[FREE PDF sample] Autonomous navigation and deployment of uavs for communication, surveillance and d

Page 1


https://ebookmass.com/product/autonomous-navigation-and-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Nanotechnology-based approaches for targeting and delivery of drugs and genes Mishra

https://ebookmass.com/product/nanotechnology-based-approaches-fortargeting-and-delivery-of-drugs-and-genes-mishra/ ebookmass.com

Design of Control laws and State Observers for Fixed-wing UAVs. Simulation and Experimental Approaches Arturo Tadeo Espinoza-Fraire

https://ebookmass.com/product/design-of-control-laws-and-stateobservers-for-fixed-wing-uavs-simulation-and-experimental-approachesarturo-tadeo-espinoza-fraire/ ebookmass.com

Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation (Adobe Reader) (Addison-Wesley Signature Series (Fowler)) 1st Edition –

Ebook PDF Version

https://ebookmass.com/product/continuous-delivery-reliable-softwarereleases-through-build-test-and-deployment-automation-adobe-readeraddison-wesley-signature-series-fowler-1st-edition-ebook-pdf-version/ ebookmass.com

Write It All Down: How to Put Your Life on the Page Cathy Rentzenbrink

https://ebookmass.com/product/write-it-all-down-how-to-put-your-lifeon-the-page-cathy-rentzenbrink/ ebookmass.com

The Tripartite Realist War: Analysing Russia’s Invasion of Ukraine Danny Singh

https://ebookmass.com/product/the-tripartite-realist-war-analysingrussias-invasion-of-ukraine-danny-singh/

ebookmass.com

Red Tide at Heron Bay Gerri Hill

https://ebookmass.com/product/red-tide-at-heron-bay-gerri-hill/

ebookmass.com

A History Of Russia 9th Edition Nicholas V. Riasanovsky

https://ebookmass.com/product/a-history-of-russia-9th-editionnicholas-v-riasanovsky/

ebookmass.com

eTextbook 978-1439836835 Handbook of Meat and Meat Processing, Second Edition

https://ebookmass.com/product/etextbook-978-1439836835-handbook-ofmeat-and-meat-processing-second-edition/

ebookmass.com

Negotiating Fatherhood: Sport and Family Practices 1st ed.

2020 Edition Thomas Fletcher

https://ebookmass.com/product/negotiating-fatherhood-sport-and-familypractices-1st-ed-2020-edition-thomas-fletcher/

ebookmass.com

https://ebookmass.com/product/siren-queen-nghi-vo/

ebookmass.com

AutonomousNavigationandDeploymentofUAVsforCommunication, SurveillanceandDelivery

IEEEPress

445HoesLane

Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktssonAndreasMolischDiomidisSpinellis

AnjanBoseSaeidNahavandiAhmetMuratTekalp

AdamDrobot

Peter(Yong)Lian

JeffreyReed

ThomasRobertazzi

AutonomousNavigationandDeploymentof UAVsforCommunication,Surveillanceand Delivery

HailongHuang,PhD

DepartmentofAeronauticalandAviationEngineering

TheHongKongPolytechnicUniversity,HongKong,China

AndreyV.Savkin,PhD

SchoolofElectricalEngineeringandTelecommunications UniversityofNewSouthWales,Sydney,NSW,Australia

ChaoHuang,PhD

DepartmentofIndustrialandSystemsEngineering

TheHongKongPolytechnicUniversity,HongKong,China

Copyright©2023byTheInstituteofElectricalandElectronicsEngineers,Inc. Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers, MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requeststo thePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley& Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,please contactourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidethe UnitedStatesat(317)572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsin printmaynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts, visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationDataAppliedfor: HardbackISBN:9781119870838

CoverDesign:Wiley

CoverImage:©yuanyuanyan/GettyImages

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Contents

AuthorBiographies ix

Preface xi

1Introduction 1

1.1ApplicationsofUAVs 1

1.2ProblemsofAutonomousNavigationandDeploymentofUAVs 2

1.3OverviewandOrganizationoftheBook 4

1.4SomeOtherRemarks 5 References 6

2DeploymentofUAVBaseStationsforWireless CommunicationCoverage 11

2.1Introduction 11

2.2RelatedWork 14

2.3UAV-BSDeploymentforMaximizingCoverage 17

2.3.1ProblemStatement 17

2.3.2ProposedSolution 19

2.3.3Evaluation 21

2.4UAV-BSDeploymentforMaximizingCoverageandMinimizing Interference 24

2.4.1SystemModelandProblemStatement 24

2.4.2ProposedSolution 27

2.4.3SimulationResults 31

2.4.3.1DatasetandSimulationSet-Up 31

2.4.3.2ComparingApproaches 32

2.4.3.3SimulationResults 32

2.5VoronoiPartitioning-BasedUAV-BSDeployment 36

2.5.1ProblemStatementandMainResults 36

2.5.2SimulationResults 41

2.6Range-BasedUAV-BSDeployment 43

2.6.1ProblemStatementandMainResults 43

2.6.2SimulationResults 49

2.7Summary 52 References 52

3DeploymentofUAVsforSurveillanceofGroundAreasand Targets 57

3.1Introduction 57

3.2RelatedWork 60

3.3AsymptoticallyOptimalUAVDeploymentforSurveillanceofaFlat GroundArea 61

3.3.1ProblemStatement 61

3.3.2DeploymentAlgorithm 63

3.3.3Evaluation 67

3.4UAVDeploymentforSurveillanceofUnevenGroundAreas 71

3.4.1ProblemStatement 71

3.4.2DeploymentAlgorithm 73

3.4.3Evaluation 78

3.52DUAVDeploymentforGroundTargetSurveillance 80

3.5.1ProblemStatement 80

3.5.2ProposedSolution 82

3.5.3Evaluation 85

3.63DUAVDeploymentforGroundTargetSurveillance 87

3.6.1ProblemStatement 87

3.6.2ProposedSolution 89

3.6.3Evaluation 95

3.7SummaryandFutureResearch 99 References 100

4AutonomousNavigationofUAVsforSurveillanceofGround AreasandTargets 105

4.1Introduction 105

4.2RelatedWork 108

4.3AsymptoticallyOptimalPathPlanningforSurveillanceofGround Areas 110

4.3.1ProblemStatement 110

4.3.2PathPlanningAlgorithm 111

4.3.3SimulationResults 114

4.4NavigationofUAVsforSurveillanceofaMovingGroundArea 117

4.4.1ProblemStatement 117

4.4.2NavigationLaw 119

4.4.2.1AvailableMeasurements 120

4.4.3SimulationResults 122

4.5NavigationofUAVsforSurveillanceofMovingTargetsonaRoad Segment 125

4.5.1ProblemStatement 125

4.5.2ProposalSolution 126

4.5.2.1MonitoringMode 126

4.5.2.2InitialMode 127

4.5.2.3SearchingMode 128

4.5.2.4AccumulatingMode 129

4.5.3SimulationResults 130

4.6NavigationofUAVsforSurveillanceofMovingTargets alongaRoad 134

4.6.1ProblemStatement 134

4.6.2NavigationAlgorithm 137

4.6.3SimulationResults 139

4.7NavigationofUAVsforSurveillanceofGroupsofMovingGround Targets 142

4.7.1ProblemStatementandProposedApproach 143

4.7.2NavigationMethod 146

4.7.3SimulationResults 150

4.8SummaryandFutureResearch 153 References 154

5AutonomousUAVNavigationforCovertVideo

Surveillance 159

5.1Introduction 159

5.2RelatedWork 160

5.3Optimization-BasedNavigation 162

5.3.1SystemModel 162

5.3.2ProblemStatement 165

5.3.3PredictiveDPBasedTrajectoryPlanningAlgorithm 166

5.3.3.1AeronauticTrajectoryRefinement 169

5.3.4Evaluation 174

5.4BiologicallyInspiredMotionCamouflage-basedNavigation 181

5.4.1ProblemStatement 182

5.4.1.1AvailableMeasurements 182

5.4.2MotionCamouflageGuidanceLaw 183

5.4.3Evaluation 185

5.5SummaryandFutureWork 188 References 189

6IntegrationofUAVsandPublicTransportationVehiclesfor ParcelDelivery 195

6.1Introduction 195

6.2RelatedWork 199

6.3SystemModel 203

6.4One-wayPathPlanning 204

6.4.1ProblemStatement 204

6.4.2ProposedSolution 207

6.4.2.1PathTraversalTime 207

6.4.2.2ReliablePathConstruction 210

6.4.2.3Energy-awareReliablePath 213

6.4.3Evaluation 215

6.5Round-tripPathPlanninginaDeterministicNetwork 218

6.5.1DeterministicModel 218

6.5.1.1ExtendedMultimodalNetwork 220

6.5.2ProblemStatement 222

6.5.2.1ShortestUAVPathProblem 222

6.5.3ProposedSolution 223

6.5.3.1TheDijkstra-basedAlgorithm 223

6.5.3.2ReliableUAVPath 225

6.5.3.3ExtendedCoverage 228

6.5.4Evaluation 228

6.6Round-tripPathPlanninginaStochasticNetwork 232

6.6.1ProblemStatement 233

6.6.2ProposedSolution 235

6.6.2.1ProposedAlgorithm 235

6.6.2.2RobustRound-tripPlanningAlgorithm 240

6.6.3Evaluation 243

6.7SummaryandFutureWork 246 References 246

Abbreviations 252 Index 253

AuthorBiographies

HailongHuang receivedtheBScdegreeinautomation,fromChinaUniversityofPetroleum,Beijing, China,in2012,andreceivedthePhDdegreeinSystems andControlfromtheUniversityofNewSouthWales, Sydney,Australia,in2018.HeisanAssistantProfessor attheDepartmentofAeronauticalandAviationEngineeringatTheHongKongPolytechnicUniversity, HongKong.Hiscurrentresearchinterestsinclude guidance,navigation,andcontrolofmobilerobots, multi-agentsystems,anddistributedcontrol.

AndreyV.Savkin receivedtheMSandPhDdegrees inmathematicsfromtheLeningradStateUniversity, SaintPetersburg,Russia,in1987and1991,respectively.From1987to1992,hewaswiththeTelevision ResearchInstitute,Leningrad,Russia.From1992to 1994,heheldaPostdoctoralpositionintheDepartmentofElectricalEngineering,AustralianDefence ForceAcademy,Canberra.From1994to1996,hewas aResearchFellowintheDepartmentofElectrical andElectronicEngineeringandtheCooperative ResearchCentreforSensorSignalandInformation Processing,UniversityofMelbourne,Australia.From1996to2000,hewasa SeniorLecturer,andthenanAssociateProfessorintheDepartmentofElectrical andElectronicEngineering,UniversityofWesternAustralia,Perth.Since2000, hehasbeenaProfessorintheSchoolofElectricalEngineeringandTelecommunications,UniversityofNewSouthWales,Sydney,NSW,Australia.Hiscurrent researchinterestsincluderobustcontrolandstateestimation,hybriddynamical systems,guidance,navigationandcontrolofmobilerobots,applicationsof

x AuthorBiographies

controlandsignalprocessinginbiomedicalengineeringandmedicine.Hehas authored/coauthoredsevenresearchmonographsandnumerousjournaland conferencepapersonthesetopics.HehasservedasanAssociateEditorforseveral internationaljournals.

ChaoHuang receivedtheBScdegreeinautomation, fromChinaUniversityofPetroleum,Beijing,China, inJune2012,andreceivedthePhDdegreefromthe UniversityofWollongong,Wollongong,Australia,in December2018.Sheisaresearchassistantprofessor attheDepartmentofIndustrialandSystemsEngineering,theHongKongPolytechnicUniversity,Hong Kong.Herinterestsincludemotionplanning,human machinecollaboration,faulttolerant,automotive controlandapplication.

Preface

Unmannedaerialvehicles(UAVs),alsoknownasaerialdrones,havestartedto reshapeourmodernlife,thankstotheinherentattributessuchasmobilityand flexibility.OncenationallegislationsallowUAVstoflyautonomously,swarmsof UAVswillpopulateourcityskiestoconductvariousmissions:rescueoperations, surveillance,andmonitoring,andalsosomeemergingapplicationssuchasgoods deliveryandtelecommunications.

Thisbookisprimarilyaresearchmonographthatpresents,inadetailedand unifiedmanner,therecentadvancementsrelevanttotheapplicationsofUAVs inwirelesscommunications,surveillanceandmonitoringofgroundtargets andareas,andgoodsdelivery.Themainintendedaudienceforthismonograph includespostgraduateandgraduatestudents,aswellasprofessionalresearchers andindustrypractitionersworkinginavarietyofareassuchasrobotics,aerospace engineering,wirelesscommunications,signalprocessing,systemtheory,computerscienceandappliedmathematicswhohaveaninterestinthegrowingfield ofautonomousnavigationanddeploymentofUAVs.Thisbookisessentially self-contained.Thereaderisassumedtobefamiliarwithbasicundergraduate levelmathematicaltechniques.Theresultspresentedarediscussedtoagreat extentandillustratedbyexamples.Wehopethatreadersfindthismonograph interestingandusefulandgainadeeperinsightintothechallengingissuesin thefieldofautonomousnavigationanddeploymentofUAVsforcommunication, surveillance,anddelivery.Moreover,inthebook,wehavemadecommentson someopenissues,andweencouragereaderstoexplorethemfurther.Thematerial inthisbookderivesfromaperiodofresearchcollaborationbetweentheauthors from2018to2022.Someofitspartshaveseparatelyappearedinjournalandconferencepapers.Themanuscriptintegratesthemintoaunifiedwhole,highlights connectionsbetweenthem,supplementsthemwithneworiginalfindingsofthe authors,andpresentstheentirematerialinasystematicandcoherentfashion. Inpreparationofthisresearchmonograph,theauthorswishtoacknowledge thefinancialsupporttheyhavereceivedfromtheAustralianResearchCouncil.

xii Preface

ThisresearchworkhasalsoreceivedfundingfromtheAustralianGovernment, viagrantAUSMURIB000001associatedwithONRMURIgrantN00014-19-1-2571. Also,theauthorsaregratefulforthesupporttheyhavereceivedthroughoutthe productionofthisbookfromtheSchoolofElectricalEngineeringandTelecommunicationsattheUniversityofNewSouthWales,Sydney,Australia,theDepartment ofAeronauticalandAviationEngineeringandtheDepartmentofIndustrialand SystemsEngineering,TheHongKongPolytechnicUniversity,HongKong,China.

Furthermore,AndreySavkinisgratefulfortheloveandsupporthehasreceived fromhisfamily.HailongHuangandChaoHuangarealsogratefulforthesupport fromtheirparents.

1.1ApplicationsofUAVs

Thankstotheinherentattributessuchasmobilityandflexibility,unmannedaerial vehicles(UAVs),alsoknownasaerialdrones,havestartedtoreshapeourmodernlife.OncenationallegislationsmakelawstoallowUAVstoflyautonomously, swarmsofUAVwillpopulatetheskyofourcitiestoconductvariousmissions: rescueoperations,surveillance,andmonitoring,andalsosomeemergingapplicationssuchasgoodsdeliveryandtelecommunications.Sometypicalapplications ofUAVsaresummarizedinFigure1.1.

UAVscanservicehumans.AtypicalexampleisthatUAVsplaytheroleof aerialbasestationstoprovidecommunicationservicetocellularusers,especiallyinsomecongestedurbanareas[1].Thisisapromisingsolutionto5G andbeyond-5Gnetworks.Itisalsoveryusefulindisasterareaswherethe communicationinfrastructuresaredown.Also,UAVshavebeenusedtotrack targets,suchashumans,animals,andvehicles[2],andinagriculture[3],traffic monitoring[4],architectureinspection[5],environmentmonitoring[6],disaster management[7].Furthermore,UAVscanprovideservicetowirelesssensor networks(WSNs)[8].Workingastheaerialsinks,theUAVscancollectsensory datafromdistributedsensornodes.Theycannavigategroundrobotssincethey mayhaveabetterviewoftheenvironment,andtheycanalsocollaboratewith groundrobotstoexecutecomplextasks.BeyondthosepresentedinFigure1.1, packagedeliveryisanotherserviceUAVscanprovide,whichalsoattractsgreat interestfromboththeresearchcommunity[9]andlogisticscompanies[10–14].

Inadditiontothesole-UAVusage,thecollaborationbetweenUAVsandground vehiclesforsurveillanceandparceldeliveryhasgainedattention.Akeypointis usingoneormoreUAVstovisitagivensetofpositions.Consideringthelimited capacityoftheon-boardbattery,theflyingtimeofaUAVisconstrained.AstraightforwardideaistoinstallgroundchargingstationsatwhichaUAVcanrechargeor replaceitsbattery[15].Wheretodeploythegroundchargingstationsinfluences

AutonomousNavigationandDeploymentofUAVsforCommunication,SurveillanceandDelivery, FirstEdition.HailongHuang,AndreyV.Savkin,andChaoHuang. ©2023TheInstituteofElectricalandElectronicsEngineers,Inc.Published2023byJohnWiley&Sons,Inc.

Figure1.1 TheusageofUAVs.

thecoverageperformancethatUAVscanachieve.Givenasetofgroundcharging stations,thereview[16]focusesonthepathplanningproblemofaUAVtovisit agivensetofpositionssuccessfully.Anotherideaistousegroundrobotstofunctionasmobilechargingplatforms[17–19].Specifically,thechapter[17]considers theusageofabattery-constrainedUAVandabattery-unlimitedgroundrobotfor large-scalemapping.TheUAVcanrechargeitsbatteryonthegroundrobot.While thegroundrobotcanonlymoveontheroadnetwork,theUAVcantraversethe areasofftheroadnetwork.Theauthorsprovideastrategyforthecooperationof theUAVandgroundrobotsuchthattheycanfinishthemappingmissionunder theenergyconstraintoftheUAV.Thechapter[18]considersasimilarscenario as[17].Theauthorsprovideanintegerprogramforthisproblem.Differentfrom [17,18],in[19],theUAVcantravelwithagroundrobottogetherandrechargeits batteryduringthemovement.Clearly,thisstrategyreducesthetimetofinishthe mission.

1.2ProblemsofAutonomousNavigationand DeploymentofUAVs

InordertofullyreapthebenefitsofUAVsintheaforementionedreal-lifeapplications,somecoretechnicalchallenges,includingthe3Dplacementofmultiple UAVs,thetrajectory/movementdesign,theenergyefficiencyoptimization.These deploymentandautonomousnavigationofUAVsplayanextremelyimportant rolefortheusageofUAVs.Atypicalscenarioisthatateamofcollaborating UAVsisconductingamissionforwhichitisneededtodeterminesomeoptimal operationstatusincludingphysicalpositionsandotherapplication-dependent attributessuchastransmissionpowerswhenUAVsserveasaerialbasestations.

Forastaticsituation,wecanformulatesomeUAVnavigationanddeploymentproblemsasoptimizationproblems.Theobjectivefunctioncanbe application-dependent.Forexample,whenUAVsareusedtoservecellularusers, atypicalproblemishowtodeployUAVstocatertowirelessusers’instantaneous trafficdemands.Existingresearchhasinvestigatedthetrajectoryplanning problemforasingleUAVtorelayinformation[20]andbroadcast/multicast datapackets[21].Besidesthetrajectoryplanningproblem,researchershave alsoinvestigatedtheUAVdeploymentsothatwirelesscoverageisprovidedto thestaticusersinatargetregion,bydesigningtheoptimaloperatinglocation in3Dspace[22],minimizingthenumberofthestoppointsfortheUAV[23], andminimizingthetotaldeploymenttime[24].WhenUAVsareusedtomonitorgroundtargets,somemetricdescribingthequalityofsurveillancewillbe regardedastheobjective.Moreover,thedeploymentproblemoftencomeswith someconstraints.Animportantconstraintistheconnectivity[25].WhenmultipleUAVsoperatetogether,theyneedtoformaconnectednetworkwithsome groundbasestationforcommunication.Thecommonapproachistointroducea connectivitygraph,whichcanrestricttherelativepositionsoftheUAVssothat avalidcommunicationchannelbetweenapairofUAVsisguaranteed.Another constraintisaboutcollisionavoidance.Foraparticulararea,theremaybeexisting someinfrastructuressuchasbuildings,whichmayberegardedasno-flyzones [26].Suchno-flyzonesfurtherplacesomeconstraintstotheUAVdeployment problem.Then,thedeploymentproblembecomesaconstrainedoptimization problem,andthesolutiontothisproblemisthepositionsoftheUAVs.

Foradynamicsituation,theoptimalpositionsofUAVswillbetime-varying.In thiscase,deploymentandnavigationofUAVsarecoupled.Theoptimalpositions ofUAVsarecomputedbyaddressingthedeploymentproblem,andthentheUAVs arenavigatedfromtheircurrentpositionstonewpositions.Duringthenavigationprocess,itshouldbeguaranteedthattheconnectivityismaintained,UAVsdo notcollidewithanyobstaclesanddonotenteranyno-flyzones.Modelpredictive control(MPC)[27]hasbeenrecognizedasanimportanttooltoaddressthistype ofconstrainedoptimizationproblems.Areviewofrecentresultsondeployment andnavigationofteamsofcollaboratingUAVsforsurveillancecanbefoundinthe surveypaper[28].Moreover,areviewofchallengesandachievementsinreaching fullautonomyofUAVsispresentedin[29].Theresearchmonograph[30]studies variousapplicationsofUAVsforsupportofwirelesscommunicationnetworks. Thoughtheresearchcommunityhasalreadymadeagreatcontributiontothe navigationanddeploymentofUAVs,manyoftheexistingapproachessufferfrom thecomplexityforreal-timeimplementation.Additionally,themobilityofground targets(inwirelesscoverageandalsosurveillanceapplications)isgenerally overlookedbymanyresearcharticles,basedonwhich,themobilityofUAVs needstobecarefullyconsideredtogetabetterqualityofservice(QoS).Motivated

bysuchresearchgaps,andtofacilitatetheapplicationofUAVs,navigationand deploymentmethodsshouldbeimplementedinreal-timeateachUAVusing localinformationonly.Thisrequiresproposedmethodsbecomputationally efficient.Moreover,theoptimalityoftheoverallperformanceoftheUAVsshould beguaranteed.Therefore,decentralizedalgorithmsareoftenneededforUAV deploymentandnavigation.

1.3OverviewandOrganizationoftheBook

Inthissection,webrieflydescribetheresultspresentedinthisresearch monograph.

Thisbookisproblem-oriented,nottechnique-oriented.Soeachchapteris self-containedanddevotestoadetaileddiscussionofaninterestingproblem thatarisesintherapidlydevelopingareaofUAVs’applications.Wepresent relevantapproachesfromacontrolsystemviewpoint.Thus,inChapters2–6, wefirstpresentsystemmodelsandthenformulateproblemsofinterest,which arefollowedbyproposedapproachestoaddresstheproblems.Finally,we presentcomputersimulationresultstoillustratetheeffectivenessoftheproposed approaches.Theorganizationofthebookisasfollows.

InChapter2,wediscussanapplicationofUAVsinprovidingcellularserviceas aerialbasestations.WestudyaproblemofproactiveUAVdeployment.ThedeploymentofUAVsplaysakeyroleforthequalityofserviceinsuchapplications.Two typicalscenariosarestudied.Thefirstscenarioisinurbanareas,andtheUAVsare deployedoverstreetstoavoidcollisionwithbuildings.Thesecondscenarioisfor disasterareas.WeformulateseveraloptimizationproblemstooptimizethequalityofserviceprovidedbytheUAVs,andcomputationallyefficientalgorithmsare presentedtoaddresstheseproblems.

Chapter3discussessomerecentdevelopmentsinusingUAVstomonitorground areasandtargets.Specifically,wepresentapproachestofindingtheminimum numberofUAVsequippedwithground-facingvideocamerasandtheirdeploymentpositionstofullymonitoranareaofinterest,whichcanbeeitheraflatarea oranunevenareawithbuildings,hills,ormountains.Wealsopresentalgorithms thatcanfindtheoptimalpositionsofUAVstosurveyagroupofgroundtargets withinacertainarea.Wedevelopdeploymentalgorithmsforboththe2Dand3D deploymentofUAVs.Theoreticalanalysisontheperformanceoftheseapproaches isalsoprovided.

InChapter4,wediscussapplicationsofUAVsforsurveillanceandmonitoring ofgroundareasandtargets,whichcorrespondstovariouspracticalapplications includingbutnotlimitedtosurveillanceofdisasterprocessessuchasoffshoreoil spills,floodandcoalashspills,andmonitoringgroundvehiclesandpedestrians.

WepresentseveraldecentralizedalgorithmsfornavigationofateamofUAVsto collaborativelyconductsurveillancemissions.Thepropertiesofthesealgorithms suchasoptimalityarediscussed.

Chapter5focusesoncovertvideosurveillanceusingUAVs,whichisarelativelynewresearcharea.Differentfromusualsurveillanceapplicationsdiscussed inChapters3and4,covertsurveillancerequiresthattheintentionoftheUAVs isnotdiscoveredbythetargetsofinterest.Wepresenttwoapproachestothis problem.Thefirstapproachisoptimization-based.Wepresentanewmetricto characterizethedisguisingperformance,whichevaluatesthechangeoftherelativedistanceandanglebetweentheUAVandthetarget.Then,weformulatean optimizationproblem,whichjointlymaximizesthedisguisingperformanceand minimizestheenergyefficiencyoftheUAV,subjecttothemotionconstraintof theUAVandtherequirementofkeepingthetargetwithinview.Wepresenta dynamicprogrammingmethodtoplantheUAV’strajectoryinanonlinemanner. Thesecondapproachisabiologicallyinspiredmotioncamouflage-basedmethod. Toachievemotioncamouflage,theUAValwaysmovesonthestraightlinesegment connectingthetargetandafixedreferencepoint.Aslidingmodecontrolstrategy isdeveloped,whichonlytakesthebearinginformationasinput.Wepresentextensivecomputersimulationstodemonstratetheperformanceoftheseapproaches.

InChapter6,wediscusstheapplicationsofUAVsinthelast-mileparceldelivery.UAVshavebeenconsideredasapromisingtoolforfuturelogisticsindustry bymanycompaniesthankstoreducedcostandincreasedmobility.However,one barrieristhelimitedflighttimeduetothelimitationofonboardbatteries.This chapterpresentsrecentresearchresultsonusingpublictransportationvehicles toassistUAVdelivery.Aparticularattentionispaidtopathplanningproblems whenUAVscantravelwithpublictransportationvehicles,andseveralalgorithms arepresentedtodealwiththeseproblemindifferentsituations.

1.4SomeOtherRemarks

Chapter2ofthisbookstudiesusingUAVsforwirelesscommunicationcoverage, Chapters3–5areaboutusingUAVsforvideosurveillanceofgroundareasandtargets,andChapter6concentratesonUAVassisteddelivery.Ontheotherhand, Chapters3and3ofthisbookstudiesUAVdeployment,Chapters4and5address UAVnavigation,andChapter6concentratesonUAVflightscheduling.Furthermore,Chapters1–4studiesteamsofUAVs,Chapter5concentratesonusinga singleUAV,whereasChapter6studiesUAVscollaboratingwithgroundpublic transportationvehicles.Also,itshouldbepointedoutthatChapters2–5study deterministicmodelsthatoftencontainlargeuncertainties,whereasChapter6 addressesbothdeterministicandstochasticmodels.

ItshouldbepointedoutthatteamsofcollaboratingautonomousUAVsguided bydecentralizednavigationalgorithmsdevelopedinthisbookcanbenaturally viewedasnetworkedcontrolsystems;seee.g.[31]andreferencestherein. Themainresultsofthisresearchmonographwereoriginallypublishedinthe journalpapers[32–49].

TheliteratureinthefieldofautonomousUAVnavigationanddeploymentfor communication,groundsurveillance,andparceldeliveryisvast,andwehave limitedourselvestoreferencesthatwefoundmostusefulorthatcontainmaterial supplementingthistext.Thecoverageoftheliteratureinthisbookisbynomeans complete.Weapologizeinadvancetomanyauthorswhosevaluableresearch contributionshavenotbeenmentioned.

Inconclusion,theareaofautonomousnavigationanddeploymentofUAVsis afascinatingdisciplinebridgingrobotics,aerospaceengineering,systemtheory, controlengineering,communications,informationtheory,computerscience,and appliedmathematics.ThestudyofdecentralizedUAVnavigationanddeployment problemsrepresentsadifficultandexcitingchallengeinsystemengineering. Wehopethatthisresearchmonographwillhelpinsomesmallwaytomeetthis challenge.

References

1 H.HuangandA.V.Savkin,“Towardstheinternetofflyingrobots:asurvey,” Sensors,vol.18,no.11,p.4038,2018.

2 L.D.P.Pugliese,F.Guerriero,D.Zorbas,andT.Razafindralambo,“Modelling themobiletargetcoveringproblemusingflyingdrones,” OptimizationLetters, vol.10,no.5,pp.1021–1052,2016.

3 C.ZhangandJ.M.Kovacs,“Theapplicationofsmallunmannedaerial systemsforprecisionagriculture:areview,” PrecisionAgriculture,vol.13, no.6,pp.693–712,2012.

4 K.Kanistras,G.Martins,M.J.Rutherford,andK.P.Valavanis,“Asurvey ofunmannedaerialvehicles(UAVs)fortrafficmonitoring,”in HandbookofUnmannedAerialVehicles,(eds.K.P.Valavanis,G.J.Vachtsevanos), pp.2643–2666,Springer,2014.

5 Z.Zhou,C.Zhang,C.Xu,F.Xiong,Y.Zhang,andT.Umer,“Energy-efficient industrialinternetofUAVsforpowerlineinspectioninsmartgrid,” IEEE TransactionsonIndustrialInformatics,vol.14,no.6,pp.2705–2714,2018.

6 B.Esakki,S.Ganesan,S.Mathiyazhagan,K.Ramasubramanian,B. Gnanasekaran,B.Son,S.W.Park,andJ.S.Choi,“Designofamphibious vehicleforunmannedmissioninwaterqualitymonitoringusinginternetof things,” Sensors,vol.18,no.10,p.3318,2018.

7 S.M.AdamsandC.J.Friedland,“Asurveyofunmannedaerialvehicle(UAV) usageforimagerycollectionindisasterresearchandmanagement,”in The9th InternationalWorkshoponRemoteSensingforDisasterResponse,p.8,2011.

8 C.CaillouetandT.Razafindralambo,“Efficientdeploymentofconnected unmannedaerialvehiclesforoptimaltargetcoverage,”in GlobalInformation InfrastructureandNetworkingSymposium(GIIS),pp.1–8,IEEE,2017.

9 V.Gatteschi,F.Lamberti,G.Paravati,A.Sanna,C.Demartini,A.Lisanti,and G.Venezia,“Newfrontiersofdeliveryservicesusingdrones:aprototypesystemexploitingaquadcopterforautonomousdrugshipments,”in The39th AnnualComputerSoftwareandApplicationsConference(COMPSAC),vol.2, pp.920–927,IEEE,2015.

10 Amazon.comInc.,“Amazonprimeair,”Accessedon1Nov.2021.Online: http://www.amazon.com/primeair.

11 “Chinaisonthefasttracktodronedeliveries,”Accessedon1Nov.2021. Online:https://www.bloomberg.com/news/features/2018-07-03/china-s-on-thefast-track-to-making-uav-drone-deliveries.

12 “SFexpressapprovedtoflydronestodelivergoods,”Accessedon1Nov.2021. Online:https://www.caixinglobal.com/2018-03-28/sf-express-approved-to-flydrones-to-deliver-goods-101227325.html.

13 “DHL’sparcelcopter:changingshippingforever,”Accessedon1Nov.2021. Online:https://discover.dhl.com/business/business-ethics/parcelcopter-dronetechnology.

14 “UPStestingdronesforuseinitspackagedeliverysystem,”Accessedon1Nov. 2021.Online:https://www.apnews.com/f34dc40191534203aa5d041c3010f6c5.

15 I.Hong,M.Kuby,andA.T.Murray,“Arange-restrictedrechargingstation coveragemodelfordronedeliveryserviceplanning,” TransportationResearch PartC:EmergingTechnologies,vol.90,pp.198–212,2018.

16 K.SundarandS.Rathinam,“Algorithmsforroutinganunmannedaerial vehicleinthepresenceofrefuelingdepots,” IEEETransactionsonAutomation ScienceandEngineering,vol.11,no.1,pp.287–294,2014.

17 P.MainiandP.Sujit,“OncooperationbetweenafuelconstrainedUAVanda refuelingUGVforlargescalemappingapplications,”in InternationalConferenceonUnmannedAircraftSystems(ICUAS),pp.1370–1377,IEEE,2015.

18 Z.Luo,Z.Liu,andJ.Shi,“Atwo-echeloncooperatedroutingproblemfora groundvehicleanditscarriedunmannedaerialvehicle,” Sensors,vol.17,no. 5,p.1144,2017.

19 K.Yu,A.K.Budhiraja,andP.Tokekar,“Algorithmsforroutingofunmanned aerialvehicleswithmobilerechargingstationsandforpackagedelivery,” arXiv preprint,arXiv:1704.00079,2017.

20 S.Zhang,H.Zhang,Q.He,K.Bian,andL.Song,“Jointtrajectoryandpower optimizationforUAVrelaynetworks,” IEEECommunicationsLetters,vol.22, no.1,pp.161–164,2018.

21 Y.Zeng,X.Xu,andR.Zhang,“Trajectorydesignforcompletiontime minimizationinUAV-enabledmulticasting,” IEEETransactionsonWireless Communications,vol.17,no.4,pp.2233–2246,2018.

22 A.Al-Hourani,S.Kandeepan,andS.Lardner,“OptimalLAPaltitudefor maximumcoverage,” IEEEWirelessCommunicationsLetters,vol.3,no.6, pp.569–572,2014.

23 M.Mozaffari,W.Saad,M.Bennis,andM.Debbah,“Unmannedaerialvehicle withunderlaiddevice-to-devicecommunications:performanceandtradeoffs,” IEEETransactionsonWirelessCommunications,vol.15,no.6,pp.3949–3963, 2016.

24 X.ZhangandL.Duan,“FastdeploymentofUAVnetworksforoptimal wirelesscoverage,” IEEETransactionsonMobileComputing,vol.18,no.3, pp.588–601,2018.

25 Z.Han,A.L.Swindlehurst,andK.R.Liu,“OptimizationofMANETconnectivityviasmartdeployment/movementofunmannedairvehicles,” IEEE TransactionsonVehicularTechnology,vol.58,no.7,pp.3533–3546,2009.

26 H.HuangandA.V.Savkin,“Energy-efficientautonomousnavigationof solar-poweredUAVsforsurveillanceofmobilegroundtargetsinurbanenvironments,” Energies,vol.13,no.21,p.5563,2020.

27 E.F.CamachoandC.B.Alba, Modelpredictivecontrol.Springer,2013.

28 X.LiandA.V.Savkin,“Networkedunmannedaerialvehiclesforsurveillance andmonitoring:asurvey,” FutureInternet,vol.13,no.7,p.174,2021.

29 T.ElmokademandA.V.Savkin,“TowardsfullyautonomousUAVs:asurvey,” Sensors,vol.21,no.18,p.6223,2021.

30 H.Huang,A.V.Savkin,andC.Huang, wirelesscommunicationnetworks supportedbyautonomousUAVsandmobilegroundrobots.Elsevier,2022.

31 A.S.MatveevandA.V.Savkin, Estimationandcontrolovercommunication networks.Boston,MA:Birkhauser,2009.

32 H.HuangandA.V.Savkin,“Analgorithmofefficientproactiveplacement ofautonomousdronesformaximumcoverageincellularnetworks,” IEEE WirelessCommunicationsLetters,vol.7,no.6,pp.994–997,2018.

33 H.HuangandA.V.Savkin,“Amethodforoptimizeddeploymentof unmannedaerialvehiclesformaximumcoverageandminimuminterferenceincellularnetworks,” IEEETransactionsonIndustrialInformatics,vol. 15,no.5,pp.2638–2647,2019.

34 A.V.SavkinandH.Huang,“Deploymentofunmannedaerialvehiclebasestationsforoptimalqualityofcoverage,” IEEEWirelessCommunicationsLetters, vol.8,no.1,pp.321–324,2019.

35 A.V.SavkinandH.Huang,“Range-basedreactivedeploymentofautonomous dronesforoptimalcoverageindisasterareas,” IEEETransactionsonSystems, Man,andCybernetics:Systems,vol.51,no.7,pp.4606–4610,2021.

36 A.V.SavkinandH.Huang,“Asymptoticallyoptimaldeploymentofdronesfor surveillanceandmonitoring,” Sensors,vol.19,no.9,p.2068,2019.

37 A.V.SavkinandH.Huang,“Proactivedeploymentofaerialdronesforcoverageoververyuneventerrains:aversionofthe3Dartgalleryproblem,” Sensors,vol.19,no.6,p.1438,2019.

38 A.V.SavkinandH.Huang,“Amethodforoptimizeddeploymentofanetworkofsurveillanceaerialdrones,” IEEESystemsJournal,vol.13,no.4,pp. 4474–4477,2019.

39 H.HuangandA.V.Savkin,“Analgorithmofreactivecollisionfree3Ddeploymentofnetworkedunmannedaerialvehiclesforsurveillanceandmonitoring,” IEEETransactionsonIndustrialInformatics,vol.16,no.1,pp.132–140,2020.

40 H.Huang,A.V.Savkin,andC.Huang,“Decentralizedautonomousnavigation ofaUAVnetworkforroadtrafficmonitoring,” IEEETransactionsonAerospace andElectronicSystems,vol.57,no.4,pp.2558–2564,2021.

41 A.V.SavkinandH.Huang,“Navigationofanetworkofaerialdronesfor monitoringafrontierofamovingenvironmentaldisasterarea,” IEEESystems Journal,vol.14,no.4,pp.4746–4749,2020.

42 A.V.SavkinandH.Huang,“Asymptoticallyoptimalpathplanningforground surveillancebyateamofUAVs,” IEEESystemsJournal,pp.1–4,2021.https:// ieeexplore.ieee.org/abstract/document/9580756.

43 A.V.SavkinandH.Huang,“NavigationofaUAVnetworkforoptimalsurveillanceofagroupofgroundtargetsmovingalongaroad,” IEEETransactions onIntelligentTransportationSystems,pp.1–5,2021.https://ieeexplore.ieee.org/ document/9430769.

44 H.HuangandA.V.Savkin,“NavigatingUAVsforoptimalmonitoringof groupsofmovingpedestriansorvehicles,” IEEETransactionsonVehicular Technology,vol.70,no.4,pp.3891–3896,2021.

45 H.Huang,A.V.Savkin,andW.Ni,“OnlineUAVtrajectoryplanningforcovert videosurveillanceofmobiletargets,” IEEETransactionsonAutomationScience andEngineering,vol.19,no.2,pp.735–746,2022.

46 A.V.SavkinandH.Huang,“Bioinspiredbearingonlymotioncamouflage UAVguidanceforcovertvideosurveillanceofamovingtarget,” IEEESystems Journal,vol.15,no.4,pp.5379–5382,2021.

47 H.Huang,A.V.Savkin,andC.Huang,“Reliablepathplanningfordrone deliveryusingastochastictime-dependentpublictransportationnetwork,” IEEETransactionsonIntelligentTransportationSystems,vol.22,no.8, pp.4941–4950,2021.

48 H.Huang,A.V.Savkin,andC.Huang,“Roundtriproutingfor energy-efficientdronedeliverybasedonapublictransportationnetwork,” IEEETransactionsonTransportationElectrification,vol.6,no.3, pp.1368–1376,2020.

49 H.Huang,A.V.Savkin,andC.Huang,“Droneroutinginatime-dependent network:towardlow-costandlarge-rangeparceldelivery,” IEEETransactions onIndustrialInformatics,vol.17,no.2,pp.1526–1534,2021.

DeploymentofUAVBaseStationsforWireless CommunicationCoverage

2.1Introduction

Duetothetremendousincreaseofrecentwirelesstrafficdemand,InternetService Providers(ISPs)havebeendedicatedtodevelopingeffectivestrategiestoimprove userexperienceincellularnetworks[1].Densificationofstationarybasestations (BSs)isonesolution[2];however,ithasvariousdrawbackssuchasthehigh costofsiterentalandbackhaullinks.Moreimportantly,itmaynotbeefficiently utilizedinnonpeakperiods,whichisawasteofpreciousresource.Analternative solutionistodeployautonomousunmannedaerialvehicles(UAVs),whichwork asflyingBSs,toprovideInternetservicetouserequipments(UEs).Becauseofthe flexibility,theutilityofUAVsincellularnetworksattractslotsofresearchon thecommunicationmodelsincludingtheair-to-groundpathlossmodel[3]and theinterferencemodel[4],andtheplacementproblemincludingtheplacement ofasingleUAV[5,6]andseveralUAVs[7,8],etc.

AlthoughtheimplementationofUAVsincellularnetworksrequiresvarious techniquestocometogether,inthischapter,wefocusononekeyissue:the deploymentofUAVs.ThepositionsofUAVsnotonlyinfluencethecoverage oftheareaofinterestbutalsoimpacttheinterferenceatacertainUEfrom differentUAVs.Theinterferenceplaceschallengesonthesignaldemodulation atUEs,becausewhenthesignaltointerferenceandnoiseratioisbelowa threshold,UEscannotdemodulatetheintendedsignal.Therefore,thefundamentalquestionweanswerhereishowtodeploytheUAVssuchthattheycan servethelargestnumberofUEsandimposetheleastinterferenceonUEsina givenarea.

Differentfromtheassumptioninmanyexistingpapers,i.e.UEsarerandomly scatteredorfollowingapredefineddistribution(seee.g.[2]),weconsideramore practicalscenario.Inparticular,theUEstobeservedbyUAVsareoutdoor.This assumptioncanmaketheperformanceofourapproachclosertorealitybecause indoorUEsarenotthetargetsofUAVs.Torepresentcityenvironments,weadopta

AutonomousNavigationandDeploymentofUAVsforCommunication,SurveillanceandDelivery, FirstEdition.HailongHuang,AndreyV.Savkin,andChaoHuang.

©2023TheInstituteofElectricalandElectronicsEngineers,Inc.Published2023byJohnWiley&Sons,Inc.

2DeploymentofUAVBaseStationsforWirelessCommunicationCoverage

streetgraphmodel.Weconstructastreetgraphwithasetofpoints,andeachstreet intheareaisrepresentedbyasubsetofthesepoints.Furthermore,weassociate eachstreetpointwithaUEdensityfunction,whichreflectsthetrafficdemand atthispointduringacertainperiodoftime.SuchUEdensityfunctionplaysan importantroleindeterminingthepositionsofUAVs.Inpractice,theUEdensity functioncanbeconstructedviaeitherhistoryrecordingsoronlinecrowdsensing [9].Inthischapter,wechoosetheformermethod,i.e.webuilduptheUEdensity functionsbasedonarealdatasetcollectedfromasocialdiscoverymobileApp: Momo[10],whichcanbeagoodreflectionoftherealUEdistribution.

RegardingthefeasiblepositionsofUAVs,wehavethefollowingconcerns.First, toavoidhittingtallbuildings,theUAVsaredeployedoverthestreets.Second,the UAVsshouldbedeployedwithinacertainrangeoftheexistingelectricpowerpoles (wecallitchargingpoleintherestofthechaptertoindicateitsfunction),where theycanrechargethebattery.1 Thereasontoinvolvethisconditionisthatthe workingtimeofthebatteryonthestate-of-the-artcommercialUAVs,suchasDJI,2 isquitelimited.Thus,toguaranteeontheservicetime,theflyingtimebetweenthe chargingpoleandhoveringpositionshouldbecarefullycontrolled,otherwise,the UAVsmayrunoutofbattery.TherearesomestationaryBSsonthestreetgraphand theUAVstogetherwiththeseBSsthatformaconnectedcommunicationgraph. Inparticular,theBSsworkasaccesspointsandtheUAVsserveUEs.Arequest fromaUEwillbesenttoaBSbytheservingUAVeitherdirectlyorviaother relayUAVs.

WefirstassumethattheUAVsusedifferentfrequenciestotransmitdatatoUEs. WeformulateanoptimizationmodeltomaximizetheUEcoverageandminimize therelaycostbetweenUAVs.Weseektheoptimalpositionsonthestreetgraph fortheUAVstooptimizetheobjectivesubjecttothatoftheUAVsandtheBSsto formaconnectedgraph.Second,weformulateanoptimizationproblemseeking theoptimalpositionsoftheUAVsonthestreetgraphtomaximizeUEcoverage andminimizetheinterferenceeffect.Thisproblemisslightlysimilartotheblanketcoverageproblemof[11].However,intheproblemconsideredinthischapter, complete(perfect)blanketcoverageisnotrealistic.Furthermore,unlike[11],we takeintoaccountinterference.Weanalyzethepropertiesoflocalmaximaofour problem,basedonwhich,wethenproposeadistributedalgorithmtodetermine thelocallyoptimalpositionsforUAVs.Inthisdistributedalgorithm,eachUAV onlyrequiresthelocalinformationsuchastheUEdensitiesandthepositionsof thenearbyUAVs,whichmakesitsuperiortosomeexistingcentralizedalgorithms, e.g.[8,12–14].Weprovethattheproposedalgorithmconvergestothelocalmaximawithinafinitenumberofsteps.

1http://www.sbs.com.au/news/article/2017/08/23/powerlinescharge-drones-vic-students. 2http://www.dji.com.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.