EngineeringforSustainableDevelopment
TheoryandPractice
WahidulK.BiswasandMicheleJohn
SustainableEngineeringGroup,SchoolofCivilandMechanicalEngineering CurtinUniversity Perth,Australia
Thiseditionfirstpublished2023
©2023JohnWiley&SonsLtd
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem, ortransmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerial fromthistitleisavailableathttp://www.wiley.com/go/permissions.
TherightofWahidulK.BiswasandMicheleJohntobeidentifiedastheauthorsofthisworkhas beenassertedinaccordancewithlaw.
RegisteredOffice
JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA
EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA
Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com.
Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinother formats.
LimitofLiability/DisclaimerofWarranty
Thecontentsofthisworkareintendedtofurthergeneralscientificresearch,understanding,and discussiononlyandarenotintendedandshouldnotberelieduponasrecommendingor promotingscientificmethod,diagnosis,ortreatmentbyphysiciansforanyparticularpatient.In viewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,and theconstantflowofinformationrelatingtotheuseofmedicines,equipment,anddevices,the readerisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertor instructionsforeachmedicine,equipment,ordevicefor,amongotherthings,anychangesinthe instructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisher andauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsor warrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedby salesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefact thatanorganization,website,orproductisreferredtointhisworkasacitationand/orpotential sourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe informationorservicestheorganization,website,orproductmayprovideorrecommendations itmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedin renderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readers shouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetween whenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbe liableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages.
LibraryofCongressCataloging-in-PublicationDataappliedfor: Hardback:9781119720980
CoverDesign:Wiley
CoverImage:©PavelChagochkin/Shutterstock
Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India
Dedicatedtomylatefather
ProfessorMoziburRahmanBiswas,PhD(TexasA&MUniversity) 31/10/1939–06/07/2020
Thoughyounevergottoseethis, You’reineverypage.
Contents
Preface xv
PartIChallengesinSustainableEngineering 1
1SustainabilityChallenges 3
1.1Introduction 3
1.2WeakSustainabilityvsStrongSustainability 6
1.3UtilityvsThroughput 8
1.4RelativeScarcityvsAbsoluteScarcity 10
1.5Global/InternationalSustainabilityAgenda 10
1.6EngineeringSustainability 12
1.7IPAT 19
1.8EnvironmentalKuznetsCurves 20
1.9ImpactofEngineeringInnovationonEarth’sCarryingCapacity 21
1.10EngineeringChallengesinReducingEcologicalFootprint 22
1.11SustainabilityImplicationsofEngineeringDesign 24
1.12EngineeringCatastrophes 27
1.13ExistentialRisksfromEngineeringActivitiesintheTwenty-First Century 30
1.13.1ArtificialIntelligence(AI) 30
1.13.2GreenTechnologies 32
1.14TheWayForward 34 References 35
2QuantifyingSustainability–TripleBottomLine Assessment 43
2.1Introduction 43
2.2TripleBottomLine 44
2.2.1TheEconomicBottomLine 44
2.2.2EnvironmentalBottomLine 44
2.2.3TheSocialBottomLine 45
2.3CharacteristicsofIndicators 46
2.4HowDoYouDevelopanIndicator? 47
2.5SelectionofIndicators 48
2.6ParticipatoryApproachesinIndicatorDevelopment 48
2.7DescriptionofStepsforIndicatorDevelopment 49
2.7.1Step1:PreliminarySelectionofIndicators 49
2.7.2Step2:QuestionnaireDesignandDevelopment 49
2.7.3Step3:OnlineSurveyDevelopment 49
2.7.4Step4:ParticipantSelection 49
2.7.5Step5:FinalSelectionofIndicatorsandCalculationofTheir Weights 50
2.8SustainabilityAssessmentFramework 53
2.8.1ExpertSurvey 54
2.8.2StakeholdersSurvey 58
2.9TBLAssessmentforBenchMarkingPurposes 60
2.10Conclusions 61 References 62
3LifeCycleAssessmentforTBLAssessment–I 63
3.1LifeCycleThinking 63
3.2LifeCycleAssessment 64
3.3EnvironmentalLifeCycleAssessment 65
3.3.1ApplicationofELCA 66
3.3.2ISO14040-44forLifeCycleAssessment 68
3.3.2.1Step1:GoalandScopeDefinition 68
3.3.2.2Step2:InventoryAnalysis 71
3.3.2.3Step3:LifeCycleImpactAssessment(LCIA) 72
3.3.2.4Step4:Interpretation 87
3.4AllocationMethod 87
3.5TypeofLCA 91
3.6UncertaintyAnalysisinLCA 92
3.7EnvironmentalProductDeclaration 95 References 103
4EconomicandSocialLifeCycleAssessment 107
4.1EconomicandSocialLifeCycleAssessment 107
4.2LifeCycleCosting 108
4.2.1DiscountedCashFlowAnalysis 110
4.2.2InternalisationofExternalCosts 117
4.3SocialLifeCycleAssessment 120
4.3.1Step1:GoalandScopeDefinition 121
4.3.2Step2:LifeCycleInventory 123
4.3.3Step3:LifeCycleSocialImpact 123
4.3.4Step4:Interpretation 124
4.4LifeCycleSustainabilityAssessment 128 References 130
PartIIISustainableEngineeringSolutions 131
5SustainableEngineeringStrategies 133
5.1EngineeringStrategiesforSustainableDevelopment 133
5.2CleanerProductionStrategies 134
5.2.1GoodHousekeeping 135
5.2.2InputSubstitution 136
5.2.3TechnologyModification 137
5.2.4ProductModification 138
5.2.5OnSiteRecovery/Recycling 138
5.3FujiXeroxCaseStudy–IntegrationofFiveCPS 139
5.4BusinessCaseBenefitsofCleanerProduction 140
5.5CleanerProductionAssessment 140
5.5.1PlanningandOrganisation 140
5.5.2Assessment 141
5.5.3FeasibilityStudies 144
5.5.4ImplementationandContinuation 148
5.6Eco-efficiency 150
5.6.1KeyOutcomesofEco-efficiency 152
5.6.2Eco-efficiencyPortfolioAnalysisinChoosingEco-efficient Options 152
5.7EnvironmentalManagementSystems 157
5.7.1AimsofanEMS 160
x Contents
5.7.2ABasicEMSFramework:Plan,DoCheck,Review 161
5.7.3InterestedParties 161
5.7.4BenefitsofanEMS 162
5.8Conclusions 164 References 165
6IndustrialEcology 167
6.1WhatIsIndustrialEcology? 167
6.2ApplicationofIndustrialEcology 168
6.3RegionalSynergies/IndustrialSymbiosis 169
6.4HowDoesItHappen? 172
6.5TypesofIndustrialSymbiosis 173
6.6ChallengesinBy-ProductReuse 179
6.7WhatIsanEcoIndustrialPark? 180
6.8PracticeExamples 185
6.8.1DevelopmentofanEIP 185
6.8.2IndustrialSymbiosisinanIndustrialArea 186
6.9IndustrialSymbiosisinKwinanaIndustrialArea 187
6.9.1Conclusions 187 References 189
7GreenEngineering 191
7.1WhatIsGreenEngineering? 191
7.1.1Minimise 192
7.1.2Substitute 192
7.1.3Moderate 193
7.1.4Simplify 193
7.2PrinciplesofGreenEngineering 194
7.2.1InherentRatherthanCircumstantial 194
7.2.2PreventionRatherthanTreatment 194
7.2.3DesignforSeparation 194
7.2.4MaximiseMass,Energy,Space,andTimeEfficiency 195
7.2.5Output-PulledvsInput-Pushed 195
7.2.6ConserveComplexity 196
7.2.7DurabilityRatherthanImmortality 196
7.2.8MeetNeed,MinimiseExcess 197
7.2.9MinimiseMaterialDiversity 197
7.2.10IntegrationandInterconnectivity 197
7.2.11MaterialandEnergyInputsShouldBeRenewableRatherthan Depleting 198
7.2.12Products,Processes,andSystemsShouldBeDesignedforPerformance inaCommercial‘AfterLife’ 198
7.3ApplicationofGreenEngineering 198
7.3.1Chemical 199
7.3.1.1PreventWaste 199
7.3.1.2MaximiseAtomEconomy 200
7.3.1.3DesignSaferChemicalsandProducts 201
7.3.1.4UseSaferSolventsandReactionConditions 201
7.3.1.5UseRenewableFeedstocks 202
7.3.1.6AvoidChemicalDerivatives 203
7.3.1.7UseCatalysts 203
7.3.1.8IncreaseEnergyEfficiency 203
7.3.1.9DesignLessHazardousChemicalSyntheses 203
7.3.1.10DesignChemicalsandProductstoDegradeAfterUse 204
7.3.1.11AnalyseinRealTimetoPreventPollution 204
7.3.1.12MinimisethePotentialforAccidents 204
7.3.2SustainableMaterials 206
7.3.2.1ApplicationsofCompositeMaterials 208
7.3.2.2ThePositivesandNegativesofCompositeMaterials 209
7.3.2.3Bio-Bricks 209
7.3.3HeatRecovery 210
7.3.3.1TemperatureClassification 211
7.3.3.2HeatRecoveryTechnologies 213
7.3.3.3ThePositivesandNegativesofWasteHeatRecovery 217 References 217
8DesignfortheEnvironment 221
8.1Introduction 221
8.2DesignfortheEnvironment 221
8.3BenefitsofDesignfortheEnvironment 223
8.3.1EconomicBenefits 223
8.3.2OperationalBenefits 224
8.3.3MarketingBenefits 225
8.4ChallengesAssociatedwithDesignfortheEnvironment 225
8.5LifeCycleDesignGuidelines 228
8.6PracticeExamples 233
8.6.1DesignforDisassembly 233
8.6.2TheLifeCycleBenefitsofRemanufacturingStrategies 236
8.7ZeroWaste 240
8.7.1WasteDiversionRate 240
8.7.2ZeroWasteIndex 241
8.8CircularEconomy 243
8.8.1MaterialFlowAnalysis 245
8.8.2PracticeExample 247
8.9ExtendedProducerResponsibilities 252 References 254
9SustainableEnergy 257
9.1Introduction 257
9.2Energy,Environment,Economy,andSociety 258
9.2.1EnergyandtheEconomy 258
9.2.2EnergyandtheEnvironment 260
9.3SustainableEnergy 261
9.4PathwaysForward 265
9.4.1DeploymentofRenewableEnergy 265
9.4.2ImprovementstoFossilFuelBasedPowerGeneration 266
9.4.3PluginElectricVehicles 269
9.4.4GreenHydrogenEconomy 271
9.4.5SmartGrid 273
9.4.6DevelopmentofEfficientEnergyStorageTechnologies 274
9.4.7EnergyStorageandtheCalifornian“DuckCurve” 279
9.4.8SustainabilityinSmall-ScalePowerGeneration 280
9.4.8.1TypesofDecentralisedElectricityGenerationSystem 281
9.4.9BlockchainforSustainableEnergySolutions 284
9.4.10WasteHeatRecovery 285
9.4.11CarbonCaptureTechnologies 286
9.4.11.1PostCombustionCapture 286
9.4.11.2Pre-combustionCarbonCapture 287
9.4.12Demand-sideManagement 288
9.4.12.1NationalPerspective 289
9.4.12.2UserPerspective 290
9.4.12.3CO2 MitigationperUnitofIncrementalCost 290
9.5PracticeExample 291
9.5.1Step1 291
9.5.2Step2 294
9.5.3Step3 294
9.5.4Step4 295
9.5.5Step5 296
9.5.6Step6 296
9.5.7Step7 297
9.6LifeCycleEnergyAssessment 297
9.7ReferenceEnergySystem 298
9.8Conclusions 301 References 301
PartIVOutcomes 307
10EngineeringforSustainableDevelopment 309
10.1Introduction 309
10.2SustainableProductionandConsumption 309
10.3FactorX 311
10.4ClimateChangeChallenges 314
10.5WaterChallenges 320
10.6EnergyChallenges 321
10.7CircularEconomyandDematerialisation 322
10.8EngineeringEthics 324
10.8.1EngineersAustralia’sSustainabilityPolicy–Practices 326 References 327 Index 331
Preface
Engineeringforsustainabledevelopmentbringsbothhopeandchallengesforthe twenty-firstcentury.
ThelatestIPCC(2021)Reportstatesthatglobalsurfacetemperatureswillcontinuetoincreaseunderallemissionscenariosuntilatleastthemid-century.Itis clearthatglobalwarmingof1.5–2 ∘ Cwillbeexceededduringthetwenty-first centuryunlesssignificantreductionsincarbondioxideandothergreenhousegas emissionsaremadeinthenextfewdecades.
Whatdoesthismeanfortheengineeringprofession?Itmeansthatthetechnologies,materialchoices,andengineeringdesignswillallfaceincreasingpressurestoimproveenergyefficiency,tomovetowardsonlyrenewableenergy,reduce embodiedenergyandmaterialintensityinengineeringproductsandservices,and considerreducingend-of-lifewastemanagementissuesthroughimproveddesign, resourcerecovery,andremanufacturing.Italsowillmeanthattheengineering professionwillneedtoseriouslyconsiderthestewardshipandcorporatesocial responsibilitiesoflivinginaworlddestinedfor9billionpeoplebymid-century andalltheattendantpressuresofawarmingclimate,increasedpopulationdensityinourmajorcities,andtheconstanttrade-offsbetweenincreasedeconomic growthandtheconservationofglobalresourcesandthenaturalenvironment.
Allthesechallengesaregroundedinengineeringdecision-making.AshighlightedbytheNaturalEdgeProject(2002–2006),70%ofmodernsustainability challengesfundamentallyinvolveengineeringdecision-making.
Engineeringcoversawidevarietyofindustryapplications,manufacturing sectors,consumergoodproduction,andhousingandenergysystems.Engineers werecentraltotheseventeenthcenturyIndustrialRevolutionwhichcatalysed theintensiveproductionsystemspreviouscenturyhavebenefitedfrominterms ofimprovedhealth,higherlivingstandardsandphenomenalglobaleconomic growthandtechnologicaldevelopment.Wehavetheengineeringprofessionto thankforthis.
Ontheothersideofthesamecoin,wehaveseentwocenturiesofsignificantcarbonemissionsresultinginglobalwarmingfromfossilfuelconsumption,wehave large-scaleclearingofvasttractionsofglobalvegetationintheraceforincreased agriculturalproductionandurbandevelopmentandindoingsowehavesimply reliedonthebenefitsoftheattendanteconomicgrowthtojustifyourvoracious needforexpansion,marketdomination,andprofitability.Theyardsticksforthe successofsuchachievementswerelargelymeasuredthroughincreasedprofits, shareholderreturn,and/ortechnologicaldevelopment.
Howeverthetideisnowturning.Climatepressuresandalongwindedglobal policydiscussiononcarbonmitigation,increasingenvironmentalandmarine degradation,extendedperiodsofdroughtandwatershortagesandglobalresource issuessuchascriticalmetalavailabilityarenowraisingquestionsthatthe engineeringprofessionhavenotreallyhadtopreviouslyseriouslyconsider.
Ourworldischangingandwillprovidemanynewchallengesforthetwenty-first centuryengineer.
Thisbookisaboutthatverychallenge.Asweengineerafutureofsustainable development,whatistheroleoftheengineeringinhelpingtomitigate,adapt,and addresiliencetotheclimate,resource,andstewardshipchallengesthatgovernments,community,andtheyoungergenerationwillexpectfromtheprofessionin comingdecades?Zerocarbonproduction,100%renewableenergy,circulareconomyuseofproductwasteandresourcerecovery,mandatorysustainabilityassessmentsthatperhapsblockchaininstrumentswillauditonourbehalfandincreasing pressuresonanyassociatednegativeimpactonthecommunityandtheenvironment.WelcometoEngineeringforSustainableDevelopment.Thechallengeis ours.Theresponsibilityisours.
TheauthorsthankDrGordonIngramofChemicalEngineeringDepartmentof CurtinUniversityforhiscarefulreviewofsomechaptersofthisbook.
July2022
WahidulK.BiswasandMicheleJohn
SustainabilityChallenges
1.1Introduction
Sustainabilityisthegoalorendpointofaprocessknownas(ecologically) sustainabledevelopment.Sustainabledevelopmentconsistsofalargenumber ofpathwaystoreachthisendpointthatseesabalancebetweentheprovision ofecosystemservices,andhumanaccesstonaturalresourcestomeetthebasic needsoflife.Engineeringsustainabilitychallengesarefocusedonmanagingthis challengeandcomingupwithinnovativetechnologicalsolutionstohelpsustain theearth,giventhefactthattheearth’sexistingresourceswillbeinadequatein meetingthedemandsoffutureestimatedpopulationgrowth.Thelatestdatafrom theglobalfootprintnetworksuggeststhatthehumanityusedanequivalentof1.7 earthsin2016(Vandermaesenetal.2019),whiletheUnitedNationspredicted thattheglobalpopulationwillincreasefrom7.7billionin2019to11.2billion bytheendofthiscentury(UnitedNations2020).Attherateatwhichweconsume theearthresources,futuregenerationswillrequireapproximately(1.7 × 11.2/7.7) or2.4planetstoprovideequivalentresourcesbytheendofthiscentury.However, weonlyhaveoneplanet.
Worldwidehumanpopulationgrowthhasbeensupportedbytheindustrial revolutionandtheinventionofsteamengineintheeighteenthcenturyandmass production.Thisindustrialrevolutiongavebirthtoourmoderncivilizationand systematicallyimprovedlivingstandardsresultinginapopulationexplosion from0.5to7.7billiononlyover253years(1776–2019)(CilluffoandRuiz2019). Theexploitationofminerals,fuels,biomass,androcksfortransport,agriculture, building,andmanufacturingincreasedrapidlyduringthistimetodeliverthe goodsandservicesnecessarytosupportthegrowthofmoderncivilization. Technologieshaveadvancedovertheseyearssignificantlytoexploitrare-earth materialsandscarceresourcestomeetthegrowingdemandofanincreasing populationandtorunthemoderneconomy.Thescarcityofimportantmaterials thatarelimitedresourcesisonlynowbeingunderstood(Whittingham2011).
EngineeringforSustainableDevelopment:TheoryandPractice,FirstEdition. WahidulK.BiswasandMicheleJohn. ©2023JohnWiley&SonsLtd.Published2023byJohnWiley&SonsLtd.
Humanitycurrentlythususesresources1.75timesfasterthantheycanbe regeneratedbynatureorprovidedbyourplanet(GFN2019).Apartfrompopulationgrowth,factorswhicharecausingtherapiddeclineoftheearth’sresources areourincreaseddependencesonnon-renewableresources,energyandmaterial intensivetechnologies,anduncontrolledproductionandconsumption.Global demandformaterialshasincreased10-foldsincethebeginningofthetwentieth centuryandissettodoubleagainby2030,comparedwith2010(European Commission2020).Resourceproducershavebeenincreasinglyabletodeploy arangeoftechnologicaloptionsintheiroperations,evenmininganddrilling inplacesthatwereonceinaccessible,increasingtheefficiencyofextraction techniques,switchingtopredictivemaintenance,andusingsophisticatedmodellingtoolstoidentify,extract,andmanageresources.Themajoremphasis hasbeenoneconomicgrowthtomeetthedemandsofagrowingpopulation, technologicalprogressbasedonthroughput-increasing(orresourceexploitation) withoutconsiderationofthebio-physicallimitsofournon-renewableresources (e.g.coal,gas,ore,rocks).Theseresourcesrequirehundredsofthousandsof yearstoformbelowtheearth,anditraisesquestionsastowhatwillhappento futuregenerationswhenallfinitenon-renewableresourcesareexhausteddue touncontrolledproductionandconsumption.Inadditiontotheexponential growthofresourceuse,technologythatisusedforconvertingearthresources toproducts(e.g.construction,automobiles,electronicitems)andservices(e.g. electricity,internet,transportation,communicationsystem,watersupply)tomeet ourgrowingdemandshaveresultedinemissionsofglobalwarminggases(mainly CO2 ).Theconsequenceofglobalwarmingincludesflooding,increasedbushfire, andthedestructionofecosystems.By2050,between70%and80%ofallpeopleare expectedtoliveinurbanareas(UnitedNation2018),whichareresourceintensive andartificialenvironmentsmadebyman,tofurtherimprovelivingstandards. Theengineeringchallengeistominimiselanduseandconserveresourceswhilst meetingthedemandsoftheworldpopulationthroughenergyefficientbuildings, waterconservation,compactcities,andefficienttransportationsystemsinour builtenvironment.
Populationcontrol,rapidtechnologicalinnovation,andbehaviouralchangeare alsorequiredtoenhanceresourceefficiency.Itisnowcrucialforthepresentgenerationtochangetheirbehaviourandmindsets,whichwillenablethemtosustain adequateresourcesforfuturegenerations(inter-generationalequity).According totheBrundtlandreport(1987),‘Sustainabledevelopmentisdevelopmentthat meetstheneedsofthepresentwithoutcompromisingtheabilityoffuturegenerationstomeettheirownneeds’.ThewidelyusedBrundtland’sdefinitionon sustainabledevelopment,waspublishedin‘OurCommonFuture’in1987.
Whilepopulationdensityofdevelopednationsisfarlessthanthatofdeveloping nations,overconsumptionbytheformerhasalreadyexceededtheirbio-capacity
resultingintheirneedtosourceresourcesfromdevelopingnations.TheUN DevelopmentProgramreportsthattherichest20%oftheworld’spopulation consume86%oftheworld’sresourceswhilethepoorest80%consumejust14% (UN1999).Thishighlightstheintra-generationalsocialequityaspectsofsustainabilityandtheincreasedgapbetweenrichandpoorpeople.Therapidprogressin technologyhasfuelledthissocialinequality.AccordingtoDavidGrusky,Director ofStanford’sCenteronPovertyandInequality,‘Oneofthelargestandmost prominentdebatesinsocialsciencesistheroleoftechnologyininequality’ (Rotman2014).Thebiggestsocialinequityisthatthetechnology-driveneconomy greatlyfavoursasmallgroupofpeoplebyamplifyingtheirinherentskillsand wealth.Humancapitalbeingcontinuouslyreplacedwithman-madecapital (e.g.self-servicecashregister,foodprocessors)hasincreasedunemployment. Increasedunemploymentontheotherhandincreasedsocialproblems,suchas poverty,crime,corruption,anddomesticviolence.
Secondly,technologieshavenotonlyenabledwealthynationstocontrolworld resourcesbuthavealsoincreasedtheoverconsumption(luxuriouspollutions), whichisresponsibleforfurtherenvironmentaldegradation.Povertyinapoor nationthatcausesenvironmentaldegradationisknownasthepollutionforthe survival.Forexample,manychildrenindevelopingnationsaresentoutsideto collectlowgradefuelslikeleavesandtwigsastheirparentscannotaffordto purchasehighqualityfuellikegasorwood.Therefore,theirchildrendonot gotoschoolspendingthewholedaygatheringfuelstomeetthedailycooking energydemand.Thecollectionoflowgradefuelsnotonlyaffectsthechildren’s educationbutalsocausesecologicalimbalancebydeprivingsoilfromnutrient richorganicmatter.
Thirdly,sealevelrise(SLR)duetoglobalwarmingwillaffectalargeportion oflandofdevelopingnationsindenselypopulatedcountriesintheAsiaPacific region.
Plannedobsolescenceofbusinessstrategyinrecenttimeshavemadetechnologiesobsolete,unfashionableornolongerusablebeforetheirnaturalendoflife (EoL),whichhascreatedunsustainableconsumption.Foratleasthalfacentury, themainstreamfashionindustryhaspurposelyproducedgoodsofinferiorquality toincreasesalestogainshorttermfinancialbenefits.Inessence,itmeansthata companyisdeliberatelydesigningandmanufacturingproductswithashorterlife span,bymakingthemnon-functionalorunfashionableearlierthannecessary andincreasingthewastesinkiftheseitemsarenotdesignedfordisassemblyor reuseorremanufacturing.
Addressinginter-andintra-generationalsocialinequitiesrequiresareduction intheinvestmentinunnecessaryluxuryitems,controlledeconomicgrowth, sustainablebehaviourandlifestylechanges,andtodesigntechnology/products forrepurposinganddematerialisation(e.g.accessingmaterialsonlinereduced
toneedofhardcopies,virtualconferencesreducetravelling).Aparadigmshift isurgentlynecessarytoswitchfromresourceintensivetechnologiesthatare currentlybeingused(e.g.powerplant,car,infrastructure)tomoreresourcesaving technologies(e.g.replacinganewenginewitharemanufacturedengine,super lightcarwithreducedfuelconsumptionreduceslongruncostsandemissions). Secondly,itisimportanttoencouragethetechnologicalracetoenhanceboth inter-andintra-generationalsocialequity.Moredependenceontechnology meansweneedmoreenergyandmaterialresourcestoproduce,operate,and maintaintheminanincreasinglyresourcesscarceworld.Weneedtoachievea balancebetweentechnologyandhumancapitalforenhancingintra-generational socialequitywhilemaintainingeconomicgrowth.Inanutshell,socialequity means‘equalopportunityofaccesstobasicneeds’forallpeopleonearth.
InnovativetechnologicaldesignforconvertingEoLproducttonewproductwill reduceland,energy,andthematerialconsumptionassociatedwithvirginmaterialconsumption.Weneedplanningandmanagementofsourcing,procurement, conversion,andlogisticsactivitiesinvolvedduringpre-manufacturing,manufacturing,use,andpost-usestagesintheproductlifecycle.Forexample,Renault isaremanufacturingcompanywhichrequiresmorelabourforremanufacturing gearboxesthanmakingnewones,butthereisstillanetprofitbecausenocapital expensesarerequiredformachinery,andnocuttingandmachiningoftheproducts,resultinginnowasteandabettermaterialsyield(EllenMacArthurFoundation2014),enhancingbothinter-andintra-generationalequitybycreatingjobs andbyimportantlyconservingvirginresourcesforfuturegenerations.
1.2WeakSustainabilityvsStrongSustainability
Therearemanydifferentapproachestoachievesustainability,whichmayresult ineither‘weak’or‘strong’sustainabilityoutcomes.Thecoreideasthatare widelydiscussedintheliteraturesuchasengineeringinnovationshouldnotonly considerconservationofresourcesforfuturegenerationsbutalsothetechnology needstobedesignedtoenhancesocialwell-being(Table1.1).Secondly,achieving social,economic,andenvironmentalperformanceinaproductordeliveringa servicetoaparticularsectorcouldresultinunplannedadverseconsequences.
Theweakdefinitionofsustainabilityillustratedintheinterlockingdiagram (Figure1.1a)allowsthetrade-offbetweensectors,anddoesnottakeintoaccount carryingcapacityortheresourcelimitationsofearth.Thefirstpriorityfor livingwithintheworld’scarryingcapacityistoachieveastrongdefinitionof sustainability,asrepresentedbythenestedeggdiagram(Figure1.2b).Societal demandshouldconsiderinter-andintra-generationalsocialequityissueswithin ecologicallimitsorfiniteresourceslevels.Engineeringdesignandinnovation
Table1.1 Approachesforaddressingsustainability
CoreideaCommentsandrelatedconcepts
Meetingneedsofpresent withoutcompromising needsoffuture
Harmonising/integrating social,economicand environmentalobjectives
Livingwithintheworld’s carryingcapacity
● Canbethoughtofasover-riding
● Includes‘intergenerationalequity’, ‘intergenerationaldiscounting’,recognitionof ecologicallimits
● Cantendtowards‘weak’sustainability(assumes assetsinonesectorcanbetradedoffagainstothers)
● Includes‘triplebottomline’
● Tendstobeassociatedwith‘strong’sustainability (ecologicalassetscannotbetradedoffbeyonda certainpoint)
● Includes‘ecologicalfootprint’
Figure1.1 Weak(a)andstrong(b)sustainability.Source:ModifiedfromLimetal.(2015) mustmakesuretoaddresssocialneedswhileusingresourceswithintheearth’s carryingcapacityandnotexploitresourcesbeyondtheearth’scarryingcapacity.
Thedifferencebetween‘weak’and‘strong’definitionsofsustainabilityasshown inTable1.2highlightsthefactorsthatneedtobetakenintoaccounttoachieve strongsustainability.AsitappearsinTable1.2,weaksustainabilityfocuseson economicgrowth,pollutioncontrolratherthanpollutionprevention,ignoresthe earthresourceslimitsandtherisksassociatedwithtechnologicaldevelopment, andignoresthefactthatexponentialgrowthistakingplaceinaworld.Onthe hand,‘strongsustainability’focusesonpollutionpreventioninsteadofpollution control,considerstheecologicalorbio-physicallimitsofearthsresources,and takesintoconsiderationofconsequencesthatmayberesultedfromhumanactivitiesandtechnologicaldevelopment.
Figure1.2 Engineers’challengetocombatclimatechange
Table1.2 Differencebetweenweakandstrongsustainability
‘Weak’sustainability‘Strong’sustainability
‘Brown’agenda–pollutionfocus‘Green’agenda–focusonresilienceof ecosystems
EnvironmentalfocusEcologicalfocus
Degradationofonegroupofassetscan becompensatedbyimprovementin another
Notabalancingact,butanintegrating act
InterlockingcirclesNestedeggdiagram
EvolutionarychangerequiredRadicalchangerequired StartswitheconomicimperativesStartswithecologicalimperatives ‘Weak’sustainability‘Strong’sustainability Canbeaccommodatedwithinthe traditionaleconomicparadigm
Downplaysriskanduncertainty, althoughconsistentwiththe precautionaryprinciple
Favours‘pressure-state-response’ model(linkingcauseandeffect)for developingindicators
Source:AdaptedfromDiesendorf(2001)
1.3UtilityvsThroughput
Challengesthetraditionaleconomic paradigm
Highlightsriskanduncertainty
Identifiestheneedforbettermodelling ofsystems,whilerecognisingfull understandingunlikely
Arguesthat‘pressure-state-response’ modeloversimplifiesdynamicsof complexecological(orsocial)systems
Currentengineeringpracticemainlymeetsthehumanneedsofthecurrentgenerationbyprovidingutilityservicesincludingenergy,infrastructure,electronics, transportation,water,foodprocessing,etc.Atthesametime,theyalsoneed toconsider‘throughput’intheirengineeringdesignprocess.Thethroughput
istheflowofrawmaterialsandenergyfromtheglobalecosystem’ssourcesof lowentropy(mines,wells,fisheries,croplands)throughtheeconomy,andback totheglobalecosystem’ssinksforhighentropywastes(atmosphere,oceans, dumps).Engineersneedtomakesurethatmoreutilityisprovidedperunitof throughput(e.g.moreMWhofelectricityperunitofthroughputconsistingof mining,processing,transportation,andthecombustionoffossilfuel;buildingof a400m2 housewithreducedlevelofquarrying,crashing,constructionactivities andtheuseofvirginmaterials).
Utilityignoresthebio-physicallimitofearthresources.Thisutilityshouldbe non-decliningforfuturegenerationsasthefutureshouldbeatleastasbetteroff asthepresentintermsofitsutilityorhappiness.Ontheotherhand,physical throughputisalsotobenon-declining(Daly2002)meaningthatthecapacity oftheecosystemtosustaintheflowsoffood,fuel,minerals,waterarenottobe exhausted.TheuseofenergyandmaterialefficiencyandallRs(recycle,reuse, reduce,remanufacturing,redesign,recovery)canincreaseutilityperunitof throughput,thusleavingadequatenaturalresourcesforfuturegenerations.
Naturalcapital(i.e.cleanair,waterandnon-contaminatedornon-toxicsoil) istobemaintainedanditisthecapacityoftheecosystemtoyieldbothaflow ofnaturalresourcesandafluxofnaturalservices(i.e.grainsforfood,waterfor drinking,irrigation).Maintainingnaturalcapitalconstantisoftenreferredtoas ‘strongsustainability’indistinctionto‘weaksustainability’inwhichsomenaturalresourcesarelostduetomanmadecapital(i.e.convertingforesttoanindustrial area).Ecologicallimitsarerapidlyconvertingeconomicgrowthintouneconomic growth–i.e.throughputgrowththatincreasescostsbymorethanitincreasesbenefits,thusmakingmostofusaswellasfuturegenerationpoorer(Daly2002).For example,climatechangeresultingfromtheGHGemissionsfromhumanactivitiestorunthemoderneconomyhavealreadycauseduneconomicconsequences suchasbushfire,SLR,drought,andtheextinctionofspecies.Uncontrolledgrowth withoutconsideringengineeringinnovationforresourceconservationcannotpossiblyincreaseeveryone’srelativeincomeasfewpeopletendtocontrolmostof worldresources.Useofincreasinglyfinite,yetunownedecosystemservices(e.g. soil,water,forest)byfewimposesopportunitycostsonfuturegenerations.For example,rapidconversionofforesttocroplandinWesternAustraliaincreased themixingofrainwaterwithsaltywaterindeepaquifersduetothefactthatthe rootsofcropsarenotlongenoughlikedeeprootedperennialspeciestoreach deeperaquifers.Consequently,salinewatertableriseandaffectthecultivation ofcrops.Thisisanopportunitycostforfuturegenerationsastheywillnotbe abletousethissaltdegradedlandforcropproduction.Morehardevidenceof overexploitationisintheminingindustrywheretheoregradeinsomemining operationshasbeguntodeclineresultinginincreasedenergyconsumptionand costs,particularlywiththeextractionofsmallamountofmineralsfromalarge
amountofore.Thisisnotonlymakingthemineralprocessingexpensivebutit isalsocausingahighleveloflanddegradation,waterpollution,andthelossof biodiversity.
1.4RelativeScarcityvsAbsoluteScarcity
ClevelandandStern(1998)definedresourcescarcityastheextenttowhich humanwell-beingisaffectedbythequalityandavailabilityofnaturalresource stocks.Onthisbasis,relativescarcitycanbeconsideredtobetheextentto whichthequalityandavailabilityofaparticularresourcetypeimpactsupon humanwell-beingrelativetootherresourcetypes.Therefore,iftheavailability ofaparticularresourcedeclinesrelativetootherresources,then,itspositive contributiontohumanwell-beingcomparativelydeclinesand,assuch,itsrelative scarcityincreasesandpeoplemayswitchtootherresources.Forexample,ifgas isscarceorrunsout,thenwecangoforoilandthenwhenoilrunsout,wecan goforcoal.Thisactuallygraduallyincreasesthepriceofresourcesduetothe increaseddemandwiththerapiddeclineoftheseenergyreservoirsonearth. Relativescarcitydoesnottakeintoconsiderationthebio-physicallimitations ofnon-renewablefiniteresources.Ecologicaleconomistsconsiderthedifference betweenrelativeandabsolutescarcitytobeacritical.Absolutescarcitymeans thatthereisabio-physicallimitoftheresource.Theconsiderationofabsolute scarcityintheengineeringdesignprocessshouldincreasetheuseofrenewable resourcestoaddressthescarcityassociatedwithnon-renewableresources.
1.5Global/InternationalSustainabilityAgenda
Theglobalsustainabilityagendaisalistoftasksoractions,whichvaryfrom countrytocountry,basedontheirrespectivesocio-economicandenvironmental sustainabilitygoal.Sustainabilityisaglobalissueanditrequirestheparticipation ofallnationsacrosstheglobetodevelopcollaborativeandcollectiveaction planstomanageearthresourcesinasociallyequitablemannerforbothcurrent andfuturegenerations.PollutionandGHGemissionsandincreasedhuman refugeemovementacrosscountryboundarieshighlighttheimportanceofconductingglobalsustainabilitymanagement.Somepopularslogansthatestablished sustainabledevelopmentasaglobalissueinclude:
Thinkgloballyandactlocally–Theconservationoffiniteresourceslocally couldhelpenhancethesecurityofindispensableresourceslikefood,minerals,fuelglobally.Also,thereductionofGHGemissionslocallyusingrenewableenergysourcescouldhelpreduceglobalwarmingimpacts.
Lighttomorrowwithtoday–Ourcombinedeffortandactionstodayorthe useofenvironmentalfriendlyandresourceefficienttechnologiesthatcan conserveresourcesandleaveabetterworldforourfuturegenerations.
Somepoliticaleventsinrecentdecadeshavebroughtsustainabledevelopment firmlyintothepublicarena,andestablisheditasanacceptedgoalforinternational policyordecisionmakers.WorldSustainableDevelopmentSummitsbrought togetherpeoplefromallwalksoflife,includingnobellaureates,politicalleaders, decisionmakersfrombilateralandmultilateralinstitutions,businessleaders, thediplomaticcorps,engineers,scientistsandresearchers,mediapersonnel, membersofcivilsocietyandevencelebrities;onacommonplatformtodeliberate onissuesrelatedtoenvironmental,social,andeconomicagendasforachieving sustainablefutures.
ThefirstEarthSummitonsustainabledevelopmentinRiodeJaneiroin1992 agreedonaglobalplanofaction,knownasAgenda21,designedtodeliveramore sustainablepatternofdevelopment.Agenda21focusedonpreparingtheworld forlifeinthetwenty-firstcentury.Signedby178nationalgovernments,Agenda21 providesacomprehensiveplanofactiontoattainsustainabledevelopmentatlocal, national,andgloballevels(UN1992).TheissuesthatwerediscussedinAgenda21 reportcoveredbothinter-andintra-generationalequityissues,includinguneven development,genderequity,povertyalleviation,andunsustainableconsumption. Secondly,itfocusedontheimpactofpopulationgrowthandtheneedfordevelopednationstoextendcooperationtodevelopingnationstobuildlocalcapacity buildinginaddressingsustainabilitychallenges.Finally,itdiscussedtheneedfor researchandinnovationtoachievesocial,economic,andenvironmentalobjectivesofsustainability.Engineerscanpotentiallyaddresssustainabilitychallenges byinnovatingsociallyequitable,accessible,resourceefficient,andaffordabletechnologies,utilisingindigenousorlocalnaturalandhumanresources.
ThetargetofnextWorldSummitonSustainableDevelopment,inJohannesburgin2002wastoeradicatepovertyfordevelopingnationsandtoattain sustainableconsumptionandproductionfordevelopednations(UN2002). Engineerscandesignaffordabletechnologiesusingindigenousresourcesto createincome-generatingactivitiesforpoorpeopletomeetthebasicneedsoflife, whilereducingenvironmentalproblems,likedeforestationassociatedwiththe useoffuelwoodandindoorairpollutionfromcookingwithpoor-qualityfuels. Ontheotherhand,engineerscandesignproductsfordisassemblysothattheEoL productcanbegivenanewlifeandconsequentlyemissions,wastesgeneration andlanduse,andenergyandmaterialconsumptionassociatedwithupstream activities(i.e.miningtomaterialproduction)canbeavoidedandconserve resourcesforthefuturegenerations.Forexample,aremanufacturedcompressor (i.e.EoLcompressorturnedintoausablecompressor)costsone-thirdofthecost
ofanewcompressorwhileofferingthesamedurabilityorservicelife(Biswasand Rosano2011).
TheUnitedNationsConferenceonSustainableDevelopment–orRio+20–took placein2012,20yearsafterthefirstearthsummitinRiodeJaneiro.Worldleaders decidedtodevelopasetofsustainabledevelopmentgoals(SDGs)builtupon themillenniumdevelopmentgoals.Thepurposeofthesegoalswastopromote sustainabledevelopmentinanorganised,integrated,andglobalway.Nations agreedonexploringdifferentmeasuresofwealthotherthangrossdomestic product(GDP)thatalsoconsidersenvironmentalandsocialfactors.Thiswasa clearattempttoachieveecologicallysustainabledevelopmenttakingintoaccount thebio-physicallimitsofearthresources.Standardneoclassicaleconomicsseesa tightcouplingbetweenGDPandwelfareandaloosecouplingbetweenGDPand throughputortheflowofenergyandmaterialsfromtheglobalecosystem(Daly andFarley2004).Whereasecologicaleconomicsseesatightcouplingbetween GDPandthroughput,withaloosecouplingbetweenGDPandwelfarebeyond basicsufficiency.Engineersplayapivotalroleinmaximisingtheuseofrenewable energybyintegratingitonamandatorybasisintotheirengineeringdesign. Reducingtheuseoffossilfuelcouldsignificantlycontributetothedecreaseof throughputsorresources.Renewableenergytechnologiesarenotcompletely environmentalfriendlyduetothefactthatitsproductionprocessrequiresthe consumptionofnon-renewableresourcesandemissionintensiveprocesses.Engineersfacedifficultyinrecyclingsolarpanelsbecauseofthefactthatthematerials theyaremadefromarehardtorecycleastheyareconstructedfrommanydifferent partsandcombinetogethertomakeonecomplexproduct.Withouttherecycling ofphotovoltaic(PV)cells,somerareearthelements(REEs)inPVlikegalliumand indiumarebeingdepletedfromtheenvironmentovertime(EnergyCentral2018).
In2015,inNewYork,the193-MemberUnitedNationsGeneralAssembly adoptedthe2030AgendaforSustainableDevelopment.Thisprogramisdivided into17SDGsand169targets.Allofthesegoalsandtargetsareintegratedwith thesocial,environmental,andeconomicdimensionsofsustainabledevelopment. Table1.3illustratesusingpracticalexamplesofhowengineeringstrategiescan developtoachieveandsupporttheseSDGs.
1.6EngineeringSustainability
Engineersarekeymembersofthecommunityoftenresponsibleforunsustainable technologicaldevelopment,buttheyalsohavepowertoreversethisproblemby takingaccountofsustainabilityissuesintheirengineeringdesignprocess.Engineersalsoplayapivotalroleinimplementingsustainabledevelopmentagendas. AgroupofengineersaftertheEarthSummitin1992identifiedthatabout70%