ClathrateHydrates
MolecularScienceandCharacterization
Volume2
Editedby
JohnA.Ripmeester SamanAlavi
Editors
Dr.JohnA.Ripmeester NationalResearchCouncilofCanada
100SussexDr. K1A0R6NK Canada
Dr.SamanAlavi UniversityofOttawa DepartmentofChemistryand BiomolecularSciences STEMComplex,150Louis-PasteurPvt. Ottawa,ON,K1N6N5 Canada
CoverImages: ©Structureillustration providedbyDr.SatoshiTakeya;inset image©metamorworks/Shutterstock
Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.
LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.
Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>
©2022WILEY-VCHGmbH,Boschstr.12, 69469Weinheim,Germany
Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.
PrintISBN: 978-3-527-33984-6
ePDFISBN: 978-3-527-69508-9
ePubISBN: 978-3-527-69506-5
oBookISBN: 978-3-527-69505-8
Typesetting Straive,Chennai,India PrintingandBinding
Printedonacid-freepaper 10987654321
TomywifeBethanddaughtersHeatherandWendywhoputupwithmy science-orientedadventuresthatsometimesgotinthewayoffamilytime,tothe memoryofmyparents,JohnandThea,who,whileraisingtheirrecentlyemigrated family,encouragedmetopursuehighereducation.
TomywifeDorothyforhersupportandpatienceduringmynever-endingscientific activities,tomymotherZariforherencouragementonourpathtohighereducation, andtothememoryofmyfatherMohammadwhomotivatedmetobecomeachemist.
Contents
Volume1
Preface xiii
1AnIntroductiontoClathrateHydrateScience 1
JohnA.Ripmeester,SamanAlavi,andChristopherI.Ratcliffe
1.1Introduction 1
1.2SelectedHighlightsofClathrateHydrateScienceResearchUptothe Present 4
1.3ClathrateHydrateResearchattheNRCCanada 10
1.4ContributorstoNRCClathrateHydrateResearch 21
1.5ReviewArticlesandBooksonClathrateHydrates 23
1.6ConferenceProceedings 25
1.6.1CanadianPermafrostConference 25
1.6.2PhysicsandChemistryofIce 25
1.6.3InternationalConferenceonGasHydrates(IGCH)Proceedings 26
2AnIntroductiontoClathrateHydrates 27
JohnA.RipmeesterandSamanAlavi
2.1Introduction 27
2.2TheFirstGasHydrates 28
2.3ThePhaseRule 34
2.4deForcrandandVillard–CareerGasHydrateResearchers 38
2.5NikitinandvonStackelberg 48
2.6SolvingtheGasHydratePuzzle 50
2.7ClathrateHydrateScience–ANewEra 54
2.8ClathrateHydratesinEngineering 54
2.9ClathrateHydratesinNature 55
2.10SummaryandObservations 56 References 57
3ClassificationofClathrateHydrates 65
JohnA.Ripmeester,SatoshiTakeya,andSamanAlavi
3.1Introduction 65
3.2HydratesasClathrates 65
3.3ClathrateandRelatedHydrates–GuestChemistry 66
3.4TheCanonicalClathrateHydrates 72
3.4.1PolyhedraandFillingThree-DimensionalSpace 73
3.4.2FillingthePolyhedra 75
3.5PhaseEquilibria 85
3.5.1SimpleHydrates 85
3.5.2DoubleandMixedHydrates,NaturalGasHydrates 90
3.6TabulationofHydrateProperties 97
3.6.1SimpleClathrateHydrates 97
3.6.2CS-II(sII)DoubleHydrates(GueststhatRequireaHelpGasfor Stability) 98
3.6.3HS-III(sH)HydrateGuests 98
3.7Summary 98 References 98
4SynthesisofClathrateHydrates 123
JohnA.RipmeesterandSamanAlavi
4.1Introduction 123
4.2GeneralConsiderationsintheSynthesisofClathrateHydrates 123
4.2.1AComplexProcess 123
4.2.2AirEntrainment 124
4.3SynthesisofHydrateswithWater-SolubleGuestsNearAmbient Conditions 125
4.3.1HydrateswithCongruentMeltingPoints 125
4.3.2HydrateswithIncongruentMeltingPoints 125
4.4SynthesisofHydratesofGuestswithLowSolubilityinWater 126
4.4.1Low-PressureMethods:Water–LiquidGuestandWater–GaseousGuest Reactions 126
4.4.2PowderedIceReactionswithLiquidorGaseousGuests 127
4.5SynthesisofClathrateHydratesofStronglyHydratedorReactive Guests 128
4.6PureHydrates–KineticandThermodynamicControl 128
4.7High-PressureReactors 131
4.7.1StirredReactors 131
4.7.2Stationary(Non-stirred)Reactors 131
4.7.3OtherSetupsforHydrateSynthesis–BubbleColumns,Spray Reactors 131
4.8SynthesisofSingleCrystals 134
4.9Summary 137 References 138
5StructuresofCanonicalClathrateHydrates 141
JohnA.Ripmeester,SatoshiTakeya,andSamanAlavi
5.1Introduction 141
5.2TheCanonicalClathrateHydrates 141
5.2.1GeneralStructuralProperties 141
5.2.2GeometryofUnitCellsandCages:CS-I,CS-II,andHS-III 147
5.2.2.1StructuralFeaturesCS-I,CS-II,andHS-IIIClathrateHydrates 147
5.2.2.2CorrelationofGuestSizewithUnitCellDimensions 151
5.2.2.3FlexibleGuestMoleculesShowingConformationalIsomerism 152
5.2.2.4LocationofGuestMoleculesintheCages 153
5.2.2.5EffectsofHydrogenBondingonCageStructureandGuest–Water Interactions 158
5.2.2.6Halogen–WaterInteractionsinClathrateHydrates(Chlorine) 160
5.2.2.7Polymorphism 161
5.2.3GeometryofUnitCellandCages:TetragonalBromineHydrate (TS-I) 164
5.2.4GeometryofUnitCellandCages:DimethylEtherHydrate(TrS-I) 165
5.2.5GeometryofUnitCellandCages:XeHydrate(HS-I) 166
5.3SomeGeneralStructuralConsiderations 168
5.3.1TilinginThree-DimensionalSpace–Frank–KasperandWeaire–Phelan Polyhedra 168
5.3.2SchlegelDiagrams 177
5.3.3Polytypism 178
5.3.3.1HydrateStructuresasLayeredPolytypes 178
5.3.4MaterialswithStructuralFeaturesinCommonwithClathrate Hydrates 181 References 182
6StructuresofNoncanonicalClathratesandRelated Hydrates 189 JohnA.Ripmeester,SatoshiTakeya,andSamanAlavi
6.1Introduction 189
6.2AmineHydrates 189
6.3IonicClathrateHydrates 194
6.3.1SaltHydrates 194
6.3.1.1SaltHydrates–CationsasLargeCageGuests 194
6.3.1.2SaltHydrates–CationsasLargeCageGuests,NeutralSmallCage Guests 199
6.3.1.3SaltHydrates–CationsasSmall-CageGuests 201
6.3.2HydratesofStrongAcids 202
6.3.3HydratesofStrongBases 204
6.3.4IonicClathrateHydrateswithHeterogeneousFrameworks 209
6.3.5ClathrateswithH2 O–NH4 FSolidSolutionFrameworks 209 References 211
7ThermodynamicsandStatisticalMechanicsofClathrate Hydrates 219
JohnA.RipmeesterandSamanAlavi
7.1Introduction 219
7.2ClathrateHydrationNumbersandCageOccupancies 219
7.2.1DirectMeasurementofHydrationNumbers 220
7.2.2ThermodynamicMethodstoDetermineGuestOccupancy 228
7.2.2.1TheClapeyronandClausius–ClapeyronEquationsandtheUseofPhase Equilibria 228
7.2.2.2TheMiller–StrongMethodandEffectsofSolutesonPhase Equilibria 230
7.2.2.3CalorimetryandOtherInstrumentalMethodsinConjunctionwith ThermodynamicMethods 230
7.3EnthalpyofDissociationofHydratePhases 231
7.4StatisticalMechanicsofClathrateHydrates:Thevander Waals–PlatteeuwSolidSolutionModelforClathrateHydrate Formation 232
7.5ApplicationofthevanderWaals–PlatteeuwTheorytoDetermining HydrateEquilibriumComposition 237
7.5.1UsingvanderWaals–PlatteeuwTheorytoDetermineCage Occupancies 237
7.5.2InstrumentalMethodsinConjunctionwiththevanderWaals–Platteeuw TheorytoDetermineOccupationFractions 239
7.5.2.1Solid-StateNMR 240
7.5.2.2RamanSpectroscopy 243
7.5.2.3DiffractionMethods 243
7.5.3SomeGeneralConclusionsandNonstoichiometryofClathrate Hydrates 246
7.6ComputationalPredictionsofHydrateDissociationPressuresUsingthe vanderWaals–PlatteeuwTheory 247
7.7ExtensionsofthevanderWaals–PlatteeuwTheory 254
7.7.1MultipleCageOccupanciesandGuestMixtures 254
7.7.2RelaxingSomePositionRestraintsonCageWaterMolecules 255
7.7.3RelaxingtheConstraintofConstantVolumeontheHydratePhase 255
7.7.4ValidityoftheBasicvanderWaals–PlatteeuwTheory 258
7.8OtherThermodynamicTopics 260
7.8.1EncagementEnthalpy 260
7.8.2ThermodynamicInhibitorstoHydrateFormation 263
7.8.3CompositionalTuninginClathrateHydrates 265
7.8.4TransitionsBetweenBinaryCS-IIandHS-IIIBinaryHydratestoPure CS-IHydratesforSmallGuestMolecules 266
7.8.5ALowerCriticalDecompositionTemperature 270
7.9Conclusions 271
References 272
Volume2
Preface xv
8MolecularSimulationsofClathrateHydrates 283
SamanAlaviandJohnA.Ripmeester
9X-rayandNeutronDiffractionandScatteringofClathrate Hydrates 369
JohnS.Tse,DennisD.Klug,andSatoshiTakeya
10CharacterizationofClathrateHydratesUsingNuclear MagneticResonanceSpectroscopy 417
ChristopherI.Ratcliffe,IgorL.Moudrakovski,andJohnA.Ripmeester
11SpecializedMethodsofNuclearMagneticResonance SpectroscopyandMagneticResonanceImagingAppliedto CharacterizationofClathrateHydrates 467
IgorL.Moudrakovski,ChristopherI.Ratcliffe,andJohnA.Ripmeester
12ReorientationandDiffusioninClathrateHydrates 513
JohnA.Ripmeester,ChristopherI.Ratcliffe,IgorL.Moudrakovski,and SamanAlavi
13IRandRamanSpectroscopyofClathrateHydrates 569
TsutomuUchidaandAmadeuK.Sum
14KineticsofClathrateHydrateProcesses 631
PeterEnglezos,SamanAlavi,andJohnA.Ripmeester
15MechanicalandThermalTransportPropertiesofClathrate Hydrates 717
JohnS.TseandDennisD.Klug
16ApplicationsofClathrate(Gas)Hydrates 749
PeterEnglezos
Index 783
Contents
Volume1
Preface xiii
1AnIntroductiontoClathrateHydrateScience 1
JohnA.Ripmeester,SamanAlavi,andChristopherI.Ratcliffe
2AnIntroductiontoClathrateHydrates 27
JohnA.RipmeesterandSamanAlavi
3ClassificationofClathrateHydrates 65
JohnA.Ripmeester,SatoshiTakeya,andSamanAlavi
4SynthesisofClathrateHydrates 123
JohnA.RipmeesterandSamanAlavi
5StructuresofCanonicalClathrateHydrates 141
JohnA.Ripmeester,SatoshiTakeya,andSamanAlavi
6StructuresofNoncanonicalClathratesandRelated Hydrates 189
JohnA.Ripmeester,SatoshiTakeya,andSamanAlavi
7ThermodynamicsandStatisticalMechanicsofClathrate Hydrates 219
JohnA.RipmeesterandSamanAlavi
Preface xv
8MolecularSimulationsofClathrateHydrates 283
SamanAlaviandJohnA.Ripmeester
8.1Introduction 283
8.2MolecularSimulations 284
8.2.1ClassicalMolecularDynamicsSimulations 284
8.2.2MonteCarloSimulationsofClathrateHydrates 287
8.2.3AbInitioMolecularDynamicsSimulations 288
8.2.4ClassicalInteractionPotentialsforSimulatingClathrateHydrates 289
8.2.5ProtonArrangementsintheClathrateHydrateSimulations 293
8.3StructuralCharacterizationofClathrateHydrateswithSimulations 295
8.3.1RadialDistributionFunctions 296
8.3.2LatticeConstantsandThree-PhaseEquilibriumLines 298
8.3.3GuestDistributionandStructureinCages 299
8.3.4OrderParametersandCharacterizationofClathrateHydrate,Ice,and WaterPhases 302
8.3.5Guest–HostHydrogenBondinginClathrateHydrateCages 307
8.4DynamicCharacterizationsofGuestMotioninCages 308
8.4.1VelocityandOrientationAutocorrelationFunctions 309
8.5SimulationsofClathrateHydrates 311
8.5.1MechanismsofHydrateDecomposition,Nucleation,andGrowth 312
8.5.2EnthalpyofFormation,Decomposition,andEncagementfrom MolecularSimulations 331
8.6AbInitioQuantumMechanicalCalculationsofClathrateHydrates 334
8.6.1StationaryQuantumStatesofSmallGuestsinCages 335
8.6.2AbInitioMolecularDynamics 340
8.7ConclusionsandOutlook 341 References 342
9X-rayandNeutronDiffractionandScatteringofClathrate Hydrates 369 JohnS.Tse,DennisD.Klug,andSatoshiTakeya
9.1Introduction 369
9.2CrystallographyandX-rayDiffraction 370
9.2.1CommentsonDiffractionasAppliedtoHydrateStructure Determination 373
9.2.1.1Single-CrystalDiffraction 373
9.2.1.2PowderDiffraction 374
9.3Instrumentation 375
9.4StructuralCharacterizationwithDiffractionMethods 379
9.4.1DiffractionandStructure–GuestSizeRelationship 380
9.4.2UnconventionalApplicationsofDiffraction 384
9.5NeutronDiffractionorElasticNeutronScattering 390
9.6InelasticNeutronScattering 396
9.7InelasticX-rayScattering 400
9.8Summary 407 References 407
10CharacterizationofClathrateHydratesUsingNuclear MagneticResonanceSpectroscopy 417 ChristopherI.Ratcliffe,IgorL.Moudrakovski,andJohnA.Ripmeester
10.1Introduction 417
10.2NMRInteractions 418
10.2.1TheZeemanInteraction 418
10.2.2OtherInteractions 420
10.2.2.1TheShieldingInteraction(σ)andChemicalShift(δ) 420
10.2.2.2TheNuclearDipole–DipoleInteraction 423
10.2.2.3TheSpin–Spin J -CouplingInteraction 424
10.2.2.4TheQuadrupolarCouplingInteraction 424
10.2.2.5TheSpin–RotationCouplingInteraction 427
10.2.2.6InteractionswithUnpairedElectrons 427
10.2.3Units 427
10.3ExperimentalAspectsofNMRSpectroscopy 427
10.3.1TheBasicNMRExperiment 427
10.3.2TechniquesforEnhancingSensitivityandResolution 428
10.3.2.1DipolarDecoupling 428
10.3.2.2MagicAngleSpinning,MAS 429
10.3.2.3Cross-Polarization(CP) 430
10.3.2.4Hyperpolarizationof 129 Xe(HPXe) 430
10.4TheDevelopmentofNMRTechniquesOverTime 430
10.5NMRPowderLineShapesinClathrateHydrates 432
10.5.1DipolarLineShapes 432
10.5.1.1MagneticDilution 432
10.5.1.2Two-SpinSystems 432
10.5.1.3Three-SpinSystems 433
10.5.1.4Four-SpinSystems 434
10.5.1.5Six-SpinSystems 434
10.5.1.6Multi-SpinSystems 436
10.5.1.7EffectsofParamagneticOxygenon 1 HLineShapes 436
10.5.2ChemicalShiftLineShapes 437
10.5.2.1 129 XeNMR 437
10.5.2.2ChemicalShiftLineShapesofOtherNuclei: 77 Se, 31 P, 19 F, 13 C 444
10.5.3QuadrupolarLineShapes 446
10.5.3.1Spin1:Deuterium 2 H 446
10.5.3.2Half-IntegerQuadrupolarNuclei(131 Xe, 83 Kr, 33 S, 17 O) 450
References 458
11SpecializedMethodsofNuclearMagneticResonance SpectroscopyandMagneticResonanceImagingAppliedto CharacterizationofClathrateHydrates 467
IgorL.Moudrakovski,ChristopherI.Ratcliffe,andJohnA.Ripmeester
11.1Introduction 467
11.2 13 CMASNMRinCompositionalandStructuralAnalysisofGas Hydrates 468
11.2.1ExperimentalConsiderations 468
11.2.2Overviewof 13 CMASNMRinClathrateHydrates 470
11.2.3ConcludingRemarksandOutlook 482
11.3 129 XeNMRApplications:OtherTopics 482
11.3.1Transient/MetastablePhases 482
11.3.2RapidScanningoftheFormationofCS-IXeHydratefromIcewith HyperpolarizedXe 483
11.3.3AnnealingofCo-depositsofXeandH2 O 485
11.3.4H2 O-NH4 FSolidSolutionFrameworks 485
11.4IonicHydrates 486
11.4.1HydratesofAlkylammoniumSalts 486
11.4.2HydratesofStrongAcids 487
11.4.3HydratesofStrongBases 487
11.5ClathrateHydratesandMagneticResonanceImaging 489
11.5.1InformationAboutGasHydratesAccessiblebyMagneticResonance Imaging 490
11.5.2ExperimentalConditionsandEquipmentforMRIinGas Hydrates 493
11.5.3OverviewofCurrentMRIApplicationsinGasHydrate Research 495
11.5.4ConcludingRemarksandOutlook 502 References 503
12ReorientationandDiffusioninClathrateHydrates 513
JohnA.Ripmeester,ChristopherI.Ratcliffe,IgorL.Moudrakovski,and SamanAlavi
12.1Introduction 513
12.2EarlyWorkonClathrates/InclusionCompounds 514
12.3Dynamics 515
12.3.1DynamicsandTimescales 515
12.3.2DielectricRelaxation 516
12.3.3NMRSpectroscopy 519
12.3.3.1NuclearDipolarCoupling 519
12.3.3.2NuclearQuadrupolarInteractions 522
12.3.3.3ChemicalShiftLineshapes 524
12.4WaterDynamicsinIceandClathrateHydrates 525
12.4.1WaterDynamicsinIceIh 525
12.4.2WaterDynamicsinClathrateHydrates 528
12.5GuestMotions 534
12.5.1GuestReorientation:GeneralConsiderations 534
12.5.1.1ReorientationofSphericalTopGuestMolecules 536
12.5.1.2ReorientationofSymmetricTopGuestMolecules 539
12.5.1.3ReorientationofAsymmetricTopGuestMolecules 544
12.5.2Diffusion 550
12.5.3NonclassicalDynamics 554
12.5.3.1MethylGroups 554
12.5.3.2DynamicsofLightTetrahedralMolecules 556
12.6Summary 557
References 559
13IRandRamanSpectroscopyofClathrateHydrates 569 TsutomuUchidaandAmadeuK.Sum
13.1FundamentalsandQuantification 570
13.2IRSpectroscopyofClathrateHydrates 577
13.2.1FarIRTransmission–FT-IRonVapor-DepositedThinFilms 577
13.2.2RecentStudiesofClathrateHydratesUsingIRSpectroscopy 578
13.3RamanSpectroscopyofClathrateHydrates 581
13.3.1GuestMoleculeInformation 582
13.3.1.1DetectionofEncapsulation 582
13.3.1.2QuantificationofRamanPeakPositions 585
13.3.1.3QuantificationofCageOccupancy 588
13.3.1.4ApplicationofRamanSpectroscopytoKineticProcesses 591
13.3.1.5AnalysisofNaturalHydrateSamples 593
13.3.2Noncontact,Non-destructiveMeasurementsofGasHydratesViaVisible Light 596
13.3.2.1ApplicationofRamanSpectroscopytoClathrateHydrateKinetic Studies 596
13.3.2.2GasHydratePhasesObtainedunderHigh-PressureConditions 600
13.3.2.3 InSitu AnalysisofNaturalHydrateSampleUnderDeepSea Condition 605
13.4Conclusions 605
References 614
14KineticsofClathrateHydrateProcesses 631 PeterEnglezos,SamanAlavi,andJohnA.Ripmeester
14.1Introduction 631
14.2ExperimentalMeasurementofHydrateProcessRates 631
14.2.1Kinetics–GasUptakeMeasurements 631
14.2.2KineticsofCS-1andCS-IIhydrates 633
14.2.3KineticsofHS-IIIHydrates 636
14.2.4KineticsMeasurements–OtherMethods 637
14.2.5AverageandSpatiallyLocalizedKinetics 641
14.3ModelingtheKineticsofHydrateNucleation 645
14.3.1HydrateFormation 645
14.3.2HomogeneousNucleation 647
14.3.3HeterogeneousNucleation 652
14.3.4ValidityandRelevanceofClassicalNucleationTheory 655
14.4HydratePhaseTransformations 660
14.4.1HydrateGrowthfromWater 660
14.4.2HydrateGrowthfromIce 664
14.4.2.1TheShrinkingCoreModel 665
14.4.2.2TheAvramiEquation 667
14.4.3HydrateCrystalMorphology 673
14.4.4HydrateDecomposition 676
14.5Metastability 678
14.6KineticModifiers 680
14.6.1Surfactants 680
14.6.2DefectGenerationintheHydrogen-BondedIceandHydrate Lattices 682
14.6.3KineticHydrateInhibitors 683
14.6.3.1MacroscopicDescriptionsofHydrateInhibition 683
14.6.3.2MechanismofKineticInhibition 684
14.6.3.3ComplexitiesoftheHydrateInhibitionProcess 688
14.7MolecularSimulationsofClathrateHydrateNucleationand Growth 690
14.7.1SimulationsofHeterogeneousNucleation 691
14.7.2MolecularSimulationsofHomogeneousNucleation 692
14.7.3SimulationsofHydrateGrowth 695
14.7.4SimulationsofHydrateGrowthandDecompositioninthePresenceof Inhibitors 696
14.8ConcludingRemarks 697
References 698
15MechanicalandThermalTransportPropertiesofClathrate Hydrates 717
JohnS.TseandDennisD.Klug
15.1Introduction 717
15.2TheoreticalBackground 718
15.2.1ElasticModuli 718
15.2.2ThermalConductivity 720
15.3MechanicalProperties:AcousticVelocityandElasticConstants 721
15.4ThermalExpansion 730
15.5TransportProperties:ThermalConductivity 734
15.6MolecularDynamicsSimulationsofThermalPropertiesofClathrate Hydrates 739
15.7Summary 742
References 743
16ApplicationsofClathrate(Gas)Hydrates 749
PeterEnglezos
16.1Introduction 749
16.2FlowAssuranceinOilandGasPipelines 750
16.2.1Large-ScaleFlowLoops 753
16.2.2CatastrophicHydrateFormationandPipelinePlugPotential 754
16.2.3OilandGasPipelineswithHydrophobicSurfaces 754
16.3NaturalGasEnergyRecoveryfromtheEarth’sHydrates 755
16.3.1ExtractionofNaturalGasbyInjectionofCO2 orCO2 /N2 FlueGas 757
16.4Desalination 758
16.5ConcentrationofWastewaterandAqueousOrganicSolutions 759
16.6StorageandTransportationofNaturalGas,Hydrogen,andOther Materials 760
16.6.1NaturalGasStorage 760
16.6.2HydrogenStorage 762
16.7GasSeparations 765
16.7.1Metrics 766
16.7.2SeparationofCO2 fromFlueGasMixtures(Post-Combustion Capture) 767
16.7.2.1ImpactofSO2 768
16.7.3SeparationofCO2 fromFuelGasMixtures(Pre-Combustion Capture) 768
16.7.4OtherGasSeparations 771
16.8Conclusions 772
References 772
Index 783
Preface
Scope
Whywritethisbook?Anumberofreasonscometomind.Today,avastnumberof publicationsonclathratehydratescontinuetoappearinjournalsdealingwiththe manydifferent,oftennon-overlappingareasofhydrateresearch.Increasingly,these studiesfocusespeciallyonengineeringandgeologicalaspects,aswellaspotential applications.Molecularsciencehasprovidedthefundamentalunderpinningsfor muchofthiswork;however,theearlierworkhasbecomemoredifficulttofind,and therehavenotbeenmajorcomprehensivemonographsorbooksfocusedonscientificaspectsofthesesubstancesforsome40years.Itistofillthisgapthatpreparation ofthisbookwasundertaken.Wealsofeelthereareanumberofmisconceptionsor questionableapproachesthathavepropagatedovertheyears,andthisbookprovides anopportunitytorevisitsomeofthesepoints.
The150yearsthatittookforthefirstobservedphenomenonofgashydratesto beproperlyexplainedmakeforafascinatingstoryoftheintertwiningofthethen currenthydratescience,advancesintechnology,andtheevolutionofchemical concepts.AfteranIntroductionandsummaryofthe“classicalperiod,”thebook presents16chaptersoutlininghydratescienceindifferentareasofspecialization (seebelow).Eachchapterprovidesashortsummaryoftherespectivemethodology andiswrittenwithanemphasisontheexperienceoftheauthorswithsignificant feedbackfromtheeditorsandtheotherchapterauthors.Thebookalsoprovides comprehensivetabulatedinformationonthestructural,compositional,spectroscopic,thermodynamicproperties,andmolecularsimulationsofclathratehydrates. Withthisinformationgatheredinoneplace,itwillbeavaluableresourceforboth experiencedresearchers,andresearchersandgraduatestudentsofscienceand engineeringjuststartingtheirstudiesofthesefascinatingsubstances.Theauthors haveaimedatmakingeachchapterascomprehensiveaspossible,butinaworkof thisscope,valuableworkwillinevitablynotbediscussed.
Asummaryofthechaptercontentsfollows.
Chapter1reportsthemajorhighlightsinthedevelopmentofclathratehydrate knowledgeandthenhighlightscontributionsoftheNationalResearchCouncilof Canadagroupwheretheauthorsofthisvolumehaveworkedorwhichtheywerein closecollaboration.
Chapter2givesamoredetailedhistoricaloutlineofthestudyofclathratehydrates fromtheclassicalperiodupto1970whenthehydratecrystallographicstructure becameknownandthestatisticalmechanicalmodelofclathratehydrateswas developed.Wesurveyedsomeoftheprimaryliteratureofthisperiodtoclarifysome ofthehistoricalaspectsofthesesubstancesdiscoveredbytheearlyresearchers.
Chapters3and4introducethedifferenthydratecagesmadeofhydrogen-bonded watermoleculesanddiscusstheclassificationofclathratehydratesaspartofthe largerfamilyofsupramolecularcompounds,andtheirtechniquesofsynthesis, respectively.Hydratesarepresentedassolidsolutionswiththeirstabilitybeinga latticeproperty.Comprehensivetablesarepresentedoftheknownguestmolecules, andsummariesoftheirstructuralandphysicalpropertiesaregiveninthischapter. Thedifferentclassesofclathratehydratephaseequilibriaarepresented.
Chapters5and6discussstructuralaspectsofclathratehydrates,semi-clathrates, andsalthydrates.Theimportanceofunconventionalguest–hostinteractions likehydrogenandhalogenbondingisintroduced.Differentwaysoflookingat hydratestructuresbasedonlayeredstructuresandspacefillingcagesusingthe Frank–Kasperapproacharepresented,andrelatednon-hydrateclathratesare introduced.
Chapter7introducesthermodynamicsandstatisticalmechanicsofclathrate hydrateswithdiscussionofcalorimetricmethodsandthevanderWaals–Platteeuw theoryandsomeofitsextensions.Manyrecentengineeringapplicationsand extensionsarenotdirectlydiscussedastheyarediscussedinChapter16orare beyondthescopeconsideredforthisbook.Tablesofhydratecompositionand thermochemicalinformationarepresented.
Chapter8givesasummaryoftheapplicationofmolecularsimulationmethods tostudyclathratehydrateproperties.Methodsofcharacterizingstructuraland dynamicpropertiesofclathratehydratesarediscussed.Mostoftheemphasisison classicalmoleculardynamicsandMonteCarloresults,butquantummechanical calculationsofconfinementeffectsforsmallmoleculessuchashydrogenand methaneintheclathratehydratecagesarealsoreviewed.Atableisgivenfor systemsstudiedtodateusingmolecularsimulationmethods.
Chapters9,10,11,and13discussX-rayandneutrondiffractionandscattering, generalandspecializedNMRmethodsandIR/Ramanmethodsforstudying clathratehydrates,respectively.Thetechniquesarebrieflyintroduced,andthe oftencomplementaryinformationtheyprovideonclathratehydratesaredescribed. Theuseofthesemethodsinunravelingthestructureanddynamicsofguest–lattice interactionsissummarized.
Chapter12presentsinformation,mainlyfromdielectricsandsolid-stateNMR,on themolecularmotionofguestandhostmolecules.Therelationshipbetweencage geometryandguestdynamicsisintroduced,asistheeffectofguest–hosthydrogen bondingonwatermoleculedynamics.
Chapter14presentstherateandmechanismsofhydrateformationanddecompositionfrombothmacroscopic(process)andmicroscopic(mechanism)pointsof view.Classicalnucleationtheoryintroducesanumberofkeyparametersthatare pertinenttobothhomo-andheterogeneousnucleationmechanismsofhydrate formation.Emphasisisplacedonhydrateprocessesasphasechangesoccurring
Preface xv inthepresenceofmassandtemperaturegradientsratherthanchemicalreactions occurringinisotropicandisothermalsystems.Thevariousfactorsthatmodify kineticsofhydrateformationareintroducedanddiscussedfromresultsgathered frombothexperimentalandmolecularsimulations.Thehydratememoryeffectand possiblemechanismsofkinetichydrateinhibition(usingbothpolymericsubstances andantifreezeproteins)arediscussedinthischapter.
Chapter15dealswithmechanicalpropertiesofclathratehydrates,including acousticvelocity,elasticconstants,thermalexpansion,andthermalconductivity. Experimentalandtheoreticalbackgroundsforthestudyofthesepropertiesare given.Someanomalouseffectsseeninthetemperaturedependenceofthethermal conductivityofhydratephases,butabsentinice,arediscussedindetailinthis chapter.
Chapter16presentswithselectedpotentialapplicationsofclathratehydratecompounds,includingflowassurance,naturalgasrecovery,desalination,concentration ofaqueoussolutions,andthestorageofnaturalgas,hydrogen,andgasseparation. Thischapterismeanttobeanoverviewofsomeapplications,whichwillbewell studiedinthenearfuture.
Theauthors’workdescribedinthisbookhascontributionsfrommanycolleagues, staff,andstudentsattheNationalResearchCouncilofCanadawhoarenamed inChapter1.Thecontributionsoftheseindividualsaregratefullyacknowledged. Theworkdescribedwouldnothavebeenpossiblewithoutthematerialsupportof theNationalResearchCouncilofCanadafrom ∼1960to2011.Asinanyfield,the progressinclathratehydrateresearchistheresultofcollaborationandcontributions fromresearchersinmanycountries.Wehopetohavegivenproperrepresentation ofcontributionsfromresearchersfromallpartsoftheworld.Weapologizeforany omissions,whicharetheresultofthelimitedscopeofsomeofthediscussionsin thisbook.
WewouldliketoacknowledgethecontributionsofDonaldDavidson(1925–1986) oftheNationalResearchCouncilofCanadaasoneofthepioneersinmodern hydrateresearchinCanada.Don(i)initiatedamulti-techniqueapproachtostudyinggashydrates;(ii)providedmentorshiptogenerationsofhydrateresearchers attheNRC;and(iii)wroteanumberofmonographsandbookchapters,which areexemplaryfortheirclarityandarestillusefultoday.Atthetime,theNational ResearchCouncilwasafertilemultidisciplinaryenvironmentwherecutting-edge dielectric,NMR,single-crystalX-raycrystallographic,andsimulationtechniques werebeingdeveloped,andalmostimmediatelybeingusedinunderstandingthese substances.AfterDon’spassing,thistraditionwasmaintainedattheNRC.
Theeditorswouldliketothanktheauthorsofthechaptersinthisbookfortheir contributionsandtheirpatiencewithournumerousrequestsforeditorialchanges. WewouldparticularlyliketothankChristopherI.Ratcliffe,AmadeuK.Sum,Peter Englezos,andDennisD.Klugwhoalsocommentedextensivelyonchaptersother thantheirown.
WewouldliketothankourwivesBethandDorothyforsupportanddealingwith theseeminglyunendingdemandsonourtimewhileweworkedonthisbook.We thankfullyacknowledgetheirindirect,butimportantcontributionsingettingthis bookprojectcompleted.
AnIntroductiontoClathrateHydrateScience
JohnA.Ripmeester 1 ,SamanAlavi 1,2 ,andChristopherI.Ratcliffe 1
1 NationalResearchCouncilofCanada,100SussexDrive,Ottawa,ON,K1A0R6,Canada
2 UniversityofOttawa,DepartmentofChemistryandBiomolecularScience,STEMComplex,150 Louis-PasteurPvt.,Ottawa,ON,K1N6N5,Canada
1.1Introduction
Thefirstintersectionofclathratehydratesandhumanendeavortookplaceinthelate 1700s.Anumberofresearchers(naturalphilosophers)workingonthesolubilityof newlydiscoveredairs(gases)observedunexpectedice-likesolidsformedabovethe freezingpointoficewhencertaingaseswerepassedintocoldwaterorwhensuch asolutionwasfrozen.Davyidentifiedthesesolidsastwo-componentwater–gas compoundsandnamedthem“gashydrates.”Aftersome140yearsandmuch research,thesesolidswereshowntobeclathrates,materialswheresmallmolecules (guests)aretrappedinanice-likelattice(host)consistingofhydrogen-bonded watercages.Duringthetimebetweeninitialdiscoveryandfinalidentification,gas hydratesconfoundedresearchersbyhavinganumberofpropertiesthatcountered conceptsderivedfrommainstreamchemistry.Forinstance,thehydrateswere non-stoichiometric,thewater-to-gasratioswerenotsmallwholenumbers,andthey decomposeduponheatingordepressurizationtogivebacktheunchangedstarting materials.Thelackofchemicalbondsbetweenthewaterandthegasinthehydrates suggestedthatthesewerenotrealchemicalcompoundsandinfactwerethefirst examplesof“chemistrybeyondthemolecule”–supramolecularcompounds.
Fromphaseequilibriumstudies,wenowknowthatwhenmanygasesandwater areincontactunderappropriatepressure(P)andtemperature(T )conditions,asolid hydratewillform.Thegashydratesstoregases,includingnaturalgas,veryefficiently withonevolumeofsolidhydratestoringsome160volumesofgasatstandardtemperatureandpressure(STP).Sinceanumberofgashydratesarefoundnaturally,this classofmaterialscanbetakentobeanunusualtypeofmineral.Therearemanysites inthegeospherewherenaturalgasandwaterareincontactundertheconditions requiredtoformgashydrate.Locationswherethisoccursareinsedimentsoffshore ofcontinentalmargins,underpermafrost,andinsomedeepfreshwaterlakes.
Wellbeforethediscoveryofnaturalgashydrateinthegeosphere,oilandgas engineersencounteredblockednaturalgaspipelinesduringcoldweatheroperation ClathrateHydrates:MolecularScienceandCharacterization,FirstEdition. EditedbyJohnA.RipmeesterandSamanAlavi. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.
1AnIntroductiontoClathrateHydrateScience
whichwasinitiallyattributedtoiceformationfrommoistureinwetgas.Knowledge ofearlierworkonsolidmethanehydrateledHammerschmidtinthe1930stothecorrectexplanationforthepipelineblocks–theyweremadeofsolidmethanehydrate ratherthanice.Sincethen,duringtheexploration,productionandtransportphases ofhydrocarbonresources,blockagebynaturalgashydrateformationhasbecomea well-knownhazard,resultinginpossibleseriousdamageandlossoflife,forexample intheDeepwaterHorizonoilspillof2010.Muchresearchhasbeencarriedout topreventormanagehydrateformationinpipelines.Otherproblemsrelatedto gashydrateshavebeenidentified,includingmarinegeohazards,suchassubmarine landslides,andsuddengasreleasesfromhydrateformations.
Becauseofthevastamountsoftrappednaturalgasinhydrateformglobally, gashydrateshavebeenevaluatedtobeasignificantunconventionalnaturalgas resource.Hydratedepositshavebeenmappedinmanylocationsaroundtheworld, usuallyusinggeotechnicalmethodsthatdependonthelocationofunexpected solidhydrate–liquidwaterinterfaceswhichactasseismicreflectors.Testwellsfor gasproductionhavebeendrilledintheMackenzieDelta,Canada(Mallik2L38), Alaska,theNankaitroughoffshoreJapan,andoffshoreChina.Manyproblems havebeenencounteredinproducinggasfromhydratereservoirs,includingthe developmentofthebesttechniquesfordestabilizingthesolidhydrateandcapturingtheresultinggas.Somehydratedeposits,oftenassociatedwithhydrocarbon seepsorvents,existasoutcropsontheseafloor.Whereasmostofthemethane inhydratereservoirsisofbiogenicorigin,hydratesassociatedwithseepsorhot ventsareformedfromthermallyalteredhydrocarbonsoriginallyresidingindeeper reservoirs.Somehydrateoutcropsarehometospecializedbiologicalecosystems wheremicrobesfeedonhydrocarbonsandtheseinturnbecomeafoodsourcefor “ice-worms.”
Besidesthemarineandterrestrialnaturalgashydrates,therearegashydratesof air(mainlyN2 andO2 )deepinsideglaciers.Thehydratezonestartsatpressures wheregasbubblesintheicedisappear.Therehasbeenmuchspeculationregarding theexistenceofhydratesinextra-terrestrialspace,thatis,onMars,Titan,Enceladus, andtheheadsofcomets.Oneofthebestcandidatesforfindingsuchahydratewould appeartobethatofCO2 .Althoughlotsofspectroscopicdataexistforfreesolid CO2 andiceinextra-terrestrialspace,nosignofCO2 hydratehasbeenfound,see Chapters3and13forpossiblereasons.
Thelargegascapacityandwaterascheapworkingfluidmakegashydrates interestingmaterialsforindustrialapplications.Gashydratesaregenerallyselective forguestmoleculeadsorptionwhichallowstheseparationofgasmixtures.Much assaltisexcludedwhenbrineisfrozenindesalinationprocesses,gashydrateshave thesameability,butnowthepropertiesofthesolidphasecanbeadjusted.For example,dependingonthechoiceofguest,thehydratefreezingpointcanbewell abovetheicepoint,sosavingonrefrigerationcosts.Thesameprincipleapplies tocoolenergystoragewherethefreezingpointofthehydratecanbetunedto minimizeoperationalcosts.Furtherapplicationsincludedewateringoffruitjuices,
sewagesludgeandwoodpulp,andthestorageofunstablemoleculessuchasozone andchlorinedioxide.Amoreexoticapplicationwastheseparationofradioactive radongasfromagasmixture.
Thegentlerconditionsrequiredfortheformationandstorageofmethanein solidhydrateformascomparedtothelowtemperaturerequiredforliquidnitrogen storageofliquefiedmethanehasresultedintheevaluationoftransportbythesetwo means.Indeed,somecostadvantagesbecomeapparentforsolidhydratetransport ifmethanehastobetransportedfromstrayfieldswhereconstructionofaliquid naturalgas(LNG)plantisnotcosteffective.Otherapplicationsforstoragehave beenexplored,e.g.forhydrogenasfuelgasandCO2 forgreenhousegasseparation andstorage.
Gashydrates,becauseoftheiruniqueproperties,havedemonstratedsomeentertainmentvalue.The“burningsnowball”resultswhenmethanefromdecomposing methanehydrateisignitedandthisphenomenonhasbeenadmiredbymany, bothliveandinprint.Intheearly1980s,itwasproposedthatsudden,massive decompositionofmarinemethanehydratescouldbethecauseofdisappearances ofshipsandplanesinmythicallymysteriousareassuchastheBermudatriangle. Itappearsthemysterynovel“Deathbygashydrate”stillneedstobewritten: hydrateshavegreatpotentialasdifficulttotrackmurderweapons.Themediaalso havefrequentlygivennewscoverageof“burningice”whichisrediscoveredevery 10yearsorso.
Fromtheearlierexamples,itisclearthatgashydratesareinterestingandunusual materialspartlybecausenaturemakesthemandpartlybecausetherearemany potentialuseswhichunfortunatelyremainlargelyprospective.Thisbookwill emphasizethemolecularchemical,physical,andmaterialaspectsofclathrate hydrates,thatis,themanydetailsneededtounderstandthemacroscopicproperties andprocessesmentionedearlier.Engineeringandgeologicalaspectsofthegas hydrateshavebeencoveredadmirablyinanumberofpreviousbooksmentioned later.
InSection1.2ofthischapter,wehighlightmilestonesofclathratehydratescience uptothepresent.Thehistoryandcontextofsomeoftheseearlierdevelopments arediscussedingreaterdetailinChapter2andinchaptersthatfollowandthe relevantreferencescanbefoundthere.Fromtheirbeginningandinthedecades thatfollowed,manycentersofclathratehydrateresearchemergedindifferent partsoftheworld.Fromtheearly1960swiththeworkofDonDavidsonand coworkers,theNationalResearchCouncil(NRC)ofCanadainOttawaemergedas oneoftheactivecentersofresearchinthisfield.InSection1.3,wegiveasummary ofthecontributionstoclathratehydratesciencemadeintheNRCofCanada duringthistimeperiod.ContributorstotheclathratehydrateresearchattheNRC areacknowledgedinSection1.4.Someinfluentialbooksandreviewarticleson clathratehydratesthatappearedduringthisperiodanduptothecurrenttimeare introducedinSection1.5.Internationalconferencesfocusingonclathratehydrate sciencearelistedinSection1.6.
1.2SelectedHighlightsofClathrateHydrateScience ResearchUptothePresent
Inthissection,wesummarizeselectedhighlightsofclathratehydrateresearch, emphasizingcontributionstomolecularscience.Notallengineeringandgeological discoveriesarecoveredindetailinthisselection.Fullauthornamesandreferences formostofthesehighlightsaregiveninthefollowingchapters.
1810SirHumphreyDavycorrectlyidentifiedasolidmaterial,previouslythought tobesolidchlorine,asacompoundofchlorineandwaterandcalledit“gas hydrate.”
1823FaradaydeterminedthecompositionofchlorinehydratetobeCl2 10H2 O.
1823FaradayactinguponasuggestionbyDavy,useddecompositionofgas hydratesinconfinedvesselsasamethodofliquefyinggases.
1828LöwigpreparedbrominehydrateanddeterminedtheformulaBr2 ⋅10H2 Ofor thecompound.
1829delaRivepreparedSO2 hydrate,SO2 14H2 O,andproposedthatallcommon gasesformhydrates.
1840WöhlerpreparedH2 Shydrate.
1843Millonpreparedchlorinedioxidehydrate,thefirstexampleofthe preservationofanunstablechemicalspecies,ClO2 ,anexplosive-freeradical.
1852Loirpreparedsolidbinaryhydratesfromwater,H2 S,orH2 Seand halogenatedhydrocarbonslikechloroform,theircompositionremained unknownforsome30years.
1856Berthelotpreparedthefirstpurehydratesoforganiccompounds,namely, thoseofmethylchlorideandmethylbromide.HealsoclaimedthatCS2 formedahydrate,startingacontroversyaboutitsexistencethatlasted40 years.
1863Wurtzpreparedethyleneoxide(EO)hydrate,thefirstexampleofa water-solubleguest.Itscompositionandmeltingpointdiagramwerenot determineduntil1922.
1878Isambardshowedthattheequilibriumpressureofchlorinehydrateis univariant.
1878Cailletetdesignedandbuiltapparatussuitableforworkingathighpressure andlowtemperature.Thiswasofgreatvalueforthepreparationofnewgas hydratesandthedeterminationofphaseequilibria.Heillustratedthisby preparingnewhydratesofacetyleneandphosphine.
1882WróblewskipreparedCO2 hydrate.
1882deForcrandpreparedandcharacterized33doublehydratesofH2 Switha varietyofguestsandestablishedsimilaritiesofcomposition,M⋅2H2 S⋅23H2 O. StudieswereextendedtodoublehydrateswithH2 Seaswellasasimple hydrateofH2 Se.
1882CailletetandBordetshowedthatmixedhydratesofCO2 andPH3 werenot simplyphysicalmixturesofsimpleCO2 andPH3 hydratesbuthydrateswith uniqueproperties.
1883deForcrandappliedcalorimetrytogashydratesandassignedmostofthe thermaleffectstothedominantpresenceofwaterinthehydrate.
1.2SelectedHighlightsofClathrateHydrateScienceResearchUptothePresent 5
1883deForcrandobservedthatanumberofdoublehydrateshadwell-defined cubic,cubo-octahedral,ortruncatedoctahedralmorphologieswhichwere notactedonbypolarizedlight.
1884–1885BakhuisRoozeboomprovidedhydrationnumbersforSO2 ,Cl2 ,andBr2 hydratesandhisphaseequilibriumdiagramsclearlyshowedthe pressure–temperaturefieldsofhydratestability.Cailletet,Wróblewski,and BakhuisRoozeboomobservedamemoryeffectthatincreasedthe reformationrateofhydratefromsolutionsofdecomposedhydrate.
1884LeChâtelierusedtheClausius–Clapeyronequationforthevariationofvapor pressureofthehydrateswithtemperatureandwasthefirsttousethe equationtodeterminegashydratecompositions.
1885ChancelandParmentierreportedasimplehydrateofchloroform.Thiswas oneofthefirstso-called“liquidhydrates”whoseguestcomponentsare liquidsatambienttemperature.
1887–1888BakhuisRoozeboomappliedtheGibbsphaseruletoheterogeneous equilibriaandsystematicallyclassifiedchemicalandphysicalprocesses accordingtonumberandnatureofthecomponentsandphasespresent.He publishedonthetreatmentoftheinvariantpointsatwhichequilibriumlines meet.
1888VillardpreparedhydratesofCH4 ,C2 H6 ,C2 H4 ,N2 O,andpropane(1890).
1890Villardrecognizedthestabilizingeffectofaironthedecompositionofgas hydrates.Inthesearchforother“help-gases”heidentifiedbothhydrogenat 23atmandoxygenat2.5atmasincreasingthedecompositiontemperatureof ethylchloride.
1897Onthebasisofcarefulmeasurementsonthelargenumberofhydratesthen available,Villardpresentedadefinitionofthecompositionofgashydrates (Villard’slaw).
1897deForcrandandThomasdiscoverednewhelp-gases(CO2 ,C2 H4 ,C2 H2 ,and SO2 ).
1902deForcrandusedcalorimetricdataandageneralizationofTrouton’sruleto calculatehydratecompositionsfor15hydrates.Abouthalfhadcompositions inagreementwithVillard’slaw.
1923Bouzatproducedsummarystatementsgivingthethencurrentdefinitionof hydrates,theirstructure,andcomposition.
1926Schroederwroteaninfluentialmonographsummarizingthestateof knowledgeofgashydratetothatdate.
1934Hammerschmidt,afterreadingSchroeder’sbook,showedthatgashydrates aremorelikelytoformplugsinnaturalgaspipelinesthanice.
1936–1937NikitinpreparedmixedhydratesofnoblegasesandSO2 andshowedthatthe noblegasescouldbeseparatedbypartitioningbetweenthesolidhydrateand thegas.Hisobservationswerefirstconsistentwiththe“solidsolution” natureofhydrates.
1946DeatonandFrostpresentedexperimentaldataonhydratephaseequilibriaof naturalgascomponentsandmethodsofhydrateprevention.
1946MillerandStrongproposednaturalgasstorageinhydrateform.
1947Powellcoinedtheterm“clathrate”formaterialshavingaguestmolecule residinginacavityformedinahostlattice.
1949vonStackelbergusedX-raydiffractiondatatoproposeastructureforagas hydrateofchloroformandH2 S.Althoughthestructure,basedonalattice withholesforguests,wasincorrect,itwasaradicaldeparturefromthe molecularstructurecurrentupuntilthattime.vonStackelberghadstudied theX-raydiffractionofgashydratespriortothistime,buthisoriginal photographicplateshadbeendestroyedinaerialbombardmentduringWorld WarII.
1951Clausenintroducedthepentagonaldodecahedronasastructuralcomponent ofgashydrates,andvonStackelbergandMuller’sX-raydiffractiondata confirmedthecrystalstructureofthe“structureII”(sIIorCS-II)hydrate proposedbyClausen.
1952Clausen,vonStackelberg,andPaulingandMarshprovidedastructurefor “structureI”(sIorCS-I)gashydrates.
1952DelsemmeandSwingssuggestedthepresenceofgashydratesincometsand interstellargrains.Delsemmelatersuggestedthattheoutgassingofcomets onapproachingthesuncouldbeduetodecompositionofhydrates.
1957–1967Barrerandcoworkersstudiedhydratethermodynamics,kinetics,and separationofgasmixtureswithhydrateformation.
1959–1970Jeffreyandcoworkersusedsingle-crystalX-raydiffractiontoobtain structuraldataforclathratehydrates,semi-clathrates,andsalthydrates.
1959vanderWaalsandPlatteeuwpresentedthe“solidsolution”statistical thermodynamicsmodelforclathratehydrates.
1961MillerandPaulinghypothesizedhydrateformationasamechanismfor anesthesiaarisingfrominertnoblegases,inparticularxenon.
1961Millersuggestedthepresenceofgashydratesintheplanets,planetaryrings, andinterstellarspaceinthesolarsystem.
1963Davidsonuseddielectricmethodstostudyclathratehydrates.Hediscovered newwater-soluble(polar)guestsforclathratehydrates,measuredthe dynamicsofguestandhostmolecules,foundthatwatermolecule reorientationratesdependonthenatureoftheguestmolecule,and postulatedthepresenceofguest–hosthydrogenbondingcapableof generatingBjerrumdefects.
1965MakogonreportedonnaturalgashydratesfoundintheSiberianpermafrost.
1965KobayashiandcoworkersappliedtheKiharaintermolecularpotentialtovan derWaals–Platteeuwtheorytorepresenttheguest–cageinteractions.
1965Davidsonandcoworkersstartednuclearmagneticresonance(NMR) measurementsonclathratehydratesanddemonstratedthattheSF6 guestin sIIclathraterotatesisotropicallyevenat77K.
1966GlewandRathshowedthattheequilibriumcompositionsofCl2 andEO clathratehydratesarevariable,inaccordancewithvanderWaals–Platteeuw theory.
1968GlewandHaggettstudiedEOhydrategrowthkineticsandshowedthatthe processisgovernedbyheattransferoverawiderangeofconcentrations.
1969Millerpredictedairhydratesshouldbepresentinglacierice,CO2 hydrates onMars,andCH4 hydratesontheouterplanetsandmoons.
1.2SelectedHighlightsofClathrateHydrateScienceResearchUptothePresent 7
1969Ginsburgstudiednaturalgashydratesingeologicalsettings.
1971Stoll,Ewing,andBryanfoundthatanomalouswavevelocities (bottom-simulatingreflectors)areassociatedwithmarineoffshorenatural gashydratedeposits.
1972ParrishandPrausnitzdevelopedconvenientcomputercodeforapplyingthe vanderWaals–Platteeuwtheorytothecalculationofgashydratephase diagrams.
1972Tester,Bivins,andHerrickperformedthefirstMonteCarlosimulationofgas hydratesofnoblegases,N2 ,O2 ,CO2 ,andCH4 totestsomeofthe assumptionsmaderegardingguest–cageinteractionsinusingthevander Waals–Platteeuwapproach.
1973–1983Bertieandcoworkersstudiedclathratehydrateswithinfraredspectroscopyat lowtemperatures.
1974BilyandDickencounteredgashydratesbelowthepermafrostinthe MackenzieDelta,NorthwestTerritories,Canada.
1974Davidson,Garg,andRipmeesterreportedbroadlineandpulsedNMR experimentsontetrahydrofuran(THF)hydratefrom4to270K,showing regionsofanisotropicandisotropicmotionsoftheguest,relaxationminima forguestanisotropicrotation,watermoleculereorientation,anddiffusion.
1974Davidsonetal.showedthatpolaraswellasnon-polarguestsshow reorientationalguestmotionsthatcanbedescribedbyverybroad distributionsinreorientationalcorrelationtimesatlowtemperatures.Itled toamodelforaguest–hostpotentialdeterminedbyshortrangeinteractions betweentheguestandthedisorderedhydrogenatomsofthehostwater molecules.
1974Dyadinwasappointedtoleadaresearchgroupthatoversome40years providednewinformationonstructure,stoichiometry,andstabilityof clathratesandhigh-pressureresearchonclathratehydrates.
1975Sloanandcoworkersinitiatedworkontwo-phasehydrateequilibria.
1976HoldercalculatedthatsmallguestsaremorelikelytoformsII(CS-II)hydrate thansI(CS-I).
1976–1987Nakayamastudiedphaseequilibriaofsalthydrates.
1976PengandRobinsondevelopedanaccurateequationofstatewhichiswidely usedtodescribethevapor–liquidequilibriaofhydrocarbonsandsmallgases forhydrateequilibriumcalculations.
1977RipmeesterandDavidsonreported17newclathrateguestsmainlyfrom NMRmeasurements.
1979–1993Bishnoiandcoworkersinitiatedaprogramofnaturalgashydratekinetic measurementsandmodelingandphaseequilibriummodeling.
1981–1985Cadymeasuredhydratecompositionsasafunctionofpressure,obtaining valueswhichareinagreementwithvanderWaals–Platteeuwtheory.
1981Ross,Anderson,andBackströmmeasuredtheanomalouslylowthermal conductivityofhydratesofclathratehydrates.
1983Tse,Klein,andcoworkersinitiatedmoleculardynamicssimulationsof clathratehydrates.
1984Handapreparedpurehydrocarbonhydratesunderequilibriumconditions andobtainedtheirthermodynamicpropertiesfromcalorimetry.
1984Davidsonetal.experimentallyshowedverysmallguestsformCS-IIrather thanCS-I.
1986Davidsonetal.providedthefirstlaboratoryanalysisofrecoveredgashydrate samplesobtainedfromtheGulfofMexicoandidentifiedbothCS-IandCS-II hydrates.
1986Davidson,Handa,andRipmeesterprovidedthefirstmeasurementof absolutecageoccupancyofXehydrate.
1987Ripmeesterandcoworkersdiscoveredanewclathratehydratefamily, structureH(HS-III).
1988WhalleyshowedthatoctahedralmeltfiguresareproducedinTHFclathrate hydratecrystals.
1988RipmeesterandRatcliffeintroducedlow-temperaturemagicanglespinning 13 CNMRspectroscopytomeasuretherelativeoccupancyofmethaneand methane/propanehydrateandusedvanderWaals–Platteeuwtheoryto obtainhydrationnumbers.
1988MakogonandKvenvoldenindependentlyprovidedestimatesofthetotal volumeofworldwideinsituhydratednaturalgasat1016 m3 .Kvenvolden recognizesthedecompositionofnaturalgashydratesaspotentialcontributor toglobalclimatechange.
1990Collins,Ratcliffe,andRipmeesterusedNMRspectralpropertiesofseveral differentnuclei,including 2 H, 19 F, 31 P,and 77 Setomeasurehydration numbers.
1990Rodgerstudiedhydratestabilitieswithmoleculardynamicssimulations.
1990HallbruckerandMayerformedclathratehydratesbyvapordepositionof amorphoussolidwater.
1990RipmeesterandRatcliffediscoverednumerousnewguestswhichform HS-IIIandCS-IIusing 129 XeNMRofxenonco-guest.
1991Sloanproposedamolecularmechanismforhydrateformationwith implicationsforinhibition.
1991Handaetal.appliedhighpressureat77KtoamorphizeCS-IandCS-II clathratehydrates,muchaswasobservedforiceitself.Unlike,the amorphousicephase,thisamorphousphaserecrystallizedtotheoriginal hydratephasewhentheappliedpressurewasreducedtoambientat77K.
1992HandaandStupininvestigatedhydratephaseequilibriainporousmedia.
1993Inelasticincoherentneutronscattering(IINS)experimentsonmethane,Xe, andKrhydrateswereinitiatedattheNRC.
1993EnglezosandHatzikiriakosusedmathematicalmodelstoquantifyhow globaltemperaturewarmingaffectsthestabilityofmethanehydratesinthe permafrostandinoceansediments.
1993–2020Tanakaandcoworkersbeganaprogramofgeneralizingandimprovingon theassumptionsofthevanderWaals–Platteeuwtheory.
1994Edwardsmodeledwinterflounderantifreezepeptideasapotentialkinetic hydrateinhibitor.
1996SummeasuredclathratehydrationnumberswithRamanspectroscopy.
1.2SelectedHighlightsofClathrateHydrateScienceResearchUptothePresent
1996KogaandTanakastudiedtherearrangementsofthewaterhydrogenbonding networkinclathratehydrateswithpolarguestsusingmoleculardynamics simulation.
1997Kuhsetal.reporteddoubleoccupancyoflargecagesinCS-IInitrogen hydrate.
1997Udachinetal.reportedHS-III(sH)structurefromsingle-crystalX-ray diffraction.
1997Udachinetal.determinedthetetragonalstructure,TS1,ofBr2 hydratefrom single-crystalX-raydiffraction.
1999Dyadinetal.reportedthatH2 formsaclathratehydrateathighpressure.
1999Moudrakovskietal.reportedthefirstmagneticresonanceimaging(MRI)of hydrateformationoniceparticles.
2000Huang,Walker,andRipmeestershowedthatantifreezeproteins(AFPs) inhibithydrateformationand,insomecases,eliminatethefreezingmemory effectforhydratereformation.
2000–2001Lovedayetal.,Hiraietal.,Chouetal.,andManakovetal.preparedand characterizedhigh-pressurephasesofwater,includingahigh-pressure HS-IIIclathratephase.
2001Moudrakovskietal.usedhyperpolarized 129 XeNMRtoobservethe nucleation,growth,anddecompositionofXehydrateinrealtime.
2001Udachinetal.determinedanewstructuraltypefordimethyletherclathrate hydrate.
2001Moudrakovskietal.observedametastableCS-IIXehydratephase.
2001Lovedayetal.discoveredahigh-pressurestructureofCH4 hydrateusing diamondanvildiffractionmethods.
2002BallardandSloandevelopedCSMGemsoftwareforhydrateequilibrium prediction.
2002Maoetal.synthesizedtheCS-IIhydrogenhydrateunderhigh-pressureand low-temperatureconditionstoobservehighH2 :H2 Ostorageratios.
2002ServioandEnglezosaccuratelymeasurethetemperaturedependenceofthe solubilityofCH4 andCO2 gasesintheaqueousphaseinequilibriumwiththe correspondingclathratehydratephases.
2004Themechanismofself-preservationofmethanehydratewasstudiedwith scanningelectronmicroscope(SEM)imagingbySternandcoworkers. FalentyandKuhsusedSEMtostudyself-preservationofCO2 hydratein 2009.
2005Leeetal.developedamethodfortuningtheH2 contentofthemixedCS-II hydratewithTHF.
2005ClarkeandBishnoidevelopedafocusedbeamreflectancemethodforinsitu, time-dependenthydrateparticlesizeanalysisunderconditionsofhydrate nucleationandgrowth.
2007–2016Ba ˇ ci ´ candcoworkersperformedquantummechanicalcalculationsto determinediscretetranslation-rotationalstatesofH2 andCH4 indifferent CS-IandCS-IIcageswithsingleandmultipleoccupancies.
2007Celli,Ulivi,andcoworkersinitiatedIINSstudiesonH2 /D2 /HDdynamicsin CS-IandCS-IIclathratehydrates
1AnIntroductiontoClathrateHydrateScience
2007Linga,Kumar,andEnglezosprovidedthethermodynamicandkineticbasis forCO2 capturefrompost-combustionfluegasandpre-combustionfuelgas.
2009Detailedcharacterizationofhydrogenbondingofhydrateswasdetermined usingmoleculardynamicssimulationsbytwogroups:Buchetal.andatthe NRC.
2009SimulationworkinitiatedbyJordanandcoworkersdeterminedthestepwise (layerbylayer)decompositionmechanismformethanehydrate.
2010Walshetal.carriedoutmillisecondmoleculardynamicssimulationsofCH4 hydratenucleationandgrowth.
2010FollowinganearlyproposalbyMcTurkandWaller,Mori,andcoworkers formedozonehydrateinanapparatusincorporatinginsituozonegeneration.
2012–2014Shinetal.characterizedclathratehydratesincorporatingNH3 andCH3 OH synthesizedusingvapordeposition.
2013Udachinetal.performedsingle-crystalX-raydiffractionandmolecular dynamicssimulationsonhalogenhydrateswhichindicatedthepossibilityof halogenbondingbetweentheseguestsandwatermoleculesofthecages.
2014Falenty,Hanssen,andKuhspreparedametastableicephase(IceXVI)with thestructureoftheemptyCS-IIlattice.
2015NMRspectroscopygavedirectevidenceofcage-to-cagetransferofhydrate guestsCO2 inTHF-CO2 CS-IIhydrateandforCH4 andCH3 Findouble hydratesofTHFand tert-butylmethylether.
2015MoleculardynamicssimulationsperformedattheNRCandUniversityof BritishColumbiashowedtheformationofnanobubblesofmethaneupon decompositionofmethanehydrate.
1.3ClathrateHydrateResearchattheNRCCanada
Forabout50years,gashydrateresearchwasasupportedprojectattheNRCin Ottawa.Ithaditsstartintheearly1960swhenDonDavidson,workingintheColloid SectionoftheDivisionofAppliedChemistry(Figure1.1),tooktheinitiativetofollowuponafundamentalquestionthataroseduringhisinvestigationofthedielectric propertiesofliquids:inthedielectricpropertiesofliquids,isitpossibletoseparatethecontributionsfrommolecularreorientationanddiffusion?Thisledtothe firststudiesonclathratehydrateswheremoleculesaretrappedinpseudo-spherical molecule-sizedcagessothatonemaywellexpectthatcontributionsfromdiffusion shouldbereducedoreliminated.
Clathratehydratesciencewasatastageofdevelopmentwheretwohydratestructureswereknown,confirmingtheirclathratenature.Statisticalthermodynamics hadprovidedamodelofclathratehydratesbasedonweakguest–hostinteractions; however,manyofthefeaturesofthemodelremaineduntested.
EarlyworkonguestdynamicsinclathratesattheUniversityofBritishColumbia (byCharlesMcDowell)convincedDon,Figure1.2a,thatNMRspectroscopywould beanotherusefultechniqueforthestudyofguestmotion,asitprovidedthemeansto studytheeffectofpolarversusnon-polarguests.Itwasanopportunetimetoinitiate