNuclearDipole–DipoleInteraction 423

10.2.2.3TheSpin–Spin J -CouplingInteraction 424

10.2.2.4TheQuadrupolarCouplingInteraction 424

10.2.2.5TheSpin–RotationCouplingInteraction 427

10.2.2.6InteractionswithUnpairedElectrons 427

10.2.3Units 427

10.3ExperimentalAspectsofNMRSpectroscopy 427

10.3.1TheBasicNMRExperiment 427

10.3.2TechniquesforEnhancingSensitivityandResolution 428

10.3.2.1DipolarDecoupling 428

10.3.2.2MagicAngleSpinning,MAS 429

10.3.2.3Cross-Polarization(CP) 430

10.3.2.4Hyperpolarizationof 129 Xe(HPXe) 430

10.4TheDevelopmentofNMRTechniquesOverTime 430

10.5NMRPowderLineShapesinClathrateHydrates 432

10.5.1DipolarLineShapes 432

10.5.1.1MagneticDilution 432

10.5.1.2Two-SpinSystems 432

10.5.1.3Three-SpinSystems 433

10.5.1.4Four-SpinSystems 434

10.5.1.5Six-SpinSystems 434

10.5.1.6Multi-SpinSystems 436

10.5.1.7EffectsofParamagneticOxygenon 1 HLineShapes 436

10.5.2ChemicalShiftLineShapes 437

10.5.2.1 129 XeNMR 437

10.5.2.2ChemicalShiftLineShapesofOtherNuclei: 77 Se, 31 P, 19 F, 13 C 444

10.5.3QuadrupolarLineShapes 446

10.5.3.1Spin1:Deuterium 2 H 446

10.5.3.2Half-IntegerQuadrupolarNuclei(131 Xe, 83 Kr, 33 S, 17 O) 450

References 458

11SpecializedMethodsofNuclearMagneticResonance SpectroscopyandMagneticResonanceImagingAppliedto CharacterizationofClathrateHydrates 467

IgorL.Moudrakovski,ChristopherI.Ratcliffe,andJohnA.Ripmeester

11.1Introduction 467

11.2 13 CMASNMRinCompositionalandStructuralAnalysisofGas Hydrates 468

11.2.1ExperimentalConsiderations 468

11.2.2Overviewof 13 CMASNMRinClathrateHydrates 470

11.2.3ConcludingRemarksandOutlook 482

11.3 129 XeNMRApplications:OtherTopics 482

11.3.1Transient/MetastablePhases 482

11.3.2RapidScanningoftheFormationofCS-IXeHydratefromIcewith HyperpolarizedXe 483

11.3.3AnnealingofCo-depositsofXeandH2 O 485

11.3.4H2 O-NH4 FSolidSolutionFrameworks 485

11.4IonicHydrates 486

11.4.1HydratesofAlkylammoniumSalts 486

11.4.2HydratesofStrongAcids 487

11.4.3HydratesofStrongBases 487

11.5ClathrateHydratesandMagneticResonanceImaging 489

11.5.1InformationAboutGasHydratesAccessiblebyMagneticResonance Imaging 490

11.5.2ExperimentalConditionsandEquipmentforMRIinGas Hydrates 493

11.5.3OverviewofCurrentMRIApplicationsinGasHydrate Research 495

11.5.4ConcludingRemarksandOutlook 502 References 503

12ReorientationandDiffusioninClathrateHydrates 513

JohnA.Ripmeester,ChristopherI.Ratcliffe,IgorL.Moudrakovski,and SamanAlavi

12.1Introduction 513

12.2EarlyWorkonClathrates/InclusionCompounds 514

12.3Dynamics 515

12.3.1DynamicsandTimescales 515

12.3.2DielectricRelaxation 516

12.3.3NMRSpectroscopy 519

12.3.3.1NuclearDipolarCoupling 519

12.3.3.2NuclearQuadrupolarInteractions 522

12.3.3.3ChemicalShiftLineshapes 524

12.4WaterDynamicsinIceandClathrateHydrates 525

12.4.1WaterDynamicsinIceIh 525

12.4.2WaterDynamicsinClathrateHydrates 528

12.5GuestMotions 534

12.5.1GuestReorientation:GeneralConsiderations 534

12.5.1.1ReorientationofSphericalTopGuestMolecules 536

12.5.1.2ReorientationofSymmetricTopGuestMolecules 539

12.5.1.3ReorientationofAsymmetricTopGuestMolecules 544

12.5.2Diffusion 550

12.5.3NonclassicalDynamics 554

12.5.3.1MethylGroups 554

12.5.3.2DynamicsofLightTetrahedralMolecules 556

12.6Summary 557

References 559

13IRandRamanSpectroscopyofClathrateHydrates 569 TsutomuUchidaandAmadeuK.Sum

13.1FundamentalsandQuantification 570

13.2IRSpectroscopyofClathrateHydrates 577

13.2.1FarIRTransmission–FT-IRonVapor-DepositedThinFilms 577

13.2.2RecentStudiesofClathrateHydratesUsingIRSpectroscopy 578

13.3RamanSpectroscopyofClathrateHydrates 581

13.3.1GuestMoleculeInformation 582

13.3.1.1DetectionofEncapsulation 582

13.3.1.2QuantificationofRamanPeakPositions 585

13.3.1.3QuantificationofCageOccupancy 588

13.3.1.4ApplicationofRamanSpectroscopytoKineticProcesses 591

13.3.1.5AnalysisofNaturalHydrateSamples 593

13.3.2Noncontact,Non-destructiveMeasurementsofGasHydratesViaVisible Light 596

13.3.2.1ApplicationofRamanSpectroscopytoClathrateHydrateKinetic Studies 596

13.3.2.2GasHydratePhasesObtainedunderHigh-PressureConditions 600

13.3.2.3 InSitu AnalysisofNaturalHydrateSampleUnderDeepSea Condition 605

13.4Conclusions 605

References 614

14KineticsofClathrateHydrateProcesses 631 PeterEnglezos,SamanAlavi,andJohnA.Ripmeester

14.1Introduction 631

14.2ExperimentalMeasurementofHydrateProcessRates 631

14.2.1Kinetics–GasUptakeMeasurements 631

14.2.2KineticsofCS-1andCS-IIhydrates 633

14.2.3KineticsofHS-IIIHydrates 636

14.2.4KineticsMeasurements–OtherMethods 637

14.2.5AverageandSpatiallyLocalizedKinetics 641

14.3ModelingtheKineticsofHydrateNucleation 645

14.3.1HydrateFormation 645

14.3.2HomogeneousNucleation 647

14.3.3HeterogeneousNucleation 652

14.3.4ValidityandRelevanceofClassicalNucleationTheory 655

14.4HydratePhaseTransformations 660

14.4.1HydrateGrowthfromWater 660

14.4.2HydrateGrowthfromIce 664

14.4.2.1TheShrinkingCoreModel 665

14.4.2.2TheAvramiEquation 667

14.4.3HydrateCrystalMorphology 673

14.4.4HydrateDecomposition 676

14.5Metastability 678

14.6KineticModifiers 680

14.6.1Surfactants 680

14.6.2DefectGenerationintheHydrogen-BondedIceandHydrate Lattices 682

14.6.3KineticHydrateInhibitors 683

14.6.3.1MacroscopicDescriptionsofHydrateInhibition 683

14.6.3.2MechanismofKineticInhibition 684

14.6.3.3ComplexitiesoftheHydrateInhibitionProcess 688

14.7MolecularSimulationsofClathrateHydrateNucleationand Growth 690

14.7.1SimulationsofHeterogeneousNucleation 691

14.7.2MolecularSimulationsofHomogeneousNucleation 692

14.7.3SimulationsofHydrateGrowth 695

14.7.4SimulationsofHydrateGrowthandDecompositioninthePresenceof Inhibitors 696

14.8ConcludingRemarks 697

References 698

15MechanicalandThermalTransportPropertiesofClathrate Hydrates 717

JohnS.TseandDennisD.Klug

15.1Introduction 717

15.2TheoreticalBackground 718

15.2.1ElasticModuli 718

15.2.2ThermalConductivity 720

15.3MechanicalProperties:AcousticVelocityandElasticConstants 721

15.4ThermalExpansion 730

15.5TransportProperties:ThermalConductivity 734

15.6MolecularDynamicsSimulationsofThermalPropertiesofClathrate Hydrates 739

15.7Summary 742

References 743

16ApplicationsofClathrate(Gas)Hydrates 749

PeterEnglezos

16.1Introduction 749

16.2FlowAssuranceinOilandGasPipelines 750

16.2.1Large-ScaleFlowLoops 753

16.2.2CatastrophicHydrateFormationandPipelinePlugPotential 754

16.2.3OilandGasPipelineswithHydrophobicSurfaces 754

16.3NaturalGasEnergyRecoveryfromtheEarth’sHydrates 755

16.3.1ExtractionofNaturalGasbyInjectionofCO2 orCO2 /N2 FlueGas 757

16.4Desalination 758

16.5ConcentrationofWastewaterandAqueousOrganicSolutions 759

16.6StorageandTransportationofNaturalGas,Hydrogen,andOther Materials 760

16.6.1NaturalGasStorage 760

16.6.2HydrogenStorage 762

16.7GasSeparations 765

16.7.1Metrics 766

16.7.2SeparationofCO2 fromFlueGasMixtures(Post-Combustion Capture) 767

16.7.2.1ImpactofSO2 768

16.7.3SeparationofCO2 fromFuelGasMixtures(Pre-Combustion Capture) 768

16.7.4OtherGasSeparations 771

16.8Conclusions 772

References 772

Index 783

Preface

Scope

Whywritethisbook?Anumberofreasonscometomind.Today,avastnumberof publicationsonclathratehydratescontinuetoappearinjournalsdealingwiththe manydifferent,oftennon-overlappingareasofhydrateresearch.Increasingly,these studiesfocusespeciallyonengineeringandgeologicalaspects,aswellaspotential applications.Molecularsciencehasprovidedthefundamentalunderpinningsfor muchofthiswork;however,theearlierworkhasbecomemoredifficulttofind,and therehavenotbeenmajorcomprehensivemonographsorbooksfocusedonscientificaspectsofthesesubstancesforsome40years.Itistofillthisgapthatpreparation ofthisbookwasundertaken.Wealsofeelthereareanumberofmisconceptionsor questionableapproachesthathavepropagatedovertheyears,andthisbookprovides anopportunitytorevisitsomeofthesepoints.

The150yearsthatittookforthefirstobservedphenomenonofgashydratesto beproperlyexplainedmakeforafascinatingstoryoftheintertwiningofthethen currenthydratescience,advancesintechnology,andtheevolutionofchemical concepts.AfteranIntroductionandsummaryofthe“classicalperiod,”thebook presents16chaptersoutlininghydratescienceindifferentareasofspecialization (seebelow).Eachchapterprovidesashortsummaryoftherespectivemethodology andiswrittenwithanemphasisontheexperienceoftheauthorswithsignificant feedbackfromtheeditorsandtheotherchapterauthors.Thebookalsoprovides comprehensivetabulatedinformationonthestructural,compositional,spectroscopic,thermodynamicproperties,andmolecularsimulationsofclathratehydrates. Withthisinformationgatheredinoneplace,itwillbeavaluableresourceforboth experiencedresearchers,andresearchersandgraduatestudentsofscienceand engineeringjuststartingtheirstudiesofthesefascinatingsubstances.Theauthors haveaimedatmakingeachchapterascomprehensiveaspossible,butinaworkof thisscope,valuableworkwillinevitablynotbediscussed.

Asummaryofthechaptercontentsfollows.

Chapter1reportsthemajorhighlightsinthedevelopmentofclathratehydrate knowledgeandthenhighlightscontributionsoftheNationalResearchCouncilof Canadagroupwheretheauthorsofthisvolumehaveworkedorwhichtheywerein closecollaboration.

Chapter2givesamoredetailedhistoricaloutlineofthestudyofclathratehydrates fromtheclassicalperiodupto1970whenthehydratecrystallographicstructure becameknownandthestatisticalmechanicalmodelofclathratehydrateswas developed.Wesurveyedsomeoftheprimaryliteratureofthisperiodtoclarifysome ofthehistoricalaspectsofthesesubstancesdiscoveredbytheearlyresearchers.

Chapters3and4introducethedifferenthydratecagesmadeofhydrogen-bonded watermoleculesanddiscusstheclassificationofclathratehydratesaspartofthe largerfamilyofsupramolecularcompounds,andtheirtechniquesofsynthesis, respectively.Hydratesarepresentedassolidsolutionswiththeirstabilitybeinga latticeproperty.Comprehensivetablesarepresentedoftheknownguestmolecules, andsummariesoftheirstructuralandphysicalpropertiesaregiveninthischapter. Thedifferentclassesofclathratehydratephaseequilibriaarepresented.

Chapters5and6discussstructuralaspectsofclathratehydrates,semi-clathrates, andsalthydrates.Theimportanceofunconventionalguest–hostinteractions likehydrogenandhalogenbondingisintroduced.Differentwaysoflookingat hydratestructuresbasedonlayeredstructuresandspacefillingcagesusingthe Frank–Kasperapproacharepresented,andrelatednon-hydrateclathratesare introduced.

Chapter7introducesthermodynamicsandstatisticalmechanicsofclathrate hydrateswithdiscussionofcalorimetricmethodsandthevanderWaals–Platteeuw theoryandsomeofitsextensions.Manyrecentengineeringapplicationsand extensionsarenotdirectlydiscussedastheyarediscussedinChapter16orare beyondthescopeconsideredforthisbook.Tablesofhydratecompositionand thermochemicalinformationarepresented.

Chapter8givesasummaryoftheapplicationofmolecularsimulationmethods tostudyclathratehydrateproperties.Methodsofcharacterizingstructuraland dynamicpropertiesofclathratehydratesarediscussed.Mostoftheemphasisison classicalmoleculardynamicsandMonteCarloresults,butquantummechanical calculationsofconfinementeffectsforsmallmoleculessuchashydrogenand methaneintheclathratehydratecagesarealsoreviewed.Atableisgivenfor systemsstudiedtodateusingmolecularsimulationmethods.

Chapters9,10,11,and13discussX-rayandneutrondiffractionandscattering, generalandspecializedNMRmethodsandIR/Ramanmethodsforstudying clathratehydrates,respectively.Thetechniquesarebrieflyintroduced,andthe oftencomplementaryinformationtheyprovideonclathratehydratesaredescribed. Theuseofthesemethodsinunravelingthestructureanddynamicsofguest–lattice interactionsissummarized.

Chapter12presentsinformation,mainlyfromdielectricsandsolid-stateNMR,on themolecularmotionofguestandhostmolecules.Therelationshipbetweencage geometryandguestdynamicsisintroduced,asistheeffectofguest–hosthydrogen bondingonwatermoleculedynamics.

Chapter14presentstherateandmechanismsofhydrateformationanddecompositionfrombothmacroscopic(process)andmicroscopic(mechanism)pointsof view.Classicalnucleationtheoryintroducesanumberofkeyparametersthatare pertinenttobothhomo-andheterogeneousnucleationmechanismsofhydrate formation.Emphasisisplacedonhydrateprocessesasphasechangesoccurring

Preface xv inthepresenceofmassandtemperaturegradientsratherthanchemicalreactions occurringinisotropicandisothermalsystems.Thevariousfactorsthatmodify kineticsofhydrateformationareintroducedanddiscussedfromresultsgathered frombothexperimentalandmolecularsimulations.Thehydratememoryeffectand possiblemechanismsofkinetichydrateinhibition(usingbothpolymericsubstances andantifreezeproteins)arediscussedinthischapter.

Chapter15dealswithmechanicalpropertiesofclathratehydrates,including acousticvelocity,elasticconstants,thermalexpansion,andthermalconductivity. Experimentalandtheoreticalbackgroundsforthestudyofthesepropertiesare given.Someanomalouseffectsseeninthetemperaturedependenceofthethermal conductivityofhydratephases,butabsentinice,arediscussedindetailinthis chapter.

Chapter16presentswithselectedpotentialapplicationsofclathratehydratecompounds,includingflowassurance,naturalgasrecovery,desalination,concentration ofaqueoussolutions,andthestorageofnaturalgas,hydrogen,andgasseparation. Thischapterismeanttobeanoverviewofsomeapplications,whichwillbewell studiedinthenearfuture.

Theauthors’workdescribedinthisbookhascontributionsfrommanycolleagues, staff,andstudentsattheNationalResearchCouncilofCanadawhoarenamed inChapter1.Thecontributionsoftheseindividualsaregratefullyacknowledged. Theworkdescribedwouldnothavebeenpossiblewithoutthematerialsupportof theNationalResearchCouncilofCanadafrom ∼1960to2011.Asinanyfield,the progressinclathratehydrateresearchistheresultofcollaborationandcontributions fromresearchersinmanycountries.Wehopetohavegivenproperrepresentation ofcontributionsfromresearchersfromallpartsoftheworld.Weapologizeforany omissions,whicharetheresultofthelimitedscopeofsomeofthediscussionsin thisbook.

WewouldliketoacknowledgethecontributionsofDonaldDavidson(1925–1986) oftheNationalResearchCouncilofCanadaasoneofthepioneersinmodern hydrateresearchinCanada.Don(i)initiatedamulti-techniqueapproachtostudyinggashydrates;(ii)providedmentorshiptogenerationsofhydrateresearchers attheNRC;and(iii)wroteanumberofmonographsandbookchapters,which areexemplaryfortheirclarityandarestillusefultoday.Atthetime,theNational ResearchCouncilwasafertilemultidisciplinaryenvironmentwherecutting-edge dielectric,NMR,single-crystalX-raycrystallographic,andsimulationtechniques werebeingdeveloped,andalmostimmediatelybeingusedinunderstandingthese substances.AfterDon’spassing,thistraditionwasmaintainedattheNRC.

Theeditorswouldliketothanktheauthorsofthechaptersinthisbookfortheir contributionsandtheirpatiencewithournumerousrequestsforeditorialchanges. WewouldparticularlyliketothankChristopherI.Ratcliffe,AmadeuK.Sum,Peter Englezos,andDennisD.Klugwhoalsocommentedextensivelyonchaptersother thantheirown.

WewouldliketothankourwivesBethandDorothyforsupportanddealingwith theseeminglyunendingdemandsonourtimewhileweworkedonthisbook.We thankfullyacknowledgetheirindirect,butimportantcontributionsingettingthis bookprojectcompleted.

AnIntroductiontoClathrateHydrateScience

JohnA.Ripmeester 1 ,SamanAlavi 1,2 ,andChristopherI.Ratcliffe 1

1 NationalResearchCouncilofCanada,100SussexDrive,Ottawa,ON,K1A0R6,Canada

2 UniversityofOttawa,DepartmentofChemistryandBiomolecularScience,STEMComplex,150 Louis-PasteurPvt.,Ottawa,ON,K1N6N5,Canada

1.1Introduction

Thefirstintersectionofclathratehydratesandhumanendeavortookplaceinthelate 1700s.Anumberofresearchers(naturalphilosophers)workingonthesolubilityof newlydiscoveredairs(gases)observedunexpectedice-likesolidsformedabovethe freezingpointoficewhencertaingaseswerepassedintocoldwaterorwhensuch asolutionwasfrozen.Davyidentifiedthesesolidsastwo-componentwater–gas compoundsandnamedthem“gashydrates.”Aftersome140yearsandmuch research,thesesolidswereshowntobeclathrates,materialswheresmallmolecules (guests)aretrappedinanice-likelattice(host)consistingofhydrogen-bonded watercages.Duringthetimebetweeninitialdiscoveryandfinalidentification,gas hydratesconfoundedresearchersbyhavinganumberofpropertiesthatcountered conceptsderivedfrommainstreamchemistry.Forinstance,thehydrateswere non-stoichiometric,thewater-to-gasratioswerenotsmallwholenumbers,andthey decomposeduponheatingordepressurizationtogivebacktheunchangedstarting materials.Thelackofchemicalbondsbetweenthewaterandthegasinthehydrates suggestedthatthesewerenotrealchemicalcompoundsandinfactwerethefirst examplesof“chemistrybeyondthemolecule”–supramolecularcompounds.

Fromphaseequilibriumstudies,wenowknowthatwhenmanygasesandwater areincontactunderappropriatepressure(P)andtemperature(T )conditions,asolid hydratewillform.Thegashydratesstoregases,includingnaturalgas,veryefficiently withonevolumeofsolidhydratestoringsome160volumesofgasatstandardtemperatureandpressure(STP).Sinceanumberofgashydratesarefoundnaturally,this classofmaterialscanbetakentobeanunusualtypeofmineral.Therearemanysites inthegeospherewherenaturalgasandwaterareincontactundertheconditions requiredtoformgashydrate.Locationswherethisoccursareinsedimentsoffshore ofcontinentalmargins,underpermafrost,andinsomedeepfreshwaterlakes.

Wellbeforethediscoveryofnaturalgashydrateinthegeosphere,oilandgas engineersencounteredblockednaturalgaspipelinesduringcoldweatheroperation ClathrateHydrates:MolecularScienceandCharacterization,FirstEdition. EditedbyJohnA.RipmeesterandSamanAlavi. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

1AnIntroductiontoClathrateHydrateScience

whichwasinitiallyattributedtoiceformationfrommoistureinwetgas.Knowledge ofearlierworkonsolidmethanehydrateledHammerschmidtinthe1930stothecorrectexplanationforthepipelineblocks–theyweremadeofsolidmethanehydrate ratherthanice.Sincethen,duringtheexploration,productionandtransportphases ofhydrocarbonresources,blockagebynaturalgashydrateformationhasbecomea well-knownhazard,resultinginpossibleseriousdamageandlossoflife,forexample intheDeepwaterHorizonoilspillof2010.Muchresearchhasbeencarriedout topreventormanagehydrateformationinpipelines.Otherproblemsrelatedto gashydrateshavebeenidentified,includingmarinegeohazards,suchassubmarine landslides,andsuddengasreleasesfromhydrateformations.

Becauseofthevastamountsoftrappednaturalgasinhydrateformglobally, gashydrateshavebeenevaluatedtobeasignificantunconventionalnaturalgas resource.Hydratedepositshavebeenmappedinmanylocationsaroundtheworld, usuallyusinggeotechnicalmethodsthatdependonthelocationofunexpected solidhydrate–liquidwaterinterfaceswhichactasseismicreflectors.Testwellsfor gasproductionhavebeendrilledintheMackenzieDelta,Canada(Mallik2L38), Alaska,theNankaitroughoffshoreJapan,andoffshoreChina.Manyproblems havebeenencounteredinproducinggasfromhydratereservoirs,includingthe developmentofthebesttechniquesfordestabilizingthesolidhydrateandcapturingtheresultinggas.Somehydratedeposits,oftenassociatedwithhydrocarbon seepsorvents,existasoutcropsontheseafloor.Whereasmostofthemethane inhydratereservoirsisofbiogenicorigin,hydratesassociatedwithseepsorhot ventsareformedfromthermallyalteredhydrocarbonsoriginallyresidingindeeper reservoirs.Somehydrateoutcropsarehometospecializedbiologicalecosystems wheremicrobesfeedonhydrocarbonsandtheseinturnbecomeafoodsourcefor “ice-worms.”

Besidesthemarineandterrestrialnaturalgashydrates,therearegashydratesof air(mainlyN2 andO2 )deepinsideglaciers.Thehydratezonestartsatpressures wheregasbubblesintheicedisappear.Therehasbeenmuchspeculationregarding theexistenceofhydratesinextra-terrestrialspace,thatis,onMars,Titan,Enceladus, andtheheadsofcomets.Oneofthebestcandidatesforfindingsuchahydratewould appeartobethatofCO2 .Althoughlotsofspectroscopicdataexistforfreesolid CO2 andiceinextra-terrestrialspace,nosignofCO2 hydratehasbeenfound,see Chapters3and13forpossiblereasons.

Thelargegascapacityandwaterascheapworkingfluidmakegashydrates interestingmaterialsforindustrialapplications.Gashydratesaregenerallyselective forguestmoleculeadsorptionwhichallowstheseparationofgasmixtures.Much assaltisexcludedwhenbrineisfrozenindesalinationprocesses,gashydrateshave thesameability,butnowthepropertiesofthesolidphasecanbeadjusted.For example,dependingonthechoiceofguest,thehydratefreezingpointcanbewell abovetheicepoint,sosavingonrefrigerationcosts.Thesameprincipleapplies tocoolenergystoragewherethefreezingpointofthehydratecanbetunedto minimizeoperationalcosts.Furtherapplicationsincludedewateringoffruitjuices,

sewagesludgeandwoodpulp,andthestorageofunstablemoleculessuchasozone andchlorinedioxide.Amoreexoticapplicationwastheseparationofradioactive radongasfromagasmixture.

Thegentlerconditionsrequiredfortheformationandstorageofmethanein solidhydrateformascomparedtothelowtemperaturerequiredforliquidnitrogen storageofliquefiedmethanehasresultedintheevaluationoftransportbythesetwo means.Indeed,somecostadvantagesbecomeapparentforsolidhydratetransport ifmethanehastobetransportedfromstrayfieldswhereconstructionofaliquid naturalgas(LNG)plantisnotcosteffective.Otherapplicationsforstoragehave beenexplored,e.g.forhydrogenasfuelgasandCO2 forgreenhousegasseparation andstorage.

Gashydrates,becauseoftheiruniqueproperties,havedemonstratedsomeentertainmentvalue.The“burningsnowball”resultswhenmethanefromdecomposing methanehydrateisignitedandthisphenomenonhasbeenadmiredbymany, bothliveandinprint.Intheearly1980s,itwasproposedthatsudden,massive decompositionofmarinemethanehydratescouldbethecauseofdisappearances ofshipsandplanesinmythicallymysteriousareassuchastheBermudatriangle. Itappearsthemysterynovel“Deathbygashydrate”stillneedstobewritten: hydrateshavegreatpotentialasdifficulttotrackmurderweapons.Themediaalso havefrequentlygivennewscoverageof“burningice”whichisrediscoveredevery 10yearsorso.

Fromtheearlierexamples,itisclearthatgashydratesareinterestingandunusual materialspartlybecausenaturemakesthemandpartlybecausetherearemany potentialuseswhichunfortunatelyremainlargelyprospective.Thisbookwill emphasizethemolecularchemical,physical,andmaterialaspectsofclathrate hydrates,thatis,themanydetailsneededtounderstandthemacroscopicproperties andprocessesmentionedearlier.Engineeringandgeologicalaspectsofthegas hydrateshavebeencoveredadmirablyinanumberofpreviousbooksmentioned later.

InSection1.2ofthischapter,wehighlightmilestonesofclathratehydratescience uptothepresent.Thehistoryandcontextofsomeoftheseearlierdevelopments arediscussedingreaterdetailinChapter2andinchaptersthatfollowandthe relevantreferencescanbefoundthere.Fromtheirbeginningandinthedecades thatfollowed,manycentersofclathratehydrateresearchemergedindifferent partsoftheworld.Fromtheearly1960swiththeworkofDonDavidsonand coworkers,theNationalResearchCouncil(NRC)ofCanadainOttawaemergedas oneoftheactivecentersofresearchinthisfield.InSection1.3,wegiveasummary ofthecontributionstoclathratehydratesciencemadeintheNRCofCanada duringthistimeperiod.ContributorstotheclathratehydrateresearchattheNRC areacknowledgedinSection1.4.Someinfluentialbooksandreviewarticleson clathratehydratesthatappearedduringthisperiodanduptothecurrenttimeare introducedinSection1.5.Internationalconferencesfocusingonclathratehydrate sciencearelistedinSection1.6.

1.2SelectedHighlightsofClathrateHydrateScience ResearchUptothePresent

Inthissection,wesummarizeselectedhighlightsofclathratehydrateresearch, emphasizingcontributionstomolecularscience.Notallengineeringandgeological discoveriesarecoveredindetailinthisselection.Fullauthornamesandreferences formostofthesehighlightsaregiveninthefollowingchapters.

1810SirHumphreyDavycorrectlyidentifiedasolidmaterial,previouslythought tobesolidchlorine,asacompoundofchlorineandwaterandcalledit“gas hydrate.”

1823FaradaydeterminedthecompositionofchlorinehydratetobeCl2 10H2 O.

1823FaradayactinguponasuggestionbyDavy,useddecompositionofgas hydratesinconfinedvesselsasamethodofliquefyinggases.

1828LöwigpreparedbrominehydrateanddeterminedtheformulaBr2 ⋅10H2 Ofor thecompound.

1829delaRivepreparedSO2 hydrate,SO2 14H2 O,andproposedthatallcommon gasesformhydrates.

1840WöhlerpreparedH2 Shydrate.

1843Millonpreparedchlorinedioxidehydrate,thefirstexampleofthe preservationofanunstablechemicalspecies,ClO2 ,anexplosive-freeradical.

1852Loirpreparedsolidbinaryhydratesfromwater,H2 S,orH2 Seand halogenatedhydrocarbonslikechloroform,theircompositionremained unknownforsome30years.

1856Berthelotpreparedthefirstpurehydratesoforganiccompounds,namely, thoseofmethylchlorideandmethylbromide.HealsoclaimedthatCS2 formedahydrate,startingacontroversyaboutitsexistencethatlasted40 years.

1863Wurtzpreparedethyleneoxide(EO)hydrate,thefirstexampleofa water-solubleguest.Itscompositionandmeltingpointdiagramwerenot determineduntil1922.

1878Isambardshowedthattheequilibriumpressureofchlorinehydrateis univariant.

1878Cailletetdesignedandbuiltapparatussuitableforworkingathighpressure andlowtemperature.Thiswasofgreatvalueforthepreparationofnewgas hydratesandthedeterminationofphaseequilibria.Heillustratedthisby preparingnewhydratesofacetyleneandphosphine.

1882WróblewskipreparedCO2 hydrate.

1882deForcrandpreparedandcharacterized33doublehydratesofH2 Switha varietyofguestsandestablishedsimilaritiesofcomposition,M⋅2H2 S⋅23H2 O. StudieswereextendedtodoublehydrateswithH2 Seaswellasasimple hydrateofH2 Se.

1882CailletetandBordetshowedthatmixedhydratesofCO2 andPH3 werenot simplyphysicalmixturesofsimpleCO2 andPH3 hydratesbuthydrateswith uniqueproperties.

1883deForcrandappliedcalorimetrytogashydratesandassignedmostofthe thermaleffectstothedominantpresenceofwaterinthehydrate.

1.2SelectedHighlightsofClathrateHydrateScienceResearchUptothePresent 5

1883deForcrandobservedthatanumberofdoublehydrateshadwell-defined cubic,cubo-octahedral,ortruncatedoctahedralmorphologieswhichwere notactedonbypolarizedlight.

1884–1885BakhuisRoozeboomprovidedhydrationnumbersforSO2 ,Cl2 ,andBr2 hydratesandhisphaseequilibriumdiagramsclearlyshowedthe pressure–temperaturefieldsofhydratestability.Cailletet,Wróblewski,and BakhuisRoozeboomobservedamemoryeffectthatincreasedthe reformationrateofhydratefromsolutionsofdecomposedhydrate.

1884LeChâtelierusedtheClausius–Clapeyronequationforthevariationofvapor pressureofthehydrateswithtemperatureandwasthefirsttousethe equationtodeterminegashydratecompositions.

1885ChancelandParmentierreportedasimplehydrateofchloroform.Thiswas oneofthefirstso-called“liquidhydrates”whoseguestcomponentsare liquidsatambienttemperature.

1887–1888BakhuisRoozeboomappliedtheGibbsphaseruletoheterogeneous equilibriaandsystematicallyclassifiedchemicalandphysicalprocesses accordingtonumberandnatureofthecomponentsandphasespresent.He publishedonthetreatmentoftheinvariantpointsatwhichequilibriumlines meet.

1888VillardpreparedhydratesofCH4 ,C2 H6 ,C2 H4 ,N2 O,andpropane(1890).

1890Villardrecognizedthestabilizingeffectofaironthedecompositionofgas hydrates.Inthesearchforother“help-gases”heidentifiedbothhydrogenat 23atmandoxygenat2.5atmasincreasingthedecompositiontemperatureof ethylchloride.

1897Onthebasisofcarefulmeasurementsonthelargenumberofhydratesthen available,Villardpresentedadefinitionofthecompositionofgashydrates (Villard’slaw).

1897deForcrandandThomasdiscoverednewhelp-gases(CO2 ,C2 H4 ,C2 H2 ,and SO2 ).

1902deForcrandusedcalorimetricdataandageneralizationofTrouton’sruleto calculatehydratecompositionsfor15hydrates.Abouthalfhadcompositions inagreementwithVillard’slaw.

1923Bouzatproducedsummarystatementsgivingthethencurrentdefinitionof hydrates,theirstructure,andcomposition.

1926Schroederwroteaninfluentialmonographsummarizingthestateof knowledgeofgashydratetothatdate.

1934Hammerschmidt,afterreadingSchroeder’sbook,showedthatgashydrates aremorelikelytoformplugsinnaturalgaspipelinesthanice.

1936–1937NikitinpreparedmixedhydratesofnoblegasesandSO2 andshowedthatthe noblegasescouldbeseparatedbypartitioningbetweenthesolidhydrateand thegas.Hisobservationswerefirstconsistentwiththe“solidsolution” natureofhydrates.

1946DeatonandFrostpresentedexperimentaldataonhydratephaseequilibriaof naturalgascomponentsandmethodsofhydrateprevention.

1946MillerandStrongproposednaturalgasstorageinhydrateform.

1947Powellcoinedtheterm“clathrate”formaterialshavingaguestmolecule residinginacavityformedinahostlattice.

1949vonStackelbergusedX-raydiffractiondatatoproposeastructureforagas hydrateofchloroformandH2 S.Althoughthestructure,basedonalattice withholesforguests,wasincorrect,itwasaradicaldeparturefromthe molecularstructurecurrentupuntilthattime.vonStackelberghadstudied theX-raydiffractionofgashydratespriortothistime,buthisoriginal photographicplateshadbeendestroyedinaerialbombardmentduringWorld WarII.

1951Clausenintroducedthepentagonaldodecahedronasastructuralcomponent ofgashydrates,andvonStackelbergandMuller’sX-raydiffractiondata confirmedthecrystalstructureofthe“structureII”(sIIorCS-II)hydrate proposedbyClausen.

1952Clausen,vonStackelberg,andPaulingandMarshprovidedastructurefor “structureI”(sIorCS-I)gashydrates.

1952DelsemmeandSwingssuggestedthepresenceofgashydratesincometsand interstellargrains.Delsemmelatersuggestedthattheoutgassingofcomets onapproachingthesuncouldbeduetodecompositionofhydrates.

1957–1967Barrerandcoworkersstudiedhydratethermodynamics,kinetics,and separationofgasmixtureswithhydrateformation.

1959–1970Jeffreyandcoworkersusedsingle-crystalX-raydiffractiontoobtain structuraldataforclathratehydrates,semi-clathrates,andsalthydrates.

1959vanderWaalsandPlatteeuwpresentedthe“solidsolution”statistical thermodynamicsmodelforclathratehydrates.

1961MillerandPaulinghypothesizedhydrateformationasamechanismfor anesthesiaarisingfrominertnoblegases,inparticularxenon.

1961Millersuggestedthepresenceofgashydratesintheplanets,planetaryrings, andinterstellarspaceinthesolarsystem.

1963Davidsonuseddielectricmethodstostudyclathratehydrates.Hediscovered newwater-soluble(polar)guestsforclathratehydrates,measuredthe dynamicsofguestandhostmolecules,foundthatwatermolecule reorientationratesdependonthenatureoftheguestmolecule,and postulatedthepresenceofguest–hosthydrogenbondingcapableof generatingBjerrumdefects.

1965MakogonreportedonnaturalgashydratesfoundintheSiberianpermafrost.

1965KobayashiandcoworkersappliedtheKiharaintermolecularpotentialtovan derWaals–Platteeuwtheorytorepresenttheguest–cageinteractions.

1965Davidsonandcoworkersstartednuclearmagneticresonance(NMR) measurementsonclathratehydratesanddemonstratedthattheSF6 guestin sIIclathraterotatesisotropicallyevenat77K.

1966GlewandRathshowedthattheequilibriumcompositionsofCl2 andEO clathratehydratesarevariable,inaccordancewithvanderWaals–Platteeuw theory.

1968GlewandHaggettstudiedEOhydrategrowthkineticsandshowedthatthe processisgovernedbyheattransferoverawiderangeofconcentrations.

1969Millerpredictedairhydratesshouldbepresentinglacierice,CO2 hydrates onMars,andCH4 hydratesontheouterplanetsandmoons.

1.2SelectedHighlightsofClathrateHydrateScienceResearchUptothePresent 7

1969Ginsburgstudiednaturalgashydratesingeologicalsettings.

1971Stoll,Ewing,andBryanfoundthatanomalouswavevelocities (bottom-simulatingreflectors)areassociatedwithmarineoffshorenatural gashydratedeposits.

1972ParrishandPrausnitzdevelopedconvenientcomputercodeforapplyingthe vanderWaals–Platteeuwtheorytothecalculationofgashydratephase diagrams.

1972Tester,Bivins,andHerrickperformedthefirstMonteCarlosimulationofgas hydratesofnoblegases,N2 ,O2 ,CO2 ,andCH4 totestsomeofthe assumptionsmaderegardingguest–cageinteractionsinusingthevander Waals–Platteeuwapproach.

1973–1983Bertieandcoworkersstudiedclathratehydrateswithinfraredspectroscopyat lowtemperatures.

1974BilyandDickencounteredgashydratesbelowthepermafrostinthe MackenzieDelta,NorthwestTerritories,Canada.

1974Davidson,Garg,andRipmeesterreportedbroadlineandpulsedNMR experimentsontetrahydrofuran(THF)hydratefrom4to270K,showing regionsofanisotropicandisotropicmotionsoftheguest,relaxationminima forguestanisotropicrotation,watermoleculereorientation,anddiffusion.

1974Davidsonetal.showedthatpolaraswellasnon-polarguestsshow reorientationalguestmotionsthatcanbedescribedbyverybroad distributionsinreorientationalcorrelationtimesatlowtemperatures.Itled toamodelforaguest–hostpotentialdeterminedbyshortrangeinteractions betweentheguestandthedisorderedhydrogenatomsofthehostwater molecules.

1974Dyadinwasappointedtoleadaresearchgroupthatoversome40years providednewinformationonstructure,stoichiometry,andstabilityof clathratesandhigh-pressureresearchonclathratehydrates.

1975Sloanandcoworkersinitiatedworkontwo-phasehydrateequilibria.

1976HoldercalculatedthatsmallguestsaremorelikelytoformsII(CS-II)hydrate thansI(CS-I).

1976–1987Nakayamastudiedphaseequilibriaofsalthydrates.

1976PengandRobinsondevelopedanaccurateequationofstatewhichiswidely usedtodescribethevapor–liquidequilibriaofhydrocarbonsandsmallgases forhydrateequilibriumcalculations.

1977RipmeesterandDavidsonreported17newclathrateguestsmainlyfrom NMRmeasurements.

1979–1993Bishnoiandcoworkersinitiatedaprogramofnaturalgashydratekinetic measurementsandmodelingandphaseequilibriummodeling.

1981–1985Cadymeasuredhydratecompositionsasafunctionofpressure,obtaining valueswhichareinagreementwithvanderWaals–Platteeuwtheory.

1981Ross,Anderson,andBackströmmeasuredtheanomalouslylowthermal conductivityofhydratesofclathratehydrates.

1983Tse,Klein,andcoworkersinitiatedmoleculardynamicssimulationsof clathratehydrates.

1984Handapreparedpurehydrocarbonhydratesunderequilibriumconditions andobtainedtheirthermodynamicpropertiesfromcalorimetry.

1984Davidsonetal.experimentallyshowedverysmallguestsformCS-IIrather thanCS-I.

1986Davidsonetal.providedthefirstlaboratoryanalysisofrecoveredgashydrate samplesobtainedfromtheGulfofMexicoandidentifiedbothCS-IandCS-II hydrates.

1986Davidson,Handa,andRipmeesterprovidedthefirstmeasurementof absolutecageoccupancyofXehydrate.

1987Ripmeesterandcoworkersdiscoveredanewclathratehydratefamily, structureH(HS-III).

1988WhalleyshowedthatoctahedralmeltfiguresareproducedinTHFclathrate hydratecrystals.

1988RipmeesterandRatcliffeintroducedlow-temperaturemagicanglespinning 13 CNMRspectroscopytomeasuretherelativeoccupancyofmethaneand methane/propanehydrateandusedvanderWaals–Platteeuwtheoryto obtainhydrationnumbers.

1988MakogonandKvenvoldenindependentlyprovidedestimatesofthetotal volumeofworldwideinsituhydratednaturalgasat1016 m3 .Kvenvolden recognizesthedecompositionofnaturalgashydratesaspotentialcontributor toglobalclimatechange.

1990Collins,Ratcliffe,andRipmeesterusedNMRspectralpropertiesofseveral differentnuclei,including 2 H, 19 F, 31 P,and 77 Setomeasurehydration numbers.

1990Rodgerstudiedhydratestabilitieswithmoleculardynamicssimulations.

1990HallbruckerandMayerformedclathratehydratesbyvapordepositionof amorphoussolidwater.

1990RipmeesterandRatcliffediscoverednumerousnewguestswhichform HS-IIIandCS-IIusing 129 XeNMRofxenonco-guest.

1991Sloanproposedamolecularmechanismforhydrateformationwith implicationsforinhibition.

1991Handaetal.appliedhighpressureat77KtoamorphizeCS-IandCS-II clathratehydrates,muchaswasobservedforiceitself.Unlike,the amorphousicephase,thisamorphousphaserecrystallizedtotheoriginal hydratephasewhentheappliedpressurewasreducedtoambientat77K.

1992HandaandStupininvestigatedhydratephaseequilibriainporousmedia.

1993Inelasticincoherentneutronscattering(IINS)experimentsonmethane,Xe, andKrhydrateswereinitiatedattheNRC.

1993EnglezosandHatzikiriakosusedmathematicalmodelstoquantifyhow globaltemperaturewarmingaffectsthestabilityofmethanehydratesinthe permafrostandinoceansediments.

1993–2020Tanakaandcoworkersbeganaprogramofgeneralizingandimprovingon theassumptionsofthevanderWaals–Platteeuwtheory.

1994Edwardsmodeledwinterflounderantifreezepeptideasapotentialkinetic hydrateinhibitor.

1996SummeasuredclathratehydrationnumberswithRamanspectroscopy.

1.2SelectedHighlightsofClathrateHydrateScienceResearchUptothePresent

1996KogaandTanakastudiedtherearrangementsofthewaterhydrogenbonding networkinclathratehydrateswithpolarguestsusingmoleculardynamics simulation.

1997Kuhsetal.reporteddoubleoccupancyoflargecagesinCS-IInitrogen hydrate.

1997Udachinetal.reportedHS-III(sH)structurefromsingle-crystalX-ray diffraction.

1997Udachinetal.determinedthetetragonalstructure,TS1,ofBr2 hydratefrom single-crystalX-raydiffraction.

1999Dyadinetal.reportedthatH2 formsaclathratehydrateathighpressure.

1999Moudrakovskietal.reportedthefirstmagneticresonanceimaging(MRI)of hydrateformationoniceparticles.

2000Huang,Walker,andRipmeestershowedthatantifreezeproteins(AFPs) inhibithydrateformationand,insomecases,eliminatethefreezingmemory effectforhydratereformation.

2000–2001Lovedayetal.,Hiraietal.,Chouetal.,andManakovetal.preparedand characterizedhigh-pressurephasesofwater,includingahigh-pressure HS-IIIclathratephase.

2001Moudrakovskietal.usedhyperpolarized 129 XeNMRtoobservethe nucleation,growth,anddecompositionofXehydrateinrealtime.

2001Udachinetal.determinedanewstructuraltypefordimethyletherclathrate hydrate.

2001Moudrakovskietal.observedametastableCS-IIXehydratephase.

2001Lovedayetal.discoveredahigh-pressurestructureofCH4 hydrateusing diamondanvildiffractionmethods.

2002BallardandSloandevelopedCSMGemsoftwareforhydrateequilibrium prediction.

2002Maoetal.synthesizedtheCS-IIhydrogenhydrateunderhigh-pressureand low-temperatureconditionstoobservehighH2 :H2 Ostorageratios.

2002ServioandEnglezosaccuratelymeasurethetemperaturedependenceofthe solubilityofCH4 andCO2 gasesintheaqueousphaseinequilibriumwiththe correspondingclathratehydratephases.

2004Themechanismofself-preservationofmethanehydratewasstudiedwith scanningelectronmicroscope(SEM)imagingbySternandcoworkers. FalentyandKuhsusedSEMtostudyself-preservationofCO2 hydratein 2009.

2005Leeetal.developedamethodfortuningtheH2 contentofthemixedCS-II hydratewithTHF.

2005ClarkeandBishnoidevelopedafocusedbeamreflectancemethodforinsitu, time-dependenthydrateparticlesizeanalysisunderconditionsofhydrate nucleationandgrowth.

2007–2016Ba ˇ ci ´ candcoworkersperformedquantummechanicalcalculationsto determinediscretetranslation-rotationalstatesofH2 andCH4 indifferent CS-IandCS-IIcageswithsingleandmultipleoccupancies.

2007Celli,Ulivi,andcoworkersinitiatedIINSstudiesonH2 /D2 /HDdynamicsin CS-IandCS-IIclathratehydrates

1AnIntroductiontoClathrateHydrateScience

2007Linga,Kumar,andEnglezosprovidedthethermodynamicandkineticbasis forCO2 capturefrompost-combustionfluegasandpre-combustionfuelgas.

2009Detailedcharacterizationofhydrogenbondingofhydrateswasdetermined usingmoleculardynamicssimulationsbytwogroups:Buchetal.andatthe NRC.

2009SimulationworkinitiatedbyJordanandcoworkersdeterminedthestepwise (layerbylayer)decompositionmechanismformethanehydrate.

2010Walshetal.carriedoutmillisecondmoleculardynamicssimulationsofCH4 hydratenucleationandgrowth.

2010FollowinganearlyproposalbyMcTurkandWaller,Mori,andcoworkers formedozonehydrateinanapparatusincorporatinginsituozonegeneration.

2012–2014Shinetal.characterizedclathratehydratesincorporatingNH3 andCH3 OH synthesizedusingvapordeposition.

2013Udachinetal.performedsingle-crystalX-raydiffractionandmolecular dynamicssimulationsonhalogenhydrateswhichindicatedthepossibilityof halogenbondingbetweentheseguestsandwatermoleculesofthecages.

2014Falenty,Hanssen,andKuhspreparedametastableicephase(IceXVI)with thestructureoftheemptyCS-IIlattice.

2015NMRspectroscopygavedirectevidenceofcage-to-cagetransferofhydrate guestsCO2 inTHF-CO2 CS-IIhydrateandforCH4 andCH3 Findouble hydratesofTHFand tert-butylmethylether.

2015MoleculardynamicssimulationsperformedattheNRCandUniversityof BritishColumbiashowedtheformationofnanobubblesofmethaneupon decompositionofmethanehydrate.

1.3ClathrateHydrateResearchattheNRCCanada

Forabout50years,gashydrateresearchwasasupportedprojectattheNRCin Ottawa.Ithaditsstartintheearly1960swhenDonDavidson,workingintheColloid SectionoftheDivisionofAppliedChemistry(Figure1.1),tooktheinitiativetofollowuponafundamentalquestionthataroseduringhisinvestigationofthedielectric propertiesofliquids:inthedielectricpropertiesofliquids,isitpossibletoseparatethecontributionsfrommolecularreorientationanddiffusion?Thisledtothe firststudiesonclathratehydrateswheremoleculesaretrappedinpseudo-spherical molecule-sizedcagessothatonemaywellexpectthatcontributionsfromdiffusion shouldbereducedoreliminated.

Clathratehydratesciencewasatastageofdevelopmentwheretwohydratestructureswereknown,confirmingtheirclathratenature.Statisticalthermodynamics hadprovidedamodelofclathratehydratesbasedonweakguest–hostinteractions; however,manyofthefeaturesofthemodelremaineduntested.

EarlyworkonguestdynamicsinclathratesattheUniversityofBritishColumbia (byCharlesMcDowell)convincedDon,Figure1.2a,thatNMRspectroscopywould beanotherusefultechniqueforthestudyofguestmotion,asitprovidedthemeansto studytheeffectofpolarversusnon-polarguests.Itwasanopportunetimetoinitiate

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.