Introducing general relativity mark hindmarsh download pdf

Page 1


Introducing General Relativity Mark Hindmarsh

Visit to download the full and correct content document: https://ebookmass.com/product/introducing-general-relativity-mark-hindmarsh/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

General relativity : a concise introduction Carlip

https://ebookmass.com/product/general-relativity-a-conciseintroduction-carlip/

Introducing Einstein's Relativity: A Deeper Understanding 2nd Edition Ray D'Inverno

https://ebookmass.com/product/introducing-einsteins-relativity-adeeper-understanding-2nd-edition-ray-dinverno/

Special relativity, electrodynamics, and general relativity : from Newton to Einstein Second Edition Kogut

https://ebookmass.com/product/special-relativity-electrodynamicsand-general-relativity-from-newton-to-einstein-second-editionkogut/

Relativity Made Relatively Easy. Volume 2: General Relativity and Cosmology Andrew M. Steane

https://ebookmass.com/product/relativity-made-relatively-easyvolume-2-general-relativity-and-cosmology-andrew-m-steane/

Covariant Physics - From Classical Mechanics to General Relativity and Beyond 1st Edition Moataz H. Emam

https://ebookmass.com/product/covariant-physics-from-classicalmechanics-to-general-relativity-and-beyond-1st-edition-moataz-hemam/

Shape Dynamics: Relativity and Relationalism Flavio Mercati

https://ebookmass.com/product/shape-dynamics-relativity-andrelationalism-flavio-mercati/

Introducing Evangelical Theology

https://ebookmass.com/product/introducing-evangelical-theology/

Introducing Dewey Fairfield

https://ebookmass.com/product/introducing-dewey-fairfield/

Relativity without spacetime Cosgrove

https://ebookmass.com/product/relativity-without-spacetimecosgrove/

IntroducingGeneralRelativity

IntroducingGeneralRelativity

University of Sussex Brighton, UK and

University of Helsinki Helsinki, Finland

AndrewLiddle

University of Edinburgh Edinburgh, UK and

Perimeter Institute for Theoretical Physics Waterloo, Canada and

Universidade de Lisboa Lisboa, Portugal

MarkHindmarsh

This edition first published 2022

© 2022 John Wiley and Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Mark Hindmarsh and Andrew Liddle to be identified as the authors of this work has been asserted in accordance with law.

Registered Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

ISBN: 9781118600719

Cover Design: Wiley Cover Images: © ESA/Hubble & NASA, S. Jha; Acknowledgment: L. Shatz

Set in 10/12pt NimbusRomNo9L by Straive, Chennai, India applied for

3TensorsinSpecialRelativity17

4TowardsGeneralRelativity37

4.4.1Gravitationalredshift....................45

4.4.2Gravitationaltimedilation.................46

4.5PrinciplesoftheGeneralTheoryofRelativity...........47

4.6Towardscurvedspace–time.....................49

4.7Curvedspaceintwodimensions..................50

5TensorsandCurvedSpace–Time57

5.1Generalcoordinatetransformations.................57

5.2Tensorequationsandthelawsofphysics..............59

5.3Partialdifferentiationoftensors..................59

5.4Thecovariantderivativeandparalleltransport...........60

5.5Christoffelsymbolsofatwo-sphere................65

5.6Paralleltransportonatwo-sphere.................66

5.7CurvatureandtheRiemanntensor.................68

5.8Riemanncurvatureofthetwo-sphere................71

5.9Moretensorsdescribingcurvature.................72

5.10Localinertialframesandlocalflatness...............73

6DescribingMatter79

6.1TheCorrespondencePrinciple...................79

6.2Theenergy–momentumtensor...................80

6.2.1Generalproperties.....................80

6.2.2Conservationlawsand4-vectorflux............81

6.2.3Energyandmomentumbelonginarank-2tensor.....83

6.2.4Symmetryoftheenergy–momentumtensor........84

6.2.5Energy–momentumofperfectfluids............84

6.2.6Theenergy–momentumtensorincurvedspace–time...87

7TheEinsteinEquation91

7.1TheformoftheEinsteinequation.................91

7.2PropertiesoftheEinsteinequation.................93

7.3TheNewtonianlimit........................93

7.4Thecosmologicalconstant.....................95

7.5ThevacuumEinsteinequation...................96

8TheSchwarzschildSpace–time99

8.1Christoffelsymbols.........................100

8.2Riemanntensor...........................101

8.3Riccitensor.............................102

8.4TheSchwarzschildsolution.....................103

8.5TheJebsen–Birkhofftheorem....................104

9GeodesicsandOrbits109

9.1Geodesics..............................109

9.2Non-relativisticlimitofgeodesicmotion..............112

9.3Geodesicdeviation.........................113

9.4Newtoniantheoryoforbits.....................115

9.5OrbitsintheSchwarzschildspace–time..............117

9.5.1Massiveparticles......................117

9.5.2Photonorbits........................120

10TestsofGeneralRelativity123

10.1PrecessionofMercury’sperihelion.................123

10.2Gravitationallightbending.....................125

10.3Radarechodelays..........................127

10.4Gravitationalredshift........................129

10.5BinarypulsarPSR1913+16....................131

10.6Directdetectionofgravitationalwaves...............135

11BlackHoles139

11.1TheSchwarzschildradius......................139

11.2Singularities.............................140

11.3RadialraysintheSchwarzschildspace–time............141

11.4Schwarzschildcoordinatesystems.................143

11.5Theblackholespace–time.....................145

11.6Specialorbitsaroundblackholes..................147

11.7Blackholesinphysicsandinastrophysics.............148

12Cosmology155

12.1Constant-curvaturespaces.....................156

12.2ThemetricoftheUniverse.....................158

12.3ThemattercontentoftheUniverse.................158

12.4TheEinsteinequations.......................159

13CosmologicalModels165

13.1Simplesolutions:matterandradiation...............165

13.2Lighttravel,distances,andhorizons................169

13.2.1Lighttravelinthecosmologicalmetric..........169

13.2.2Cosmologicalredshift...................170

13.2.3Theexpansionrate.....................171

13.2.4TheageoftheUniverse..................172

13.2.5Thedistance–redshiftrelationandHubble’slaw......172

13.2.6Cosmichorizons......................173

13.2.7Theluminosityandangular-diameterdistances......174

13.3Ingredientsforarealisticcosmologicalmodel...........175

13.4Acceleratingcosmologies......................180

14GeneralRelativity:TheNext100Years183

14.1DevelopingGeneralRelativity...................183

14.2BeyondGeneralRelativity.....................184

14.3Intothefuture............................187

AdvancedTopicA1GeodesicsintheSchwarzschildSpace–Time191

A1.1Geodesicsandconservationlaws..................191

A1.2Schwarzschildgeodesicsformassiveparticles...........192

A1.3Schwarzschildgeodesicsformasslessparticles..........194

AdvancedTopicA2TheSolarSystemTestsinDetail197

A2.1Newtonianorbitsindetail......................197

A2.2PerihelionshiftinGeneralRelativity................201

A2.3Lightdeflection...........................204

A2.4Timedelay.............................205

AdvancedTopicA3WeakGravitationalFieldsandGravitationalWaves209

A3.1Nearly-flatspace–times.......................209

A3.2Gravitationalwaves.........................211

A3.3Sourcesofgravitationalwaves...................214

AdvancedTopicA4GravitationalWaveSourcesandDetection219

A4.1Gravitationalwavesfromcompactbinaries............220

A4.2Theenergyingravitationalwaves.................223

A4.3Binaryinspiral...........................224

A4.4Detectinggravitationalwaves....................227

A4.4.1Laserinterferometers....................227

A4.4.2Pulsartiming........................230

A4.4.3Interferometersinspace..................231

Preface

Findaphysicist.Sitthemdown,treatthemtoacoffee,andaskfortheiropinion astothemostbeautifultheorythatthesubjecthastooffer.Thechancesarethat theiranswerwillbeGeneralRelativity.

Einstein’sGeneralTheoryofRelativity,togiveititsfullandpropername, isoverahundredyearsold.Yetitoffersadefiantlymodernviewpoint,definingprinciplesofhowtheUniverseoughttoworkandestablishingamathematicalframeworkuponthem.Itgivesaradical,evenshocking,reconceptionofa fundamentalforce,gravity.Andithasmaintainedanexquisiteagreementwith observationaldata,makingpredictionsofsuchsubtletythatoneofitskeyimplications,theexistenceofgravitationalwaves,tookoverahundredyearstobe directlyverified.

ThisbookisbasedonalecturecourseattheUniversityofSussex,givenby eachofusatvarioustimes.Thecourseistakenbyfinal-yearphysicsundergraduates,andhasnospecialprerequisites,sowehaveattemptedtolimitthecoverage oftopicsandtobeasexplicitaspossible.Formanyundergraduates,alecture courseonGeneralRelativityisthepinnacleoftheirtheoreticaleducation,and theirmainexposuretothemodernmethodologyofphysicsasbasedonprinciples andsymmetries.

Ouraimistomakethatexperienceasenjoyableaspossible,whileaccepting thatthepleasurecomesnotjustfromtheastonishingphysicalimplications,such asblackholes,singularities,andgravitationalwaves,butfromtheeleganceofthe underlyingmathematicalstructure.Bythestandardsoftextbooksonthetopic, wehavesoughttocreatesomethingthatisgenuinelyintroductory,yetwhichprovidesthemathematicaltoolstoseethetheoryworkinaquantitativeway.We hopethatsomethingoftheeleganceofthetheoryemergesfromthetechnicaldifficulty,alongwithanunderstandingofthephysicalpredictionsthathavebeen sobeautifullyconfirmedbydecadesofexperimentandobservation.Enjoythe challenge!

MarkHindmarshandAndrewLiddle HelsinkiandLisbon,October2021

SomeFundamentalConstantsandAstronomicalValues

Newton’sgravitationalconstant G 6 672 × 10 11 m3 kg 1 s 2

Speedoflight c 2.998 × 108 ms 1

ReducedPlanckconstant¯h = h/2π 1 055 × 10 34 m2 kgs 1

Boltzmannconstant kB 1.381 × 10 23 JK 1

Solarmass M⊙ 1 M⊙ = 1 989 × 1030 kg

Solarradius R⊙ 1 R⊙ = 6 957 × 108 m

Parsecpc1pc = 3 086 × 1016 m

ElectronvolteV1eV = 1 602 × 10 19 J

Commonly-UsedSymbols

t , x, y, z coordinates definedonpage 4

c speedoflight5

v velocity(usuallytherelativevelocitybetweentwoframes)6

γ Lorentzboostfactor, γ = 1/ 1 v2 /c2 7

s or ∆s space–timedistance(orinterval)betweentwoevents7,19

u velocity(ofanobjectmeasuredinaframe)11

x µ coordinates(asa4-vector)18

Λ µ ν Lorentztransformation18

η µν Minkowskimetric(forSpecialRelativity)19

g µν metricofspace–time20,50

δ µ ρ Kroneckerdelta21

τ propertime24

u µ 4-velocity24

p µ 4-momentum25,83

a µ 4-acceleration(thisnotationisalsousedforageneric4-vector)26

4-derivative27

✷ D’Alembertian27

G Newton’sgravitationalconstant37

M mass(usuallyofagravitatingbody)37

m mass(usuallyofatestbodynearalargermass M )37

Φ gravitationalpotential39

ds infinitesimalintervalinspace–time50

Da µ covariantdifferential60

Γν µσ connection/Christoffelsymbols60 , partialderivative63 ;covariantderivative63

R µ ναβ Riemanntensor69

R µν Riccitensor72

R Ricciscalar72

ρ density80

n (particle)numberdensity81

j µ (particle)flux4-vector82

T µν energy–momentumtensor83

p pressure85

G µν Einsteintensor92 Λ cosmologicalconstant95

rS Schwarzschildradius104

t µ tangentvector(toatrajectory)110

a(t ) scalefactoroftheUniverse158

h µν smallperturbationtothemetric g µν 209

About the Companion Website

This book is accompanied by a companion website: www.wiley.com/go/hindmarsh/introducingGR

The website includes: Instructor’s Manual

Chapter1

IntroducingGeneralRelativity

ItisnowmorethanahundredyearssinceAlbertEinsteinpresentedthefinal formoftheGeneralTheoryofRelativitytothePrussianAcademyofSciences,in November1915.Sincethen,ithasmigratedfromanextraordinaryachievement atthefrontiersofphysics,reputedlyunderstoodbyonlyaveryfew,toastandard advancedundergraduatecourse.GeneralRelativity(asitisusuallycalled,commonlyshortenedtosimplyGR)isessentialfortheunderstandingoftheUniverse asawhole,wherevergravityisstrong,andalsowheneverprecisetimemeasurementsaremade.TheGlobalPositioningSystem(GPS),nowbuiltintobillionsof devicesaroundtheworld,wouldnotworkwithouttheGeneralRelativisticpredictionthatclocksrunmoreslowlyonEarththaninthesatellitesdefiningtheGPS referenceframe.

PartofthefascinationofGeneralRelativityliesinthepersonalityofEinstein, andthewayheisoftenpresentedasalonegeniusworkingforyearsinisolation, finallytoreemergewiththefullyformedandbeautifultheoryweknowtoday. Inreality,hewasinconstantcommunicationwithotherscientists,andothers wereworkingtowardsarelativistictheoryofgravitation.Thefirstsuchtheory wasactuallywrittendownbyGunnarNordströmin1913,whoattemptedadirect relativisticgeneralisationoftheNewtoniangravitationalpotential.Einsteinwas thefirsttounderstandthattheappropriatedynamicalquantityisthespace–time metricitself,butthegeometricaspectofGeneralRelativitywasprobablyfirst appreciatedbythemathematiciansMarcelGrossmannandDavidHilbert.EinsteinworkedwithhisfriendGrossmann,andhadcrucialcorrespondencewith Hilbertbeforecomingupwiththefinalandcorrectformulation.Einsteinhimself tookseveralwrongturningsdoingtheyearsbetween1907and1915whenhewas workingmostintensivelyonthetheory.Thelonegeniusisamyth,butitisfairto considerthatGeneralRelativityisEinstein’sown,andcrowning,achievement. ThetechnicalcomplexityofGeneralRelativitycomesfromseveralsources.

Introducing General Relativity, First Edition. Mark Hindmarsh and Andrew Liddle.

Thefundamentalobjectsofrelativityaretensors,becausetherelativityprinciples (bothspecialandgeneral)arestatementsaboutthepropertiesofphysicallaws undertransformationsbetweencoordinates.ThusanyGeneralRelativitycourse muststartwithtensorcalculus.GeneralRelativityisageometricaltheory,treatingspace–timeasamanifold,describingitsdynamicsintermsofgeometrical quantities.ThusinapproachingGeneralRelativitythebasicgeometricalconcepts developedbyBernhardRiemannandothersfromthemid1800s—ofconnection, geodesic,paralleltransport,andcurvature—mustbeintroduced.Tensorcalculus andRiemanniangeometryarenotpartofthestandardmathematicalequipmentof aphysicsundergraduate.ThiswasalsotrueinEinstein’sundergraduatecareer, althoughtherewerecoursesonoffer.Ithasbeenspeculatedthathadhegoneto anadvancedgeometrycourse,hewouldhavelatersavedhimselfseveralyears’ work.

Afinaldifficultyistheoneoftranslatingthemathematicalconceptsintophysicalobservables.GeneralRelativityrethinksthefundamentalsofspaceandtime, whichtakepartinphysicalprocessesratherthanbeingaframeworkonwhich thingshappen.Sodecidingwhatisobservable,ratherthansimplyanartefactof aparticularchoiceofcoordinates,isdifficult.Indeed,Einsteinchangedhismind acoupleoftimesastowhethergravitationalwaveswererealornot,andittook aboutfiftyyearsforaunanimousviewtoemerge.

Gravitationalwaves,anearlypredictionofGeneralRelativity,areamongst thehottesttopicsinphysicsfollowingtheirdirectdetectionbytheLIGO/Virgo collaboration,announcedin2016.Theirrealsignificanceisnotsomuchasa triumphantvindicationofEinstein’stheory;therewasnoseriousdoubtthatgravitationalwavesexistedfollowingthecarefulmeasurementsoftheorbitaldecay ofabinarypulsarsystemdiscoveredbyRussellHulseandJosephTaylorinthe 1970s.Rather,thedetectionsignalsthebeginningofanewbranchofastronomy, whichhastheprospectofdetectingviolentastronomicaleventsrightbacktothe veryearlieststagesoftheBigBang.Newdetectors,similartoLIGOandVirgo, arebeingbuiltinJapanandIndia,andaspace-basedgravitationalwavedetector calledLISAisplannedfortheearly2030s.GeneralRelativitywillcontinuetobe attheforefrontofscientificresearchinthe21stcentury,asitwasthroughoutthe 20th.

Chapter2

ASpecialRelativityReminder

TheSpecialTheoryunitesspaceandtime shorterlengthsand longertimes · seeingitwithdiagrams

BeforelaunchingintoouraccountofGeneralRelativity,wegiveabriefreminderofthemaincharacteristicsofitspredecessortheory,theSpecialTheory ofRelativity.ThiswasintroducedbyEinsteinin1905,andisusuallyreferredto bytheshorthandSpecialRelativity.Thesetheorieshavearatherdifferentstatus totraditionalphysicstopics,suchaselectromagnetismoratomicphysics,which seektounderstandphenomenaofaparticulartypeorwithinacertaindomain.Instead,therelativitytheoriessetdownprincipleswhichapplyto all physicallaws andrestrictthewaysinwhichtheycanbeputtogether.Whetherthoseprinciplesareactuallytrueissomethingthatneedstobetestedagainstexperimentand observation,buttheassumptionthattheydoholdhasfar-reachingimplications forhowphysicallawscanbeconstructed.Inparticular,theroleofsymmetries ofNatureishighlighted,whichisadefiningfeatureofhowmodernphysicsis constructed;assuchtherelativitytheoriesoftengivestudentsthefirstglimpseof howcontemporarytheoreticalphysicsisdone.

Boththetheoriesfocusonhowphysicalphenomenaareviewedindifferent coordinatesystems,withtheunderlyingprinciplethattheoutcomeofphysical processesshouldnotdependonthechoiceofcoordinatesthatweusetodescribe them.SpecialRelativityrestrictsustoso-called inertialframes,wheretheterm frame meansasetofcoordinatestobeusedfordescribingphysicallaws.As wewillsee,thisrestrictsustocoordinatetransformationswhicharelinearinthe coordinates,correspondingtocoordinatesystemsmovingrelativetooneanother withconstantvelocity,and/orrotatedwithrespecttooneanother.Thisturnsoutto beasuitableframeworkforconsideringallknownphysicallaws exceptforthose correspondingtogravity.

Einstein’sremarkableinsight,leadingtotheGeneralTheoryofRelativity,was Introducing General Relativity, First Edition. Mark Hindmarsh and Andrew Liddle.

thatallowingarbitrarynon-linearcoordinatetransformationswouldallowgravity tobeincorporated.Indeed,ifwewanttoallownon-lineartransformations,we have toincludegravity.Understandingthemotivationsfor,andimplicationsof, thisextraordinarystatementisthepurposeofthisbook.Butfornow,weplacethe focusonSpecialRelativity,emphasisingthosefeaturesthatwilllatergeneralise.

2.1TheneedforSpecialRelativity

InNewtoniandynamics,theequationsareinvariantundertheGalileantransformationwhichtakesusfromonesetofcoordinates (t , x, y, z) toanother (

) accordingtotherule

where v istherelativespeedbetweenthetwocoordinatesystems,whichhave beenalignedsothatthevelocityisentirelyalongthe x direction.[NBprimes arenotderivatives!]Eachcoordinateframeisidealisedasextendingthroughout spaceandtime,providingthescaffoldingthatletsuslocatephysicalprocessesin spaceandtime.Weintroducean event assomethingwhichhappensataspecific locationinspaceandataspecifictime,suchasthecollisionoftwoparticles.

Typicallyanyobserverwillwanttochooseacoordinatesystemtodescribe events,andwillbelocatedsomewherewithinthecoordinatesystem.Commonly, thoughnotalways,observerswilldecidetochoosecoordinateframesthatmove alongwiththemasanaturalwaytodescribethephenomenaastheyseethem,and soitcanbeusefultosometimesthinkofacoordinatesystemasbeingassociated toaparticularobserverwhocarriesthecoordinatesystemalongwiththem.For instance,wemightconsidertwodifferentobserversmovingataconstantvelocity withrespecttooneanother,andaskhowtheywoulddescribethesamephysical processfromtheirdifferingpointsofview.

Whenwereferto invariance ofaphysicalquantity,wemeanthataphysical quantityexpressedinthenewcoordinatesisidenticaltothesamequantityexpressedintheoldones.Thatmeansthatobserversinrelativemotionagreeonits value.

Inparticular,accelerationisinvariantinNewtoniandynamics;itdependson secondtimederivativesofthecoordinatesof,forexample,amovingparticle,and thesecondtimederivativesof x andof x′ areequal.Aneverydayexampleisthat anobjectdroppedinatrainmovingatconstantvelocityappears,toanobserver inthecarriage,tofollowexactlythesametrajectoryasitwouldwerethetrain stationary.

TheGalileantransformationischaracterisedbyasingleuniversaltimecoordinatethatallobserversagreeupon.Combiningrelativevelocitiesineachofthe

coordinatedirectionsmeansthatgenerally x′ = x, y′ = y,and z ′ = z,but t ′ always remainsequalto t .Theideaofauniversaltimesitsingoodagreementwithour everydayexperience.However,ourowndirectperceptionsofphysicallawsprobe onlyaveryrestrictivesetofcircumstances.Forexample,weareunawareofquantummechanicsinourday-to-daylife,becausequantumlawssuchasHeisenberg’s UncertaintyPrinciplearesignificantonlyonscalesfarsmallerthanwecanpersonallywitness.Hence,wecannotimmediatelyconcludethatinvarianceunder theGalileantransformationshouldapplytoallphysicallaws.

Indeed,itwasalreadyknowninEinstein’stimethatMaxwell’sequations,describingelectromagneticphenomenaincludingthepropagationoflightwaves,are notconsistentwithGalileaninvariance.Forexample,theystatethatthespeedof lightisindependentofthemotionofasource,whereastheGalileantransformationwouldpredictthatlightwouldemergemorerapidlyfromatorchifitsholder wererunningtowardsyou.Inafamousthoughtexperiment(i.e.anexperiment carriedoutonlyinthemind,notinthelaboratory),Einsteintriedtoenvisagewhat wouldhappenifonetriedtocatchupwithalightwavebymatchingitsvelocity, knowingthatMaxwell’sequationswouldnotpermitastationarywave.

OnepossibleresolutionofthiswouldbeiftherewerespecialframeofreferenceinwhichMaxwell’sequationswerevalid,aframethatcametobeknownas theaether.However,sincetheEarthrevolvesaroundtheSun,itcannotalways bestationarywithrespecttothisaether.Inthelate1880s,AlbertMichelsonand EdwardMorleysoughttodetectthemotionoftheEarthrelativetothisaether, usinganinterferometerexperiment.Itshouldhavehadthesensitivitytoeasily seetheeffect,giventheknownpropertiesoftheEarth’sorbit,yetnosignalwas found,puttingtheexistenceoftheaetherindoubt.

Fromtheviewpointofwantingaunifiedviewofphysicallaws,itmakeslittlesensethatdifferenttypesofphysicallawsshouldrespectdifferentinvariance properties.Afterall,electromagneticphenomenaleadtodynamicalmotions.This incompatibilityposedastarkproblemforphysics.

Einstein’s1905paperresolvedthisseemingparadoxdecisivelyinfavourof electromagnetism.Basedonhisthoughtexperiments,hedemandedthatphysical lawssatisfiedtwopostulates:

1.Thelawsofphysicsarethesameinallinertialframes.

2.Thespeedoflight,denoted c,isthesameinallinertial framesandindependentofthemotionofthesource.

Asremarkedabove,inertialframesarethosewhichmovewithaconstantvelocity withrespecttooneanother.Therequirementthatthelawsofphysicsbethe sameineachisinheritedfromtheGalileantransformation,whichalsorequires it.Anotherwayofexpressingthisfirstpostulateistosaythatthereisnopossible experimentanobservercancarryouttomeasuretheirabsolutevelocity.

Butthesecondpostulatethenrequiresthatthecoordinatetransformationbetweenframesmustmixspaceandtime,asweareabouttosee.Itisinconsistent withthenotionofauniversaltimecoordinate,andrequiresthatinvarianceunder theGalileantransformationbeabandoned.IfNature’slawsaretobeinvariant undercoordinatetransformations,theinvariancemustbeofanothertype.

2.2TheLorentztransformation

HendrikLorentz,in1904,hadalreadydiscoveredatransformationthatleftMaxwell’sequationsinvariant,anditnowbearshisname.Wewillderiveitunderthe assumptionthatthetransformationislinear,likeaGalileantransformation,and reducestoaGalileantransformationinthelimitofrelativevelocitiesmuchless thanthatoflight.

Consideraframe,whichwecall S′ ,movingrelativetotheoriginalframe S withvelocity v alongthe x-axis,sothatwecanassume y′ = y and z ′ = z. 1 Thisis showninFigure2.1.Linearityletsuswrite

′ = At + Bx ; x ′

where A, B, C ,and D areconstants.Now,theoriginof S′ ismovingrelativeto S atvelocity v,so x′ = 0correspondsto x = vt ,implying C = vD.Sothesecond oftheaboveequationsbecomes

Bysymmetry,thesameequationmustholdfortransformingbackfrom S′ to S, exchanging v →−v,so

= D(x ′ + vt ′ ) . (2.4)

Now,weusetheassumptionofaconstantspeedoflight.Attheinstantwhen thetwocoordinatesystemsagree,sendoutapulseoflightalongthe x-axis.Then x = ct intheoriginalframe,and x′ = ct ′ inthenewone.Substitutethisinto equation(2.3)toget

′ = D(1 v/c)x , (2.5)

1 Wewillrefertosuchatransformationasa Lorentzboost.Thegenerallineartransformation satisfyingEinstein’spostulates,referredtoasaLorentztransformation,alsopermitsrotationsofthe spatialcoordinateframe.

Figure2.1 Aframe S′ movingrelativetoanotherframe S,withvelocity v along the x-axis.Demandingthatthetransformationrelatingthecoordinates (t ′ , x′ , y′ , z ′ ) to (t , x, y, z) islinearandpreservesthespeedoflight c,uniquelyfixesittobethe Lorentzboost,equation(2.7).

andintoequation(2.4)toget

Consistencyofthesetworequires D2 = 1/(1 v2 /c2 ).ThisrulesouttheGalilean transformation,whichwouldhaverequired D tobeequaltoone.

Wewritethisas x′ = γ(x vt ),wherethefamous γ-factoris γ = 1/ 1 v2 /c2

Thismeasuresthestrengthofrelativisticeffects.Againbysymmetry, x = γ(x′ + vt ′ ).Combiningthesegives vt ′ = γ 1 x x′ = γ 1 x γ(x vt ) whichwecanrearrangetoget t ′ = γ(t vx/c2 ).WecanfinallywritetheLorentzboost(inthe x-direction)as

′ = γ ct v c x ; x ′ = γ (x vt ) ;(2.7) y ′ = y ; z ′ = z .

Noticethestrongsymmetryifwethinkof ct asacoordinate.TheLorentzboost istheuniquelineartransformationrelatingtimeandspacecoordinatessatisfying thepostulatesofSpecialRelativity.ItalsoreducestotheGalileantransformation inthelimit v ≪ c.

Ifwedefinethedistanceofapointinspaceandtimefromtheoriginas s 2 = c 2 t 2 + x 2 + y 2 + z 2 , (2.8)

thisquantity,whichisknownasthespace–time interval,isinvariantunderthe

Figure2.2 Lightpulsesaresentoutfromtheorigininthe y directioninframe S, bouncingoffamirroratadistance L,andreturningtotheoriginattime t = 2L/c later.Assoonastheyarereceivedanotherpulseissent.Inframe S′ ,thepathis longer,andthearrivaltimesbackatthedetectorcorrespondinglylater.Ifwethink ofthearrivaltimesofthepulsesasthetickingofaclock,theconclusionisthatthe movingclockrunsslower,byafactor γ = 1/ 1 v2 /c2 (seeequation(2.9)).

Lorentzboost(seeProblem2.1).Hence,allinertialobserversagreeontheintervalbetweentwoevents,eventhoughtheywillnotgenerallyagreeonhowmuch ofthatintervalisinthespacedirectionandhowmuchinthetimedirection.Invariantquantitiessuchasthiswillplayanimportantrolethroughoutourbook. Indeed,amoremodernandfundamentalpointofviewwouldbetostartwiththe principlethattheintervalistobeinvariant,andtoshowthatthemostgeneral lineartransformationconsistentwiththatpropertyistheLorentztransformation.

2.3Timedilation

AconsequenceoftheLorentztransformationisthatmovingclocksrunmore slowly.Consideratrainofpulsesoflightsentoutfromtheoriginofaframe S,reflectedfromamirroradistance L away,andreturningatime ∆t later.As soonasapulsereturnsanotherissent.

Considernowhowthislooksinframe S′ ,movingparalleltothemirrorwith speed v (seeFigure2.2).Inthelatterframe,thepathtakenbythelightislonger, andduetotheconstancyofthespeedoflightinallframes,thetimetakentoreturn ∆t ′ islonger.

InFrame S,thepulsereturntimeis ∆t = 2L/c.InFrame S′ ,itis ∆t ′ = 2L′ /c,

where L′2 = L2 +(v∆t ′ /2)2 .Combiningthesegives

Considerthetrainoflightpulsesasthetickingofaclockinthe S frame.As ∆t ′ > ∆t ,the S′ observer(whoseesamovingclock)noticesthatitsticksare slower.Thesituationissymmetric,sowheneverwelookatamovingclock,we willseeitrunningslowerthanourown.

Aclassicexampleoftimedilationcomesfrommuonscreatedintheupper atmospherethroughimpactofhighlyenergeticcosmicrays.Muonsareunstable particleswhoselifetime,asmeasuredinthelaboratory,isonly2.2 × 10 6 seconds,whichsuggeststhattheycouldtravelatmost ct ≃ 660mbeforedecaying. Butinpractice,muonscreatedhighintheatmospherearedetectedattheEarth’s surface.Thereasonisthattheyaremovingclosetothespeedoflightandhence, fromourperspective,theirevolutionisheavilytime-dilatedwiththeapparent lifetimemuchgreaterthantherest-framelifetime.

2.4Lorentz–Fitzgeraldcontraction

Acomplementaryphenomenontotimedilationisthatmovingobjectsappear shorter,knownastheLorentz–Fitzgeraldcontraction.Toderiveit,takearod thatisstationaryinframe S withendsat x = 0and x = L,andchooseamoving frame S′ suchthatthespatialoriginscoincideat t = t ′ = 0.Inthisframe,therod appearstomovewithspeed v inthe x′ direction.Whatisthelengthoftherod inthemovingframe?

Toanswerthequestion,weneedtobeabitmorepreciseabouthowwedeterminelengths.Wecandefinethelengthoftheobjecttobethedifferenceinthe x coordinatebetweentheends,whenmeasuredatthesametime.Inthe S frame, wheretheproblemwassetup,thisistrivially L,atanytime t .

However,inthe S′ frame,thecalculationisnotsotrivial,asweneedtoestablishthepositionsoftheendsoftherodatthesamevalueof t ′ .Itisconvenientto takethistimetobe t ′ = 0,aswesetupthecoordinatesystemssothattheirorigins coincideatthistime.TheLorentztransformation(2.7)tellsusthatmeasurements takenattime t ′ = 0musthappenattimes t = xv/c2 intheframe S.Hence,the measurementthepositionoftheendoftherod(x = L)at t ′ = 0intheframe S′ occursattime t = Lv/c2 inframe S (seeFigure2.3).

TheLorentztransformation(2.7)ofthecoordinatescorrespondingtothemea-

Figure2.3 Arodoflength L isstationaryinaframewithcoordinates (ct , x),with itsleft-handendattheorigin.Aframeismovingatspeed v inthe +x direction, withcoordinates (ct ′ , x′ ) coincidingwiththeoriginalframeat t ′ = 0and x′ = 0.A measurementofthepositionoftheendoftherodattime t ′ = 0happensattime t = Lv/c2 intheoriginalframe.Knowingthattheendoftherodisat x = L,the positionoftheendoftherodinthemovingframeattime t ′ = 0,andhenceits length L′ ,canbecalculatedfromtheLorentztransform(2.7).Theconclusionisthat L′ = L/γ,i.e.amovingrodisshorter.

surement (ct , x)=(Lv/c, L) tellsusthatithappenedat S′ coordinate

Hence,thelengthoftherodinthemovingframeis

Therodisthereforeshorter,whenmeasuredinthemoving S′ frame. Returningtotheexampleoftheatmosphericmuonsoftheprevioussection, inthemuonrest-framethelifetimetodecayisindeed2.2 × 10 6 seconds.Nevertheless,muonscanstillreachthegroundfromtheupperatmosphere,which fromtheirpointofviewisbecausetheatmosphereisapproachingthematrelativisticspeedsandisLorentz–Fitzgeraldcontracted.Ultimately,thephysical outcome,muonsreachingthegroundandbeingdetectedthere,hastobethesame fromeitherourpointofvieworthemuons.Hence,weseethattimedilationand Lorentz–Fitzgeraldcontractionarereallytwodifferentsidesofthesamecoin;it couldn’tmakesensetohaveonewithouttheother.

2.5Additionofvelocities

Wenowaskhowvelocitieschangebetweenmovingframes.Consideranobject movingwithvelocity u alongthe x axisinframe S.Whatisthevelocity u′ measuredinframe S′ ,whichismovingwithvelocity v alongthe x axis?

InNewtoniandynamics,wheretheGalileantransformationapplies,velocities simplyadd.ButwecanalreadyexpectthatthiswillnotholdinSpecialRelativity, becauseofthepostulatethatthespeedoflightisconstantinallframesregardless oftheirrelativevelocity.

Inthe S′ frame,thecomponentofvelocityalongthe x-axisisgivenby

wherethedistance ∆x′ istravelledinatime ∆t ′ .UsingtheLorentzboostgivenby equation(2.7),wecanwrite(the γ factorsimmediatelycancelout)

Sincethe x componentofvelocitymeasuredinframe S

Goingbetweenframesintheoppositedirectionsimplyswaps v for v inthe Lorentztransformation,sowecanalsowritetheequivalentequation

Inthenon-relativisticlimit v ≪ c and u ≪ c,werecovertheGalileanlaw u′ ≃ u v thatappliesinoureverydayexperience.Taking u = c,wefindthat u′ = c regardlessofthevalueof v,confirmingsuccessfulimplementationofthe frame-independenceofthespeedoflight.Withalittlemorework,wecanshow thataslongasboth v and u arelessthan c,thensois u′ .Thereisnowayto generateaspeedgreaterthanthatoflightfromspeedswhichareless,sothe speedoflightformsabarrierthatcannotbecrossed.

SomefurtherusefulpropertiesoftheSpecialRelativisticvelocitycomposition lawareexploredinProblem2.4.

2.6Simultaneity,colocality,andcausality

Webeginwithafewdefinitions.Werecallthataneventreferstosomething whichtakesplaceataspecificlocationinspaceataparticulartime.Thesetof allpossibleeventsisthe space–time.Eventsaresaidtobe simultaneous ifthey happenatthesametime,andtobe colocal iftheyhappenatthesamelocation. Notethatdifferentobserversdonotagreeonwhicheventsaresimultaneousor colocal. Coincident eventshappenatthesametimeandplace,andeveryone agreesonthat.

Considertwoevents.Unlesstheyaresimultaneous,thereisalwaysaGalilean transformationwhichmakesthemhappenatthesamelocation,whileincontrast thereisnosuchtransformationthatcanmaketwoeventsappearsimultaneous unlesstheyaresoinallframes.InSpecialRelativity,thesituationismorecomplicated.

Considerthefollowingquestion.Supposeanobserver S seeseventA,atlocation xA ,happeningbeforeeventBat xB (i.e. tB tA > 0).Wecanassumeboth xA and xB areonthe x-axiswith xB > xA .Whatconditionneedstobesatisfiedso that all observersseeeventAhappeningfirst?

WeusetheLorentztransformation

Thisispositiveprovided ctB ctA > (v/c)(xB xA ).So,if (xB xA ) isnottoo large,theorderofeventsisobserver-independent, Inthenewframe,thedistancebetweentheeventsis

WeseethatifeventAisabletocauseeventB,thenwecanalwaysfindaframe inwhich x′ B x′ A = 0,thatis,thereisaframeinwhichtheeventsarecolocal.

Conversely,if ctB ctA < (v/c)(xB xA ),wecanalwaysfindaframeinwhich ct ′ B ct ′ A = 0.Inthisframe,theeventsaresimultaneous.

Acrucialnotionis causality.EventAcanonlyinfluenceeventBifitcan sendasignal,whichcannottravelfasterthanlight.EventAcanthereforecause eventBonlyif

B xA ctB ctA ≤ 1 . (2.18)

Thisisexactlytheconditionastowhetherthereisawell-definedorder,asno observercanhave v > c.Relativitythereforerespectscausality;ifitispossible foreventAtophysicallyinfluenceeventB,thenallobserverswillagreethatevent

Timelike past

Figure2.4 DiagramofMinkowskispace–time,showinghowthelightconedivides itintoregionsseparatedfromtheoriginbytimelikeandspacelike(shaded)intervals. Alsoshownistheworld–lineofaparticlewhichissteadilyacceleratinginthe +x direction.

Ahappenedfirst.ThegeneralstatementisthateventAcaninfluenceeventBif thespace–timeintervalsatisfies s2 < 0.Notethat s canbeimaginary.

2.7Space–timediagrams

Werecallthataneventoccursagivenpointinspace–time,andanobserverspecifiesitbythevaluesoffourcoordinates.Thereisausefulgraphicalwayofrepresentingeventsandthecausalrelationshipbetweenthem,calledaspace–time diagram,illustratedbyFigure2.4forasimplifiedsituationwithonespacecoordinate.Theconventionistoscaletheaxessothatlighttravelsata45◦ angle.

Thecollectionofallpossiblepathstakenbylightraysemanatingfromand arrivingataspace–timepoint O isknownasthe lightcone.Itconsistsofall pointssatisfying s = 0,where s istheintervaldefinedabove.Notethateachpoint inspace–timehasitsownlightcone.

Thelightconedividesspace–timeintothreeregions, timelikefuture, timelikepast,and spacelike.Onlyeventsinthetimelikepastof O caninfluenceit, anditcanonlyaffectpointsinitstimelikefuture.Space–timepointsonthelight conehave lightlike intervals.

Timelikeeventsareseparatedbyaninterval s2 < 0,spacelikeoneshave s2 > 0,

andlightlikeoneshave s2 = 0.TheintervalisinvariantunderaLorentztransformation:therefore,allobserversagreeonwhethertwoeventsaretimelike,spacelike,orlightlikeseparated.

Fromtheearlierdiscussioninthissection,wecanseethattimelikeseparated eventsarecolocalinsomeframe,whilespacelikeseparatedeventscanbemade simultaneous.

A worldline isapaththroughspace–timetakenbyanyparticleorobserver.A physicalparticleneverexceedsthespeedoflight,andsoitsworldlinecannever beinclinedmorethan45◦ tothetimeaxis.Itsworldlinemustalwaysremain withinitsownforwardlightcone.

Problems

2.1 *Thespace–timeintervalbetweenapointattheoriginandanotherat (t , x, y, z) isdefinedas

ShowthatitisinvariantunderaLorentztransformationalongthe x-axis.

[Morechallengingisto assume theinvarianceoftheinterval,andshowthat theLorentztransformationisthemostgenerallineartransformationconsistent withthat.Tryit,forinstancerestrictingtotransformationsmixingjust t and x.]

2.2 *Amuon,withhalf-life t1/2 = 2 2 × 10 6 seconds,iscreatedintheatmosphere30kmabovetheEarth.Assumingithasnofurtherinteractionsandis travellingdirectlytowardstheEarth,whatistheminimumvelocity(inunitsof thespeedoflight)itmusthavesothatithasatleasta50%chanceofreachingthe Earth’ssurfacebeforedecaying?

2.3 Anastronauthasboughtanewspaceshipcapableoftravellingnearthe speedoflight.However,theyfailedtonoticethat,at20mlong,itis4mlonger thantheirgarage.TheydecidetotakeadvantageofLorentz–Fitzgeraldcontractiontofititin,andaskafriendtoclosethedoorbehindthem.

a)Howfastmusttheytravelfortheshiptofitintothegarage(asseenbytheir friend)?

b)Whatisthelengthofthegarageasseenbytheastronaut?

c)Thefriendslamsthedoorassoonastheshipisinside.Afterwards,reviewingtheircarefullyplacedarrayofcameraswithsynchronisedclocks,the friendfindsthatatthesameinstantthefrontcrashedthroughthefarwall. Whatwasthesequenceofeventsaccordingtotheastronaut?

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.