Transition metal oxides for electrochemical energy storage jagjit nanda download pdf

Page 1


Nanda

Visit to download the full and correct content document: https://ebookmass.com/product/transition-metal-oxides-for-electrochemical-energy-st orage-jagjit-nanda/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Novel Electrochemical Energy Storage Devices: Materials, Architectures, and Future Trends 1st Edition Feng Li

https://ebookmass.com/product/novel-electrochemical-energystorage-devices-materials-architectures-and-future-trends-1stedition-feng-li/

Metal Oxides for Optoelectronics and Optics-Based Medical Applications Suresh Sagadevan

https://ebookmass.com/product/metal-oxides-for-optoelectronicsand-optics-based-medical-applications-suresh-sagadevan/

Metal Oxides and Related Solids for Electrocatalytic Water Splitting Qi Junlei (Ed.)

https://ebookmass.com/product/metal-oxides-and-related-solidsfor-electrocatalytic-water-splitting-qi-junlei-ed/

Energy Storage for Modern Power System Operations

Sandeep Dhundhara

https://ebookmass.com/product/energy-storage-for-modern-powersystem-operations-sandeep-dhundhara/

Advances in Metal Oxides and Their Composites for Emerging Applications Sagar D. Delekar

https://ebookmass.com/product/advances-in-metal-oxides-and-theircomposites-for-emerging-applications-sagar-d-delekar/

Metal Oxides for Non-volatile Memory: Materials, Technology and Applications Panagiotis Dimitrakis

https://ebookmass.com/product/metal-oxides-for-non-volatilememory-materials-technology-and-applications-panagiotisdimitrakis/

Energy Storage Systems: System Design and Storage Technologies Armin U. Schmiegel

https://ebookmass.com/product/energy-storage-systems-systemdesign-and-storage-technologies-armin-u-schmiegel/

Gallium Oxide: Technology, Devices and Applications (Metal Oxides) Stephen Pearton (Editor)

https://ebookmass.com/product/gallium-oxide-technology-devicesand-applications-metal-oxides-stephen-pearton-editor/

Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications (Metal Oxides) 1st Edition Yarub Al-Douri (Editor)

https://ebookmass.com/product/metal-oxide-powder-technologiesfundamentals-processing-methods-and-applications-metaloxides-1st-edition-yarub-al-douri-editor/

TransitionMetalOxidesforElectrochemicalEnergyStorage

TransitionMetalOxidesforElectrochemical EnergyStorage

Editors

Dr.JagjitNanda

OakRidgeNationalLaboratory ChemicalSciencesDivision 1BethelValleyRoad 37831OakRidgeTN UnitedStates

Prof.VeronicaAugustyn NorthCarolinaStateUniversity DepartmentofMaterialsScience& Engineering 911PartnersWay 27606RaleighNC UnitedStates

CoverImages: ©Antoine2K/Shutterstock; SmileFight/Shutterstock

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>.

©2022WILEY-VCHGmbH,Boschstr.12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34493-2

ePDFISBN: 978-3-527-81722-1

ePubISBN: 978-3-527-81724-5

oBookISBN: 978-3-527-81725-2

Typesetting Straive,Chennai,India

Printedonacid-freepaper 10987654321

Contents

Foreword xiii

1AnOverviewofTransitionMetalOxidesforElectrochemical EnergyStorage 1 EthanC.Self,DevendrasinhDarbar,VeronicaAugustyn,andJagjitNanda

1.1FundamentalsofElectrochemicalCells 1

1.2Li-IonBatteries:BasicPrinciplesandTMOElectrodes 3

1.3BriefHistoryofLithium-IonBatteries 4

1.4TheRoleofAdvancedCharacterizationandComputingResources 4

1.5BeyondLithium-IonBatteries 5 Acknowledgments 6 References 6

2Metal–Ion-CoupledElectronTransferKineticsin Intercalation-BasedTransitionMetalOxides 9 VictoriaA.NikitinaandKeithJ.Stevenson

2.1Introduction 9

2.2ThermodynamicControl 11

2.3DiffusionalControl 14

2.4KineticControl 16

2.5EffectofSurfaceLayersonIonTransferKinetics 20

2.6SlowDesolvationasaLimitingIntercalationStep 24

2.7ConcludingRemarks 28 References 28

3Next-GenerationCobalt-FreeCathodes–AProspective SolutiontotheBatteryIndustry’sCobaltProblem 33 NitinMuralidharan,EthanC.Self,JagjitNanda,andIliasBelharouak

3.1Introduction 33

3.2PotentialofCobalt-FreeCathodeMaterials 35

3.3LayeredCathodes 35

3.3.1ConventionalLayeredCathodes 35

3.3.2BinaryLayeredNi-RichCathodeMaterials 36

3.3.3TernaryLayeredNi-RichCathodeMaterials 39

3.4SpinelandOlivineCathodes 41

3.5DisorderedRocksalt(DRX)Cathodes 43

3.6ChallengesinCommercialAdoptionofNewCobalt-Free Chemistries 45

3.6.1SynthesisofCathodePrecursors 46

3.6.2SynthesisofFinalCathodePowders 47

3.6.3ElectrodeFabrication 47

3.6.4BatteryAssembly 47

3.7SummaryandPerspective 48 Acknowledgments 49 ConflictofInterest 49 References 49

4TransitionMetalOxideAnodesforElectrochemicalEnergy StorageinLithium-andSodium-IonBatteries 55 ShanFang,DominicBresser,andStefanoPasserini

4.1Introduction 55

4.2PotentialAdvantagesandChallengesoftheConversion Mechanism 58

4.3TransitionMetalOxidesasAnodeMaterials 61

4.3.1IronOxide(Fe3 O4 ,Fe2 O3 ) 61

4.3.2CobaltOxide(CoO,Co3 O4 ) 67

4.3.3ManganeseOxide(MnO,Mn3 O4 ,MnO2 ) 71

4.3.4CopperOxide(Cu2 O,CuO) 78

4.3.5NickelOxide(NiO) 82

4.3.6RutheniumOxide(RuO2 ) 86

4.3.7OtherTransitionMetalOxides 88

4.4SummaryandOutlook 88 References 90

5LayeredNa-IonTransition-MetalOxideElectrodesfor Sodium-IonBatteries 101 BaskarSenthilkumar,ChristopherS.Johnson,andPremkumarSenguttuvan

5.1Introduction 101

5.2LayeredTransition-MetalOxides 102

5.2.1StructuralClassification 102

5.2.2SingleTransition-Metal-BasedLayeredTransition-MetalOxides 103

5.2.3Mixed-Metal-BasedLayeredTransition-MetalOxides 107

5.2.4AnionicRedoxActivityforHighCapacity 110

5.3SummaryandOutlook 112 References 114

6AnionicRedoxReactioninLi-ExcessHigh-Capacity Transition-MetalOxides 121 NaoakiYabuuchi

6.1StoichiometricLayeredOxidesforRechargeableLithium Batteries 121

6.2Li-ExcessRocksaltOxidesasHigh-CapacityPositiveElectrode Materials 123

6.3ReversibleandIrreversibleAnionicRedoxforLi3 NbO4 -and Li2 TiO3 -BasedOxides 126

6.4ActivationofAnionicRedoxbyChemicalBondswithHighIonic Characters 130

6.5Li4 MoO5 asaHostStructureforLithium-ExcessOxides 131

6.6ExtremelyReversibleAnionicRedoxforLi2 RuO3 System 133

6.7AnionicRedoxforSodium-StorageApplications 135

6.8FuturePerspectivesofAnionicRedoxforEnergy-Storage Applications 138 References 139

7TransitionMetalOxidesinAqueousElectrolytes 145 XiaoqiangShanandXiaoweiTeng

7.1Introduction:OpportunitiesandChallengesofAqueousBatteries 145

7.2ElectrochemistryofAqueousBatteries 146

7.2.1PotentialWindow 146

7.2.2DiverseChargeTransferandStorageProcessesinAqueous Batteries 148

7.2.2.1OverviewofVariousStorageMechanisms 148

7.2.2.2Semi-quantitativeAnalysisofStorageMechanismfromSweeping VoltammetryAnalysis 151

7.2.2.3StorageMechanismsinElectrolytewithDifferentpHValues 152

7.3TransitionMetalOxidesforAqueousEES 156

7.3.1ManganeseCompounds 157

7.3.1.1CrystalStructuresofManganeseOxidesforAqueousStorage 157

7.3.1.2CompositingManganeseOxideswithOtherAdditives 161

7.3.1.3SurfaceEngineeringCrystalFacets,EdgeSites,andBulk/NanoSize Domain 161

7.3.1.4DopingandDefectChemistry 162

7.3.1.5Pre-intercalatedSpecies 163

7.3.2NiCompounds 165

7.3.3VanadiumCompounds 167

7.3.3.1LiorNaVanadates 169

7.3.4IronCompounds 171

7.3.4.1Fe/Fe3 O4 171

7.3.4.2Fe2 O3 /FeOOH 172

7.4Conclusion 173 Acknowledgments 174 References 174

8NanostructuredTransitionMetalOxidesforElectrochemical EnergyStorage 183

SimonFleischmann,IshitaKamboj,andVeronicaAugustyn

8.1FundamentalElectrochemistryofNanostructuredTMOs 183

8.1.1ThermodynamicsofChargeStorageinNanostructuredTMOs 183

8.1.2KineticsofChargeStorageinNanostructuredTMOs 186

8.2EmergingNanostructuredTMOs 189

8.2.1NanostructuredTMOCathodesforLIBs 189

8.2.2NanostructuredBinaryTMOsforConversion-TypeCharge Storage 193

8.2.3NanostructuredBinaryTMOsforIntercalation-TypeCharge Storage 195

8.3ImplementationofNanostructuredTMOsinElectrode Architectures 198

8.3.1One-DimensionalandTwo-DimensionalArchitectures 201

8.3.1.1NanowiresandNanotubes 201

8.3.2Three-DimensionalArchitectures 203

8.3.2.1Assemblies 203

8.3.2.2Foams 205

8.3.2.3Aerogels 205

8.4Conclusions 206 References 206

9InterfacesinOxide-BasedLiMetalBatteries 213 MoranBalaish,KunJoongKim,MasakiWadaguchi,LingpingKong, andJenniferL.M.Rupp

9.1Introduction 213

9.2SolidOxideElectrolytes 215

9.3Cathode:TowardTrueSolid 216

9.3.1OriginofInterfacialImpedanceandCurrentPressingIssuesat Cathode/SolidElectrolyteInterfaces 217

9.3.1.1InterfacialReactionDuringCellFabrication 220

9.3.1.2ElectrochemicalOxidationandChemicalReactionDuringCycle 222

9.3.1.3Chemo-mechanicalDegradationDuringCycling 223

9.3.2StrategiesandApproachesTowardEnhancedStabilityand Performance 224

9.3.2.1CathodeCoating 224

9.3.2.2GeometricArrangementConcernsandStrategiesTowardMaximizing ReactionSites 226

9.3.2.3ConductiveAdditivesinSolid-StateCathode 229

9.4Anode:AdoptingLithiumMetalintheSolid 229

9.4.1Li/Solid–ElectrolyteInterface:Chemical,Electrochemical,and MechanicalConsiderations,IncludingMitigationStrategies 230

9.4.2LiDendriteFormationandPropagationinSolidElectrolytes: ChallengesandStrategies 237

9.5OutlookandPerspective 242 Acknowledgments 244 Contributions 244 EthicsDeclarations 244 References 244

10DegradationandLifePerformanceofTransitionMetalOxide CathodesusedinLithium-IonBatteries 257 SatishB.Chikkannanavar,JongH.Kim,andWangmoJung

10.1Introduction 257

10.2DegradationTrends 257

10.3TransitionMetalOxideCathodes 260

10.3.1SpinelCathodes 260

10.3.2NCMSystemofCathodes 262

10.3.3NCMACathodes 265

10.4DegradationMechanism 266

10.5ConcludingRemarks 268 References 269

11MechanicalBehaviorofTransitionMetalOxide-BasedBattery Materials 273

TruongCai,JungHwiCho,andBrianW.Sheldon

11.1Introduction 273

11.2MechanicalResponsestoCompositionalChanges 274

11.2.1VolumeChangesandDeformationinElectrodeParticles 274

11.2.2ParticleFracture 277

11.3ImpactofStrainEnergyonChemicalPhenomena 280

11.3.1Thermodynamics 280

11.3.2Two-PhaseEquilibrium 283

11.4SolidElectrolytes 284

11.4.1Electrode/ElectrolyteInterfaces 284

11.4.2ElectrolyteFracture 288

11.5Summary 293 References 294

12Solid-StateNMRandEPRCharacterizationofTransition-Metal OxidesforElectrochemicalEnergyStorage 299

XiangLi,MichaelDeck,andYan-YanHu

12.1Introduction 299

12.2BriefIntroductionofNMRBasics 301

12.2.1NuclearSpins 301

x Contents

12.2.2NMRSpinInteractions 301

12.2.3ParamagneticInteractionsandExperimentalApproachestoAchieve HighSpectralResolution 302

12.3MultinuclearNMRStudiesofTransition-metal-oxideCathodes 305

12.3.1LiExtractionandInsertionDynamics 305

12.3.2OEvolution 312

12.4EPRStudies 314

12.5Summary 316 References 316

13 InSitu and InOperando NeutronDiffractionofTransitionMetal OxidesforElectrochemicalStorage 319 ChristopheDidier,ZaipingGuo,BohangSong,AshfiaHuq,and VanessaK.Peterson

13.1Introduction 319

13.1.1NeutronDiffractionandTransitionMetalOxides 319

13.1.1.1NeutronReflectometry 321

13.1.1.2Small-AngleNeutronScattering 322

13.1.1.3QuasielasticandInelasticNeutronScattering 322

13.1.2NeutronDiffractionInstrumentation 323

13.1.3 InSitu and InOperando NeutronDiffraction 325

13.2DeviceOperation 326

13.2.1ExperimentalDesignandApproachtotheReal-TimeAnalysisof BatteryMaterials 326

13.2.2AdvancementsinUnderstandingElectrodeStructureDuring BatteryOperation 327

13.3GasandTemperatureStudies 330

13.3.1ExperimentalDesignandApproachtothe InSitu StudyofSolid OxideFuel-Cell(SOFC)Electrodes 330

13.3.2AdvancementsinUnderstandingSolidOxideFuel-CellElectrode Function 331

13.4MaterialsFormationandSynthesis 332

13.5Short-RangeStructure 333

13.6Outlook 334 Acknowledgments 335 References 335

14SynchrotronX-raySpectroscopyandImagingforMetalOxide IntercalationCathodeChemistry 343 ChixiaTianandFengLin

14.1Introduction 343

14.2X-rayAbsorptionSpectroscopy 345

14.2.1SoftX-rayAbsorptionSpectroscopy 345

14.2.2HardX-rayAbsorptionSpectroscopy 352

14.3Real-SpaceX-raySpectroscopicImaging 358

14.3.12DFull-FieldX-rayImaging 358

14.3.2X-rayTomographicImaging 362

14.4Conclusion 368 References 369

15Atomic-ScaleSimulationsoftheSolidElectrolyte Li7 La3 Zr2 O12 375 SeunghoYuandDonaldJ.Siegel

15.1Introduction 375

15.1.1Motivation 375

15.1.2SolidElectrolytes 376

15.1.3Li7 La3 Zr2 O12 (LLZO) 376

15.1.4Challenges 377

15.2ElasticPropertiesofLi7 La3 Zr2 O12 377

15.3PotentialFailureModesArisingfromLLZOMicrostructure 381

15.4Conclusions 386

Acknowledgements 387 References 387

16Machine-LearningandData-IntensiveMethodsfor AcceleratingtheDevelopmentofRechargeableBattery Chemistries:AReview 393

AustinD.Sendek,EkinD.Cubuk,BrandiRansom,JagjitNanda,and EvanJ.Reed

16.1Introduction 393

16.2Machine-LearningMethodsandAlgorithms 396

16.3Lithium-Ion-ConductingSolidElectrolytes 399

16.4LiquidElectrolytes 402

16.5CathodeDesign 402

16.5.1Anodes 403

16.6BeyondLithium 403

16.7ElectrochemicalCapacitors 404

16.8ApplicationofMLinLifeCycleDegradation 404

16.9ConclusionandFutureOutlook 405

Acknowledgments 405 References 405

Index 411

Foreword

Sincetheirintroductionintoportableelectronicdevicesmorethan30yearsago, lithium-ionbatterieshavegrowntodominatetheenergystoragesectorandare nowthetechnologyofchoiceforpoweringportabledevices,electricvehicles,and increasingly,smartgrids.Attheheartoflithium-ionbatterytechnologyisthemechanismoflithium-ionintercalationintosolid-statehostmaterialsforboththecathode andtheanode.Intercalationreactionsintotransitionmetalcompoundswereof greatinterestinthe1970sbecauseofthepossibilityofcontrolledstructuraland electronicmodification.OurteamatExxonmadeseminaldiscoveriesintothe mechanismofelectrochemicalLi+ intercalationformingthebasisofLi-ionbatteries.Thesestudiesdevelopedtheimportantdistinctionbetweenintercalationvs. conversionordecompositionreactions,andshowedtheimportanceofintercalation reactionsforextendedhigh-capacitycycling.Thisworkledtothefirstgeneration oflithium-ionbatteries(ExxonandMoli-Energy),andidentifiedthechallengesof workingwithlithiummetalanodes.

Followingtheseminalstudiesoflithiumintercalationintotransitionmetal chalcogenides,attentionturnedtotransitionmetaloxidesduetotheirhigherintercalationpotentialsinanumberoflaboratories.JohnGoodenough’sgroupidentified thelayeredoxidessuchasLiCoO2 asoutstandingreplacementsforthelayered sulfides.Today,transitionmetaloxidesarethepreferredmaterialsforlithium-ion batterycathodesbecauseoftheirhighredoxpotentialsandgoodlithium-ionintercalationcapacity.BesidestheiruseinexistingLi-ionbatterytechnology,transition metaloxidesalsoformthebasisofemergingbeyondLi-ionchemistriessuchas Na-ion,wheretheyhavemuchhighercapacitiesthanthesulfides.

Thisbookprovidesatimelyreferenceintothesolid-statechemistry,characterization,andmodelingoftransitionmetaloxidesforelectrochemicalenergystorage writtenbyinternationalexperts.Chaptersaredevotedtomechanismsofenergy storage(suchascoupledcation/electrontransferreactions;Na+ intercalation; conversionreactions;andanionredox),characterization(suchasnuclearmagnetic resonanceandX-raytechniques),andmodeling.Emerginghottopics,suchasthe roleofartificialintelligenceandmachinelearningmethodsinpredictingproperties

xiv Foreword ofenergystoragematerialsandcobalt-freetransitionmetaloxidescathodesfor Li-ion,arealsocovered.Overall,thebookprovidesagreatreferencefornovicesand expertstogainadeeperunderstandingintothesolid-statechemistryoftransition metaloxidesofpotentialuseforenergystorage.

Vestal,NY

8September2021

M.StanleyWhittingham 2019NobelLaureateinChemistry

AnOverviewofTransitionMetalOxidesforElectrochemical EnergyStorage

EthanC.Self 1 ,DevendrasinhDarbar 1 ,VeronicaAugustyn 2 ,andJagjitNanda 1

1 OakRidgeNationalLaboratory,ChemicalSciencesDivision,OakRidge,TN37831,USA

2 NorthCarolinaStateUniversity,DepartmentofMaterialsScienceandEngineering,Raleigh,NC27695,USA

Transitionmetaloxides(TMOs)areusedinmanycommercialandresearchapplications,includingcatalysis,electrochemicalenergystorage/conversion,electronics, andthermoelectrics.ThisbookfocusesonTMOsforelectrochemicalenergystorage deviceswithparticularemphasisonintercalation-basedsecondary(rechargeable) batteries.Thisintroductorychapterprovidesabroadoverviewofsuchapplications, anddetailedtreatmentsofspecificsubjectsaregiveninChapters2–16.

1.1FundamentalsofElectrochemicalCells

Anelectrochemicalcellconsistsoftwoelectrodes(denotedascathode/anodeor positive/negative)separatedbyanionicallyconductive,electronicallyinsulating electrolyte.Batteriesconvertchemicalenergyintoelectricalenergythrough Faradaicchargetransferprocesseswhere:(i)oxidation/reductionreactionsoccur withinanode/cathodeactivematerialsand(ii)electronsaretransportedthrough anexternalcircuittomaintainchargeneutralityateachelectrode.Thesereactions areirreversibleinprimarybatteries(e.g.Zn–MnO2 andLi–MnO2 )designedfor single-useapplications.Ontheotherhand,secondarybatteries(e.g.lead-acid, nickel-metalhydride,andLi-ion)leveragereversibleredoxprocessesandcanbe repeatedlycharged/discharged,arequirementformanyend-useapplications(e.g. electricvehicles).

Electrochemicalcapacitorsareanotherformofenergystoragedeviceswhichprovidespecificenergyandpowerbetweenthatofdielectriccapacitorsandrechargeablebatteries.Supercapacitorsstore/deliverenergythroughnon-Faradaicprocesses whereionsarestoredintheelectrochemicaldoublelayerneartheelectrodesurfaces. Ontheotherhand,pseudocapacitivematerialsstoreenergythroughchargetransfer reactionswhichmayinclude:(i)oxidation/reductionoftheelectrodesurfaceand/or (ii)intercalationofionsintoahostactivematerial.Hybridconfigurationsutilizing pseudocapacitivematerialsapproachthespecificenergyofrechargeablebatteries.

TransitionMetalOxidesforElectrochemicalEnergyStorage, FirstEdition. EditedbyJagjitNandaandVeronicaAugustyn. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

Figure1.1 Ragoneplotshowingthespecificenergyandpowerofseveralelectrochemical energystoragesystems.Source:ImagereproducedfromHayneretal.[1],International EnergyAgency,TechnologyRoadmaps:ElectricandPlug-inHybridElectricVehicles,2009, p.12.(Originalsource:JohnsonControl–SAFT2005and2007.)

Twoimportantperformancemetricsofenergystoragedevicesarethespecific energy(Whkg 1 )andspecificpower(Wkg 1 ),whichdescribe howmuch and how quickly energycanbestored/delivered,respectively.Analogousquantitiesnormalizedtosystemvolume(i.e.energy/powerdensitieswithunitsofWhL 1 andWL 1 ) arealsocommonlyused.Ragoneplots(Figure1.1)summarizetheseenergy/power relationshipsandareusefultoassesstheviabilityofdifferentenergystorage platformsforagivenapplication.Figure1.1showsafundamentaltradeoffbetween asystem’sspecificenergyandpower.Forexample,supercapacitorsexhibit:(i)high specificpowerduetorapidionadsorption/desorptionnearelectrodesurfacesbut (ii)lowspecificenergysincechargestorageonlyoccurswithintheelectrochemical doublelayer.Ontheotherhand,batteriesstoreenergywithinthebulkstructureof activematerials,enablinghighspecificenergy.Therateofenergystorage/delivery inbatteriesisgenerallylimitedbysolid-statediffusionorphasenucleationkinetics intheactivematerial,resultinginlowerspecificpowerthansupercapacitors.With thesetrendsinmind,itshouldbeemphasizedthattheenergy/powercharacteristics ofanelectrochemicaldevicearealsohighlydependentondesignfactorssuchas materialselection,cellformat,andelectrodearchitecture.

Sections1.2–1.5providebasicoverviewsofelectrochemicalenergystoragedevices whereTMOsplaycriticalrolesindeviceoperation.Theimportanceofadvanced characterizationandcomputingresourcesonguidingmaterialdevelopment,understandingdegradationmechanisms,andoptimizingsystemperformanceisalsohighlighted.

1.2Li-IonBatteries:BasicPrinciplesandTMO Electrodes

Overthelastfourdecades,Li-ionbatterieshavesuccessfullytransitionedfrom researchanddevelopmenttocommercialapplications,includingportableelectronics,electricvehicles,andgridstorage.Thefoundationofthistechnologyisbasedon cationintercalationreactionswhereinLi+ isstoredinTMOcathodesandgraphite anodes[2].Theseintercalationreactionsarehighlyreversible,andtoday’sLi-ion batteriescanundergohundredsorthousandsofcycleswithminimalchemical and/orstructuralchangestotheactivematerial(seeChapters9and10fordetailed discussionondegradationmechanismsofLi-ionbatteries).

TheworkingprinciplesofLi-ionbatteriesareillustratedinFigure1.2.During charge,Li+ deintercalatefromtheTMOcathode(e.g.LiCoO2 ),transportthrough theelectrolyte,andintercalateintotheanodeactivematerial(e.g.graphite). Tomaintainchargeneutrality,electronsaresimultaneouslyextractedfromthe cathode(typicallyviatransitionmetaloxidation),transportedthroughanexternal circuit,andinsertedintheanode(electrochemicalreductionofgraphite).During discharge,theseprocessesarereversed,andLi+ ionsandelectronsaretransported backtothecathode.Figure1.2bshowsqualitativecathode/anodevoltageprofiles asafunctionofcapacity.CommercialLi-ionbatteriestypicallyhavecellvoltages ∼3.6Vandspecificenergies ∼200Whkg 1 ,althoughthesevaluesdependonactive materialselectionandcelldesign.

CommercialLi-ionelectrodesarepreparedbycastingaslurrycontainingactive material(thehostmaterialwhichreversiblystoresLi+ ),electronicallyconductive carbonadditives,andpolymerbinderontoacurrentcollector(typicallyCuforthe anodeandAlforthecathode).Keyelectrochemicalproperties,includingoperatingvoltage,reversiblecapacity,andcyclability,arestronglydependentontheactive material’scrystallographicstructureandtransitionmetalselection.Conventional cathodeactivematerialsinclude:(i)lithiumTMOswithlayeredorspinelcrystallographicstructures(e.g.LiCoO2 andLiMn2 O4 ,respectively)and(ii)olivinestructures containingpolyanionicgroups(e.g.LiFePO4 ).Awiderangeofrelatedcompositions

Figure1.2 (a)Schematicoftheworkingprincipleofalithium-ionbatterycontaininga LiCoO2 cathodeandgraphiteanode.(b)Qualitativevoltageprofilesduringchargeand discharge.Source:Belharouaketal.[3].

1AnOverviewofTransitionMetalOxidesforElectrochemicalEnergyStorage containingtransitionmetalsubstitutions(e.g.LiNix Mny Co1 x y O2 )havebeendevelopedtomaximizetheenergydensityandcyclingstabilityofTMOcathodes.While mostcommercialLi-ionbatteriescontaingraphiteanodes,somesystemsalsoutilize TMOanodessuchasLi4 Ti5 O12 .ThevastcompositionallandscapeofTMOsexplored asLi-ionactivematerialsisdetailedinChapters2,3,5,7,and16.

1.3BriefHistoryofLithium-IonBatteries

Inthe1960s,intercalationchemistrywasaprominentmethodusedtoaltermaterials’electronicandopticalproperties[4,5].Forinstance,theelectronicconductivity ofWO3 canbevariedseveralordersofmagnitudebyintercalatingmonovalent cationsintothestructure[6].Rechargeablebatterieswhichutilizeionintercalation reactionswerefirstdemonstratedinthe1970sbyWhittingham[7]atExxon Corporation.TheseprototypecellscontainedalayeredTiS2 cathode,lithiummetal anode,andliquidelectrolyte(e.g.LiClO4 dissolvedinamixtureofdimethoxyethane andtetrahydrofuran)[7].OnelimitationofthissystemwastheLimetalanode whichformsdendritesthatcanpenetratetheseparatorandinternallyshort-circuit thecell.Asanalternativeanode,YazamidemonstratedreversibleLi+ intercalation ingraphiticcarbonsusingapolymerelectrolyteinthe1980s[8].However,inliquid electrolytestheseintercalationanodeswerehinderedbysolventco-intercalation whichresultedingraphiteexfoliationandelectrodedegradationduringcycling. In1985,agroupledbyYoshinoatAsahiKaseiCorporation(Japan)identified petroleumcokeanodes[9]whichwerestableduringLi+ insertion/removal,and theseanodeswereincorporatedintoLi-ionfullcellscontainingliquidelectrolyte. ThesediscoveriesultimatelyledtothefirstcommercialLi-ionbatteriesintroduced bySonyin1991.Ataroundthesametime,suitableelectrolytesolvents(e.g.ethylene carbonate)whichdonotco-intercalateingraphitewerealsoidentified.Compared todisorderedcarbonsderivedfrompetroleumcoke,graphiticanodesoperateat morenegativepotentialswhichenableshighercellvoltagesandenergydensities.

Inadditiontocarbonaceousanodes,the1980salsowitnessedadvancementsin Li-ionintercalationcathodes.NotableexamplesincludeLiCoO2 (Goodenoughand coworkers)[10],LiMn2 O4 (Thackerayandcoworkers)[11],andpolyanioniccathodessuchasLiy Fe2 (XO4 )3 ,X = S,Mo,andW(Manthiramandcoworkers)[12].

ThesescientificbreakthroughsenabledLi-ionbatteriestodominatetherechargeablebatterymarketfordecades,andthesesystemsarenowubiquitousincommercialdevicesrangingfromportableelectronicstoelectricvehicles.The2019Nobel PrizeinChemistrycelebratedthisachievementwithanawardtoProfs.JohnGoodenough,StanleyWhittingham,andAkiraYoshino.

1.4TheRoleofAdvancedCharacterization andComputingResources

TherichhistoryofLi-ionbatteriesdemonstratesthattranslatingscientificdiscoveriesintoviableenergystoragesystemsrequiresdecadesofresearchanddevelopment.

1.5BeyondLithium-IonBatteries 5

Centraltothisdevelopmentprocessarefundamentalscientificdiscoveries(e.g. identifyingstructure/propertycorrelationsandunderstandingdegradationmechanisms)neededtooptimizematerialselectionandsystemperformance.Such effortsoftenrequirecombiningroutinematerialcharacterization(e.g.electroanalyticalmethods,vibrationalspectroscopy,andlab-sourceX-raydiffraction)with world-classinstrumentation(e.g.X-ray/neutronbeamlines).Severalchaptersin thisbookdescribeadvancedcharacterizationmethodsthatenabledcriticalinsights onTMOsforelectrochemicalenergystorage,andexamplesinclude:(i)solid-state nuclearmagneticresonancespectroscopy(NMR)andelectronparamagneticresonance(EPR)toprobelocalbondingstructure(Chapter11),(ii) insitu and operando neutrondiffractiontoidentifyphasetransformationsduringmaterialsynthesisand batteryoperation(Chapter12),and(iii)X-rayspectroscopyandimagingtoprobe transitionmetalvalencestates(Chapter13).Inadditiontotheseexperimental efforts,advancedcomputingresourcesandmachinelearning(Chapters14and15) haveacceleratedmaterialdiscoveryandprovidedmechanisticinsightintoprocesses occurringatlength/timescaleswhicharedifficulttoprobeexperimentally.

1.5BeyondLithium-IonBatteries

TheperformanceofLi-ionbatteriesislargelydictatedbytheactivematerials,and replacingthegraphiteanodewithLimetalcanenablebatterieswithspecificenergies >400Whkg 1 (comparedto ∼200Whkg 1 fortoday’scommercialLi-ionbatteries). Aspreviouslymentioned,formationofLidendritesduringchargingpresentsmajor safetyandreliabilityconcerns,andtodate,liquidelectrolyteshavebeenunableto effectivelysuppressLidendriteformation.TocombatthisissueandstabilizetheLi metalanode,thereisgrowinginterestinsolid-statebatteries(SSBs)containingsolid electrolyteseparators.Representativeclassesofsolid-stateLi+ conductorsinclude garnetoxides(e.g.Li7 La3 Zr2 O12 ),sulfides(e.g. β-Li3 PS4 andLi6 PS5 Cl),polymers (e.g.poly(ethyleneoxide)containingaLi+ salt),andinorganicglasses(e.g.Lipon). TheopportunitiesforLimetalaretremendous,butenablingpracticalSSBsrequires overcomingmajorchallengesrelatedtomaterialsynthesis,processing,andinterfacialstabilizationasdiscussedinChapter8.

Energystoragecostsareaprimaryfactorindeterminingtheviabilityofbattery technologiesforgridstorageapplications.WhilethecostofLi-ionbatterieshas decreasedsubstantiallyinthepastdecade(e.g.from ∼US$1000/kWhin2008to ∼US$130/kWhin2020),furthercostreductionsareneededtoenablewidespread adoptionforlarge-scalestationarystorage.Recentdevelopmentsonlow-cost rechargeablebatteriesdiscussedinthisbookinclude:(i)aqueouselectrolytesfor Li-ionsystems(Chapter6)and(ii)Na-basedchemistrieswhichutilizeactivematerialhoststhatundergointercalation,conversion,oralloyingreactions(Chapters3 and4).

Developmentofnext-generationenergystoragesystemsiscriticaltocombat climatechangeinthecomingdecades.Globalenergyconsumptionrates[13]are

1AnOverviewofTransitionMetalOxidesforElectrochemicalEnergyStorage expectedtoincreaseto40.8TWby2050,andelectrochemicalenergystoragesystems representoneofthemostpromisingplatformstobridgethesupply/demandgap forintermittentrenewableresources(e.g.solarandwind).Inthisregard,TMOs areexpectedtocontinueplayingcriticalrolesascomponentsforlow-cost,reliable energystoragetoenableasustainablefuture.

Acknowledgments

TheauthorsacknowledgesupportfromEnergyEfficiencyandRenewableEnergy (EERE),VehicleTechnologiesOffice(VTO),DepartmentofEnergy.

ThischapterhasbeenauthoredinpartbyUT-Battelle,LLC,undercontract DE-AC05-00OR22725withtheUSDepartmentofEnergy(DOE).TheUSgovernmentretainsandthepublisher,byacceptingthearticleforpublication, acknowledgesthattheUSgovernmentretainsanonexclusive,paid-up,irrevocable, worldwidelicensetopublishorreproducethepublishedformofthismanuscript,or allowotherstodoso,forUSgovernmentpurposes.DOEwillprovidepublicaccess totheseresultsoffederallysponsoredresearchinaccordancewiththeDOEPublic AccessPlan(http://energy.gov/downloads/doe-public-access-plan).

References

1 Hayner,C.M.,Zhao,X.,andKung,H.H.(2012).Materialsforrechargeable lithium-ionbatteries. AnnualReviewofChemicalandBiomolecularEngineering 3:445–471.

2 Dunn,B.,Kamath,H.,andTarascon,J.M.(2011).Electricalenergystoragefor thegrid:abatteryofchoices. Science 334(6058):928–935.

3 Belharouak,I.,Nanda,J.,Self,E.C., etal.(2020).Operation,manufacturing,and supplychainoflithium-ionbatteriesforelectricvehicles.https://doi.org/10.2172/ 1737479.

4 Gamble,F.R.,Osiecki,J.H.,Cais,M.etal.(1971).Intercalationcomplexesof Lewisbasesandlayeredsulfides:alargeclassofnewsuperconductors. Science 174:493–497.

5 Aronson,S.,Salzano,F.J.,andBellafiore,D.(1968).Thermodynamicproperties ofthepotassium-graphitelamellarcompoundsfromsolid-stateemfmeasurements. JournalofChemicalPhysics 49(1):434–439.

6 Whittingham,M.S.,Michael,S.,andJacobson,A.J.(1982). IntercalationChemistry.NewYork:AcademicPress.

7 Whittingham,M.S.(1976).Electricalenergystorageandintercalationchemistry. Science 192:1126–1127.

8 Yazami,R.andTouzain,P.(1983).Areversiblegraphite-lithiumnegativeelectrodeforelectrochemicalgenerators. JournalofPowerSources 9:365–371.

9 Yoshino,A.,Sanechika,K.,Nakajima,T.(1987).Secondarybattery.USPatent 4,668,595,filed9May1986andissued26May1987,https://patents.google.com/ patent/US4668595A/en.

10 Mizushima,K.,Jones,P.C.,Wiseman,P.J.,andGoodenough,J.B.(1980).Lix CoO2 (0<x ≤1):anewcathodematerialforbatteriesofhighenergydensity. Materials ResearchBulletin 15:783–789.

11 Thackeray,M.M.,David,W.I.F.,Bruce,P.G.,andGoodenough,J.B.(1983). Lithiuminsertionintomanganesespinels. MaterialsResearchBulletin 18: 461–472.

12 Manthiram,A.(2020).Areflectiononlithium-ionbatterycathodechemistry. NatureCommunications 11(1):1550.

13 Lewis,N.S.andNocera,D.G.(2006).Poweringtheplanet:chemicalchallenges insolarenergyutilization. ProceedingsoftheNationalAcademyofSciencesofthe UnitedStatesofAmerica 103(43):15729–15735.

Metal–Ion-CoupledElectronTransferKinetics inIntercalation-BasedTransitionMetalOxides*

SkolkovoInstituteofScienceandTechnology,CenterforEnergyScienceandTechnology,NobelStraße3, 121205Moscow,Russia

2.1Introduction

Intensiveresearchinthefieldoflithiumionintercalatingsystemsoverthelastseveraldecadesresultedinthedesignofhundredsofactivematerialandelectrolyte systemsforpracticalbatteryapplications[1–3].Giventhehighpriorityofachieving maximumcapacity,energydensity,andratecapabilitycharacteristicsoftheLi-ion batteries,thefocusofthemajorityofstudiesonthecoulombicefficiency,cyclability,andcharge–discharge(C-rate)characteristicsoftheactivematerialsisnot surprising.Still,adetailedmechanisticunderstandingonthemetal–ion-coupled electrontransfer(ET)kineticandthermodynamicpropertiesisneededtorealize improvedperformancefornext-generationenergystoragesuchasfortransportation andgrid-scaleapplications[4–6].

Mostofthemodernelectrochemicalcharacterizationmethodsintheassessmentofmetal–ionbatterykineticsandthermodynamicprocessesfocusonthe analysisofcharge/dischargecurvesperformedundergalvanostaticconditions orthedifferentialcapacity(derivativeofthecharge Q withrespecttovoltage V ) dQ/dV vs. V curves,whichresultsfromasimpledifferentiationoftheexperimental charge/dischargecurves[7].Yet,classicalelectrochemicalkineticmodels,which offeravarietyoftechniquestotreattheelectrochemicaldataforredoxprocessesin solution,foradsorbedreactants,andaswellasforverycomplexcasesofmultistep processes[8,9],arerarelyappliedforaquantitativeanalysisoftheintercalationprocesses,whichoccuratthesolidelectrode/electrolyteinterface.Inthischapter,we reviewtheprocesses,whichinvolveredoxreactionsintransitionmetaloxideelectrodescoupledwithmetal–ionintercalationsteps,withemphasisonthespecifics ofmetal–ion-coupledelectrontransferkineticsinmultiparticlecompositesystems, whichareindeedthekeyelectrodearchitecturesinmetal–ionbatteryresearch.We aimtobroadenthewell-knownclassicalelectrochemicalconceptsconcerningthe

*ThischapterwasoriginallypublishedinAdvancedEnergyMaterials,2021,Volume10,Issue22; DOI:10.1002/aenm.201903933.ReproducedwithpermissionofWILEY-VCHGmbH.

TransitionMetalOxidesforElectrochemicalEnergyStorage, FirstEdition. EditedbyJagjitNandaandVeronicaAugustyn. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

2Metal–Ion-CoupledElectronTransferKineticsinIntercalation-BasedTransitionMetalOxides

reaction-limitingstepstoencompassionintercalationprocessesaswellasdiscuss theconditionsrequiredforagivenslowsteptomanifestitself.Thepointofinterest inthisdiscussionisthecriteria,whichshouldallowforfacileandreliablediagnosticsoftheintercalationratecontrolregimefornewmaterialsorforunconventional solvent/metal–ionsaltsystems,astheknowledgeoftherate-determiningfactors isessentialforchoosingtheoptimalstrategytoenhancetheratecapabilityand capacitycharacteristicsofametal–ionbattery(e.g.bydecreasingtheparticlesize, tuningthesurfacelayerscompositionandstructure,andthesolvatingproperties ofthemedium).Thisdiscussionalsofocusesspecificallyon“battery-type”intercalationmetaloxidesystemsandnot“pseudocapactive-type”metaloxidematerials. Severalrecentreviewsthatprovideformaldefinitionanddistinctionbetweenthese twotypesofenergystoragemechanismscanbefoundhere[10–12].

Atitsmostbasiclevel,anintercalationprocesscanberegardedascomprisingtwo steps:electrontransfer(ET)fromthecurrentcollectortotheredox-activematerial (faradaic),whichresultsinthechangeofstructureduetothetransitionmetaloxidation/reduction,andiontransfer(IT)intothemetaloxidecrystallatticefromthe bulkelectrolyte.ThesecondprocessofITalsoinvolvesseveralstages:(i)iondiffusioninthesolventbulk;(ii)transitionthroughsurfacefilms(generallyregarded assolidelectrolyteinterphase[SEI]layersinconventionalcarbonate-basedelectrolytes);(iii)chargetransferatthesolution/electrodeinterfaceorSEI/electrode interface;(iv)iondiffusionintheelectrodematerial.Apartfromthesesimpleststeps, thestepofionicdesolvationinthevicinityoftheelectrode/solutionorelectrode/SEI interfaceshouldgenerallyoccur,asinmostcasestheionentersthecrystallattice withoutitssolvationshell.Morecomplexcasesalsoinvolvethestepofnucleating anewphase,whichistypicalformaterialswithawidemiscibilitygap(suchas LiFePO4 ),wheretherateofinitiatingthephasetransitionturnsouttobeslower thanthecharge-transferkineticsorionicdiffusion[13].Asthecomplexnucleation dynamicsshouldbeconsideredinthiscasetogetherwiththecharge-transferand diffusionequations,inthiscontributionwelimitourselvestotheanalysisofthe metaloxideelectrodematerialswithwidersingle-phaseregions,wheretheevents ofnucleationdonotdeterminetheintercalationkinetics.

Weprimarilyaddressthevoltammetricandelectrochemicalimpedanceresponses oftheoxideelectrodematerialsduetotherelativesimplicityofthedataanalysisand highlyinformativeshapeoftheelectrochemicalresponses,whichallowsforboth theinitialqualitative-levelrate-limitingstepdiagnosticsaswellasfortheadvanced quantitativeestimationofthekeykineticparameters,whichcharacterizeboththe transportandthekineticlimitationsinanintercalationmaterial/electrolytesystem. However,wenotethatevenforaqualitative-levelanalysisthebasicrequirements fortheexperimentalsetuparetobefulfilledtoensurethereproducibilityandthe reliabilityoftheelectrochemicaldataobtained.

(1)Theelectrochemicalmeasurementsshouldbecarriedoutinathree-electrode cellwithareliablereferenceelectrodewithahighexchangecurrentdensityto ensureitsreversibility.WhileaLimetalreferenceelectrodegenerallydemonstratesratherfastET/ITkinetics[14],NaandKmetalelectrodesduetotheir higherreactivitywiththeelectrolytecannotbeusedasreferenceelectrodes

2.2ThermodynamicControl 11

inathree-electrodesetupinorganiccarbonateelectrolytes[15].Alternative redoxelectrodesarerecommendedforaccurateelectrochemicalkineticstudies ofNa+ andK+ intercalation(e.g.Ag+ /Agelectrodesorreferenceelectrodes basedonthepartiallychargedphasetransformingmaterialswithawide miscibilitygap[16]).

(2)Theresponsesofinhomogeneousthickporouselectrodescannotbeanalyzed quantitativelywithintheframeworkofsimplemodels[17].Hence,themass loadingoftheelectrodematerialpowdershouldbeminimizedto1–0.5mgcm 2 ofthecurrentcollector.

(3)Minimizationoftheelectrolyte/materialratio(i.e.usingsmallamountsof electrolyte)isessentialincaseofreductive/oxidativeelectrolytedecomposition withtheSEIlayersformationtostabilizetheelectrochemicalinterfaces,aslow volumeoftheelectrolyteminimizesthedissolutionoftheformedprotective surfacelayers.

Inthisdiscussion,werelyonthephenomenologicalelectrochemicalkinetics theoryofintercalationmaterials,asformulatedinearlierworksofLeviandAurbach [18,19],asthisapproachprovidesatransparentwaytoestimatethekeykinetic parametersofanintercalationreaction,suchasdiffusioncoefficients,apparent rateconstants,andion–hostinteractionparameters.Amoreadvancedtreatment byM.Bazantisbasedonthephase-fieldtheoryofelectrochemicalkinetics,which generalizestheclassicalButler–VolmerandMarcusequations[20,21].Thelatter approachallowstodescribethekineticandthermodynamiceventsinthecourse ofintercalationwithintheframeworkofhighlyaccurateandphysicallyadequate formulism,whichpossessesahighexplanatorypower.However,theapplicationof thisapproachtotreatexperimentalkineticdataforintercalationsystemsrequires knowledgeofalargenumberofparameters,suchasreorganizationenergies,activitycoefficients,strainenergies,forreactants,products,andintermediates,which canhardlybeestimatedquantitatively.Thephenomenologicaltreatmentdoesnot grantinformationonthephysicaloriginofchargetransferactivationbarriers,but allowsfortheelucidationofthenatureoftheintercalationrate-limitingstepand comparativeanalysisofthekineticparametersfordifferention–hostsystems,which areessentialfortherationalcontrolofintercalationkineticsinenergystorageand conversiondevices.

2.2ThermodynamicControl

Thesimplestcaseinthemetal–ion-coupledelectrontransferkineticsiswhen boththerateofdiffusionandtherateofiontransferareveryfastanddonot affecttheshapeofthecyclicvoltammograms(CVs),charge/dischargecurves,or currenttransients.Inthiscase,thecurrent(underpotentiostaticconditions)or thepotential(undergalvanostaticconditions)aredeterminedbytheshapeofthe intercalationisotherm,i.e.bythedependenceofthehostlatticefreeenergyonthe amountoftheintercalatedmetalions,whichischaracterizedbytheintercalation

2Metal–Ion-CoupledElectronTransferKineticsinIntercalation-BasedTransitionMetalOxides

level �� (theratioofthenumberoftheionsinthehostlatticetothenumberofthe availableintercalationsites).Themostdirectanalogybetweentheintercalation andtheadsorptionprocessesreliesontheNernstequationfortheintercalation ofanioninsideanemptysiteinthehostlattice:M+ + e + [] = [M],whichcan bemodifiedtoaccountfortherepulsiveorattractiveinteractionsbyintroducing aphenomenologicalparameter“g”(negativefortheattractionbetweenionsin thehostandpositiveforrepulsion).TheresultingequationrepresentsaFrumkin intercalationisotherm,asintroducedbyLeviandAurbach[18]:

where Eeq isthestandardredoxpotential(V)(theequilibriumpotentialofarealor ahypotheticalphasehavingacompositionof �� = 0.5); g –dimensionlessconstant, whichcorrespondstotheinteractionparameterintheFrumkinisothermformulism.

Thevariationinthevalueofthe g parameterinduceschangesintheslopeofthe galvanostaticcharge/dischargeprofiles(Figure2.1a).Thelimitingcaseof g =−4 resultsinatypicalplateau,whichmarksthelossofsystemstabilityinasingle-phase intercalationprocess.Withintheframeworkofthephenomenologicalapproaches, theattractiveinteractionsinthesystembecomestrongenoughtoresultintoseparationofthesystemintocation-richandcation-poorphases.Indeed,furtherincrease inthenegative g valueresultsinanS-shapedisotherm,whichclearlyimpliesthe coexistenceoftwophasesinsomeintervalof �� values.Thecorrespondingcyclic voltammetrycurves(Figure2.1b)calculatedfordifferent g valuesshowbroad peaksfortherepulsiveinteractions(g = 0,2,4)andsharperpeaksfortheattractive interactions,whichissofarcompletelyanalogoustotheadsorptionprocesses,and canbetreatedusingLavironanalysisforsurfaceconfinedredox-activespecies[22] (theequationsforthecurrent/potentialcurvescalculationcanbefoundin[18]). Anexperimentalexampleofasystemwithoutanysignificantchargetransferor diffusionallimitations(thiscaseisdesignatedas“thermodynamiccontrol”)isthe slightlyoverlithiatedlithium-manganeseoxideLi1+x Mn2 O4 [14,23].Atlowscan rates(<0.1mVs 1 ),theexperimentalCVsshowtwopairsofpeaks,centeredat4.0 and4.13V(vs.Li+ /Li)correspondingtotheconsecutivede/insertionof0.5Liper f.u.(Figure2.1c).Thesymmetryofthecathodicandanodicpeaksandnegligible peak-to-peakseparationimpliesthethermodynamiccontrolofLi-ionintercalation. Indeed,thebasicfeaturesofexperimentalcurvescanbereproducedusing g values of1.1and 0.88forthebroaderandthesharperpeaks,respectively.

However,theexperimentalisothermsareveryrarelyassimpleasimposedby Eq.(2.1).Figure2.1dshowstheexperimentalisothermforLiCoO2 inaconventional 1MLiPF6 ethylenecarbonate/dimethylcarbonate(EC/DMC)electrolyte[24].It isestablishedthataphasetransitionfromhexagonaltomonoclinicphaseoccurs uponLi-iondeinsertionfromtheLi�� CoO2 structureat �� ∼ 0.78[25].Thus,two isothermsforthelithiatedandthedelithiatedphasesarerequired(solidlinesin Figure2.1d).WhiletheinitialpartoftheisothermintheLi-richphasecanbe approximatedusingasingle g value,thisisimpossiblefortheexponentialriseof thecurveat0.5 <��< 0.75,whichsimplyreflectstheverystrongdependenceofthe crystallatticeenergyontheamountoftheintercalatedions.Thiscanbeovercome

E

Figure2.1 Chargingcurves(deintercalationisotherms)(a)andCVs(b)calculatedfor differentvaluesoftheinteractionparameter g.CVat0.1mVs 1 andthefitforLiMn2 O4 electrodein1MLiPF6 inEC/DMCelectrolyte(c).Experimental(de)intercalationisotherm forLiCoO2 electrode(dashedlines)andthefitsforLi-richandLi-poorphases(solidlines,d). Source:Vassilievetal.[14]/withpermissionofElsevier.

byintroducingaseriesof g1 …gn values,whichmodifiesEq.(2.1): E(�� )= Eeq + RT F ln

Thefittingparameters gn introduceverylittleuncertaintyintotheexperimentaldata modeling,astheseareevaluateddirectlyfromtheexperimentalcharge/discharge curvesandareusedonlytoconstructananalyticalapproximationoftheexperimentalintercalationisotherm.Forinstance,thedataforLiMn2 O4 electrodescan beaccuratelyreproducedbyapproximatingtheexperimentallyderived E(�� )using three g valuesforeachredoxprocess(processat4.0V: g1 = 1.13, g2 =−0.45, g3 = 2.34; processat4.13V: g1 =−0.81, g2 = 1.57, g3 = 9.58)[14].Thethermodynamiccontrol isalsotypicalforsodium-andpotassium-ionintercalationintoPrussianbluecompounds[26]andNa+ intercalationintoAVPO4 Fmaterials[15,27].Asthediagnostic criteriaforthethermodynamicregime,onecanusethesymmetryoftheanodicand cathodiccurvesandtheproportionalityofthecurrentpeaktothescanratevalue,

2Metal–Ion-CoupledElectronTransferKineticsinIntercalation-BasedTransitionMetalOxides whiletheconclusionsonthetypeofinteractionsbetweentheionsinthehostmatrix canbeformulatedbasedonthepeaks’shape.

2.3DiffusionalControl

Thecationmobilityinsideasolidstructureisoftenthekeyparametertobeaddressed upontheintroductionofanewmetal–ionbatterymaterial.Theapparentdiffusion coefficient D isusedtocharacterizetheionicmobilityinsideasolidstructure:

where l isthediffusionlength(cm)(halfoftheparticlediameter d orthethin-film thickness)and �� isthediffusiontimeconstant(s).Certainspecificsofionintercalatingmaterialsaredeterminedbytheneedtoconsiderthedimensionalityofthe diffusiongeometry:planar(or1D,asinchannelsintheLiFePO4 structure),cylindrical(2D,diffusioninlayersofLiCoO2 andotherlayeredmaterials),spherical(3D, diffusioninLiMn2 O4 ),andthefinitenatureofthediffusioninsideamaterialparticle.Anexcellenttreatiseonthedeterminationofthediffusioncoefficientfrom chronoamperometrydatawithanaccountofthetypicalhinderingexperimentalfactors(suchasslowchargetransferkinetics,uncompensatedohmicdrop,andwide particlesizedistribution)isavailablein[28–30].

ThegeneraltreatmentofthediffusionproblemisbasedonastandardsetofFick’s equationsforagivendiffusiongeometry(e.g.planar)withboundaryconditionsat theparticlesurfaceandatitscenter[31]:

where x istherelativecoordinate(0 ≤ x = 2l/d ≤ 1), E istheelectrodepotential(V), I isthecurrent(μA), F istheFaradayconstant, �� (E)or E(�� )istheintercalation isotherm, S istheworkingareaoftheparticlesurface(cm2 )(onlyplanescontributingtolithiumdiffusionarerelevant),whichiscalculatedaccordingtotheequation:

where n = 2,4,and6forplanar,cylindrical,andsphericaldiffusiongeometries, m isthemassoftheintercalatingmaterialintheelectrode(g), �� isthephasedensity (gcm 3 ).

Asmostintercalationmaterialsundergophasetransformationsinthecourseof charge/discharge,amorecomplexdiffusionproblemshouldbesolvedforthephase boundarymovement,whichisdiscussedindetailinRefs.[14,32].

Diffusionalcontrolinintercalationmaterialsisgenerallyunavoidableathigh scanorcharge/dischargeratesduetothefinitesizeofthematerialparticlesand thegenerallylowionicmobilitiesinintercalationmaterials[33].Toillustratethe effectofthediffusioncoefficientvalueontheshapeoftheCVs,asetofsimulated voltammogramsforasimplemodelintercalationprocessisshowninFigure2.2a.

10–11cm2s–1

10–12cm2s–1

10–13cm2s–1

10–14cm2s–1

0.1mVs–1 1mVs–1 E (V)(Li+/Li) C (mAhg–1)

Figure2.2 (a)SimulatedCVsforasimpleintercalationprocess(E eq = 4.0V, g1 = 1, m = 0.5mg, �� = 0.2mVs 1 , d = 1 μm)fordifferent D values(indicatedintheplot).

(b)NormalizedperscanrateCVsforscanratevalues:0.05,0.2,0.4,0.6,1mVs 1 (D = 10 12 cm2 s 1 , g = 1, E eq = 4.0V, m = 0.5mg).(c)Charge/dischargecurvescalculated fordifferent C rates: C /10, C /5,1C ,2C ,5C ,10C .(d)ExperimentalCVsofaLiMn2 O4 electrode in1MLiPF6 EC/DMCelectrolyteat0.1and1mVs 1 .Source:Vassilievetal.[14]/with permissionofElsevier.

Themodelredoxprocessoccursinamaterialwiththekineticparameterssimilarto thoseforthe(de)intercalationstepofLiMn2 O4 (Eeq = 4.0V, g1 = 1, m = 0.5mg,scan rate �� = 0.2mVs 1 , d = 1 μm).Evenforthelargediffusionlengthofamicron-sized particle,completelyreversiblebehavior(i.e.thermodynamiccontrol)isobserved whenthediffusioncoefficientreaches10 11 to10 12 cm2 s 1 .Diffusionallimitations appearwhenthe D valuedropsto10 13 cm2 s 1 (Figure2.2a).Thepeak-to-peak separationsintheCVreachthetypicalvaluefordiffusion-controlledprocesses (59mV),whilethesymmetryofthepeaksisdecreasedandthecharacteristiccurrent “tails”(slowdecaysofcurrentafterthemaxima)appearafterthepeakpotentials. Notethatwhenthediffusioncoefficientisfurtherdecreased,thepeaks’height andthetotalintercalationchargedecrease,whichisaconsequenceofincomplete discharge(lithiation)ofaparticleduringthetimeofthepotentialsweep.Inexperimentswithpolydispersepowderelectrodes,thelong-timecurrentdecayswould alsoreflectthecontributionsoflargerparticleswithhigherdiffusionlengths[14].

2Metal–Ion-CoupledElectronTransferKineticsinIntercalation-BasedTransitionMetalOxides

Naturally,theincreaseinthescanratealsoresultsintheappearanceofasymmetriccurrenttailsandthedecreaseofthepeak’sheight(Figure2.2b).Underthese conditions,thereversiblecapacityonchargeoronthedischargeoftheelectrodes decreaseswiththeincreaseinthe C ratevalue,e.g.foramicron-sizedparticlewith D = 10 12 cm2 s 1 ata5C charge/dischargerate,almosthalfofthereversiblecapacitywillbelost(Figure2.2c).TheexperimentalCVsofaLiMn2 O4 electrodeshowthe transitionfromthermodynamiccontroltodiffusionalcontroluponincreaseofthe scanratefrom0.1to1mVs 1 (Figure2.2d).

Basicfeaturesofdiffusionalcontrol,whichcanbeusedforthekinetic regimediagnosticsare:(i)theproportionalityofthecurrentmaximato �� 1/2 , (ii)59-mVpeak-to-peakseparationbetweentheanodicandthecathodicpeaks,and (iii)decreaseintheintercalationcapacitywithincreaseinthecharge/dischargerate.

2.4KineticControl

Despitebeingmentionedquiteoften,diffusionalcontrolisbyfarnottheonly waytoimposeratelimitationsonanintercalationmaterialcharge/dischargerate. Theintercalationprocessinvolvestheinterfacialtransferofboththeelectron (fromthecurrentcollectortothematerialparticle)andtheion(fromthesolution sidetothesiteinsidethecrystallattice).Bothprocessesinvolvethetransferof chargeacrosstheboundarybetweentwophases,whichcanbephenomenologically describedwithintheframeworkofButler–Volmerkinetics.Itisgenerallynotyet establishedwhetheritisthetransferofanionorofanelectronthatdetermines therateoftheprocess.However,atleastforanumberofwell-studiedmaterials (LiCoO2 andLiMn2 O4 ),changingthesolventresultsinquitepronouncedchanges intheintercalationrate[15,26,28,29,34,35].Itisthusmorenaturaltosuggestthat theintercalationrate(atleastforthestudiedsystems)islimitedbytheinterfacial transferofametalion,asthesolventeffectcanhardlybeexpectedforasolid-state electrontransferreaction.Regardlessofthetypeofspecieswhichtraversesthe interface,theButler–Volmerequationcanbeusedtodescribethedependenceof the(de)intercalationrateontheovervoltage �� = E E0 (�� )[14]:

(E)= SF ⋅ 106 ⋅ �� nM Mr ⋅ ks

where �� isthetransfercoefficient, M r isthemolecularmassofthematerial(gmol 1 ), nM isthenumberofintercalatingM+ ionsperf.u., ks istheapparentheterogeneous rateconstant(cms 1 ),whichincludestheintercalatingmetalionconcentrationin solution cM ,i.e. ks = k0 s c�� M tokeepthestandarddimensionality.

Foramaterialwitharelativelyhighchargetransferrateconstant(10 8 cms 1 )and fastdiffusionaltransport(10 9 cm2 s 1 ),thekineticlimitationswouldnotimpactthe shapeoftheCVresponse(Figure2.3a),whiledecreasingtherateconstantvaluewill resultinanincreaseinthepeak-to-peakseparationsandamoderatedecreaseinthe

Figure2.3 (a)SimulatedCVs(E eq = 4.0V, g1 = 1, m = 0.5mg, �� = 0.1mVs 1 , D = 10 9 cm2 s 1 , �� = 0.5, d = 1 μm)fordifferentvaluesof k s .(b)Theeffectofthescanrate (0.05,0.1,0.3,0.7,1.5mVs 1 )ontheCVshape(currentisnormalizedtothescanrate). (c)TheeffectofthetransfercoefficientvalueontheCVpeakssymmetry(D = 10 9 cm2 s 1 , k s = 10 9 cms 1 ).(d)Charge/dischargecurvesforthecaseofratecontrolbyslowcharge transfer(D = 10 9 cm2 s 1 , k s = 10 9 cms 1 )calculatedfordifferent C rates: C /10,1C ,2C , 5C ,10C

peaks’heights(atlowenoughscanrates).AsetofnormalizedCVcurvesshows thechangesinthedifferentialintercalationcapacity(currentdividedbethescan rate �� )vs.potentialcurvesuponincreasingthescanrateforarateconstantvalueof 10 9 cms 1 ,whichisclosetothetypicalvalueforLi+ (de)intercalationintoLiCoO2 materials(Figure2.3b).Theincreaseinthepotentialdifferencebetweentheanodic andcathodiccurrentmaximaresultsinavisiblehysteresisonboththeCVcurves andcharge/dischargeprofiles.Thetransfercoefficientvalue �� isnotatransparent parameterincaseofiontransferreactions,asincontrasttosimpleouter-sphere redoxprocesses �� shouldnotnecessarilybecloseto0.5atlowoverpotentials[36].

The �� valuedeterminesthesymmetryoftheanodicandcathodicCVbranches, whichisillustratedinFigure2.3c.

Kineticlimitations(giventheabsenceofanydiffusionallimitations)donotresult inapronouncedreversiblecapacitylossathighcharge/dischargerates(Figure2.3d). However,thehysteresisbetweenthechargeanddischargecurvesdecreasesthe

2Metal–Ion-CoupledElectronTransferKineticsinIntercalation-BasedTransitionMetalOxides

averagevoltage(forourmodelcase,from4.05to3.85V),whichdecreasesthe energydensityofthematerial.Correspondingly,ifboththediffusionandkinetic limitationsareoperative,boththecapacityandtheaverageworkingpotential woulddecreasetosomeextent,dependingonthe C-rateand D and ks values.

“Mixed”intercalationratecontrolregimereferstothesituationwhenbothdiffusionandchargetransferkineticsaresufficientlyslowtocontributetotheintercalationrate.Atypicalvoltammogramofamodelmaterialundermixedkineticcontrolis showninFigure2.4a.Thecharacteristicfeaturesofboththekineticanddiffusional casesofcontrolmanifestthemselvesintheincreaseofpeak-to-peakseparations andcurrentdecaytimeswiththeincreaseinscanrate.Anexperimentalexample ofmixedcontrolbychargetransferkineticsandsolid-statediffusionisLi+ intercalationintoLiCoO2 (Figure2.4b),whichiscomplicatedbythephasetransformation proceedingat E = 3.91V(vs.Li+ /Li).Thetreatmentofphaseboundarymovementis

Figure2.4 (a)CalculatedCVsforthecaseof“mixed”reactionratecontrol (k s = 5 × 10 9 cms 1 , D = 10 12 cm2 s 1 ).(b)ExperimentalCVsofLiCoO2 electrodein1M LiPF6 EC/DMCelectrolyteatscanrates0.05and0.2mVs 1 .Source:Reproducedwith permissionfromRef.Levinetal.[34],Copyright(2017),Elsevier.(c)Experimental impedancespectraofLi1 �� CoO2 electrodesin1MLiClO4 propylenecarbonatesolutionata setofpotentials,correspondingto0.003 <��< 0.015.(d) Rct vs. E dependenceforthecaseof ratecontrolbyslowinterfacialchargetransfer.Source:Vassilievetal.[37]/withpermission ofElsevier.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Transition metal oxides for electrochemical energy storage jagjit nanda download pdf by Education Libraries - Issuu