The r book, 3rd edition elinor jones 2024 scribd download

Page 1


The R Book, 3rd Edition Elinor Jones

Visit to download the full and correct content document: https://ebookmass.com/product/the-r-book-3rd-edition-elinor-jones/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Contemporary Management, 12th ed. 12th Edition

Gareth R. Jones

https://ebookmass.com/product/contemporary-management-12thed-12th-edition-gareth-r-jones/

Contemporary Management, 10th ed. 10th Edition

Gareth R. Jones

https://ebookmass.com/product/contemporary-management-10thed-10th-edition-gareth-r-jones/

(eBook PDF) Macroeconomics 3rd Edition by Charles I. Jones

https://ebookmass.com/product/ebook-pdf-macroeconomics-3rdedition-by-charles-i-jones/

Being as Relation in Luce Irigaray Emma R. Jones

https://ebookmass.com/product/being-as-relation-in-luce-irigarayemma-r-jones/

Boneyard

Tides_Amo

Jones Jones

https://ebookmass.com/product/boneyard-tides_amo-jones-jones/

Plant Pathology 3rd Edition R. S. Mehrotra

https://ebookmass.com/product/plant-pathology-3rd-edition-r-smehrotra/

Ways to be Blameworthy: Rightness, Wrongness, and Responsibility Elinor Mason

https://ebookmass.com/product/ways-to-be-blameworthy-rightnesswrongness-and-responsibility-elinor-mason/

The Oxford Handbook of Positive Psychology 3rd Edition C. R. Snyder

https://ebookmass.com/product/the-oxford-handbook-of-positivepsychology-3rd-edition-c-r-snyder/

Basic Electrical Engineering 3rd Edition Ravish R. Singh

https://ebookmass.com/product/basic-electrical-engineering-3rdedition-ravish-r-singh/

TheRBook

Thisthirdeditionfirstpublished2023

©2023JohnWiley&SonsLtd

EditionHistory:JohnWiley&SonsLtd(1e,2007;2e,2013)

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyany means,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowtoobtain permissiontoreusematerialfromthistitleisavailableat http://www.wiley.com/go/permissions

TherightofElinorJones,SimonHardenandMichaelJ.Crawleytobeidentifiedastheauthorsofthisworkhasbeenassertedin accordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

9600GarsingtonRoad,Oxford,OX42DQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsinstandard printversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowofinformation relatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatetheinformation providedinthepackageinsertorinstructionsforeachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings, anychangesintheinstructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisherandauthors haveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisworkandspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarranties ofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,written salesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhiswork asacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationor servicestheorganization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwiththe understandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedherein maynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeaware thatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread. Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Jones,Elinor(AssociateProfessor),author.|Harden,Simon, author.|Crawley,MichaelJ.,author.

Title:TheRbook/ElinorJones,SimonHarden,andMichaelJ.Crawley.

Description:Thirdedition.|Hoboken,NJ:Wiley,2022.|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2022008352(print)|LCCN2022008353(ebook)|ISBN 9781119634324(cloth)|ISBN9781119634409(adobepdf)|ISBN 9781119634430(epub)

Subjects:LCSH:R(Computerprogramlanguage)|Mathematical statistics–Dataprocessing.

Classification:LCCQA276.45.R3J6622022(print)|LCCQA276.45.R3 (ebook)|DDC005.5/5–dc23/eng20220528

LCrecordavailableathttps://lccn.loc.gov/2022008352

LCebookrecordavailableathttps://lccn.loc.gov/2022008353

Coverdesign:Wiley

Coverimage:CourtesyofSimonHarden;©enjoynz/GettyImages

Setin10/12ptHelveticaLTStdbyStraive,Chennai,India

1 GettingStarted 1

1.1Navigatingthebook1

1.1.1Howtousethisbook1

1.2 R vs.RStudio3

1.3Installing R andRStudio3

1.4UsingRStudio4

1.4.1Using R directlyviatheconsole5

1.4.2Usingtexteditors5

1.5TheComprehensive R ArchiveNetwork7

1.5.1Manuals7

1.5.2Frequentlyaskedquestions8

1.5.3Contributeddocumentation8

1.6Packagesin R 8

1.6.1Contentsofpackages9

1.6.2Findingpackages9

1.6.3Installingpackages9

1.7Gettinghelpin R 11

1.7.1Workedexamplesoffunctions12

1.7.2Demonstrationsof R functions13

1.8Goodhousekeeping13

1.8.1Variabletypes13

1.8.2What’sloadedordefinedinthecurrentsession14

1.8.3Attachinganddetachingobjects14

1.8.4Projects15

1.9Linkingtoothercomputerlanguages15 References 15

2 TechnicalBackground17

2.1Mathematicalfunctions17

2.1.1Logarithmsandexponentials18

2.1.2Trigonometricfunctions19

2.1.3Powerlaws20

2.1.4Polynomialfunctions22

2.1.5Gammafunction24

2.1.6Asymptoticfunctions25

2.1.7Sigmoid(S-shaped)functions27

2.1.8Biexponentialfunction28

2.1.9Transformationsofmodelvariables29 2.2Matrices 30

2.2.1Matrixmultiplication31

2.2.2Diagonalsofmatrices32

2.2.3Determinants33

2.2.4Inverseofamatrix35

2.2.5Eigenvaluesandeigenvectors36

2.2.6Solvingsystemsoflinearequationsusingmatrices39 2.3Calculus 40

2.3.1Differentiation40

2.3.2Integration41

2.3.3Differentialequations42

3 Essentialsofthe R Language55

3.1Calculations56

3.1.1Complexnumbers57

3.1.2Rounding58

3.1.3Arithmetic59

3.1.4Modulararithmetic61

3.1.5Operators62 3.1.6Integers63 3.2Namingobjects64

3.4.2Testingforequalityofrealnumbers69

3.4.3Testingforequalityofnon-numericobjects70

3.4.4Evaluationofcombinationsof TRUE and FALSE 72

3.4.5Logicalarithmetic73

3.5Generatingsequences74

3.5.1Generatingrepeats76

3.5.2Generatingfactorlevels77

3.6Classmembership78

3.7Missingvalues,infinity,andthingsthatarenotnumbers82

3.7.1Missingvalues: NA 83

3.8Vectorsandsubscripts86

3.8.1Extractingelementsofavectorusingsubscripts87

3.8.2Classesofvector89

3.8.3Namingelementswithinvectors90

3.9Workingwithlogicalsubscripts91 3.10Vectorfunctions93

3.10.1Obtainingtablesusing tapply() 95

3.10.2Applyingfunctionstovectorsusing sapply() 97

3.10.3The aggregate() functionforgroupedsummarystatistics99

3.10.4Parallelminimaandmaxima: pmin and pmax 100

3.10.5Findingclosestvalues101

3.10.6Sorting,ranking,andordering102

3.10.7Understandingthedifferencebetween unique() and duplicated() 104

3.10.8Lookingforrunsofnumberswithinvectors106

3.10.9Sets: union(), intersect(),and setdiff() 108

3.11Matricesandarrays109

3.11.1Matrices111

3.11.2Namingtherowsandcolumnsofmatrices112

3.11.3Calculationsonrowsorcolumnsofmatrices113

3.11.4Addingrowsandcolumnstomatrices115

3.11.5The sweep() function117

3.11.6Applyingfunctionstomatrices119

3.11.7Scalingamatrix120

3.11.8Usingthe max.col() function121

3.11.9Restructuringamulti-dimensionalarrayusing aperm() 123

3.12Randomnumbers,sampling,andshuffling126

3.12.1The sample() function127

3.13Loopsandrepeats128

3.13.1Morecomplicated while() loops131

3.13.2Loopavoidance133

3.13.3Theslownessofloops134

3.13.4Donot‘grow’datasetsbyconcatenationorrecursivefunctioncalls135

3.13.5Loopsforproducingtimeseries136

3.14Lists 138

3.14.1Summarisinglistsand lapply() 140

3.14.2Manipulatingandsavinglists142

3.15Text,characterstrings,andpatternmatching147

3.15.1Pastingcharacterstringstogether149

3.15.2Extractingpartsofstrings150

3.15.3Countingthingswithinstrings151

3.15.4Upperandlowercasetext153

3.15.5The match() functionandrelationaldatabases153

3.15.6Patternmatching155

3.15.7Substitutingtextwithincharacterstrings159

3.15.8Locationsofapatternwithinavector160

3.15.9Comparingvectorsusing %in% and which() 162

3.15.10Strippingpatternedtextoutofcomplexstrings163

3.16Datesandtimesin R 164

3.16.1Readingtimedatafromfiles165

3.16.2Calculationswithdatesandtimes168

3.16.3Generatingsequencesofdates170

3.16.4Calculatingtimedifferencesbetweentherowsofadataframe173

3.16.5Regressionusingdatesandtimes175

3.17Environments177

3.17.1Using attach() ornot!178

3.17.2Using attach() inthisbook180

3.18Writing R functions181

3.18.1Arithmeticmeanofasinglesample181

3.18.2Medianofasinglesample182

3.18.3Geometricmean183

3.18.4Harmonicmean184

3.18.5Variance186

3.18.6Varianceratiotest187

3.18.7Usingthevariance189

3.18.8Plotsanddeparsinginfunctions191

3.18.9The switch() function192

3.18.10Argumentsinourfunction193

3.18.11Errorsinourfunctions195

3.18.12Outputsfromourfunction196

3.19Structureof R objects200

3.20Writingfrom R toafile203

3.20.1Savingdataobjects203

3.20.2Savingcommandhistory204

3.20.3Savinggraphicsorplots204

3.20.4Savingdataforaspreadsheet204

3.20.5Savingoutputfromfunctionstoafile205

3.21Tipsforwriting R code206 References 206

4 DataInputandDataframes207 4.1Workingdirectory207

4.2Datainputfromfiles208

4.2.1Datainputusing read.table() and read.csv() 208

4.2.2Inputfromfilesusing scan() 210

4.2.3Readingdatafromafileusing readLines() 213

4.3Datainputdirectlyfromtheweb215

4.4Built-indatafiles215

4.5Dataframes216

4.5.1Subscriptsandindices220

4.5.2Selectingrowsfromthedataframeatrandom222

4.5.3Sortingdataframes223

4.5.4Usinglogicalconditionstoselectrowsfromthedataframe229

4.5.5Omittingrowscontainingmissingvalues, NA 232

4.5.6Adataframewithrownamesinsteadofrownumbers235

4.5.7Creatingadataframefromanotherkindofobject236

4.5.8Eliminatingduplicaterowsfromadataframe239

4.5.9Datesindataframes239

4.6Usingthe match() functionindataframes241

4.6.1Mergingtwodataframes243

4.7Addingmarginstoadataframe245

4.7.1Summarisingthecontentsofdataframes247

5 Graphics 249

5.1Plottingprinciples249

5.1.1Axeslabelsandtitles251

5.1.2Plottingsymbolsandcolours251

5.1.3Savinggraphics254

5.2Plotsforsinglevariables255

5.2.1Histogramsvs.barcharts255

5.2.2Histograms256

5.2.3Densityplots260

5.2.4Boxplots261

5.2.5Dotplots262

5.2.6Barcharts263

5.2.7Piecharts264

5.3Plotsforshowingtwonumericvariables265

5.3.1Scatterplot265

5.3.2Plotswithmanyidenticalvalues270

5.4Plotsfornumericvariablesbygroup272

5.4.1Boxplotsbygroup272

5.4.2Dotplotsbygroup274

5.4.3Aninferior(butpopular)option275

5.5Plotsshowingtwocategoricalvariables277

5.5.1Groupedbarcharts277

5.5.2Mosaicplots277

5.6Plotsforthree(ormore)variables279

5.6.1Plotsofallpairsofvariables279

5.6.2Incorporatingathirdvariableonascatterplot280

5.6.3Basic3Dplots281

5.7Trellisgraphics283

5.7.1Panelboxplots285

5.7.2Panelscatterplots286

5.7.3Panelbarplots289

5.7.4Panelsforconditioningplots290

5.7.5Panelhistograms291

5.7.6Morepanelfunctions292

5.8Plottingfunctions293

5.8.1Two-dimensionalplots293

5.8.2Three-dimensionalplots295

References 295

6 GraphicsinMoreDetail297

6.1Moreoncolour297

6.1.1Colourpaletteswithcategoricaldata297

6.1.2The RColorBrewer package299

6.1.3Foregroundcolours302

6.1.4Backgroundcolours302

6.1.5Backgroundcolourforlegends303

6.1.6Differentcoloursfordifferentpartsofthegraph304

6.1.7Fullcontrolofcoloursinplots305

6.1.8Cross-hatchingandgreyscale307

6.2Changingthelookofgraphics308

6.2.1Shapeandsizeofplot308

6.2.2Multipleplotsononescreen309

6.2.3Tickmarksandassociatedlabels309

6.2.4Fontoftext311

6.3Addingitemstoplots311

6.3.1Addingtext311

6.3.2Addingsmoothparametriccurvestoascatterplot313

6.3.3Fittingnon-parametriccurvesthroughascatterplot314

6.3.4Connectingobservations316

6.3.5Addingshapes321

6.3.6Addingmathematicalandothersymbols322

6.4Thegrammarofgraphicsand ggplot2 326

6.4.1Basicstructure327

6.4.2Examples327

6.5Graphicscheatsheet330

6.5.1Textjustification, adj

6.5.2Annotationofgraphs, ann

6.5.3Delaymovingontothenextinaseriesofplots, ask

6.5.4Controlovertheaxes, axis

6.5.5Backgroundcolourforplots, bg 333

6.5.6Boxesaroundplots, bty 334

6.5.7Sizeofplottingsymbolsusingthecharacterexpansionfunction, cex 334

6.5.8Changingtheshapeoftheplottingregion, plt 335

6.5.9Locatingmultiplegraphsinnon-standardlayoutsusing fig 336

6.5.10Twographswithacommon X scalebutdifferent Y scalesusing fig 336

6.5.11The layout function338

6.5.12Creatingandcontrollingmultiplescreensonasingledevice340

6.5.13Orientationofnumbersonthetickmarks, las 341

6.5.14Shapesfortheendsandjoinsoflines, lend and ljoin 342

6.5.15Linetypes, lty 343

6.5.16Linewidths, lwd 343

6.5.17Severalgraphsonthesamepage, mfrow and mfcol 344

6.5.18Marginsaroundtheplottingarea, mar 345

6.5.19Plottingmorethanonegraphonthesameaxes, new 346

6.5.20Outermargins, oma 347

6.5.21Packinggraphsclosertogether348

6.5.22Squareplottingregion, pty 350

6.5.23Characterrotation, srt 350

6.5.24Rotatingtheaxislabels351

6.5.25Tickmarksontheaxes351

6.5.26Axisstyles353

6.5.27Summary353 References 357

7 Tables 359

7.1Tabulatingcategoricalordiscretedata359

7.1.1Tablesofcounts359

7.1.2Tablesofproportions360

7.2Tabulatingsummariesofnumericdata362

7.2.1Generalsummariesbygroup362

7.2.2Bespokesummariesbygroup364

7.3Convertingbetweentablesanddataframes367

7.3.1Fromatabletoadataframe367

7.3.2Fromadataframetoatable370 Reference 371

8 ProbabilityDistributionsin R 373

8.1Probabilitydistributions:thebasics374

8.1.1Discreteandcontinuousprobabilitydistributions374

8.1.2Describingprobabilitydistributionsmathematically374 8.1.3Independence375

8.2Probabilitydistributionsin R 376

8.3Continuousprobabilitydistributions377

8.3.1TheNormal(orGaussian)distribution377

8.3.2TheUniformdistribution380

8.3.3TheChi-squareddistribution381

8.3.4TheFdistribution382

8.3.5Student’s t distribution383

8.3.6TheGammadistribution385

8.3.7TheExponentialdistribution386

8.3.8TheBetadistribution387

8.3.9TheLognormaldistribution388

8.3.10TheLogisticdistribution389

8.3.11TheWeibulldistribution390

8.3.12MultivariateNormaldistribution390

8.4Discreteprobabilitydistributions392

8.4.1TheBernoullidistribution392

8.4.2TheBinomialdistribution392

8.4.3TheGeometricdistribution395

8.4.4TheHypergeometricdistribution397

8.4.5TheMultinomialdistribution398

8.4.6ThePoissondistribution399

8.4.7TheNegativeBinomialdistribution400

8.5Thecentrallimittheorem402 References 404

9 Testing

9.1.1Definingthequestiontobetested406

9.1.2Assumptions408

9.1.3Interpretingresults408

9.2Continuousdata410

9.2.1Singlepopulationaverage410

9.2.2Twopopulationaverages412

9.2.3Multiplepopulationaverages414

9.2.4Populationdistribution415

9.2.5Checkingandtestingfornormality417

9.2.6Comparingvariances419

9.3Discreteandcategoricaldata421

9.3.1Signtest421

9.3.2Testtocompareproportions423

9.3.3Contingencytables427

9.3.4Testingcontingencytables429

9.4Bootstrapping431

9.5Multipletests433

9.6Powerandsamplesizecalculations434

10 Regression

10.1Thesimplelinearregressionmodel440

10.1.1Modelformatandassumptions440

10.1.2Buildingasimplelinearregressionmodel443

10.2Themultiplelinearregressionmodel446

10.2.1Modelformatandassumptions446

10.2.2Buildingamultiplelinearregressionmodel447

10.2.3Categoricalcovariates449

10.2.4Interactionsbetweencovariates454

10.3Understandingtheoutput458

10.3.1Residuals458

10.3.2Estimatesofcoefficients459

10.3.3Testingindividualcoefficients459

10.3.4Residualstandarderror460

10.3.5 R2 anditsvariants460

10.3.6Theregression F-test460

10.3.7ANOVA:Samemodel,differentoutput461

10.3.8Extractingmodelinformation464 10.4Fittingmodels465

10.4.1Theprincipleofparsimony465 10.4.2Firstplotthedata467

10.4.3Comparingnestedmodels468

10.4.4Comparingnon-nestedmodels470

10.4.5Dealingwithlargenumbersofcovariates471

10.5Checkingmodelassumptions473

10.5.1Residualsandstandardisedresiduals473

10.5.2Checkingforlinearity474

10.5.3Checkingforhomoscedasticityoferrors476

10.5.4Checkingfornormalityoferrors476

10.5.5Checkingforindependenceoferrors478

10.5.6Checkingforinfluentialobservations479

10.5.7Checkingforcollinearity481

10.5.8Improvingfit483

10.6Usingthemodel491

10.6.1Interpretationofmodel491

10.6.2Makingpredictions495

10.7Furthertypesofregressionmodelling497

References 498

11 GeneralisedLinearModels499 11.1HowGLMswork499 11.1.1Errorstructure499

11.1.2Linearpredictor500 11.1.3Linkfunction501 11.1.4Modelchecking502

11.1.5Interpretationandprediction506

11.2CountdataandGLMs507

11.2.1Astraightforwardexample508

11.2.2Dispersion511

11.2.3AnalternativetoPoissoncounts516

11.3CounttabledataandGLMs522

11.3.1Log-linearmodels522

11.3.2Allcovariatesmightbeuseful522 11.3.3Spineplot534

11.4ProportiondataandGLMs537

11.4.1Theoreticalbackground538

11.4.2Logisticregressionwithbinomialerrors541

11.4.3Predicting x from y 544

11.4.4Proportiondatawithcategoricalexplanatoryvariables545

11.4.5BinomialGLMwithorderedcategoricalcovariates550

11.4.6BinomialGLMwithcategoricalandcontinuouscovariates556

11.4.7Revisitinglizards559

11.5BinaryResponseVariablesandGLMs560

11.5.1Astraightforwardexample562

11.5.2Graphicaltestsofthefitofthelogisticcurvetodata564

11.5.3Mixedcovariatetypeswithabinaryresponse567

11.5.4Spineplotandlogisticregression570

11.6BootstrappingaGLM574 References 577

12 GeneralisedAdditiveModels579

12.1Smoothingexample580

12.2StraightforwardexamplesofGAMs583

12.3BackgroundtousingGAMs588

12.3.1Smoothing588

12.3.2Suggestionsforusing gam() 588

12.4MorecomplexGAMexamples589

12.4.1Backto Ozone 590

12.4.2Anexamplewithstronglyhumpeddata592

12.4.3GAMswithbinarydata596

12.4.4Three-dimensionalgraphicoutputfrom gam 598

References 599

13 Mixed-EffectModels601

13.1Regressionwithcategoricalcovariates601

13.2Analternativemethod:randomeffects602

13.3Commondatastructureswhererandomeffectsareuseful603

13.3.1Nested(hierarchical)structures604

13.3.2Non-nestedstructures604

13.3.3Longitudinalstructures605

13.4 R packagestodealwithmixedeffectsmodels605

13.4.1The nlme package605

13.4.2The lme4 package606

13.4.3Methodsforfittingmixedmodels606

13.5Examplesofimplementingrandomeffectmodels607

13.5.1Multileveldata(twolevels)607

13.5.2Multileveldata(threelevels)611

13.5.3Designedexperiment:split-plot614

13.5.4Longitudinaldata617

13.6Generalisedlinearmixedmodels622

13.6.1Logisticmixedmodel622

13.7Alternativestomixedmodels625

References 625

14 Non-linearRegression627

14.1Example:modellingdeerjawbonelength628

14.1.1Anexponentialmodelforthedeerdata629

14.1.2AMichaelis–Mentenmodelforthedeerdata632

14.1.3ComparisonoftheexponentialandtheMichaelis–Mentenmodel634

14.2Example:groupeddata634

14.3Self-startingfunctions638

14.3.1Self-startingMichaelis–Mentenmodel638

14.3.2Self-startingasymptoticexponentialmodel640

14.3.3Self-startinglogistic642

14.3.4Self-startingfour-parameterlogistic643

14.4Furtherconsiderations645

14.4.1Modelchecking645

14.4.2Confidenceintervals647 References 648

15 SurvivalAnalysis649

15.1Handlingsurvivaldata649

15.1.1Structureofasurvivaldataset649

15.1.2Survivaldatain R 652

15.2Thesurvivalandhazardfunctions652

15.2.1Non-parametricestimationofthesurvivalfunction653

15.2.2Parametricestimationofthesurvivalfunction654

15.3Modellingsurvivaldata655

15.3.1Thedata657

15.3.2TheCoxproportionalhazardmodel658

15.3.3Acceleratedfailuretimemodels660

15.3.4Coxproportionalhazardoraparametricmodel?665

16 DesignedExperiments667

16.3.1Contrastcoefficients678 16.3.2Anexampleofcontrastsusing R

16.3.3Modelsimplificationforcontrasts684 16.3.4Helmertcontrasts688 16.3.5Sumcontrasts689 16.3.6Polynomialcontrasts691

17.1Elementsofameta-analysis699

17.1.1Choosingstudiesforameta-analysis700

17.1.2Effectsandeffectsize700

17.1.3Weights701

17.1.4Fixedvs.randomeffectmodels701

17.2Meta-analysisin R 703

17.2.1Formattinginformationfromstudies703

17.2.2Computingtheinputsofameta-analysis703

17.2.3Conductingthemeta-analysis706

17.3Examples 707

17.3.1Meta-analysisOfscaleddifferences707

18 TimeSeries 715

18.1Movingaverage715 18.2Blowflies 717

18.3Seasonaldata723

18.3.1Pointofview724

18.3.2Builtin ts() functions724

18.3.3Cycles726

18.3.4Testingforatimeseriestrend728

18.4Multipletimeseries729

18.5Sometheoreticalbackground730

18.5.1Autocorrelation731

18.5.2Autoregressivemodels732

18.5.3Partialautocorrelation732

18.5.4Movingaveragemodels732

18.5.5Moregeneralmodels:ARMAandARIMA733

18.6ARIMAexample733

18.7Simulationoftimeseries735

19 MultivariateStatistics741

20 ClassificationandRegressionTrees761

20.1HowCARTswork763

20.2Regressiontrees764

20.2.1The tree package764

20.2.2The rpart package765

20.2.3Comparisonwithlinearregression767

20.2.4Modelsimplification769

20.3Classificationtrees771

20.3.1Classificationtreeswithcategoricalexplanatoryvariables771

20.3.2Classificationtreesforreplicateddata773

20.4Lookingforpatterns775 References 777

21 SpatialStatistics 779

21.1Spatialpointprocesses779

21.1.1Howcanwecheckforrandomness?781 21.1.2Models785 21.1.3Marks790

21.2Geospatialstatistics793

21.2.1Models794 References 798

22 BayesianStatistics799

22.1ComponentsofaBayesianAnalysis800

22.1.1Thelikelihood(themodelanddata)800

22.1.2Priors801

22.1.3ThePosterior802

22.1.4MarkovchainMonteCarlo(MCMC)803

22.1.5ConsiderationsforMCMC803

22.1.6Inference805

22.1.7TheProsandConsofgoingBayesian806

22.2Bayesiananalysisin R 806

22.2.1InstallingJAGS807

22.2.2RunningJAGSin R 807

22.2.3WritingBUGSmodels808

22.3Examples 810

22.3.1MCMCforasimplelinearregression810

22.3.2MCMCforlongitudinaldata814

22.4MCMCforamodelwithbinomialerrors818 References 821

23 SimulationModels823

23.1Temporaldynamics823

23.1.1Chaoticdynamicsinpopulationsize823

23.1.2Investigatingtheroutetochaos825

23.2Spatialsimulationmodels826

23.2.1Meta-populationdynamics826

23.2.2Coexistenceresultingfromspatiallyexplicit(local)densitydependence829

23.2.3Patterngenerationresultingfromdynamicinteractions834

ListofTables

Table1.1 Librariesusedinthisbookthatcomesuppliedaspartofthebasepackageof R 8

Table1.2 TaskViewsonCRAN10

Table3.1 Mathematicalfunctions61

Table3.2 Commonoperators62

Table3.3 Logicalandrelationaloperations67

Table3.4 Datatypes80

Table3.5 Vectorfunctions94

Table3.6 Formatcodesfordatesandtimes167

Table3.7 Escapesequencesforusewith cat()

199

Table4.1 Correctlysetoutdatasetforimportingintoadataframe216

Table4.2 Datasetthatwillnotformadataframecorrectly217

Table4.3 Datasetthatwillformadataframecorrectly217

Table4.4 Selectingpartsofadataframecalled df_dummy 223

Table5.1 Plottingsinglevariables255

Table6.1 Orientationandsizesoflabels310

Table6.2 Drawingmathematicalexpressionsintext323

Table6.3 Graphicalparametersandtheirdefaultvalues354

Table8.1 Somecommonlyusedprobabilitydistributionssupportedby R 376

Table9.1 TestsusedinChapter9436

Table10.1 Functionsforvariousregressionmodels497

Table10.2 Frequentlyusedfunctionstoextractinformationaboutregressionmodels498

Table11.1 Commonmembersoftheexponentialfamily501

Table14.1 Usefulnon-linearfunctions628

Table14.2 Usefulnon-linearself-startingfunctions639

Table15.1 Commonparametricformsofthesurvivalandhazardfunctions654

Table17.1 DatafromStudyA711

Preface

R isthemostpowerfultoolintheknownuniverseforcarryingoutstatisticalanalysis,andit’sfree! Thisbookisaimedatthosewhowishtocarryoutsuchwork–exploring,plotting,andmodelling data–butwhodonothavemuchexperiencein R and/orstatistics. R isdescribedfromscratch withinstructionsforloadingandgettinggoingwiththesoftwareinChapter1andadescriptionofits essentialelementsinChapter3.Laterchaptersdiscussstatisticalmethodsandarewrittensothat theycanbeusedeitherasabeginner’sguideorasareferencemanualonparticularproceduresin R.Thetheorybehindtheanalysesiscoveredinenoughdepth,wehope,tomakeitcomprehensible butwithoutoverburdeningthereaderwithtoomuchmathematics.Thedatasetsusedtoillustrate variousanalysesareavailableat https://www.wiley.com/go/jones/therbook3e.

Using R hasbecomefarsimplerwiththeintroductionofRStudio,whichisalsofree(othereditors areavailable).RStudioprovidesafriendlyfrontendandeasyaccesstotools,allofwhichseem alongwayfrom R’soriginalratherforbiddingcommandprompt.Thisbookassumestheuseof RStudioratherthanusing R directly,butthecodepresentedwillworkusingthelattersetuptoo. Whilethereisstilltheusualhurdleofgettingtoknowpowerfulsoftware,thebenefits,particularly ingraphicsandmodelling,faroutweightheeffort.Academicpapersinmanydisciplinesroutinely useandreportresultsusing R.Inaddition,theopen-sourcenatureofthesoftwaremeansthatusers haveaddedextrafunctionalitybywritingpackagestobroaden R’scapabilities.Therearecurrently over18,000packagesthat,togetherwithusefullinksandinformation,canbefoundattheofficial R distributionsite,CRAN: https://cran.r-project.org/

Thisbookiscontingentupontheexistenceof R.Thoseinvolvedaretoonumeroustomention, butwearehugelygratefultoallinvolvedinitscreationandcontinuingevolution.Whenyouuse R, R packages(e.g. spatstat),andRStudio,pleasecitethem.Up-to-datecitationdetailsforeach ofthesecanbefoundbytypingthefollowingin R,respectively:

citation() citation("spatstat") RStudio.Version()

ElinorJones SimonHarden MichaelJ.Crawley August2022

Acknowledgments

Thisbookwouldnotexistwithoutitspreviouseditionssothanks,firstly,totheoriginatingauthor, MichaelJ.Crawley.

IthasbeenapleasuretoreviseTheRBooktocreatethisthirdedition.Weareverygratefulto ProfessorCrawleyforallowingustousematerialsfrompreviousversions,includinghisfantastic arrayofdatasetsthatmakeawelcomereturninthisedition.

Finally,wewouldliketothanktheDepartmentofStatisticalScienceatUniversityCollegeLondon forgivingustimeandspacetocompletethebookduringadifficultperiodforeverybody.

August2022

Thisbookisaccompaniedbyacompanionwebsite.

www.wiley.com/go/jones/therbook3e

Thiswebsiteinclude:Datasets

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.