Download full Advances in semiconductor technologies: selected topics beyond conventional cmos an ch

Page 1


inSemiconductorTechnologies:Selected TopicsBeyondConventionalCMOSAnChen

https://ebookmass.com/product/advances-in-semiconductortechnologies-selected-topics-beyond-conventional-cmos-anchen/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Fermentation Processes: Emerging and Conventional Technologies Mohamed Koubaa

https://ebookmass.com/product/fermentation-processes-emerging-andconventional-technologies-mohamed-koubaa/

ebookmass.com

From Random Walks to Random Matrices - Selected Topics in Modern Theoretical Physics 1st Edition Jean Zinn-Justin

https://ebookmass.com/product/from-random-walks-to-random-matricesselected-topics-in-modern-theoretical-physics-1st-edition-jean-zinnjustin/

ebookmass.com

Applications of Nanomaterials : Advances and Key Technologies. Kalarikkal

https://ebookmass.com/product/applications-of-nanomaterials-advancesand-key-technologies-kalarikkal/

ebookmass.com

A Cowboy of Legend Linda Broday

https://ebookmass.com/product/a-cowboy-of-legend-linda-broday-2/

ebookmass.com

Processes of Constitutional Decisionmaking: Cases and Materials [Connected

https://ebookmass.com/product/processes-of-constitutionaldecisionmaking-cases-and-materials-connected/

ebookmass.com

The Art and Science of Thread Lifting: Based on Pinch Anatomy 1st ed. 2019 Edition, (Ebook PDF)

https://ebookmass.com/product/the-art-and-science-of-thread-liftingbased-on-pinch-anatomy-1st-ed-2019-edition-ebook-pdf/

ebookmass.com

Joint Mobilization/Manipulation u2013 E-Book: Extremity and Spinal Techniques

https://ebookmass.com/product/joint-mobilization-manipulation-e-bookextremity-and-spinal-techniques/

ebookmass.com

Jace Sasha Summers

https://ebookmass.com/product/jace-sasha-summers-2/

ebookmass.com

Understanding Mobility as a Service (MaaS): Past, Present and Future 1st Edition David A. Hensher

https://ebookmass.com/product/understanding-mobility-as-a-servicemaas-past-present-and-future-1st-edition-david-a-hensher/

ebookmass.com

Decentring Health and Care Networks: Reshaping the Organization and Delivery of Healthcare 1st ed. Edition

Mark Bevir

https://ebookmass.com/product/decentring-health-and-care-networksreshaping-the-organization-and-delivery-of-healthcare-1st-ed-editionmark-bevir/

ebookmass.com

AdvancesinSemiconductorTechnologies

IEEEPress

445HoesLane Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktsson

AnjanBose

AdamDrobot

Peter(Yong)Lia

AndreasMolisch

SaeidNahavandi

JeffreyReed

ThomasRobertazzi

DiomidisSpinellis

AhmetMuratTekalp

AdvancesinSemiconductorTechnologies

SelectedTopicsBeyondConventionalCMOS

IBMResearch–Almaden,CA,USA

Copyright©2023byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyany means,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection 107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,or authorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222 RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com. RequeststothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons, Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/ go/permission.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparing thisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontents ofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceand strategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyothercommercialdamages, includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.Further,readersshouldbeaware thatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenit isread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages, includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomer CareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax(317) 572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationData:

Names:Chen,An(Electronicsengineer),editor.

Title:Advancesinsemiconductortechnologies:selectedtopicsbeyond conventionalCMOS/AnChen.

Description:Hoboken,NewJersey:Wiley-IEEEPress,[2023]|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2022018684(print)|LCCN2022018685(ebook)|ISBN 9781119869580(cloth)|ISBN9781119869597(adobepdf)|ISBN 9781119869603(epub)

Subjects:LCSH:Semiconductors.

Classification:LCCTK7871.85.A35652023(print)|LCCTK7871.85(ebook) |DDC621.3815/2–dc23/eng/20220627

LCrecordavailableathttps://lccn.loc.gov/2022018684

LCebookrecordavailableathttps://lccn.loc.gov/2022018685

Coverimage:©BlueAndy/Shutterstock

Coverdesign:Wiley

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Contents

Preface xi

ListofContributors xv

1HeterogeneousIntegrationatScale 1 SubramanianS.IyerandBorisVaisband

1.1Introduction 1

1.2TechnologyAspectsofHeterogeneousIntegration 4

1.2.1InterconnectPitch 4

1.2.2SubstrateMaterial 5

1.2.3Inter-DieSpacing 6

1.2.4DieSizeConsiderations 6

1.2.5DielettoSubstratePitchConsiderations 8

1.2.6BackwardCompatibility 8

1.3DesignandArchitectureofHeterogeneousIntegrationPlatforms 9

1.3.1PowerDeliveryandThermalManagement 9

1.3.2Floorplanning 11

1.3.3Communication 12

1.4ReliabilityofHeterogeneousIntegrationSystems 14

1.5ApplicationSpaceofHeterogeneousIntegration 17

1.6FutureofHeterogeneousIntegration 18

1.7Summary 20 References 21

2HyperdimensionalComputing:AnAlgebraforComputingwithVectors 25 PenttiKanerva

2.1Introduction 25

2.2Overview:ThreeExamples 26

2.2.1BindingandReleasingwithMultiplication 26

2.2.2SuperposingwithAddition 26

2.2.3SequenceswithPermutation 28

2.3OperationsonVectors 28

2.4DataStructures 30

2.5VectorSumsEncodeProbabilities 32

2.6DecodingaProduct 33

2.7High-DimensionalVectorsatLarge 34

2.8MemoryforHigh-DimensionalVectors 35

2.9OutlineofSystemsforAutonomousLearning 36

2.10Energy-Efficiency 37

2.11DiscussionandFutureDirections 37 References 40

3CADforAnalog/Mixed-SignalIntegratedCircuits 43

AhmetF.Budak,DavidZ.Pan,HaoChen,KerenZhu,MingjieLiu,MohamedB.Alawieh, ShuhanZhang,WeiShi,andXiyuanTang

3.1Introduction 43

3.2Front-EndCAD 45

3.2.1CircuitArchitectureandTopologyDesignSpaceExploration 45

3.2.2DeviceSizing 46

3.2.2.1AMSCircuitSizing:ProblemFormulation 46

3.2.2.2MethodsforAMSCircuitSizing 47

3.3LayoutAutomation 48

3.3.1ProceduralLayoutGeneration 49

3.3.2Optimization-BasedLayoutSynthesis 50

3.4Post-LayoutExtractionandVerification 52

3.5Conclusion 53 Acknowledgments 53 References 53

4MagnetoelectricTransistorDevicesandCircuitswithSteeringLogic 61

AndrewMarshallandPeterA.Dowben

4.1Introduction 61

4.2SimpleLogicFunctionswiththeMEFET“SteeringLogic” 62

4.3LogicFunctions–MajorityGate 64

4.4TheFullAdderandtheDualXOR(Sum)Gates 67

4.5LatchandMemory 70

4.6TheJKMaster–SlaveFlip-Flop 72

4.7Conclusion 75 Acknowledgments 75 References 75

5NonvolatileMemoryBasedArchitecturesUsingMagnetoelectricFETs 79

ShaahinAngizi,DeliangFan,AndrewMarshall,andPeterA.Dowben

5.1Introduction 79

5.2MagnetoelectricFieldEffectTransistor(MEFET) 79

5.31T-1MMemoryDesignBasedontheMEFET 81

5.3.1ReadOperation 81

5.3.2WriteOperation 82

5.42T-1MMemoryDesignBasedontheMEFET 84

5.4.1ReadOperation 85

5.4.2WriteOperation 86

5.5MEFETSteeringMemory 87

5.6Evaluation 90

5.6.1ComparativeReadTime 90

5.6.2ComparativeWriteTime 90

5.6.3ComparisonofCellAreas 90

5.7Conclusion 91 Acknowledgments 91 References 91

6OrganicElectronics 93 HagenKlauk

6.1Introduction 93

6.2OrganicLight-EmittingDiodes 94

6.3OrganicSolarCells 96

6.4OrganicThin-FilmTransistors 97

6.5Outlook 101 References 102

7Active-MatrixElectroluminescentDisplays 109 XiaojunGuo,Li’angDeng,andArokiaNathan

7.1Introduction 109

7.2Light-EmittingDiodesforDisplays 110

7.2.1ThermallyEvaporatedOLEDs 110

7.2.2RealizationofFullColorDisplays 111

7.2.3PrintedDisplays 113

7.2.4Micro-LED 114

7.3TFTBackplanes 115

7.4DrivingSchemesandPixelCircuits 116

7.4.1AnalogDriving 117

7.4.2CompensationforVoltageProgramming 118

7.4.2.1InternalCompensation 118

7.4.2.2ExternalCompensation 119

7.4.3DigitalDriving 120

7.4.4HybridDriving 123

7.5Conclusion 124 References 124

8OrganicandMacromolecularMemory–NanocompositeBistableMemory Devices 133 ShashiPaul

8.1Introduction 133

8.1.1WhatIsanElectronicMemoryDevice? 133

8.2OrganicMemoryandItsEvolution 137

8.2.1MolecularMemory 137

8.2.2PolymerMemoryDevices 139

8.3Summary 146 Acknowledgment 147 References 147

FurtherReading/Resources 151 RelatedArticles(SeeAlso) 151

9NextGenerationofHigh-PerformancePrintedFlexibleElectronics 153 AbhishekS.Dahiya,YogeenthKumaresan,andRavinderDahiya

9.1Introduction 153

9.2PrintingTechnologies 155

9.3High-PerformancePrintedDevicesandCircuitsUsingNano-to-ChipScale Structures 158

9.3.1NanoscaleStructures 158

9.3.2MicroscaleStructures 162

9.3.3Chip-Scale(orMacroscale)Structures 165

9.4ChallengesandFutureDirections 168

9.4.1IntegrationofNano-to-ChipScaleStructures 168

9.4.2TechnologicalChallenges 169

9.4.3Robustness 169

9.4.4Disposability 170

9.4.5ModelingforFlexibleElectronics 170

9.4.6PowerConsumption 170

9.5Summary 171 References 171

10HybridSystems-in-Foil 183 MouradElsobky

10.1Introduction 183

10.1.1System-LevelConcept 183

10.2EmergingApplications 185

10.2.1SmartLabelsforLogisticsTracking 185

10.2.2ElectronicSkin 187

10.2.2.1E-SkinwithEmbeddedAI 187

10.2.3Biomedical 189

10.3IntegrationTechnologies 191

10.3.1SubstrateandInterconnectMaterials 191

10.3.2Flex-PCB 191

10.3.3Wafer-BasedProcessing 193

10.3.3.1ChipFilmPatch 193

10.3.4Challenges 194

10.3.4.1SurfaceTopography 194

10.3.4.2ThermalStress 196

10.3.4.3AssemblyandPositioningErrors 196

10.4State-of-the-ArtComponents 196

10.4.1ActiveElectronics 197

10.4.1.1Microcontrollers 197

10.4.1.2SensorFrontends 197

10.4.1.3SensorAddressingandMultiplexing 200

10.4.2PassiveComponentsandSensors 200

10.4.2.1FlexibleAntennas 200

10.4.2.2HySiF-CompatibleSensors 201

10.5HySiFTesting 202

10.6ConclusionandFutureDirections 204 References 204

11OpticalDetectors 211

LisNanverandTihomirKneževi ´ c

11.1Introduction 211

11.2SiPhotodiodesDesignedinCMOS 213

11.3UltravioletPhotodetectors 217

11.4InfraredOpticalDetectors 219

11.4.1DetectorsforPhotonicIntegratedCircuits 220

11.4.2InfraredPhotoconductiveDetectors 223

11.4.3ThermalInfraredDetectors 224

11.5EmergingDevices 225

11.6ConcludingRemarks 226 References 227

12EnvironmentalSensing 231

TarekZaki

12.1Motivation 231

12.1.1AirPollution 231

12.1.2HazardousPollutants 232

12.1.3AirQualityIndex 233

12.1.4AirMonitoringNetwork 234

12.1.5Hand-HeldDevices 236

12.2ParticulateMatter(PM)Sensing 238

12.2.1ParticulateMatter(PM) 238

12.2.2SensingMechanisms 239

12.2.3OpticalParticleCounter(OPC) 241

12.2.4ParticleSizeDistributions 242

12.2.5MiniaturizedOpticalPMSensing 243

12.3VolatileOrganicCompounds(VOCs)Sensing 244

12.3.1VolatileOrganicCompounds(VOCs) 244

12.3.2SensingMechanisms 246

12.3.3MOX-BasedSensors 247 References 249

13InsulatedGateBipolarTransistors(IGBTs) 255

13.1Introduction 255

13.2State-of-the-ArtIGBTTechnology 257

13.2.1StructuralBasicswithRespecttoBlocking,ONStateandSwitching 257

13.2.2CellandVerticalDesign 258

13.2.3WaferTechnology 259

13.2.4Reverse-BlockingandReverse-ConductingIGBTs 259

13.2.5IncreasingMaximumJunctionTemperature 260

13.2.6AssemblyandInterconnectTechnology 260

13.2.7PowerDensityIncrease 260

13.3FutureProspectofIGBT 261

13.3.1ApplicationRequirementAspects 261

13.3.2NextGenerationCellDesignIncludingGateDrivingSchemes 262

13.3.3NextGenerationVerticalStructureConcepts 265

13.3.4NextLevelofThermalManagementandInterconnectTechniqueInnovation 266

13.4Outlook 268

Acknowledgment 268 References 268

x Contents

14III–VandWideBandgap 273

14.1Introduction 273

14.2DiamondPowerDevices 276

14.3SiCPowerDevices 277

14.4GaNPowerDevices 279

14.5WideBandgapsforHigh-TemperatureApplications 285

14.6Conclusion 286 References 287

15SiCMOSFETs 295

PeterFriedrichs

15.1IntroductiontoSiliconCarbideforPowerSemiconductors 295

15.2SiCSchottkyBarrierDiodes 295

15.3SiCTransistors 298

15.4SiCPowerMOSFETs 299

15.4.1PossibleCellConcepts 299

15.4.2SiCMOSChannelChallenges 301

15.4.3TypicalMOSFETDeviceCharacteristics–StaticBehavior,SwitchingPerformance,and BodyDiodeAspects 302

15.4.4Gate-OxideReliabilityAspects 308

15.4.5Short-CircuitAspectsandAvalancheRuggednessofSiCMOSFETs 312

15.5SiCMOSFETsinPowerApplications–SelectedAspectsandProspects 316 References 317

16MultiphaseVRMandPowerStageEvolution 321

DannyClavette

16.1EvolutionoftheFirstMultiphaseControllers 321

16.2TransitionfromVRMsto“Down”Solutions 324

16.3IntelXeonGenerationsChallengesMoore’sLaw 326

16.4IncreasedSystemDigitizationEnablesDigitalControl 327

16.5DrMOS1.0:Driver + MOSFETs 328

16.6DrMOS4.0andInternationalRectifier’sPowerStageAlternative 330

16.7InternationalRectifier’s“Smart”PowerStage 334

16.8DrMOS5 × 5mmand4 × 4mmDe-standardization 335

16.95 × 6mmSmartPowerStage:IndustryDrivenStandardization 336

16.10LatestSPSActivities 337

16.11TrendingBacktoVRMs 338

16.12Summary 339 References 340

Abbreviations 341

Index 343

Preface

Sincetheinventionofthesolid-statetransistors,thesemiconductortechnologieshaveadvanced atanexponentialpaceandbecomethefoundationfornumerousindustries,e.g.computing, communication,consumerelectronics,autonomoussystems,anddefense.GuidedbyMoore’s law,thescalingoftransistorshasprovidednewgenerationsofchipseveryonetotwoyears,with ever-increasingdensityandbetterperformance.Today,silicontransistorsareapproachingsome fundamentallimitsofdimensionalscaling.Thesemiconductorindustryhasalsotransformed throughseveralphasesandfoundationaltechnologies.TheemergenceofInternetofThings(IoT), bigdata,artificialintelligence(AI),andquantumcomputinghascreatednewopportunitiesfor advancedsemiconductortechnologies.Thecomplementarymetal-oxide-semiconductor(CMOS) technologydominatesthesemiconductorindustrytoday,buttherearenumeroustechnologiesand activeresearchbeyondconventionalCMOS.Althoughsemiconductorsareoftenassociatedwith high-performancecomputingchipssuchascentralprocessingunit(CPU)andgraphicsprocessing unit(GPU),thereisawiderangeofapplicationsbeyondcomputingforsemiconductorproducts, e.g.sensors,displays,andpowerelectronics.Silicon(Si)isthemostimportantsemiconductor,but thesemiconductorresearchalsocoversavarietyofmaterials,e.g.germanium(Ge),III–Vcompounds,organicmaterials,carbonnanotube,2Dmaterials,magneticmaterials,andtopological materials.

ThisbookisacollectionofarticlesreviewingadvancedsemiconductortechnologiesbeyondconventionalSiCMOSforvariousapplications.Thesearticleswrittenbytheexpertsinthefieldscan bereadindependentofeachother.Thevarietyoftopicsreflectsthebreadthofthesemiconductor R&Dandapplicationstoday,butthesearticlesonlycoveraverysmallfractionofsemiconductor technologies.

Withthetransistorscalingapproachingthefundamentallimits,heterogeneousintegrationisa promisingdirectiontosustaintheimprovementofperformanceandfunctionalitieswithoutrelying onreducingtransistorsizes.Chapter1,“HeterogeneousIntegrationatScale,”providesacomprehensivereviewoftechnologies,design/architectureconsiderations,reliabilityissues,applications, andfuturedirectionsoflarge-scaleheterogeneousintegration.

Whiletechnologyinnovationhasbeenaprimarydriverforthesemiconductorindustry,the futureofsemiconductorsystemswillincreasinglyresorttonovelcomputingparadigms.Chapter2, “HyperdimensionalComputing:AnAlgebraforComputingwithVectors,”presentsanexampleof entirelynewwaysofcomputinginspiredbytheinformationprocessinginthebrain.Insteadof traditionalmodelofcomputingwithnumbers,hyperdimensional(HD)computingencodesinformationinaholographicrepresentationwithwidevectorsanduniqueoperations.HDcomputing isextremelyrobustagainstnoise,matcheswellwith3Dcircuits,andisuniquelysuitabletoprocess avarietyofsensorysignalswithoutinterferencewitheachother.

Themajorityofsemiconductorchipsaredigitalcircuits;however,analogandmixed-signal circuitsarecruciallyimportant.Thephysicalworldisanalog;therefore,analogcircuitsarealways neededtoconnectdigitalchipswithrealworld,e.g.sensorydata,powermanagement,and communication.Althoughdigitalcircuitdesignishighlyautomated,analogcircuitdesignstill reliesonmanualeffort.Chapter3,“CADforAnalog/Mixed-SignalIntegratedCircuits,”reviews theprogresstowardautomatedcomputer-aideddesign(CAD)ofanalogandmixed-signalcircuits. ModerncomputersarebuiltbasedonthevonNeumannarchitecturewithseparatelogic/ computingunitsandmemory/storageunits.Emergingmemorydevicesnotonlyprovidenew technologiestoimprovememorysystemsbutalsoenablenovelcomputingarchitectures,e.g. in-memorycomputing.Oneofthemostpromisingemergingmemoriesisbasedonmagnetic materialsandproperties.Chapters4and5focusonaso-calledmagnetoelectricfieldeffect transistor(MEFET)basedontheprogrammingofthepolarizationina2Dsemiconductorchannel withlargespin-orbitcoupling,viatheproximityeffectofamagnetoelectricgate.Chapter4, “MagnetoelectricTransistorDevicesandCircuitswithSteeringLogic,”presentsvariouslogicgate designsbasedonaone-sourcetwo-drainMEFETconfiguredwithasteeringfunction.Chapter5, “NonvolatileMemoryBasedArchitecturesUsingMagnetoelectricFETs,”describesMEFET memorydesignswiththeperformanceandsizesuitabletofulfilltheapplicationspacebetween staticrandom-access-memory(SRAM)anddynamicrandom-access-memory(DRAM).

NovelmaterialsbeyondSi,Ge,andIII–Vcompoundsmayenablenewsemiconductorproducts andapplications.Amongthem,organicsemiconductorsarepromisingmaterialsforlow-cost,flexible,andbio-compatibleelectronics.Chapter6,“OrganicElectronics,”discussestheopportunities oforganicsemiconductorsforlarge-areaflexibleelectronics,includingorganiclight-emittingdiode (OLED),organicdisplays,organicsolarcells,andthin-filmtransistors.Chapter7,“Active-Matrix ElectroluminescentDisplays,”delvesintothedetailsofflatpanelelectroluminescentdisplays basedonlight-emittingdiodes(LEDs)thathavebeenutilizedinawiderangeofapplications includingsmartphones,tablets,laptops,andTVs.VariousunderlyingLEDtechnologies,associatedcircuits,anddesignconsiderationsarereviewed.Anotherinterestingapplicationoforganic materialsismemory.Chapter8,“OrganicandMacromolecularMemory–NanocompositeBistable MemoryDevices,”discussesthemechanisms,characteristics,andcurrentstatusoforganicmemories.Oneoftheadvantagesoforganicmaterialsistheirlow-costprocessingandthepotential tostackupmultiplelayers.Chapter9,“NextGenerationofHigh-PerformancePrintedFlexible Electronics,”summarizesdifferentprintingtechnologiesforflexibleelectronics,showcases thestate-of-the-artprintedflexibleelectroniccircuits,anddiscussesthechallengesandfuture directionsoflarge-scalecost-effectiveprintedelectronics.Thevisionofintegratingelectronic componentsontopolymerfoilsleadstotheflexibleelectronicsversionofsystems-on-chip(SoC), knownassystems-in-foil(SiF).AwiderangeofapplicationscanbenefitfromSiF,e.g.smartlabels, intelligentelectronicskin,andimplanteddevices.Chapter10“HybridSystems-in-Foil”reviews theopportunitiesofSiFandchallengesinmaterials,integration,andtesting.

Theelectronicsystemsneedaninterfacewiththephysicalworld.Semiconductorchipsrelyon sensorsto“see,”“hear,”and“smell.”Opticalsensingisutilizedinawiderangeofapplications,e.g. camera,fiberopticsandcommunication,lightsourceandlaser,datastorage,medicalmonitoring anddiagnostics,andmanufacturing.Chapter11,“OpticalDetectors,”reviewsthephotodiodes basedonSi,III–V,andemergingmaterialsastheessentialcomponentsforhighlysensitive detectorsforabroadspectrumofwavelengths.Chapter12,“EnvironmentalSensing,”coverscomprehensivelydifferentairpollutionsources,airqualitymetrics,andvarioussensingapproaches forparticulatemattersandvolatileorganiccompounds.Theadvancementofsemiconductor

technologiescontributestotheminiaturizationofthesensingequipmentandtheimprovementof theirperformance.

Unlikecomputerchipsoperatingwithverylowvoltageandcurrent,powerelectronicshandle veryhighvoltage(e.g.thousandsofvoltorhigher)andcurrentrequiredtooperatemachinery, vehicles,appliances,etc.Specialdevicedesignsanduniquematerialpropertiesarerequiredto sustainsuchhighvoltageandcurrentinsemiconductorchips.Chapter13,“InsulatedGateBipolar Transistors(IGBTs),”reviewsanimportanthigh-powerdeviceknownasSiinsulatedgatebipolar transistors(IGBTs).IGBTnotonlydominatespowerelectronicstodaybutalsocontinuestobe innovatedforfurthergainsinpowerdensityandefficiency.Atthesametime,significantprogress hasbeenmadeonwidebandgapsemiconductors.Chapter14,“III–VandWideBandgap,”reviews promisingmaterials(e.g.diamond,GaN)andtheirapplicationsinhigh-frequencypowerconversionandhigh-temperatureelectronics.Whilewidebandgappowermodulesmaybecombinedwith Si-basedcontrolcircuitsinnear-termsolutions,considerableeffortismadetoadvanceintegrated circuitsbasedonwidebandgapsemiconductors.Chapter15,“SiCMOSFETs,”reviewsSiC-based powersemiconductordevicesincludingdiodesandtransistors.SiCiswellpositionedtofulfillthe requirementsofpowerelectronics,e.g.energyefficiency,scaling,systemintegration,andreliability. TheuniqueabilityofSiCtoformanativeSiO2 asthegatedielectricmakesitparticularlyattractive forpowermetal-oxide-semiconductorfield-effect-transistors(MOSFETs).Attheend,Chapter16, “MultiphaseVRMandPowerStageEvolution,”providesadetailedoverviewoftheevolutionof CPUpowerdeliverytechnologiesandexplainsthereasonsdrivingthetechnologyshifts.

Thisbookcouldbeconsideredasasmall-scalereferenceofadvancedsemiconductor technologies,whichmaypotentiallybeexpandedintoalarge-scalereferencewithmore comprehensivecoverage.Itisourwishthatthiscollectionofchapterswillprovideusefultutorials onselectedtopicsofadvancedsemiconductortechnologies.

AnChen IBMResearch–Almaden,CA,USA September2022

ListofContributors

MohamedB.Alawieh DepartmentofElectricalandComputer Engineering

TheUniversityofTexasatAustin Austin,TX USA

MohammedAlomari InstitutfürMikroelektronikStuttgart Stuttgart Germany

ShaahinAngizi DepartmentofElectricalandComputer Engineering

NewJerseyInstituteofTechnology Newark,NJ USA

AhmetF.Budak DepartmentofElectricalandComputer Engineering

TheUniversityofTexasatAustin Austin,TX USA

HaoChen DepartmentofElectricalandComputer Engineering

TheUniversityofTexasatAustin Austin,TX USA

DannyClavette InfineonTechnologies AmericasCorporation ElSegundo,CA USA

AbhishekS.Dahiya UniversityofGlasgow JamesWattSchoolofEngineering,Bendable ElectronicsandSensingTechnologies(BEST) Group Glasgow UK

RavinderDahiya UniversityofGlasgow JamesWattSchoolofEngineering,Bendable ElectronicsandSensingTechnologies(BEST) Group Glasgow UK

Li’angDeng DepartmentofElectronicEngineering ShanghaiJiaoTongUniversity China

PeterA.Dowben DepartmentofPhysicsandAstronomy JorgensenHall,UniversityofNebraska Lincoln,NE USA

ListofContributors

MouradElsobky InstitutfürMikroelektronikStuttgart,Sensor Systems Stuttgart Germany

PeterFriedrichs IFAGIPCT,InfineonTechnologiesAG Neubiberg Germany

XiaojunGuo DepartmentofElectronicEngineering ShanghaiJiaoTongUniversity China

SubramanianS.Iyer ElectricalEngineeringDepartment UniversityofCalifornia LosAngeles,CA USA

PenttiKanerva UniversityofCaliforniaatBerkeley RedwoodCenterforTheoreticalNeuroscience Berkeley,CA USA

HagenKlauk MaxPlanckInstituteforSolidStateResearch Stuttgart Germany

TihomirKneževi ´ c FacultyofElectricalEngineering Mathematics&ComputerScience MESA+ InstituteofTechnology UniversityofTwente Enschede TheNetherlands

YogeenthKumaresan UniversityofGlasgow JamesWattSchoolofEngineering,Bendable ElectronicsandSensingTechnologies(BEST) Group Glasgow,UK

ThomasLaska InfineonTechnologiesAG Germany

MingjieLiu DepartmentofElectricalandComputer Engineering

TheUniversityofTexasatAustin Austin,TX USA

AndrewMarshall DepartmentofElectricalEngineering,The ErikJohnsonSchoolofEngineeringand ComputerScience

UniversityofTexasatDallas Richardson,TX USA

LisNanver FacultyofElectricalEngineering Mathematics&ComputerScience MESA+ InstituteofTechnology UniversityofTwente Enschede TheNetherlands

ArokiaNathan DarwinCollege UniversityofCambridge Cambridge UK

DavidZ.Pan DepartmentofElectricalandComputer Engineering

TheUniversityofTexasatAustin Austin,TX USA

ShashiPaul EmergingTechnologiesResearchCentre DeMontfortUniversity Leicester UK

WeiShi

DepartmentofElectricalandComputer Engineering

TheUniversityofTexasatAustin Austin,TX USA

XiyuanTang DepartmentofElectricalandComputer Engineering

TheUniversityofTexasatAustin Austin,TX USA

BorisVaisband McGillUniversity ElectricalandComputerEngineering Department Montreal,QC Canada

TarekZaki Munich,Germany

ShuhanZhang DepartmentofElectricalandComputer Engineering

TheUniversityofTexasatAustin Austin,TX USA

KerenZhu DepartmentofElectricalandComputer Engineering

TheUniversityofTexasatAustin Austin,TX USA

DeliangFan DepartmentofElectrical,Computerand EnergyEngineering ArizonaStateUniversity Tempe,AZ USA

HeterogeneousIntegrationatScale

SubramanianS.Iyer 1 andBorisVaisband 2

1 ElectricalEngineeringDepartment,UniversityofCalifornia,LosAngeles,CA,USA

2 McGillUniversity,ElectricalandComputerEngineeringDepartment,Montreal,QC,Canada

1.1Introduction

Microelectronicshasmadetremendousprogressoverthelastseveraldecadesadheringtowhatis popularlycalledMoore’sLaw.OnemeasureofMoore’slawisthescalingfactorofminimumfeaturesonasiliconintegratedcircuit(IC).Thistrendisshowninthedarkgray(left-handy-axis)curve inFigure1.1[1]exhibitingovera1,000-folddecreaseinminimumfeaturesize,correspondingtoa million-foldtransistordensityimprovement.Thisimprovementcorrespondstoreductioninpower perfunctionaswellasreductionofcostandpriceperfunction.Nonetheless,untilrecently,packagingdidnotscaleasseeninthelightgray(right-handy-axis)curveinFigure1.1.Forexample, in1967,whenflip-chipbondingwasfirstintroduced,thebumppitchwas400 μm.Eventoday,the pitchofthebump(dietolaminate)hasscaledtoabout130 μm,whileballgridarray(BGA)pitch andtracepitchonlaminatesandprintedcircuitboards(PCBs)havenotfaredbetter.However,in thelastfewyears,wehaveseenanaccelerationofthesemetricsasshownintheinsetinFigure1.1. Notethatthesilicon(Si)scaleisinnanometers,whilethepackagingscaleisinmicrometers.There aretwokeyfactorsthathavemediatedthisacceleration:(i)theadoptionofsilicon-likeprocessingmaterialsandmethodstoachievescaling,includingsiliconinterposers,and,importantly,(ii) fan-outwafer-levelpackaging(FOWLP).

Thistrendhasmanifesteditselfintwoways:(i)Theextensiveuseofinterposers,whichisan additionallevelinthepackaginghierarchyasshowninFigure1.2.Atabasiclevel,interposersprovideafirst-levelplatformfortheintegrationofseveral(eight)heterogeneousdieletsonathinned siliconsubstratethatisthenfurtherpackagedonalaminateandattachedtoaPCB.Thisallows thedieletsontheinterposertocommunicateintimatelywithintheinterposer,thoughcommunicationoutsidetheinterposerismoreconventional.(ii)Three-dimensional(3D)integration,where diesarestackedoneontopoftheother,typicallyfacetobackwiththroughsiliconvias(TSVs) oralternativelyfacetofacethroughsurfaceconnections.Theseface-to-faceconnectionscanbeat highbandwidthandlowlatency.Bothofthesetechniqueshavetransformedpackaging,especially whenitcomestothememorysubsystem.Aroadmapusingthememorysubsystemasaparadigm foradvancedpackagingisdepictedinFigure1.3.Anotherareainwhichinterposersand3Dintegrationcanplayabigroleistheintegrationofanalogandmixedsignalfunctions.Moore’slaw scalingdoesagoodjobinscalingdigitallogic,butisatbestmarginalwhenitcomestoanalogand mixedsignalfunctions.ThisisshowninFigure1.4,wheretheanalog/mixedsignalcomponents canoccupyanincreasingpercentageofrealestateatfinergeometries.Inthesecases,retainingthe AdvancesinSemiconductorTechnologies:SelectedTopicsBeyondConventionalCMOS,FirstEdition.EditedbyAnChen. ©2023TheInstituteofElectricalandElectronicsEngineers,Inc.Published2023byJohnWiley&Sons,Inc.

Figure1.1 ScalingtrendsforCMOSfeaturesaswellaspackagefeatures.Packagescalinghaslagged significantlyascomparedtoSiscaling.Adoptionofsilicon-liketechnologyforpackaginghassomewhat acceleratedscaling.

Figure1.2 Currentpackaginghierarchy.Left:die-laminate-PCB.Right:die-interposer-laminate-PCB. analog/mixedsignalfunctionsinanoldernodemakessenseaslongasonecanprovidecompatible voltagedomainsandensurelowlatencyaswellaslowanalogsignaldistortion.Thesearenotvery difficulttodooninterposers. Whyisitimportanttoscalepackaging?Packagingdimensionsdeterminethesizeofthesystemespeciallysincethescaleis10–100timeslargerthanchipdimensions.Powertooisamajor consideration.Communicationpowerbetweenchipsaccountsfor30–40%oftotalsystempower. Soforsize,weight,andpower(SWaP),aswellascost,scalingthepackagehasadvantages.The keyparametersthataffectSWaParedominatedbypackagingmetrics,andscalingthepackagehas greaterimpactonSWaPthanadditionalSiscaling.Forflexiblehybridelectronics(FHE),formfactorandpowerplayacriticalrole.MostFHEdevicesaremobileanddependentonbatterypower. Assuch,FHEpackageswillbenefitimmenselyfromscaling.

sink (Cu, AI)
sink (Cu, AI)

Level of integration

Figure1.3 Packagingevolution–thememoryparadigm.

Figure1.4 Percentofareadedicatedtoanalogcircuitsisincreasingwithscaling(squares).Thus,practical diearea(normalizedto180nmtechnology)isincreasingwithscaling(rhombuses)ascomparedtoidealdie area(triangles).

Anotheraspectofadvancedpackagingthathasthefocusofattentioninrecentyearsisheterogeneousintegration.Thistermrequiressomeclarification.Mostpackagingconstructsdoinfact achieveheterogeneousintegrationviatheintegrationofdiversepackagedchipsonanextended substratesuchasaPCB.Heterogeneousintegration,therefore,ingeneralandinitself,isnotnew. However,inthecontextofadvancedpackaging,heterogeneousintegrationreferstotheintegration ofbarediesonafirst-levelpackagingsubstrate.Thiscouldbeanorganic,ceramic,orsiliconinterposer.Thekeyfeaturesthatdistinguishheterogeneousintegrationfromclassicalorconventional packagingarethepitchoftheconnectionsbetweenthebaredieandthesubstrate,thenumber ofconnectionsbetweentheinterconnectedbaredies,thesizeofthedies,andhenceasignificant simplificationinthecommunicationprotocolsofinterdiesignaling.Itisgenerallyacceptedthat forbumppitches <50 μm,interdiespacingof <2mm,andtracepitches(wiringbetweenthedies) of <5 μm,theintegrationisconsideredintheregimeofadvancedpackaging.

Finally,“chiplets”and“dielets”areanotherfeatureofadvancedpackaging.Acomplexsystemor largechipdesignisfragmentedintosmallerentitiescalledchipletsandtheninstantiatedinSias dielets.Thesedieletsarethenintimatelyreintegratedatfinepitch(bumpandtrace)aswellasshort interdiespacing,aspreviouslydescribed,tosynthesizeasubsystemoramodule.Thisconstructcan befurtherassembledonaPCBor,inthecaseofwaferscalesystems,andcanrepresenttheentire system[2,3].

1.2TechnologyAspectsofHeterogeneousIntegration

Technologyinnovationisthemaindriverofthevariousheterogeneousintegrationplatforms.In thepastseveraldecades,packagingtechnology(e.g.verticalinterconnectpitch)hasbeenscaling atasignificantlyslowerrateascomparedtoICtechnology(e.g.devicedimensions),asshownin Figure1.1.Specifically,on-chipdimensionshavescaledapproximately200timesmorethanpackagefeatures.Thisdisparityinscalingofpartsofasinglesystemledthepackagehierarchytobecome thebottleneckofmodernintegratedsystems.

Nonetheless,inthelastfiveyears,theelectronicpackagingcommunityhaspickedupthepace proposingvariousnovelintegrationtechnologiestoreducethedimensionsofthepackaginghierarchy.Specifically,novelheterogeneousintegrationplatformshavebeenproposed,significantly drivingdownthefeaturesofthepackaginghierarchy.Realizationoftheheterogeneousintegration conceptispredicatedonseveralimportanttechnologyconsiderations.Areviewoftheverticalinterconnectpitch(betweendieletsandsubstrate),substratematerial,interdieletspacing,anddielet terminationisprovidedinthissection.

1.2.1InterconnectPitch

Typicalpackage-levelinterconnectpitchisseveralhundredsofmicrometers.Theseare solder-basedBGAorlandgridarray(LGA)connectionsbetweenthepackageandthePCB. Connectionsbetweendiesandpackagelaminate,i.e.solder-basedC4/pillar,exhibitasmaller pitch(∼50to100 μm).Nonetheless,comparingtothelastmetallevelsonthedie(pitchof 2–10 μm),thepackage-levelinterconnectsareapproximatelybetween10and500timeslarger. Infact,themainpurposeofthepackaginghierarchyistofan-outtheinterconnectpitchfrom thesmalldie-levelpitch,tothelargePCB-levelpitch,andthenviceversawhenconnectingto theneighboringpackageddie.Solderhastheadvantageofdeformingatlowtemperatureand pressure,toaccommodatewarpageofthePCB,laminate,anddie.AtypicalCupillarcappedwith

Figure1.5 (a)A50mmdiameterCupillarcappedwithsolder.(b)Aftermassreflowwithcompression showingthesolderextrusions.(c)Micrographshowingextrusionsthatcauseadjacentpillarstobecome electricallyshorted.Source:Photocourtesy:EricPerfecto.

solderisshowninFigure1.5a,acrosssectionaftermassreflowisshowninFigure1.5b,anda micrographoftwoshortedpillarsisshowninFigure1.5c.Shortingofneighboringsolderballsis themainchallengetothecontinuousscalingofsolder-basedinterconnectsbelowabout50 μm.

Anotherpossibleintegrationapproachistoattachdieletsdirectlytoasubstratewithoutsolder (orotherintermetallics),usingdirectmetal-to-metalthermalcompressionbonding(TCB).Inthis integrationapproach,twometalsarebondedtogetherbyapplyingpressureandtemperaturefor acertainamountoftime.Afterthisprocess,averystronglow-contactresistancebondisformed. Toensurehigh-qualityconnectionsusingTCB,thesurfacesofthemetalsmustbepristineand atomicallysmooth.AdditionalconditionsmustbemetwhenbondingCuforexample,suchas surfacepreparationtoavoidoxidationoftheCupriortobonding(byusingplasmaorformicacid). Alignmentisanotherchallengeinsmallpitchconnectionsforheterogeneousintegration. Solder-basedinterconnectsareeasiertoalignduetothelargerdimensionsandsincetheyexhibit aformofself-alignmentpropertyduetosurfacetensionatsoldermeltingtemperature.Unlike solder,directmetal-to-metalintegrationrequiresahighlevelofalignmentaccuracywhichis difficulttoachievebyopticalmeanssincethedieandsubstratearetypicallynottransparent.A second-orderopticalalignmentisthereforerequired,wherethedieandthesubstratearealignedto avirtualreference.Forexample,inthesiliconinterconnectfabric(Si-IF)technology,analignment accuracyof ±1 μmhasbeenachieved[4].Althoughthisalignmentaccuracyisgood,itisstillabout anorderofmagnitudeworsethandie-levelconventionalopticallithography.

1.2.2SubstrateMaterial

Differentsubstratematerialsarecurrentlyusedinheterogeneousintegration.Themostcommonly usedmaterialsarecomparedinTable1.1.

Hybridsubstratematerialsarealsousedinindustry.Forexample,theembeddedmultidieinterconnectbridge(EMIB)[5]approachsupportstheintegrationofsmallSibridgeswithinanorganic substrate.TheEMIBenablesdifferentinterconnectpitches,coarsepitchontheorganicFR4and finepitchontheSibridge.Thistechnology,however,exhibitsincreasedcomplexityandtherefore highercost.

Table1.1 KeystructuralandthermalpropertiesofSiandotherrelevantmaterials.

Material

Organic (FR4)

0.1–202,000–3,00014–700.3–1HighLowLargehorizontaland verticalinterconnectpitch

Glass50–9033–3,5004–91–2LowHighLowelectricallosses. Metallizationisdifficult

Silicon130–1855,000–9,0003–5148LowLowHighelectricallosses

Steel190–200400–50011–1316–25

Copper128200–35017400

TheSi-IF[2]isasiliconwafer-scaleplatformthatsupportsintegrationofsmalldiesatfinevertical pitch(2–10 μm).Siisahighlymaturesubstratethatbenefitsfromdecadesoftechnologyoptimization.Furthermore,passiveSiwithmicrometersizeinterconnectsisarelativelyinexpensive construct.

1.2.3Inter-DieSpacing

Inconventionalpackaging,diesarepackagedandplacedonPCBs.Interposers,anadditionalhierarchicallayer,isoftenutilizedinmodernsystemsasasteppingstonetocloseintegrationofheterogeneouscomponents.However,interposersareexpensiveandlimitedtoonlyseveralcomponents. Inanyoftheabovementionedintegrationapproaches,theinter-diespacingislarge.Ininterposers thespacingisafewhundredsofmicrometers,whereasthespacingbetweentwopackageddieson aPCBreachestensofmillimeters.Thelargeinter-diespacingsignificantlyincreasesthelatency andpowerofcommunication.InstandardvonNeumannarchitectures,whereprocessor-memory communicationisakeybottleneck,theexcessiveperformancedegradationofcommunicationis especiallylimiting.

IntheSi-IFtechnology,diesareintegratedathighproximity(∼50 μm).Thisisenabledsince thediesarenotpackaged.TheonlylimitationsoninterdieletspacingintheSi-IFplatformarethe roughnessoftheedgeofthedie(duetowaferdicing),andedgesealsandcrackstopsthataretypicallypresentattheedgeofthedie,effectivelyincreasingtheinterdiespacing.Noveltechnologies, suchasplasmadicing[6],willenablefurtherreductionoftheinterdiespacingontheSi-IF.

1.2.4DieSizeConsiderations

Modernsystems-on-chips(SoCs)aretypicallyverylargeinarea(excludingmobileSoCs).For example,AMD’sRomeserverSoCincludesupto1,000mm2 ofcumulativesiliconarea[7].The reasonforsuchalargeareaistheattempttointegrateasmanycomponentsaspossibleatthe ICleveltoleveragethesmallinterconnectdimensionsandintercomponentspacing.LargeSoCs integratedoninterposers,are,however,pronetoyielddegradationandaretypicallyexpensive tofabricate.Theconceptofheterogeneousintegrationaimstosolvethisproblembyenabling platformsthatsupportIC-levelinterconnectdimensionsatthepackagelevelandeliminatethe needforcomplexandexpensiveintegrationhierarchy,(e.g.theuseofinterposers).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.