Where can buy Engineering for sustainable development: theory and practice wahidul k. biswas ebook w

Page 1


Engineering for Sustainable Development: Theory and Practice

Wahidul K. Biswas

Visit to download the full and correct content document: https://ebookmass.com/product/engineering-for-sustainable-development-theory-andpractice-wahidul-k-biswas/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Innovative Exploration Methods for Minerals, Oil, Gas, and Groundwater for Sustainable Development 1st Edition A. K. Moitra (Editor)

https://ebookmass.com/product/innovative-exploration-methods-forminerals-oil-gas-and-groundwater-for-sustainable-development-1stedition-a-k-moitra-editor/

Understanding Development: Theory and Practice in the Third World John Rapley

https://ebookmass.com/product/understanding-development-theoryand-practice-in-the-third-world-john-rapley/

Transportation Engineering: Theory, Practice and Modeling, 2nd Edition Dusan Teodorovic

https://ebookmass.com/product/transportation-engineering-theorypractice-and-modeling-2nd-edition-dusan-teodorovic/

Sustainable Production System: Eco-development versus Sustainable Development Clément Morlat

https://ebookmass.com/product/sustainable-production-system-ecodevelopment-versus-sustainable-development-clement-morlat/

Student Development in College: Theory, Research, and Practice 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/student-development-in-collegetheory-research-and-practice-3rd-edition-ebook-pdf/

Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development Vineet Kumar

https://ebookmass.com/product/integrated-environmentaltechnologies-for-wastewater-treatment-and-sustainabledevelopment-vineet-kumar/

Shield Tunnel Engineering: From Theory to Practice 1st Edition Shuying Wang

https://ebookmass.com/product/shield-tunnel-engineering-fromtheory-to-practice-1st-edition-shuying-wang/

Civil Engineering Materials: From Theory to Practice 1st Edition Qiang Yuan

https://ebookmass.com/product/civil-engineering-materials-fromtheory-to-practice-1st-edition-qiang-yuan/

Practical GraphQL: Learning Full-Stack GraphQL Development with Projects 1st Edition Nabendu Biswas

https://ebookmass.com/product/practical-graphql-learning-fullstack-graphql-development-with-projects-1st-edition-nabendubiswas/

EngineeringforSustainableDevelopment

EngineeringforSustainableDevelopment

TheoryandPractice

WahidulK.BiswasandMicheleJohn

SustainableEngineeringGroup,SchoolofCivilandMechanicalEngineering CurtinUniversity Perth,Australia

Thiseditionfirstpublished2023

©2023JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem, ortransmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerial fromthistitleisavailableathttp://www.wiley.com/go/permissions.

TherightofWahidulK.BiswasandMicheleJohntobeidentifiedastheauthorsofthisworkhas beenassertedinaccordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinother formats.

LimitofLiability/DisclaimerofWarranty

Thecontentsofthisworkareintendedtofurthergeneralscientificresearch,understanding,and discussiononlyandarenotintendedandshouldnotberelieduponasrecommendingor promotingscientificmethod,diagnosis,ortreatmentbyphysiciansforanyparticularpatient.In viewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,and theconstantflowofinformationrelatingtotheuseofmedicines,equipment,anddevices,the readerisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertor instructionsforeachmedicine,equipment,ordevicefor,amongotherthings,anychangesinthe instructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisher andauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsor warrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedby salesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefact thatanorganization,website,orproductisreferredtointhisworkasacitationand/orpotential sourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe informationorservicestheorganization,website,orproductmayprovideorrecommendations itmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedin renderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readers shouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetween whenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbe liableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationDataappliedfor: Hardback:9781119720980

CoverDesign:Wiley

CoverImage:©PavelChagochkin/Shutterstock

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Dedicatedtomylatefather

ProfessorMoziburRahmanBiswas,PhD(TexasA&MUniversity) 31/10/1939–06/07/2020

Thoughyounevergottoseethis, You’reineverypage.

Contents

Preface xv

PartIChallengesinSustainableEngineering 1

1SustainabilityChallenges 3

1.1Introduction 3

1.2WeakSustainabilityvsStrongSustainability 6

1.3UtilityvsThroughput 8

1.4RelativeScarcityvsAbsoluteScarcity 10

1.5Global/InternationalSustainabilityAgenda 10

1.6EngineeringSustainability 12

1.7IPAT 19

1.8EnvironmentalKuznetsCurves 20

1.9ImpactofEngineeringInnovationonEarth’sCarryingCapacity 21

1.10EngineeringChallengesinReducingEcologicalFootprint 22

1.11SustainabilityImplicationsofEngineeringDesign 24

1.12EngineeringCatastrophes 27

1.13ExistentialRisksfromEngineeringActivitiesintheTwenty-First Century 30

1.13.1ArtificialIntelligence(AI) 30

1.13.2GreenTechnologies 32

1.14TheWayForward 34 References 35

2QuantifyingSustainability–TripleBottomLine Assessment 43

2.1Introduction 43

2.2TripleBottomLine 44

2.2.1TheEconomicBottomLine 44

2.2.2EnvironmentalBottomLine 44

2.2.3TheSocialBottomLine 45

2.3CharacteristicsofIndicators 46

2.4HowDoYouDevelopanIndicator? 47

2.5SelectionofIndicators 48

2.6ParticipatoryApproachesinIndicatorDevelopment 48

2.7DescriptionofStepsforIndicatorDevelopment 49

2.7.1Step1:PreliminarySelectionofIndicators 49

2.7.2Step2:QuestionnaireDesignandDevelopment 49

2.7.3Step3:OnlineSurveyDevelopment 49

2.7.4Step4:ParticipantSelection 49

2.7.5Step5:FinalSelectionofIndicatorsandCalculationofTheir Weights 50

2.8SustainabilityAssessmentFramework 53

2.8.1ExpertSurvey 54

2.8.2StakeholdersSurvey 58

2.9TBLAssessmentforBenchMarkingPurposes 60

2.10Conclusions 61 References 62

3LifeCycleAssessmentforTBLAssessment–I 63

3.1LifeCycleThinking 63

3.2LifeCycleAssessment 64

3.3EnvironmentalLifeCycleAssessment 65

3.3.1ApplicationofELCA 66

3.3.2ISO14040-44forLifeCycleAssessment 68

3.3.2.1Step1:GoalandScopeDefinition 68

3.3.2.2Step2:InventoryAnalysis 71

3.3.2.3Step3:LifeCycleImpactAssessment(LCIA) 72

3.3.2.4Step4:Interpretation 87

3.4AllocationMethod 87

3.5TypeofLCA 91

3.6UncertaintyAnalysisinLCA 92

3.7EnvironmentalProductDeclaration 95 References 103

4EconomicandSocialLifeCycleAssessment 107

4.1EconomicandSocialLifeCycleAssessment 107

4.2LifeCycleCosting 108

4.2.1DiscountedCashFlowAnalysis 110

4.2.2InternalisationofExternalCosts 117

4.3SocialLifeCycleAssessment 120

4.3.1Step1:GoalandScopeDefinition 121

4.3.2Step2:LifeCycleInventory 123

4.3.3Step3:LifeCycleSocialImpact 123

4.3.4Step4:Interpretation 124

4.4LifeCycleSustainabilityAssessment 128 References 130

PartIIISustainableEngineeringSolutions 131

5SustainableEngineeringStrategies 133

5.1EngineeringStrategiesforSustainableDevelopment 133

5.2CleanerProductionStrategies 134

5.2.1GoodHousekeeping 135

5.2.2InputSubstitution 136

5.2.3TechnologyModification 137

5.2.4ProductModification 138

5.2.5OnSiteRecovery/Recycling 138

5.3FujiXeroxCaseStudy–IntegrationofFiveCPS 139

5.4BusinessCaseBenefitsofCleanerProduction 140

5.5CleanerProductionAssessment 140

5.5.1PlanningandOrganisation 140

5.5.2Assessment 141

5.5.3FeasibilityStudies 144

5.5.4ImplementationandContinuation 148

5.6Eco-efficiency 150

5.6.1KeyOutcomesofEco-efficiency 152

5.6.2Eco-efficiencyPortfolioAnalysisinChoosingEco-efficient Options 152

5.7EnvironmentalManagementSystems 157

5.7.1AimsofanEMS 160

x Contents

5.7.2ABasicEMSFramework:Plan,DoCheck,Review 161

5.7.3InterestedParties 161

5.7.4BenefitsofanEMS 162

5.8Conclusions 164 References 165

6IndustrialEcology 167

6.1WhatIsIndustrialEcology? 167

6.2ApplicationofIndustrialEcology 168

6.3RegionalSynergies/IndustrialSymbiosis 169

6.4HowDoesItHappen? 172

6.5TypesofIndustrialSymbiosis 173

6.6ChallengesinBy-ProductReuse 179

6.7WhatIsanEcoIndustrialPark? 180

6.8PracticeExamples 185

6.8.1DevelopmentofanEIP 185

6.8.2IndustrialSymbiosisinanIndustrialArea 186

6.9IndustrialSymbiosisinKwinanaIndustrialArea 187

6.9.1Conclusions 187 References 189

7GreenEngineering 191

7.1WhatIsGreenEngineering? 191

7.1.1Minimise 192

7.1.2Substitute 192

7.1.3Moderate 193

7.1.4Simplify 193

7.2PrinciplesofGreenEngineering 194

7.2.1InherentRatherthanCircumstantial 194

7.2.2PreventionRatherthanTreatment 194

7.2.3DesignforSeparation 194

7.2.4MaximiseMass,Energy,Space,andTimeEfficiency 195

7.2.5Output-PulledvsInput-Pushed 195

7.2.6ConserveComplexity 196

7.2.7DurabilityRatherthanImmortality 196

7.2.8MeetNeed,MinimiseExcess 197

7.2.9MinimiseMaterialDiversity 197

7.2.10IntegrationandInterconnectivity 197

7.2.11MaterialandEnergyInputsShouldBeRenewableRatherthan Depleting 198

7.2.12Products,Processes,andSystemsShouldBeDesignedforPerformance inaCommercial‘AfterLife’ 198

7.3ApplicationofGreenEngineering 198

7.3.1Chemical 199

7.3.1.1PreventWaste 199

7.3.1.2MaximiseAtomEconomy 200

7.3.1.3DesignSaferChemicalsandProducts 201

7.3.1.4UseSaferSolventsandReactionConditions 201

7.3.1.5UseRenewableFeedstocks 202

7.3.1.6AvoidChemicalDerivatives 203

7.3.1.7UseCatalysts 203

7.3.1.8IncreaseEnergyEfficiency 203

7.3.1.9DesignLessHazardousChemicalSyntheses 203

7.3.1.10DesignChemicalsandProductstoDegradeAfterUse 204

7.3.1.11AnalyseinRealTimetoPreventPollution 204

7.3.1.12MinimisethePotentialforAccidents 204

7.3.2SustainableMaterials 206

7.3.2.1ApplicationsofCompositeMaterials 208

7.3.2.2ThePositivesandNegativesofCompositeMaterials 209

7.3.2.3Bio-Bricks 209

7.3.3HeatRecovery 210

7.3.3.1TemperatureClassification 211

7.3.3.2HeatRecoveryTechnologies 213

7.3.3.3ThePositivesandNegativesofWasteHeatRecovery 217 References 217

8DesignfortheEnvironment 221

8.1Introduction 221

8.2DesignfortheEnvironment 221

8.3BenefitsofDesignfortheEnvironment 223

8.3.1EconomicBenefits 223

8.3.2OperationalBenefits 224

8.3.3MarketingBenefits 225

8.4ChallengesAssociatedwithDesignfortheEnvironment 225

8.5LifeCycleDesignGuidelines 228

8.6PracticeExamples 233

8.6.1DesignforDisassembly 233

8.6.2TheLifeCycleBenefitsofRemanufacturingStrategies 236

8.7ZeroWaste 240

8.7.1WasteDiversionRate 240

8.7.2ZeroWasteIndex 241

8.8CircularEconomy 243

8.8.1MaterialFlowAnalysis 245

8.8.2PracticeExample 247

8.9ExtendedProducerResponsibilities 252 References 254

9SustainableEnergy 257

9.1Introduction 257

9.2Energy,Environment,Economy,andSociety 258

9.2.1EnergyandtheEconomy 258

9.2.2EnergyandtheEnvironment 260

9.3SustainableEnergy 261

9.4PathwaysForward 265

9.4.1DeploymentofRenewableEnergy 265

9.4.2ImprovementstoFossilFuelBasedPowerGeneration 266

9.4.3PluginElectricVehicles 269

9.4.4GreenHydrogenEconomy 271

9.4.5SmartGrid 273

9.4.6DevelopmentofEfficientEnergyStorageTechnologies 274

9.4.7EnergyStorageandtheCalifornian“DuckCurve” 279

9.4.8SustainabilityinSmall-ScalePowerGeneration 280

9.4.8.1TypesofDecentralisedElectricityGenerationSystem 281

9.4.9BlockchainforSustainableEnergySolutions 284

9.4.10WasteHeatRecovery 285

9.4.11CarbonCaptureTechnologies 286

9.4.11.1PostCombustionCapture 286

9.4.11.2Pre-combustionCarbonCapture 287

9.4.12Demand-sideManagement 288

9.4.12.1NationalPerspective 289

9.4.12.2UserPerspective 290

9.4.12.3CO2 MitigationperUnitofIncrementalCost 290

9.5PracticeExample 291

9.5.1Step1 291

9.5.2Step2 294

9.5.3Step3 294

9.5.4Step4 295

9.5.5Step5 296

9.5.6Step6 296

9.5.7Step7 297

9.6LifeCycleEnergyAssessment 297

9.7ReferenceEnergySystem 298

9.8Conclusions 301 References 301

PartIVOutcomes 307

10EngineeringforSustainableDevelopment 309

10.1Introduction 309

10.2SustainableProductionandConsumption 309

10.3FactorX 311

10.4ClimateChangeChallenges 314

10.5WaterChallenges 320

10.6EnergyChallenges 321

10.7CircularEconomyandDematerialisation 322

10.8EngineeringEthics 324

10.8.1EngineersAustralia’sSustainabilityPolicy–Practices 326 References 327 Index 331

Preface

Engineeringforsustainabledevelopmentbringsbothhopeandchallengesforthe twenty-firstcentury.

ThelatestIPCC(2021)Reportstatesthatglobalsurfacetemperatureswillcontinuetoincreaseunderallemissionscenariosuntilatleastthemid-century.Itis clearthatglobalwarmingof1.5–2 ∘ Cwillbeexceededduringthetwenty-first centuryunlesssignificantreductionsincarbondioxideandothergreenhousegas emissionsaremadeinthenextfewdecades.

Whatdoesthismeanfortheengineeringprofession?Itmeansthatthetechnologies,materialchoices,andengineeringdesignswillallfaceincreasingpressurestoimproveenergyefficiency,tomovetowardsonlyrenewableenergy,reduce embodiedenergyandmaterialintensityinengineeringproductsandservices,and considerreducingend-of-lifewastemanagementissuesthroughimproveddesign, resourcerecovery,andremanufacturing.Italsowillmeanthattheengineering professionwillneedtoseriouslyconsiderthestewardshipandcorporatesocial responsibilitiesoflivinginaworlddestinedfor9billionpeoplebymid-century andalltheattendantpressuresofawarmingclimate,increasedpopulationdensityinourmajorcities,andtheconstanttrade-offsbetweenincreasedeconomic growthandtheconservationofglobalresourcesandthenaturalenvironment.

Allthesechallengesaregroundedinengineeringdecision-making.AshighlightedbytheNaturalEdgeProject(2002–2006),70%ofmodernsustainability challengesfundamentallyinvolveengineeringdecision-making.

Engineeringcoversawidevarietyofindustryapplications,manufacturing sectors,consumergoodproduction,andhousingandenergysystems.Engineers werecentraltotheseventeenthcenturyIndustrialRevolutionwhichcatalysed theintensiveproductionsystemspreviouscenturyhavebenefitedfrominterms ofimprovedhealth,higherlivingstandardsandphenomenalglobaleconomic growthandtechnologicaldevelopment.Wehavetheengineeringprofessionto thankforthis.

Ontheothersideofthesamecoin,wehaveseentwocenturiesofsignificantcarbonemissionsresultinginglobalwarmingfromfossilfuelconsumption,wehave large-scaleclearingofvasttractionsofglobalvegetationintheraceforincreased agriculturalproductionandurbandevelopmentandindoingsowehavesimply reliedonthebenefitsoftheattendanteconomicgrowthtojustifyourvoracious needforexpansion,marketdomination,andprofitability.Theyardsticksforthe successofsuchachievementswerelargelymeasuredthroughincreasedprofits, shareholderreturn,and/ortechnologicaldevelopment.

Howeverthetideisnowturning.Climatepressuresandalongwindedglobal policydiscussiononcarbonmitigation,increasingenvironmentalandmarine degradation,extendedperiodsofdroughtandwatershortagesandglobalresource issuessuchascriticalmetalavailabilityarenowraisingquestionsthatthe engineeringprofessionhavenotreallyhadtopreviouslyseriouslyconsider.

Ourworldischangingandwillprovidemanynewchallengesforthetwenty-first centuryengineer.

Thisbookisaboutthatverychallenge.Asweengineerafutureofsustainable development,whatistheroleoftheengineeringinhelpingtomitigate,adapt,and addresiliencetotheclimate,resource,andstewardshipchallengesthatgovernments,community,andtheyoungergenerationwillexpectfromtheprofessionin comingdecades?Zerocarbonproduction,100%renewableenergy,circulareconomyuseofproductwasteandresourcerecovery,mandatorysustainabilityassessmentsthatperhapsblockchaininstrumentswillauditonourbehalfandincreasing pressuresonanyassociatednegativeimpactonthecommunityandtheenvironment.WelcometoEngineeringforSustainableDevelopment.Thechallengeis ours.Theresponsibilityisours.

TheauthorsthankDrGordonIngramofChemicalEngineeringDepartmentof CurtinUniversityforhiscarefulreviewofsomechaptersofthisbook.

July2022

WahidulK.BiswasandMicheleJohn

SustainabilityChallenges

1.1Introduction

Sustainabilityisthegoalorendpointofaprocessknownas(ecologically) sustainabledevelopment.Sustainabledevelopmentconsistsofalargenumber ofpathwaystoreachthisendpointthatseesabalancebetweentheprovision ofecosystemservices,andhumanaccesstonaturalresourcestomeetthebasic needsoflife.Engineeringsustainabilitychallengesarefocusedonmanagingthis challengeandcomingupwithinnovativetechnologicalsolutionstohelpsustain theearth,giventhefactthattheearth’sexistingresourceswillbeinadequatein meetingthedemandsoffutureestimatedpopulationgrowth.Thelatestdatafrom theglobalfootprintnetworksuggeststhatthehumanityusedanequivalentof1.7 earthsin2016(Vandermaesenetal.2019),whiletheUnitedNationspredicted thattheglobalpopulationwillincreasefrom7.7billionin2019to11.2billion bytheendofthiscentury(UnitedNations2020).Attherateatwhichweconsume theearthresources,futuregenerationswillrequireapproximately(1.7 × 11.2/7.7) or2.4planetstoprovideequivalentresourcesbytheendofthiscentury.However, weonlyhaveoneplanet.

Worldwidehumanpopulationgrowthhasbeensupportedbytheindustrial revolutionandtheinventionofsteamengineintheeighteenthcenturyandmass production.Thisindustrialrevolutiongavebirthtoourmoderncivilizationand systematicallyimprovedlivingstandardsresultinginapopulationexplosion from0.5to7.7billiononlyover253years(1776–2019)(CilluffoandRuiz2019). Theexploitationofminerals,fuels,biomass,androcksfortransport,agriculture, building,andmanufacturingincreasedrapidlyduringthistimetodeliverthe goodsandservicesnecessarytosupportthegrowthofmoderncivilization. Technologieshaveadvancedovertheseyearssignificantlytoexploitrare-earth materialsandscarceresourcestomeetthegrowingdemandofanincreasing populationandtorunthemoderneconomy.Thescarcityofimportantmaterials thatarelimitedresourcesisonlynowbeingunderstood(Whittingham2011).

EngineeringforSustainableDevelopment:TheoryandPractice,FirstEdition. WahidulK.BiswasandMicheleJohn. ©2023JohnWiley&SonsLtd.Published2023byJohnWiley&SonsLtd.

Humanitycurrentlythususesresources1.75timesfasterthantheycanbe regeneratedbynatureorprovidedbyourplanet(GFN2019).Apartfrompopulationgrowth,factorswhicharecausingtherapiddeclineoftheearth’sresources areourincreaseddependencesonnon-renewableresources,energyandmaterial intensivetechnologies,anduncontrolledproductionandconsumption.Global demandformaterialshasincreased10-foldsincethebeginningofthetwentieth centuryandissettodoubleagainby2030,comparedwith2010(European Commission2020).Resourceproducershavebeenincreasinglyabletodeploy arangeoftechnologicaloptionsintheiroperations,evenmininganddrilling inplacesthatwereonceinaccessible,increasingtheefficiencyofextraction techniques,switchingtopredictivemaintenance,andusingsophisticatedmodellingtoolstoidentify,extract,andmanageresources.Themajoremphasis hasbeenoneconomicgrowthtomeetthedemandsofagrowingpopulation, technologicalprogressbasedonthroughput-increasing(orresourceexploitation) withoutconsiderationofthebio-physicallimitsofournon-renewableresources (e.g.coal,gas,ore,rocks).Theseresourcesrequirehundredsofthousandsof yearstoformbelowtheearth,anditraisesquestionsastowhatwillhappento futuregenerationswhenallfinitenon-renewableresourcesareexhausteddue touncontrolledproductionandconsumption.Inadditiontotheexponential growthofresourceuse,technologythatisusedforconvertingearthresources toproducts(e.g.construction,automobiles,electronicitems)andservices(e.g. electricity,internet,transportation,communicationsystem,watersupply)tomeet ourgrowingdemandshaveresultedinemissionsofglobalwarminggases(mainly CO2 ).Theconsequenceofglobalwarmingincludesflooding,increasedbushfire, andthedestructionofecosystems.By2050,between70%and80%ofallpeopleare expectedtoliveinurbanareas(UnitedNation2018),whichareresourceintensive andartificialenvironmentsmadebyman,tofurtherimprovelivingstandards. Theengineeringchallengeistominimiselanduseandconserveresourceswhilst meetingthedemandsoftheworldpopulationthroughenergyefficientbuildings, waterconservation,compactcities,andefficienttransportationsystemsinour builtenvironment.

Populationcontrol,rapidtechnologicalinnovation,andbehaviouralchangeare alsorequiredtoenhanceresourceefficiency.Itisnowcrucialforthepresentgenerationtochangetheirbehaviourandmindsets,whichwillenablethemtosustain adequateresourcesforfuturegenerations(inter-generationalequity).According totheBrundtlandreport(1987),‘Sustainabledevelopmentisdevelopmentthat meetstheneedsofthepresentwithoutcompromisingtheabilityoffuturegenerationstomeettheirownneeds’.ThewidelyusedBrundtland’sdefinitionon sustainabledevelopment,waspublishedin‘OurCommonFuture’in1987.

Whilepopulationdensityofdevelopednationsisfarlessthanthatofdeveloping nations,overconsumptionbytheformerhasalreadyexceededtheirbio-capacity

resultingintheirneedtosourceresourcesfromdevelopingnations.TheUN DevelopmentProgramreportsthattherichest20%oftheworld’spopulation consume86%oftheworld’sresourceswhilethepoorest80%consumejust14% (UN1999).Thishighlightstheintra-generationalsocialequityaspectsofsustainabilityandtheincreasedgapbetweenrichandpoorpeople.Therapidprogressin technologyhasfuelledthissocialinequality.AccordingtoDavidGrusky,Director ofStanford’sCenteronPovertyandInequality,‘Oneofthelargestandmost prominentdebatesinsocialsciencesistheroleoftechnologyininequality’ (Rotman2014).Thebiggestsocialinequityisthatthetechnology-driveneconomy greatlyfavoursasmallgroupofpeoplebyamplifyingtheirinherentskillsand wealth.Humancapitalbeingcontinuouslyreplacedwithman-madecapital (e.g.self-servicecashregister,foodprocessors)hasincreasedunemployment. Increasedunemploymentontheotherhandincreasedsocialproblems,suchas poverty,crime,corruption,anddomesticviolence.

Secondly,technologieshavenotonlyenabledwealthynationstocontrolworld resourcesbuthavealsoincreasedtheoverconsumption(luxuriouspollutions), whichisresponsibleforfurtherenvironmentaldegradation.Povertyinapoor nationthatcausesenvironmentaldegradationisknownasthepollutionforthe survival.Forexample,manychildrenindevelopingnationsaresentoutsideto collectlowgradefuelslikeleavesandtwigsastheirparentscannotaffordto purchasehighqualityfuellikegasorwood.Therefore,theirchildrendonot gotoschoolspendingthewholedaygatheringfuelstomeetthedailycooking energydemand.Thecollectionoflowgradefuelsnotonlyaffectsthechildren’s educationbutalsocausesecologicalimbalancebydeprivingsoilfromnutrient richorganicmatter.

Thirdly,sealevelrise(SLR)duetoglobalwarmingwillaffectalargeportion oflandofdevelopingnationsindenselypopulatedcountriesintheAsiaPacific region.

Plannedobsolescenceofbusinessstrategyinrecenttimeshavemadetechnologiesobsolete,unfashionableornolongerusablebeforetheirnaturalendoflife (EoL),whichhascreatedunsustainableconsumption.Foratleasthalfacentury, themainstreamfashionindustryhaspurposelyproducedgoodsofinferiorquality toincreasesalestogainshorttermfinancialbenefits.Inessence,itmeansthata companyisdeliberatelydesigningandmanufacturingproductswithashorterlife span,bymakingthemnon-functionalorunfashionableearlierthannecessary andincreasingthewastesinkiftheseitemsarenotdesignedfordisassemblyor reuseorremanufacturing.

Addressinginter-andintra-generationalsocialinequitiesrequiresareduction intheinvestmentinunnecessaryluxuryitems,controlledeconomicgrowth, sustainablebehaviourandlifestylechanges,andtodesigntechnology/products forrepurposinganddematerialisation(e.g.accessingmaterialsonlinereduced

toneedofhardcopies,virtualconferencesreducetravelling).Aparadigmshift isurgentlynecessarytoswitchfromresourceintensivetechnologiesthatare currentlybeingused(e.g.powerplant,car,infrastructure)tomoreresourcesaving technologies(e.g.replacinganewenginewitharemanufacturedengine,super lightcarwithreducedfuelconsumptionreduceslongruncostsandemissions). Secondly,itisimportanttoencouragethetechnologicalracetoenhanceboth inter-andintra-generationalsocialequity.Moredependenceontechnology meansweneedmoreenergyandmaterialresourcestoproduce,operate,and maintaintheminanincreasinglyresourcesscarceworld.Weneedtoachievea balancebetweentechnologyandhumancapitalforenhancingintra-generational socialequitywhilemaintainingeconomicgrowth.Inanutshell,socialequity means‘equalopportunityofaccesstobasicneeds’forallpeopleonearth.

InnovativetechnologicaldesignforconvertingEoLproducttonewproductwill reduceland,energy,andthematerialconsumptionassociatedwithvirginmaterialconsumption.Weneedplanningandmanagementofsourcing,procurement, conversion,andlogisticsactivitiesinvolvedduringpre-manufacturing,manufacturing,use,andpost-usestagesintheproductlifecycle.Forexample,Renault isaremanufacturingcompanywhichrequiresmorelabourforremanufacturing gearboxesthanmakingnewones,butthereisstillanetprofitbecausenocapital expensesarerequiredformachinery,andnocuttingandmachiningoftheproducts,resultinginnowasteandabettermaterialsyield(EllenMacArthurFoundation2014),enhancingbothinter-andintra-generationalequitybycreatingjobs andbyimportantlyconservingvirginresourcesforfuturegenerations.

1.2WeakSustainabilityvsStrongSustainability

Therearemanydifferentapproachestoachievesustainability,whichmayresult ineither‘weak’or‘strong’sustainabilityoutcomes.Thecoreideasthatare widelydiscussedintheliteraturesuchasengineeringinnovationshouldnotonly considerconservationofresourcesforfuturegenerationsbutalsothetechnology needstobedesignedtoenhancesocialwell-being(Table1.1).Secondly,achieving social,economic,andenvironmentalperformanceinaproductordeliveringa servicetoaparticularsectorcouldresultinunplannedadverseconsequences.

Theweakdefinitionofsustainabilityillustratedintheinterlockingdiagram (Figure1.1a)allowsthetrade-offbetweensectors,anddoesnottakeintoaccount carryingcapacityortheresourcelimitationsofearth.Thefirstpriorityfor livingwithintheworld’scarryingcapacityistoachieveastrongdefinitionof sustainability,asrepresentedbythenestedeggdiagram(Figure1.2b).Societal demandshouldconsiderinter-andintra-generationalsocialequityissueswithin ecologicallimitsorfiniteresourceslevels.Engineeringdesignandinnovation

Table1.1 Approachesforaddressingsustainability

CoreideaCommentsandrelatedconcepts

Meetingneedsofpresent withoutcompromising needsoffuture

Harmonising/integrating social,economicand environmentalobjectives

Livingwithintheworld’s carryingcapacity

● Canbethoughtofasover-riding

● Includes‘intergenerationalequity’, ‘intergenerationaldiscounting’,recognitionof ecologicallimits

● Cantendtowards‘weak’sustainability(assumes assetsinonesectorcanbetradedoffagainstothers)

● Includes‘triplebottomline’

● Tendstobeassociatedwith‘strong’sustainability (ecologicalassetscannotbetradedoffbeyonda certainpoint)

● Includes‘ecologicalfootprint’

Figure1.1 Weak(a)andstrong(b)sustainability.Source:ModifiedfromLimetal.(2015) mustmakesuretoaddresssocialneedswhileusingresourceswithintheearth’s carryingcapacityandnotexploitresourcesbeyondtheearth’scarryingcapacity.

Thedifferencebetween‘weak’and‘strong’definitionsofsustainabilityasshown inTable1.2highlightsthefactorsthatneedtobetakenintoaccounttoachieve strongsustainability.AsitappearsinTable1.2,weaksustainabilityfocuseson economicgrowth,pollutioncontrolratherthanpollutionprevention,ignoresthe earthresourceslimitsandtherisksassociatedwithtechnologicaldevelopment, andignoresthefactthatexponentialgrowthistakingplaceinaworld.Onthe hand,‘strongsustainability’focusesonpollutionpreventioninsteadofpollution control,considerstheecologicalorbio-physicallimitsofearthsresources,and takesintoconsiderationofconsequencesthatmayberesultedfromhumanactivitiesandtechnologicaldevelopment.

Figure1.2 Engineers’challengetocombatclimatechange

Table1.2 Differencebetweenweakandstrongsustainability

‘Weak’sustainability‘Strong’sustainability

‘Brown’agenda–pollutionfocus‘Green’agenda–focusonresilienceof ecosystems

EnvironmentalfocusEcologicalfocus

Degradationofonegroupofassetscan becompensatedbyimprovementin another

Notabalancingact,butanintegrating act

InterlockingcirclesNestedeggdiagram

EvolutionarychangerequiredRadicalchangerequired StartswitheconomicimperativesStartswithecologicalimperatives ‘Weak’sustainability‘Strong’sustainability Canbeaccommodatedwithinthe traditionaleconomicparadigm

Downplaysriskanduncertainty, althoughconsistentwiththe precautionaryprinciple

Favours‘pressure-state-response’ model(linkingcauseandeffect)for developingindicators

Source:AdaptedfromDiesendorf(2001)

1.3UtilityvsThroughput

Challengesthetraditionaleconomic paradigm

Highlightsriskanduncertainty

Identifiestheneedforbettermodelling ofsystems,whilerecognisingfull understandingunlikely

Arguesthat‘pressure-state-response’ modeloversimplifiesdynamicsof complexecological(orsocial)systems

Currentengineeringpracticemainlymeetsthehumanneedsofthecurrentgenerationbyprovidingutilityservicesincludingenergy,infrastructure,electronics, transportation,water,foodprocessing,etc.Atthesametime,theyalsoneed toconsider‘throughput’intheirengineeringdesignprocess.Thethroughput

istheflowofrawmaterialsandenergyfromtheglobalecosystem’ssourcesof lowentropy(mines,wells,fisheries,croplands)throughtheeconomy,andback totheglobalecosystem’ssinksforhighentropywastes(atmosphere,oceans, dumps).Engineersneedtomakesurethatmoreutilityisprovidedperunitof throughput(e.g.moreMWhofelectricityperunitofthroughputconsistingof mining,processing,transportation,andthecombustionoffossilfuel;buildingof a400m2 housewithreducedlevelofquarrying,crashing,constructionactivities andtheuseofvirginmaterials).

Utilityignoresthebio-physicallimitofearthresources.Thisutilityshouldbe non-decliningforfuturegenerationsasthefutureshouldbeatleastasbetteroff asthepresentintermsofitsutilityorhappiness.Ontheotherhand,physical throughputisalsotobenon-declining(Daly2002)meaningthatthecapacity oftheecosystemtosustaintheflowsoffood,fuel,minerals,waterarenottobe exhausted.TheuseofenergyandmaterialefficiencyandallRs(recycle,reuse, reduce,remanufacturing,redesign,recovery)canincreaseutilityperunitof throughput,thusleavingadequatenaturalresourcesforfuturegenerations.

Naturalcapital(i.e.cleanair,waterandnon-contaminatedornon-toxicsoil) istobemaintainedanditisthecapacityoftheecosystemtoyieldbothaflow ofnaturalresourcesandafluxofnaturalservices(i.e.grainsforfood,waterfor drinking,irrigation).Maintainingnaturalcapitalconstantisoftenreferredtoas ‘strongsustainability’indistinctionto‘weaksustainability’inwhichsomenaturalresourcesarelostduetomanmadecapital(i.e.convertingforesttoanindustrial area).Ecologicallimitsarerapidlyconvertingeconomicgrowthintouneconomic growth–i.e.throughputgrowththatincreasescostsbymorethanitincreasesbenefits,thusmakingmostofusaswellasfuturegenerationpoorer(Daly2002).For example,climatechangeresultingfromtheGHGemissionsfromhumanactivitiestorunthemoderneconomyhavealreadycauseduneconomicconsequences suchasbushfire,SLR,drought,andtheextinctionofspecies.Uncontrolledgrowth withoutconsideringengineeringinnovationforresourceconservationcannotpossiblyincreaseeveryone’srelativeincomeasfewpeopletendtocontrolmostof worldresources.Useofincreasinglyfinite,yetunownedecosystemservices(e.g. soil,water,forest)byfewimposesopportunitycostsonfuturegenerations.For example,rapidconversionofforesttocroplandinWesternAustraliaincreased themixingofrainwaterwithsaltywaterindeepaquifersduetothefactthatthe rootsofcropsarenotlongenoughlikedeeprootedperennialspeciestoreach deeperaquifers.Consequently,salinewatertableriseandaffectthecultivation ofcrops.Thisisanopportunitycostforfuturegenerationsastheywillnotbe abletousethissaltdegradedlandforcropproduction.Morehardevidenceof overexploitationisintheminingindustrywheretheoregradeinsomemining operationshasbeguntodeclineresultinginincreasedenergyconsumptionand costs,particularlywiththeextractionofsmallamountofmineralsfromalarge

amountofore.Thisisnotonlymakingthemineralprocessingexpensivebutit isalsocausingahighleveloflanddegradation,waterpollution,andthelossof biodiversity.

1.4RelativeScarcityvsAbsoluteScarcity

ClevelandandStern(1998)definedresourcescarcityastheextenttowhich humanwell-beingisaffectedbythequalityandavailabilityofnaturalresource stocks.Onthisbasis,relativescarcitycanbeconsideredtobetheextentto whichthequalityandavailabilityofaparticularresourcetypeimpactsupon humanwell-beingrelativetootherresourcetypes.Therefore,iftheavailability ofaparticularresourcedeclinesrelativetootherresources,then,itspositive contributiontohumanwell-beingcomparativelydeclinesand,assuch,itsrelative scarcityincreasesandpeoplemayswitchtootherresources.Forexample,ifgas isscarceorrunsout,thenwecangoforoilandthenwhenoilrunsout,wecan goforcoal.Thisactuallygraduallyincreasesthepriceofresourcesduetothe increaseddemandwiththerapiddeclineoftheseenergyreservoirsonearth. Relativescarcitydoesnottakeintoconsiderationthebio-physicallimitations ofnon-renewablefiniteresources.Ecologicaleconomistsconsiderthedifference betweenrelativeandabsolutescarcitytobeacritical.Absolutescarcitymeans thatthereisabio-physicallimitoftheresource.Theconsiderationofabsolute scarcityintheengineeringdesignprocessshouldincreasetheuseofrenewable resourcestoaddressthescarcityassociatedwithnon-renewableresources.

1.5Global/InternationalSustainabilityAgenda

Theglobalsustainabilityagendaisalistoftasksoractions,whichvaryfrom countrytocountry,basedontheirrespectivesocio-economicandenvironmental sustainabilitygoal.Sustainabilityisaglobalissueanditrequirestheparticipation ofallnationsacrosstheglobetodevelopcollaborativeandcollectiveaction planstomanageearthresourcesinasociallyequitablemannerforbothcurrent andfuturegenerations.PollutionandGHGemissionsandincreasedhuman refugeemovementacrosscountryboundarieshighlighttheimportanceofconductingglobalsustainabilitymanagement.Somepopularslogansthatestablished sustainabledevelopmentasaglobalissueinclude:

Thinkgloballyandactlocally–Theconservationoffiniteresourceslocally couldhelpenhancethesecurityofindispensableresourceslikefood,minerals,fuelglobally.Also,thereductionofGHGemissionslocallyusingrenewableenergysourcescouldhelpreduceglobalwarmingimpacts.

Lighttomorrowwithtoday–Ourcombinedeffortandactionstodayorthe useofenvironmentalfriendlyandresourceefficienttechnologiesthatcan conserveresourcesandleaveabetterworldforourfuturegenerations.

Somepoliticaleventsinrecentdecadeshavebroughtsustainabledevelopment firmlyintothepublicarena,andestablisheditasanacceptedgoalforinternational policyordecisionmakers.WorldSustainableDevelopmentSummitsbrought togetherpeoplefromallwalksoflife,includingnobellaureates,politicalleaders, decisionmakersfrombilateralandmultilateralinstitutions,businessleaders, thediplomaticcorps,engineers,scientistsandresearchers,mediapersonnel, membersofcivilsocietyandevencelebrities;onacommonplatformtodeliberate onissuesrelatedtoenvironmental,social,andeconomicagendasforachieving sustainablefutures.

ThefirstEarthSummitonsustainabledevelopmentinRiodeJaneiroin1992 agreedonaglobalplanofaction,knownasAgenda21,designedtodeliveramore sustainablepatternofdevelopment.Agenda21focusedonpreparingtheworld forlifeinthetwenty-firstcentury.Signedby178nationalgovernments,Agenda21 providesacomprehensiveplanofactiontoattainsustainabledevelopmentatlocal, national,andgloballevels(UN1992).TheissuesthatwerediscussedinAgenda21 reportcoveredbothinter-andintra-generationalequityissues,includinguneven development,genderequity,povertyalleviation,andunsustainableconsumption. Secondly,itfocusedontheimpactofpopulationgrowthandtheneedfordevelopednationstoextendcooperationtodevelopingnationstobuildlocalcapacity buildinginaddressingsustainabilitychallenges.Finally,itdiscussedtheneedfor researchandinnovationtoachievesocial,economic,andenvironmentalobjectivesofsustainability.Engineerscanpotentiallyaddresssustainabilitychallenges byinnovatingsociallyequitable,accessible,resourceefficient,andaffordabletechnologies,utilisingindigenousorlocalnaturalandhumanresources.

ThetargetofnextWorldSummitonSustainableDevelopment,inJohannesburgin2002wastoeradicatepovertyfordevelopingnationsandtoattain sustainableconsumptionandproductionfordevelopednations(UN2002). Engineerscandesignaffordabletechnologiesusingindigenousresourcesto createincome-generatingactivitiesforpoorpeopletomeetthebasicneedsoflife, whilereducingenvironmentalproblems,likedeforestationassociatedwiththe useoffuelwoodandindoorairpollutionfromcookingwithpoor-qualityfuels. Ontheotherhand,engineerscandesignproductsfordisassemblysothattheEoL productcanbegivenanewlifeandconsequentlyemissions,wastesgeneration andlanduse,andenergyandmaterialconsumptionassociatedwithupstream activities(i.e.miningtomaterialproduction)canbeavoidedandconserve resourcesforthefuturegenerations.Forexample,aremanufacturedcompressor (i.e.EoLcompressorturnedintoausablecompressor)costsone-thirdofthecost

ofanewcompressorwhileofferingthesamedurabilityorservicelife(Biswasand Rosano2011).

TheUnitedNationsConferenceonSustainableDevelopment–orRio+20–took placein2012,20yearsafterthefirstearthsummitinRiodeJaneiro.Worldleaders decidedtodevelopasetofsustainabledevelopmentgoals(SDGs)builtupon themillenniumdevelopmentgoals.Thepurposeofthesegoalswastopromote sustainabledevelopmentinanorganised,integrated,andglobalway.Nations agreedonexploringdifferentmeasuresofwealthotherthangrossdomestic product(GDP)thatalsoconsidersenvironmentalandsocialfactors.Thiswasa clearattempttoachieveecologicallysustainabledevelopmenttakingintoaccount thebio-physicallimitsofearthresources.Standardneoclassicaleconomicsseesa tightcouplingbetweenGDPandwelfareandaloosecouplingbetweenGDPand throughputortheflowofenergyandmaterialsfromtheglobalecosystem(Daly andFarley2004).Whereasecologicaleconomicsseesatightcouplingbetween GDPandthroughput,withaloosecouplingbetweenGDPandwelfarebeyond basicsufficiency.Engineersplayapivotalroleinmaximisingtheuseofrenewable energybyintegratingitonamandatorybasisintotheirengineeringdesign. Reducingtheuseoffossilfuelcouldsignificantlycontributetothedecreaseof throughputsorresources.Renewableenergytechnologiesarenotcompletely environmentalfriendlyduetothefactthatitsproductionprocessrequiresthe consumptionofnon-renewableresourcesandemissionintensiveprocesses.Engineersfacedifficultyinrecyclingsolarpanelsbecauseofthefactthatthematerials theyaremadefromarehardtorecycleastheyareconstructedfrommanydifferent partsandcombinetogethertomakeonecomplexproduct.Withouttherecycling ofphotovoltaic(PV)cells,somerareearthelements(REEs)inPVlikegalliumand indiumarebeingdepletedfromtheenvironmentovertime(EnergyCentral2018).

In2015,inNewYork,the193-MemberUnitedNationsGeneralAssembly adoptedthe2030AgendaforSustainableDevelopment.Thisprogramisdivided into17SDGsand169targets.Allofthesegoalsandtargetsareintegratedwith thesocial,environmental,andeconomicdimensionsofsustainabledevelopment. Table1.3illustratesusingpracticalexamplesofhowengineeringstrategiescan developtoachieveandsupporttheseSDGs.

1.6EngineeringSustainability

Engineersarekeymembersofthecommunityoftenresponsibleforunsustainable technologicaldevelopment,buttheyalsohavepowertoreversethisproblemby takingaccountofsustainabilityissuesintheirengineeringdesignprocess.Engineersalsoplayapivotalroleinimplementingsustainabledevelopmentagendas. AgroupofengineersaftertheEarthSummitin1992identifiedthatabout70%

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.