Smart stimuli-responsive polymers liang hu download pdf

Page 1


Smart Stimuli-Responsive Polymers Liang Hu

Visit to download the full and correct content document: https://ebookmass.com/product/smart-stimuli-responsive-polymers-liang-hu/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Active Coatings for Smart Textiles 1st Edition Hu

https://ebookmass.com/product/active-coatings-for-smarttextiles-1st-edition-hu/

Smart Polymers and Their Applications 2 ed. 2nd Edition Aguilar Maria Rosa. (Ed.)

https://ebookmass.com/product/smart-polymers-and-theirapplications-2-ed-2nd-edition-aguilar-maria-rosa-ed/

Responsive Judicial Review Rosalind Dixon

https://ebookmass.com/product/responsive-judicial-reviewrosalind-dixon/

Culturally Responsive Conversations Marina Minhwa Lee

https://ebookmass.com/product/culturally-responsiveconversations-marina-minhwa-lee/

Wearables : Smart Textiles and Smart Clothes Dominique Paret

https://ebookmass.com/product/wearables-smart-textiles-and-smartclothes-dominique-paret/

Multiscale Structural Topology Optimization 1st Edition

Liang Xia

https://ebookmass.com/product/multiscale-structural-topologyoptimization-1st-edition-liang-xia/

The Art of Reinforcement Learning Michael Hu

https://ebookmass.com/product/the-art-of-reinforcement-learningmichael-hu/

Reactive polymers fundamentals and applications : a concise guide to industrial polymers Third Edition. Edition Fink

https://ebookmass.com/product/reactive-polymers-fundamentals-andapplications-a-concise-guide-to-industrial-polymers-thirdedition-edition-fink/

Introduction to Java Programming, Comprehensive Version

Y. Daniel Liang

https://ebookmass.com/product/introduction-to-java-programmingcomprehensive-version-y-daniel-liang/

SmartStimuli-ResponsivePolymers,Films,andGels

SmartStimuli-ResponsivePolymers, Films,andGels

Editors

Prof.LiangHu SoochowUniversity RAD-X 199Ren’aiRoad 215123Suzhou China

Dr.YongfengGao UniversityofAlberta DepartmentofChemistry 11227SaskatchewanDrive

T6G2G2NK Canada

Prof.MichaelJ.Serpe UniversityofAlberta DepartmentofChemistry 11227SaskatchewanDrive

T6G2G2NK Canada

CoverImage:CourtesyofLiangHu

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>

©2022WILEY-VCHGmbH,Boschstraße12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34901-2

ePDFISBN: 978-3-527-83237-8

ePubISBN: 978-3-527-83239-2

oBookISBN: 978-3-527-83238-5

CoverDesign:ADAMDESIGN,Weinheim, Germany

Typesetting Straive,Chennai,India

Contents

Preface xi

1FromMechanochemistrytoMechanoresponsiveMaterials 1 LasithS.Kariyawasam,ConnorFilbin,CameronLocke,andYingYang

1.1Introduction 1

1.2MechanochemistryinBiologicalSystems 2

1.2.1AStressfulEnvironmentDuringHeartDevelopment 3

1.2.2ProteinUnfoldingbyForce 4

1.2.3StressMitigationbyTissue 6

1.2.4SensingbyIonChannelOpening 6

1.3MechanisticViewofMechanochemistry 7

1.4PolymerCovalentMechanochemistry 15

1.4.1Pyran-BasedMechanochromophores 16

1.4.2Retro-Cycloadditions 19

1.4.3Ladderenes 23

1.4.4StableRadicalSystems 24

1.4.5OtherTypesofMechanophores 27

1.5PolymerNoncovalentMechanochemistry 29

1.5.1MechanoresponsesofMetal–LigandBonds 30

1.5.2MechanochemistryofOtherNoncovalentInteractionsandTheir ApplicationsinFunctionalPolymers 37

1.6Conclusions 41 References 42

2PhotoresponsivePolymers 53

HosseinRoghani-MamaqaniandZeinabTajmoradi

2.1Introduction 53

2.2PhotoresponsivePolymers 55

2.2.1PhotoluminescentPolymers 55

2.2.1.1FluorescentPolymers 56

2.2.1.2PhosphorescentPolymers 58

2.2.2PhotochromicPolymers 62

2.2.3PhotocleavablePolymers 71

2.2.4PhotodimerizablePolymers 74

2.2.5PhotoadaptablePolymers 76

2.3ApplicationsofPhotoresponsivePolymers 83

2.3.1SmartPolymericInks 83

2.3.2PolymerSensors 89

2.3.3Photolithography 93

2.3.4SurfaceActiveAgents 95

2.3.5PhotorheologicalPolymers 98

2.3.6Self-HealingPolymers 103

2.3.7Shape-ChangingPolymers 106

2.3.8PhotoconductivePolymers 109

2.3.9DrugDelivery 111

2.3.10Membranes,Films,andTextiles 112

2.4SummaryandtheFuture 115

2.4.1WaterContactAngleVariation 116

2.4.2ViscosityVariation 116

2.4.3ColorChangeandEmission 117

2.4.4Sol–GelTransition 117

Abbreviations 118 References 119

3PolymerSystemsforIonizingRadiationDosimetryand Radiotherapy 135

LiJiang,ChengfangZhang,RenshengWang,andLiangHu

3.1Introduction 135

3.2InteractionofRadiationwithMatter 136

3.2.1 α-Particles 136

3.2.2Electrons 137

3.2.3Photons 137

3.3PolymerSystemsforIonizingRadiationDosimetry 139

3.3.1Polymer-BasedDosimeters 139

3.3.2Polymer/DyeDosimeters 139

3.3.3FluorescentPolymerDosimeters 141

3.3.4Polymer/MetalNanomaterialsDosimeters 143

3.4IonizingRadiation-ResponsivePolymerSystemsforTherapy 146

3.5Conclusion 149 Acknowledgments 151 References 151

4ShrinkandWrinkle–ThermallyResponsiveSubstratesfor Thin-FilmStructuring 157

EduardoGonzález-MartínezandJoseMoran-Mirabal

4.1StructuredThinFilms 157

4.2MeasuringtheMechanicalPropertiesofThinFilmsUsingThermal Wrinkling 159

4.2.1ThermallyStructuredThinFilmsforCellCulture 162

4.2.2WrinkledConductiveThinFilmsforWearableElectronics 167

4.2.3WrinkledElectrochemicalSensors 173

4.2.4CurrentChallengesandFuturePerspectivesfortheUseofWrinkled ThinFilms 175 References 176

5DesignofNanocompositeMicrogelsPreparedbySeeded EmulsionPolymerizationinthePresenceofMicrogels 181 TakumiWatanabeandDaisukeSuzuki

5.1BackgroundonCompositeHydrogels 181

5.2BackgroundonCompositeMicrogels 182

5.3ConventionalEmulsionPolymerizationandSEP 184

5.4NanocompositeMicrogelsPreparedbySEPinthePresenceof Microgels 186

5.5DesignoftheInternalStructureoftheNanocompositeMicrogels 188

5.6SynthesisofMulti-layeredNanocompositeMicrogels 189

5.7CharacterizationofNanocompositeMicrogels 190

5.8ApplicationsofNanocompositeMicrogels 193

5.9SummaryandPerspective 195 References 196

6CompressibleMicrogelsinConcentratedSuspensions:Phase Behavior,FlowProperties,andScatteringTechniquestoProbe TheirStructureandDynamics 203

A.Scotti,U.Gasser,B.Zhou,A.Arenas-Gullo,A.delaCotte,J.RojoGonzález, andA.Fernandez-Nieves

6.1Introduction 203

6.2SwellingThermodynamics 207

6.2.1Polymer/SolventMixing 208

6.2.2Elasticity 208

6.2.3IonicEffects 209

6.2.4EquationofState 210

6.3ExperimentalTechniques 210

6.3.1DynamicLightScattering 211

6.3.1.1Auto-correlationExperiments 213

6.3.1.2Cross-correlationand3D-DLSExperiments 214

6.3.2Small-angleNeutron-scattering 216

6.3.2.1SANSSetup 218

6.3.2.2ScatteringTheory 218

6.3.2.3FormFactorandStructureFactor 220

6.3.2.4ContrastVariation 222

6.4SuspensionPhaseBehavior 228

6.5FlowProperties 231

6.6FinalRemarks 235 References 236

7StructureandPropertiesofSmartMicro-andNanogels Determinedby(Neutron)ScatteringMethods 241 JulianOberdisseandThomasHellweg

7.1Introduction 241

7.2ScatteringTechniquesAppliedtoMicrogels 242

7.2.1StaticandDynamicLightScatteringAppliedtoMicrogels 242

7.2.1.1StaticLightScattering(SLS) 243

7.2.2DynamicLightScattering(DLS/PCS) 245

7.2.3Small-AngleNeutronandX-RayScatteringAppliedtoMicrogels 247

7.3MulticompartmentandMulti-Stimuli-ResponsiveMicrogels 254

7.4Time-ResolvedSmall-AngleScattering 263

7.5CrowdedMicrogelSystems 266

7.6ConclusionandOutlook 270 Appendix:AbsoluteIntensityforFuzzySphereFormFactors 270 References 271

8Stimuli-ResponsiveFluorescentPolymericHydrogels 281 WeiLu,ShuxinWei,andTaoChen

8.1Introduction 281

8.2StrategiesforPreparingFluorescentPolymericHydrogels(FPHs) 282

8.2.1PhysicallyIncorporatingFluorogensintoPolymericHydrogels 282

8.2.2CovalentlyBondingFluorogensintoPolymericHydrogels 284

8.2.3SupramolecularPolymerizing/CrosslinkingMonomeric Fluorogens 286

8.2.4ComparisonofDifferentSyntheticStrategies 290

8.3PromisingApplications 290

8.3.1OpticalSensingandBio-imaging 290

8.3.2InformationEncodingandEncryption 293

8.3.3BioinspiredMechanosensingSystemsandSoftActuators/Robotics 294

8.4Conclusions 297 References 298

9TheFabricationandApplicationsofBioinspiredHydrogel Actuators 301

BaoyiWu,JiaweiZhang,andTaoChen

9.1Introduction 301

9.2TheClassificationofHydrogelActuators 302

9.2.1AdditionofActiveIngredient 302

9.2.2Pneumatic/HydraulicActuators 305

9.2.3Stimuli-ResponsiveHydrogelActuatorDerivedfromAsymmetric Swelling 306

9.2.3.1Single-Stimulus-ResponsiveHydrogelActuators 307

9.2.3.2Multi-stimuli-ResponsiveHydrogelActuators 308

9.3AnisotropicStructures 310

9.3.11D/2DAnisotropicStructures 310

9.3.1.1Bilayer 310

9.3.1.2Oriented 311

9.3.1.3Gradient 312

9.3.1.4Patterned 315

9.3.23DAnisotropicStructures 315

9.4MethodstoFabricateAnisotropicStructures 318

9.4.1TraditionalTechnology 318

9.4.1.1StepwisePolymerization 318

9.4.1.23DPrinting 320

9.4.1.3MacromolecularAssembly 322

9.4.2InnovativeTechnology 322

9.5Applications 325

9.5.1SoftRobots 325

9.5.2ArtificialMuscles 327

9.5.3BiomimeticDevices 329

9.5.4InformationStorageMaterials 329

9.6Conclusion 332 ConflictofInterest 333 Acknowledgments 333 References 333

10Hydrogels-BasedElectronicDevicesforBiosensing Applications 339 QuanduoLiang,YuyuanLu,andQiangZhang

10.1Introduction 339

10.2FlexibleHydrogel-BasedSensors 342

10.2.1PrinciplesofConductiveHydrogelSensors 343

10.2.2ImprovedMechanicalPropertiesofHydrogel-BasedSensors 347

10.2.3ProlongedLongevityofHydrogelSensors 351

10.2.4ExpandedUsageScenariosofHydrogel-BasedSensors 353

10.2.5MultifunctionalizationandExpandingApplicationofHydrogel Sensor 354

10.3Tissue–MachineInterfaces 356

10.3.1DesignandMechanismoftheNeuralInterfaces 356

10.3.2MultifunctionalApplicationsofBiointerfaces 360

10.4TheProspectsofHydrogelBioelectronicDevices 363 Acknowledgments 364 References 364

Index 375

Preface

Innature,manylivingsystemscanreacttochangesintheirexternalenvironment. Inspiredbythisnaturalresponsivity,scientistshaveendeavoredtounderstand stimuli-responsivepolymers,whichareabletochangetheirsolubility,volume, and/orconformationinresponsetoexternalstimuli.Overthepastfewdecades, interestinthese“smart”responsivepolymer-basedsystemshasbeenincreasing,and henceabookonthistopiciswarranted,tocapturerecenttrendsinthisburgeoning area.

Thisbookwasassembledprimarilywiththeneedsofbothjuniorandsenior chemistsandmaterialsscientistsinmind.Wefirstwishtoacknowledgethecontributionofallauthorsfromallovertheworld.Withoutallyoursupport,this bookwouldnothavebeenpublished.Thisbookisdividedinto10chapters. Chapters1–3discussthemechanoresponsive,photoresponsive,andionizingradiation-responsivepolymers.Chapter4highlightsthermalresponsivefilm. Chapters5–10discussthestimuli-responsivegelsfromfundamentalsynthesis strategytoscatteringtechniquescharacterizationandapplications.

ThisbookwaspublishedbyWiley,whosesupportandhelpwegratefullyacknowledge,especiallythewarmwelcomeandcontinuedaidgiventousbyoureditors, KatherineWong,AnneBrennführer,andElkeMaase.

14April2022

LiangHu SoochowUniversity,China

YongfengGao,MichaelJ.Serpe UniversityofAlberta,Canada

FromMechanochemistrytoMechanoresponsiveMaterials

LasithS.Kariyawasam,ConnorFilbin,CameronLocke,andYingYang

UniversityofNevada,DepartmentofChemistry,VirginiaStreet,Reno,NV89557,USA

1.1Introduction

Ourskincansensethetouchbyaseriesofmechanotransductionmechanisms. Kneadingbreaddoughuncoilsglutenproteins,creatinganelasticmacromolecular networkthatgivesthedoughtoughness.Stretchingorscratchingapieceofplasticis likelytobreakcovalentbonds.Theseprocessesinvolvereactionsthatareactivated bymechanicalenergy,whichareprevalentinourdailylives.However,theyare lesscommonlydiscussedcomparedtothermochemical,photochemical,orelectrochemicalreactions.Mechanoactivatedreactionshavebeenreporteddatingbackto 315BCE.Theseearlyaccountsdescribegrindingnativecinnabarinacoppermortar withacopperpestleinthepresenceofvinegartoyieldthereductionproduct, mercury.However,itwasnotuntilthenineteenthcenturythatsystematicstudies wereconducted[1].In1860s,CareyLeashowedthatgrindingmercuryandsilver halidesinapestleandmortaratroomtemperaturefavorsdecomposition,whereas heatingonlyleadstomeltingorsublimationwithoutanydecomposition[2].This discoveryprovidedclearevidencethatmechanochemicalreactionsaredistinctively differentfromthermalones.Mechanochemistrywas,therefore,classifiedasthe fourthtypeofchemicalreactionbyOstwaldin1919[3].

Thefirstwidelyaccepteddefinitionformechanochemistrywasformulatedby Heinickein1984[1],thatmechanochemistryisabranchofchemistry,whichis concernedwithchemicalandphysicochemicaltransformationsofsubstancesinall statesofaggregationproducedbytheeffectofmechanicalenergy.IUPACdefines itasthechemicalreactionthatisinducedbythedirectabsorptionofmechanical energy[4].Infact,thedefinitionisstillunderextensivedebate.Molecularmotors, whichconvertchemicalenergyintomechanicalwork,certainlydonotfitinto thesedefinitions.However,themotionsgeneratedbymolecularmotorscanapply forcetothesurroundingmoleculestoinduceacascadeofsubsequentreactions. Suchtopicisofgreatinteresttochemistsandengineersworkinginthefieldof mechanochemistry.Thelackofunificationandslowprogresssincetheestablishmentofmechanochemistryinthenineteenthcenturyreflectsthecomplexityand

SmartStimuli-ResponsivePolymers,Films,andGels,FirstEdition. EditedbyLiangHu,YongfengGao,andMichaelJ.Serpe.

©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

1FromMechanochemistrytoMechanoresponsiveMaterials

thelackofunderstandingofthescopeandmechanismsforsuchreactions.Recently, mechanochemicalresearchhasintensifiedthroughtheuseofnewtoolsdevelopedformechanisticstudiesandtheopportunitiestocreatefunctionalmaterials [5–12].Asmechanochemicalreactionsoccurforbothsmallandmacromolecules, ongoingresearchcanbeclarifiedinfoursub-areas:developingnovelandscalable mechanochemicalsynthesistomakeusefulchemicalsviaenvironmental-friendly solvent-freeprocesses;understandingbiomechanochemistry,suchasmotor proteins,mechanosensing,andmechanotransductionmechanisms;creating mechanoresponsivepolymericmaterialsforwhichmechanicalforcesbecomeconstructivefortechnologicaladvances;andinvestigatingthemolecularmechanisms throughsimulationsandsingle-molecularforceexperiments.

Inthischapter,wewillfocusonthefundamentalaspectsofpolymer mechanochemistrythatarethekeyelementsindesigningmechanoresponsive materials.Wewillstartwithabriefintroductionoftheroleofmechanochemistryinbiologicalsystemsasaspringboardforinspiration.Themechanistic aspectsofmechanochemistryingeneralterms,fromsmallmoleculestopolymer mechanochemistry,willthenbediscussedtoshowtheuniquebond-activation mechanisms.Theforce-responsivemolecules,namedmechanophores,candepend onthecleavageofeithercovalentornoncovalentbonds.Theactivationenergy, dynamics,andreversibilitycanbetunedviavariousstructuralproperties.Therefore,thechemistryofthesetwoclassesofmechanophoreswillbecoveredindetail. Therearedifferentmechanicalsourcesforgeneratingmechanicalenergy,suchas shearing,stretching,grinding,ballmilling,andsonication.Thesemethodsdifferin thedirectionofforce,frequency,andheatformation,leadingtodifferenteffectson moleculardistortionandkinetics.However,thischapterwillfocusonthechemistry ofmechanoresponsivebondswithinpolymermaterialsregardlessofthetypeof appliedforce.

1.2MechanochemistryinBiologicalSystems

Apowerfulsourceofinspirationforimprovingthedesignofpolymermaterials isNatureasmechanochemicalsystemsareubiquitousinorganisms.Awealth ofknowledgecanbegainedbecausebiologicalsystemshaveevolvedelegant mechanoresponsivearrangementsthatarecriticalforsupportingandmaintaininglife.Theyofteninvolvecomplicatedprocessesviacoherentlyorganized biopolymernetworks.Acell,forexample,isconstantlyundermechanicalstress, includingtension,osmosis,compression,andshearforces.Uponmechanical deformation,feedbackfromproteinsinthecellcytoskeletonactivatesavarietyof mechanosensorsthatworkinunisontocreatearesponseinthecellnucleusvia multiplemechanotransductionevents[13].AsshowninFigure1.1,themechanism beginsbytransducingforcethroughthecellmembranetomicrofilamentsand microtubulesofthecytoskeletoninthecytoplasm.Subsequently,cytoskeletal changesdirectlyaffectnucleoskeletalproteinscalledlamina.Thishasanexplicit effectonthespatialarrangementoflamin-boundintermediatefilamentsaswellas

Membrane

Mechanotransduction (signaling pathways)

Figure1.1 Intra-andextracellularforcesstimulateacellinaninterconnectedsystemof reactionscausingcompletechangeofstructureandresultingcellfunction.Source:Adapted withpermissionfromTsimbouri[13].Copyright2015MDPI.

chromosomes,astheyareanchoredtonuclearlamina[14].Shiftsinchromosome packingaffectgeneexpression,whichallowskeybiologicalfunctionsinresponse toforce,suchassurvival,motility,reproduction,anddifferentiation.Theseevents incellsplayimportantrolesinmaintaininghomeostasisandpreventingdisease inthebody.Althoughunderstandingofmanyofthesebiologicalpathwaysisstill limited,wewilldiscussafewchemistriesknowntobeinvolvedintheseprocesses asinspirationsformaterialdesign.

1.2.1AStressfulEnvironmentDuringHeartDevelopment

Inavertebrateembryo,theheartfirststartsasatubecomposedofprimarilyearly cardiomyocytes,thecardiacmusclecellsthatdrivetheheartcontraction.Itquickly differentiatesintodifferentpartsandmorphologies.Astheembryogrows,thecontractilecapacityofthecardiomyocytesincreasestoprovidegreaterdrivingforcesto pumpmoreblood.Meanwhile,theextracellularmatrix(ECM)surroundingthecardiomyocytesmustincreaseinitsstiffnessparallellytokeepapropertissuemechanicalintegritywiththeincreasingcontractilestress.Cellsinconnectivetissue,called fibroblasts,secretecollagenandothermatrixproteinstomaintainthestructural framework.Therefore,duringthedevelopmentoftheheart,abalancebetweencardiacfibroblastandcardiomyocytecellpopulationsmustbeestablishedtomaintain musclecontractionalongwithasignificantcollagenousmatrix.Thereismounting evidencesuggestingthatmechanicalstressitselfplaysimportantroleindirecting tissuegrowthwithmechanochemicalfeedbackloopsforgeneandproteinexpression[15].Incomparison,thebraintissueinalow-stressenvironmentdoesnotshow thesamedevelopmentinstiffness,althougharecentstudyfoundstrongmechanicalinteractionsofthesynapses[16]whichmaybeacriticalmechanisminbrain

1FromMechanochemistrytoMechanoresponsiveMaterials functions,indicatingthebroadinvolvementsofmechanochemistryandmechanotransductioninnumerousbioprocesses.

Duringembryonicheartdevelopment,manymechanosensitivepathwayshave beenlinkedtotheproperfunctionsofthemyocyteandfibroblastcells.Majkutetal. surveyedliteratureevidenceandproposedthenetworkmodelforunderstanding howcontractionagainsttissuestiffnessaffordsafunctionalequilibriumbetween thecelltypes[15].Ononehand,cardiomyocytesproducecontractilestressthat promotestheexpressionofmatrixstructuralproteinsbyfibroblasts.Ontheother hand,ascontractionmusteffectivelystrainthehearttissue,itispostulatedthatthe proliferationoffibroblastsislimitedbythestiffnessoftheirenvironmentandthus collagenousmatrixdensity.Additionally,themodelsuggeststhatstabilizingmatrix collagenanddegradationofmotorproteinsunderstrainedconditionsarealso importantinregulatingtissuestiffness.Thestabilizationmayberelatedtoinhibited proteasebindingtocollagenfibersorkinasebindingtomyosinminifilaments whentheyareundertension,thuspreventingtheirdissociationanddigestion.A modelofdynamiccell–matrixinteractionisalsoextendedtonuclearmechanics becauseduringdevelopmenttherearevariationsinlaminlevelsthatappearto correlatewithECMmechanics[15].Aspreviouslydiscussed,mechanicalsignals fromtheextracellularenvironmentcanbephysicallytransmittedbythecontractile cytoskeletontothenucleusbyconnectionsthroughthenuclearmembranetothe nuclearlamina.Laminacaninteractwithchromatinandvariousproteinsthat regulatetranscription.Therefore,laminexpressionisalsoregulatedandaffects tissuematuration.

1.2.2ProteinUnfoldingbyForce

Proteinsarefoldedintovariousthree-dimensionalstructurestoperformbiological functions.Manyofthemarehighlyresistanttounfoldingundermechanicalstressto avoiddenaturation.However,ithasbeenobservedthatcertainproteinscontaining hiddenbindingsites(crypticsites)thatrelyonforceforaconformationalchange viaunfoldingtoenableproteinactivityandinitiationofsignalingpathways[17–19]. Oneofthemostextensivelystudiedmechanicallyresponsiveproteinsisthevon Willebrandfactor(vWF),whichplaysacrucialroleinbloodclotting.Whenvascular systemsareruptured,adecreaseinpressuretriggershydrodynamicforcesfrom changingvelocityintheblood.Thesehydrodynamicforcesinduceashearforce onvWFintheblood,causingaconformationchange.Atacriticalshearstressof approximately50dyn/cm2 ,theglobularproteinissignificantlyelongated[20–22]. Figure1.2showsthedomainstructuresandtheforce-inducedconformational change.ThisleadstoexposureandactivationoftheA1domaintobindtoplatelets andA3domaintoattachtothecollagenproteinonthesurfaceofvasculardamage toinitiaterepairofthevesselinjury[23].TheproteinunfoldingoccursattheA2 domainandissuggestedtoinvolvemechanoactivatedcleavageofdisulfidebondsin combinationwithhydrophobicinteractions.ThevWFcontainsaneight-membered ringlinkedbyadisulfidebondfromvicinalcysteines(Cys1669 –Cys1670 ),whichis thelowestenergybarriertoinitiateforce-inducedunfoldingoftheA2domain

Folded cis-Pro1645

1.2MechanochemistryinBiologicalSystems 5

Unfolded trans-Pro1645

Shear forces

Shear forces Water contained in hydrophilic region

Disulfide bond breaks, water enters hydrophobic core

Repulsion of water from hydrophobic core results in isomerization of Pro1645 and subsequent unfolding

Figure1.2 ModelofvWFproteinmechanochemicalunfoldingfromshearforces.When vWFproteinisintheunfoldedconformationtheA1domainbindsplatelets(green),A2 domainelongates(pink),andA3domainbindscollagen(blue).Source:Adaptedwith permissionfromCrawleyetal.[21].Copyright2011AmericanSocietyofHematology.

Figure1.3 Schematicofmarinemusselcuticledemonstratinghighdensityofdopa-Fe3+ crosslinksingranulecomparedtomatrix.Thisresultsintheformationofmicrocracks followingincreasedstrain,preventingcompletematerialfracture.Source:Adaptedwith permissionfromHolten-Andersenetal.[24].

(Figure1.3).Whenappliedforceistransducedthroughtheprotein,thedisulfide bondismechanicallycleavedbyshearforces.Itisspeculatedthataftercleavage, buriedwatermoleculesareadmittedtothehydrophobiccoreofthevWFprotein commencingunfolding[25].Additionally,theunfoldedstateoftheproteinisstabilizedbyaforce-inducedisomerizationofaprolineresidue(Pro1645 ).Thepeptide cis-Pro1645 intheA2domainisstabilizedinacisconformationbyhydrogenbondingwithresidueArg1618 whenthevWFproteinisinthefoldedconformation.After initialunfolding,thestabilizationfromhydrogenbondingislostandtheproline residueundergoesisomerizationtotrans.Conversionto trans-Pro1645 notablydelays A2domainrefoldingandallowsunfoldedvWFtocontinuetheprocessofblood vesselcoagulationandrepair[23].Theforce-inducedunfoldingofvWFshowsan

Mussel foot
Byssal threads

1FromMechanochemistrytoMechanoresponsiveMaterials organizedprocessinvolvingmechanoscissionsofcovalentandnoncovalentbonds, hydrophobicinteractions,andsubsequentisomerization.

1.2.3StressMitigationbyTissue

Biologicaltissuehasshowntoundergostressmitigationtoavoidcompletematerialfailurethroughtheuseofnoncovalentinteractions.Onespecificexampleisthe metal–ligandinteractionsintheoutercoatingofbyssalthreadsinmarinemussels [24,26].Thesebyssalthreadsaresecretedasbundlesof50–100individualthreads andarecoveredinaproteinaceousoutercoating,calledthecuticle,whichisfive timesstrongerthantheinternalthreadsthemselves.Musselsusebyssalthreadsto attachtorocks;thecuticle’stoughnesspreventsthebyssalthreadsfromdisconnectingfollowingappliedforce.Theprimarycuticleproteinisamodifiedtyrosine,which includesthemolecule3,4-dihydroxyphenylalanine(dopa).Includedamongtheproteinsarenaturallyexistingmetalions,suchasironandcalcium.Uptothreedopa ligandscancrosslinktotheiron(III)ions(Fe3+ ),resultinginanincreasedhardness (Figure1.3).Granulesareareasofhigh-concentrationdopa-Fe3+ crosslinkingwithin thecuticle.Lighterdopa-Fecrosslinkingoccursinthematrixsurroundingthegranules.Followingincreasedstrain(>30%),thegranulesdeformslightly,whereasthe surroundingmatrixcrosslinksdissociate,formingmicrocracks.Thesemicrocracks allowthecuticletoabsorbmechanicalforcewithoutcompletefracture.Following removalofstrain,thegranulesinstantlyregaintheiroriginalshape,whilethemicrocrackcrosslinksslowlyself-healovertime.

1.2.4SensingbyIonChannelOpening

Mechanotransductionisimportantforsignalinginsensorysystems.Haircellsinthe earcalledstereociliaaremechanosensorybiologicalstructuresthatconvertmechanicalenergyfromsoundwavesintoelectrochemicalsignalsthatcanbeprocessed bythenervoussystemashearing[19].Stereociliaarelinkedtogetherattheirtips intobundlesbyproteinscalledtiplinks.Thesetiplinksareanchoredintothecell membraneconnectinganionchannelofonestereociliatothetipofanother[27]. Vibrationalperturbationsfromsounddeflectstereociliatipscauseopeningandclosingofionchannels(Figure1.4).Openingandclosingofthechannelsresultina changeofionfluxleadingtoanelectricpotentialthatcanstimulatetheauditory nerve[28].

Anotherfascinatingexampleofmechanotransductioninhumansensesisfound inthemechanismoftouch.Touchisessentialforlifeastactileinputguidesbehavior.Discriminativetouchallowsuniquelyhumanactivitieswherefinesseisneeded. Delicatetouchisallowedbythemanysensoryreceptorsimbuedintheskin.Adiversityofsomatosensoryneuronsintheskinallowsforavarietyofsensationsbytakingadvantageofvaryingmechanicalthresholdsindifferentproteins.Forexample, lighttouchismediatedbyAβ afferentsthathavealowmechanicalthresholdcomparedtothehighmechanicalthresholdofnociceptorsthatmediatepainfultouch [29].Moreover,anassortmentofmechanoreceptorsundertheskindetectsstretches,

0.5 μm

Figure1.4 Illustrationshowingsensorycellscalledstereocilialocatedintheinnerearof mammals.Thestereociliadeflectbackandforthuponmechanicalstimulationbysound waves.Source:Hoffmannetal.[27]/withpermissionofRoyalSocietyofChemistry.

vibrations,slip,andmotionthatenableustodetermineanobject’sshapeandtexture.Littleisknownaboutthemechanismsformechanotransductionintouch;however,therecentdiscoveryofpiezoproteinsmayhelpbetterunderstandhowproteins areactivatedbymembranedeformation.Piezoproteinsareionchannelsmechanicallyactivatedbytouch,suction,andshearstress[30].Highconcentrationsofpiezo proteinsaroundreceptorsandneuronsimplicatetheirresponsibilityforencoding transductionchannelsintouchreceptors.

Ascanbeseenfromtheseexamples,mechanoresponsivenessinbiological systemsreliesonmechanotransduction,whichtransformsmechanicalenergyinto abiochemicalsignalthatinducesspecificcellularresponses,whichfrequently takesadvantageofnoncovalentinteractions[19].Alsocommonlyfoundinliving systemsarekineticallytrappedstatesthatarestructureslockedfarawayfrom thermodynamicequilibriuminahigh-energyconformation,suchasfoldedproteinsorprestressedcellmembranes[31].Organismstakeadvantageofthese structurestoenablesophisticateddynamicresponsestoforce.Preciselymimicking biologicalstructuresandmechanismsischallengingandunnecessarybecauseof thecomplexity.However,similarmechanoresponsivebondingdomainsutilizing thechemistryandstructurecharacteristicslearnedfrombiomacromoleculescanbe employed,andliving-likefunctionariescanbecreatedthroughthedesignprinciples ofsyntheticmaterials.

1.3MechanisticViewofMechanochemistry

Oneofthemostinterestingaspectsofmechanochemistryisthatityieldsproducts thataredifferentfromthermal-andphoto-reactionpathways.Thisphenomenonhas beenobservedinbothinorganicandorganiccompounds.Here,wewilluseanextensivelystudiedmechanochemicalreaction,thepericyclicreaction,asanexample

8 1FromMechanochemistrytoMechanoresponsiveMaterials

(a) Thermal activation

cis-isomer

(b) Photo activation

E, E-isomer E, Z-isomer E, E-isomer

(c) Mechanical activation

cis-isomer

E, Z-isomer

E, E-isomer trans-isomer trans-isomer trans-isomer

Figure1.5 Ringopeningof1,2-disubstitutedbenzocyclobutenes(BCB)underdifferent energyinputs.Source:Hickenbothetal.[32]/withpermissionofSpringerNature.

todiscussitsmechanisticorigin.Thermalactivationof1,2-disubstitutedbenzocyclobutene(BCB)inducesconrotatory(con)ringopenings,sothatthecisandtrans isomersgivedifferentring-openingproducts(Figure1.5a).Whenactivatedbylight, disrotatory(dis)ringopeningisfavoredinsteadofconforbothcisandtransisomers(Figure1.5b).Thisstereospecificityunderthermalandphoto-activationsis describedbythewell-knownWoodward–Hoffmann(WH)rules.However,when BCBisplacedwithinlongpolymerchains,themechanoproductsdonotfollowWH rules[32].Mechanicalforcesinduceaformaldisrotatoryringopeninginthecisisomerandaformalconrotatoryringopeninginthetransisomer,yieldingthesame E,E-isomer(Figure1.5c).Thelackofselectivitywasalsoobservedformechanoactivationof gem-dihalocyclopropanes[33–35].Iftheforceisviewedaspullinginoppositedirectionsatthetwomolecularanchoringpoints,thereactionpathwayfavors bondbreakingtoincreasethedistancebetweenthepullingpoints.

Thesestunningmechanochemicalphenomenaintriguedthestudyforthe underlyingmechanisms.Photoirradiationactivatesthermallyforbiddenpathways bypromotingthereactantstoelectronicallyexcitedstates.Force,however,does notdirectlyaltertheenergyoftheelectrons.Thus,howdoesmechanochemical reactionovercometheWHrule?Thisisdiscussedingreatdetailinseveralstudies viaquantumchemicalmethods[36–39].Theresultsshowthatappliedstresses donotaltertheelectronicstructure.Instead,theylowertheactivationbarrierfor WH-forbiddenpathways.Figure1.6showstheminimumenergypathwaysfor mechanicalringopeningofBCBundervariousforcesfromquantumchemical calculations[36].Fordirectionalpullingofthecisisomer,beyondacriticalforce of1.5nN,thebarrierforWH-forbiddendisrotatorypathwaydropsbelowthe conrotatorypathway,anddisrotatorybecomesthemechanicallyfavoredpathway. Forthetransisomer,conrotatoryisfavored.Therefore,thetwoisomersyieldthe samering-openingproductsasshowninFigure1.5c.Sincemechanicalworkalters thepotentialenergysurface(PES),loweringtheactivationbarrierwithoutchanging electronicstructures,electronicconsiderations,suchasWHrules,isnotdirectly applicable.

Thenextquestionishowmuchforceittakestobreakachemicalbond.Mechanicalstrengthofmacroscopicmaterialscanbecharacterizedbyaruptureforce.This holdstrueforsinglechemicalbondsonlyiftheydonotundergoanyvibrations. Thebondswillrupturewhendissociationforceexceedsthebondstrength.However,bondsundergothermalfluctuations.Combinedwithapullingforce,theyled toafarmorecomplexdependenceonforceconditions.Developedtodescribethe strengthofcelladhesion,thewell-knownBell’smodelprovidesasimpleexplanation fortheeffectsofstressonbondrupture[40].Whenabondispulled,themechanical forcedeformsthePES,reducingtheactivationenergyforbondrupture,whichcan beovercomebyadditionalenergyfromthermalfluctuations.Asaresult,molecular bondshavenosingleruptureforce,whichisnotsointuitive.Mathematically,Bell’s modelisdescribedas

�� = ��0 exp[(E0 �� f)∕kT]

where �� isthelifetimeofabond,whichisthereciprocalofoscillationfrequency,and �� 0 isthebondlifetimewithoutload.Thechangeofactivationenergyisexpressedby E0 �� f ,where E0 isthebondenergyatzeroforce, f istheappliedforce,and �� isa structuralparameterthataccountsforthedistancetothetransitionstatealongthe reactioncoordinate.Thus,theactivationbarrierchangeslinearlywithforce,andthe bondlifetimedecreasesexponentiallywithincreasingforceandtemperature.Based onthisequation,itwasproposedthatforceimpulseisthehighestwhen F = kT /�� at whichforcetransductionismaximized[41].AlimitationinapplyingBell’stheory tocomputationalcalculationsistheselectionofthestructuralparameter �� .Since �� itselfisforcedependent,themodelfailstoaccountforthemechanicallyinduced distortionoftransition-stategeometry,resultinginanoverestimateofthebondruptureratewhenthereisconsiderableelongationofthescissilebond.Manyextensions havebeendevelopedtoimproveBell’stheory.Theextendedmodelsalongwithother quantumchemicaltreatmentstounderstandtherelationsofgeometries,energies,

10 1FromMechanochemistrytoMechanoresponsiveMaterials

andtransitionstatesinmechanochemistryaresummarizedinareviewarticleby StauchandDreuw[42].

Experimentalstudiesevolvedparallellywiththetheoreticalpredictionsto measuretheruptureforceofasinglebond.Inlate1990s,theuseofatomicforce microscopy(AFM)madeitpossibletoprobethemechanicalresponsesofcovalent andnoncovalentbondsinasinglemacromolecule[43–48].Forceresponsesare probedonananoscalewithforcesonnanoNewton(nN)tosub-nNlevels.Ina force-probeAFMexperiment,themoleculeisanchoredbetweenasurfaceand anAFMtip.Itisthenstretchedataconstantforcerateuntilrupture[48].A force–extensioncurveforasinglechemicalbondisthusgenerated,whichreveals conformationalchanges,supramolecularrearrangements,alongwithbondrupture steps.BondruptureoftheBCB,whichisshowninFigure1.6,ismeasuredusing single-moleculeforcemicroscopy[49].Itprovidesthefirstexperimentalevidence

Figure1.6 Minimumenergy pathwaysfordisrotatoryand conrotatoryringopeningofBCB undervariousforcemagnitudes calculatedviasteered moleculardynamicscombined with abinitio steeredmolecular dynamics(AISMD).Source:Ong etal.[36]/withpermissionof AmericanChemicalSociety.

1.3MechanisticViewofMechanochemistry

thatthesymmetry-forbiddenconrotatoryringopeningcanbemechanicallyaccelerated,requiringa130pNlessforcecomparedtodisrotatorypathwayata ∼0.1second experimentaltimescale.

Forcedependencyofreactionratecanalsobemeasuredusingsingle-molecule forcespectroscopy.Aconstantforceisapplied,andthedeformationisrecordedas afunctionoftime.Thisapproachiscalledforce-clampAFM.Thetechniquehas beenusedtostudythekineticsofthiol/disulfideexchangereactionswithinaprotein[50].Thereactionisknowntooccurduringproteinunfoldinginmechanically stressedproteinsandiscrucialinregulatingproteinfunction.Theexperimentutilizedproteinengineeredwithapreciselypositioneddisulfidebond.Disulfidereductioneventscanthusbecorrelatedwithasignatureproteincontourlength,which canbeidentifiedintheextensionexperiment.AsshowninFigure1.7a,mechanical forcefirsttriggerstheunfoldingoftheprotein(unsequesteredunfolding),exposing thedisulfidebond.Inthepresenceofareducingagent,1,4-DL-dithiothreitol(DTT), thedisulfidereductionoccurs.Theratesofthebiomolecularreductionweremeasuredbyfittingtheextension-timecurvesignaturingthedisulfideexchangeunder varyingforcemagnitudes.Theexchangerateshowedanexponentialincreasewith theappliedforce(Figure1.7b).FittingtheexperimentalresultsusingBell-likemodel givesa �� value,thelengtheningofthetransitionstate,of0.34Å.Anenergylandscapeisplottedshowingan8.2kJ/molreductionofactivationenergywhena400pN forceisapplied(Figure1.7c).Thereversibilityofdisulfideexchangewasrecordedby force-clampAFM[51].MechanicalforceenabledthethermodynamicallyunfavorableSN 2substitutionofadisulfidewithweaknucleophilicthiols.Uponremovalof load,thebondingreturnedtotheoriginaldisulfideoflowerenergy.Reversibilityis criticalinmechanical-responsivematerialssothatperturbationscanberepeatedin ahighlydynamicmanner.

GoingbacktoBell’smodel,asabondundergoesconstantthermalfluctuations, howfasttheforceisappliedrelativetothethermalfluctuationaffectsthebreaking force.Therefore,bond-breakingforceisdependentontheforce-loadingrate (df /dt).Thisdependencycanbecharacterizedintothreeregimes,thespontaneous, force-assisted,andactivationlessregimes,asshowninFigure1.8[52,53].When theloadingrateislowrelativetobondthermaldissociationrate,bondsbreak spontaneouslyduetothermalfluctuations.Thisiscalledaspontaneousregime.In thisregion,thebreakingforceislowandindependentoftheforcerate.Bondswith rapidthermaloscillationsandshortbondlifetime,suchashost–guestinteractions, fallwithinthisregime[54].Asforcerateincreases,itbecomessufficientlyfastthat thebondisstretchedtosomeextentbeforebreaking.Thisiscalledtheforce-assisted regime,andthebreakingforceincreasesrapidlywithforcerate.Thishasbeen observedforavidin–biotincomplex[55],H-bondedcarboxylicacidgroups[56],and gold–octanedithiol–goldlinks[57].Intheactivationlessregimeunderhigh-loading rate,theenergybarriertobreakingisreducedtozeroasthebondismaximally stretched,andbondbreakssolelybytheappliedforce.Inthisregion,thebreaking forcereachesthehighestandbecomesconstantagain.Whilesingle-moleculeexperimentsallowustovalidatethetheoreticalpredictions,cautionmustbeusedwhen comparingtheruptureforcevalues,whicharehighlydependentonexperimental

Figure1.7 (a)Unfoldinganddisulfide(SS)reductionforanengineeredproteinwitha preciselypositioneddisulfidebond.(b)Rateofreductionofthedisulfidebondasafunction ofappliedforcemeasuredbyforce-clampAFM.Concentrationofthereducingagent,DTT,is keptconstantat12.5mM.(c)Calculatedenergylandscapewithandwithoutforces.A 400pNforcereducestheactivationenergyofdisulfidereductionby8.2kJ/mol.Source: Wiitaetal.[50]/withpermissionofNationalAcademyofSciences.

conditions.AcomprehensivereviewbyRibas-ArinoandMarxsummarizedthe single-moleculespectroscopyandthetheoreticaltreatmentsingreatdetail[58].

Inthecontextofbulkpolymers,sensitivityofthemechanoresponsivebonds becomesdependentonforcetransductionandheterogeneitiesofforcedistribution. Forasinglechain,theweakerbondsbreakfirstfollowedbythestrongerbonds.The ruptureforcesforcommoncovalentbondsarewithinafewnN(Figure1.9)[59]. Fornoncovalentinteractions,theruptureforcesareinamuchlowerrange,around 10–100pN[58].Whenmechanocleavablebondsareplacedwithinapolymerstrand, however,theforcetransductioncanbefarmorecomplicated.Anoften-askedquestioniswhichbondismostlikelytorupturewithinapolymericmaterialunder mechanicaldeformation.Thisisdeterminedbyboththebondstrengthandthe

Figure1.8 Dependenceofbond-breakingforceonforcerate.(a)Host-guestcomplex representativeofspontaneousbreaking.(b)Bindingsbetweenbiomoleculessuchasavidin andbiotinrepresentativeofforce-assistedbreaking.(c)Hydrogenbondingbetween carboxylicacidsfallswithinthetransitionregimefromspontaneoustoforce-assisted breaking.(d)Gold-octanedithiol-goldinteractionfallswithinthetransitionregimefrom force-assistedtoactivationlessbreaking.(e)breakingofthebondbetweentwogoldatoms atroomtemperaturespansacrosstheentirespectrum.Source:Pobelovetal.[52]/with permissionofSpringerNature.

Figure1.9 Bondruptureprobabilitydensities(nN 1 )asafunctionofforce F (nN) calculatedbydensityfunctionaltheory.Force-loadingrateis10nN/s.Source:Beyer [59]/withpermissionofAmericanInstituteofPhysics.

forcedistribution.Theformercanbepredictedormeasured,thelatterisanisotropic withinapolymericmaterial.Onestudyincorporatedcoumarindimer(CD)into specificlocationsofwell-definedpolymersasameanstodeterminetheroleof mechanophorespatialdistributionontheefficiencyofmechanoactivation[60]. Theexperimentwascarriedoutinsolutionunderultrasonication.WhenCDwas incorporatednearthecenterofachain,selectivebreakingoftheCDdimmer

Figure1.10 Color-changingmechanoresponsivefibersconfirmthestresspatterns predictedbycontinuumsimulationsforthetrefoilknot(a)andthefigure-of-eightknot (b)duringthetighteningprocess.ThecoloriscodedintheCIE1931XYZcolorspace. Approximatelyredendofthespectrumcorrespondstolowstrainandtheblueend correspondstohighstrain.Source:ReproducedwithpermissionfromPatiletal. [63]/AmericanAssociationfortheAdvancementofScience AAAS.

occurred.However,whentheCDwaslocatedawayfromthechaincenter,random cleavagesofbackbonebondsweredominant.Inthesolidstate,forcetransduction isfurthercomplicatedbyentanglements,knots,andotherdefects.Earlystudies suggestedthatthehigheststressisformedattheentrancepositiontotheknot[61]. However,thechainsconsideredinthissimulationarerelativelyshort;thus,itis possiblethatbeingclosetothechainendalsocontributestothehighstressatthe immediatevicinityoftheknot.Whenpolyethyleneof40carbonatomsissimulated forend-to-endstretching,thestressisconcentratedatthetorsionsaroundthe curvedpartoftheknot[62].Amechanisticstudyoftyingropesintodifferent topologies[63]mayshedsomelightonthisdisagreement.Figure1.10a,bshowsa color-changingphotonicfiberwithtwodifferentknots.Thefiberiscoatedwitha periodiccladding.Whentheknotistightened,thicknessofthecladdingchanges uponelongationorbending,leadingtocolorvariations.Notethisisastructural coloranddoesnotinvolveanymechanochemistry.Movingfromtheredtothe blueendofthecolorspectrum,bothstrainandstressincrease,andthestressis localizedatthecurvedpartsofthetightenedknot.Thestimulationresultsshowa similarstressdistributionpattern.Interestingly,thestudyshowedthatthestress localizationwithintheknotcanbemoresubstantialforcertainknotsthanothers underthesamepullingforce.Ifwedrawananalogyofentangledpolymerchains withknottedropes,onecanclearlyseetheextentofanisotropyinstressdistribution.Additionally,cumulativeforcesofnumerousintermolecularinteractions withcertainconfigurationscanshieldaweakbondfrommechanicalactivation. Crystallinedomains,covalentcrosslinks,physicalcrosslinks,andtopological defects,suchasloops,canfurthercontributetotheheterogeneities.Theeffectsof sidegroups,backbonerigidity,backbonecreep,andrelaxationcannotbeneglected either.Furthermore,aninterestingbehavioristhatthecleavablebondsdonothave todirectlyalignwiththepullingaxis.ThisisfurtherdiscussedinSection1.4ofthis

1.4PolymerCovalentMechanochemistry 15 chapter.Therefore,thecomplexandrichbehaviorsofpolymermechanochemistry areanareatobefurtherexplored.

1.4PolymerCovalentMechanochemistry

Inthissectionofthechapter,wewillconsidermechanicalactivationofnumerous mechanophoresbasedoncovalentbondswithinpolymericmaterials.Suchlabile covalentbondsincludeC—C,C-heteroatom(e.g.C—O,C—S,C—N,C—Cl, andC—Br),andheteroatom–heteroatom(e.g.O—O,S—S,andSe—Se)bonds. Thecovalentmechanophoresdescribedinthissectionareclassifiedaspyrans, retro-cycloadditions,ladderenes(LDEs),stableradicalsystems,andothertypes.The mechanochemicalrupturecangenerallyoccurviapericyclic(e.g.electrocyclicring openingofpyransandretro-cycloadditions),homolytic(e.g.radicalformations),or heterolytic(e.g.benzoxazole[Bz’s]esterbondcleavage)reactions.Theoccurrences ofmechanochemistryareoftenassociatedwithdistinctivechangesinmaterials’ propertieswhichcanbeutilizedtoperformcertainfunctions.Forexample, colorchangeandfluorescentemissionsareinvolvedinmechanoactivationof pyran-basedcompounds.Suchmechanophoresaretermedmechanochromophores andmechanofluorophores,andtheyenabledthedetectionandmappingofstresses inpolymermaterials[64–67].Mechanoradicalsaregeneratedviahomolyticcleavageofcovalentbondsunderforceandhavebeenemployedinpolymerizationsto enableself-healingproperties[68].Ultrasonication-inducedselectivecleavageof disulfide-centeredpolymersgavethiol-terminatedpolymerchains,whichcould thenundergothia-MichaeladditiontoDiels–Alderadductsoffuran-functionalized drugsandacetylenedicarboxylates,followedbyaretro-Diels–Alderreactionin whichtheliberationofasmallmoleculardrugoccurred[69].Likewise,another studyreportedonareleaseofanalkaloid-typeanticancerdrugbyanintramolecular cyclizationofmechanochemicallygeneratedthiol-terminatedpolymers[70].

Constrained-geometry-simulatingexternalforce(CoGEF)[59]thatisbasedon densityfunctionaltheory(DFT)hasbeencarriedouttocomputationallydetermine thethresholdforcesrequiredtoactivatecovalentmechanophores.InthisCoGEF method,thesystembeginswithanunstrainedstateofthemechanophore.Two anchoringpointsfromtheoppositesidesofthemechanophorearethenselected,the distancebetweenthesetwopointsisincreasedinsmallsteps,andthegeometrywith theminimumenergyisidentifiedforeachelongationstep.Aplotofrelativeenergy versusequilibriumdisplacementissubsequentlyconstructed,andthethreshold forceisextractedfromtheslopeoftheplotjustbeforethebondcleavageoccurs. Thethresholdactivationforcesfornumerousmechanophoreshavebeenassessed viaCoGEFcalculations,andthepredictivepowerofthismethodforpolymer mechanochemistryhasbeendemonstrated[71].Forarangeofmechanophores,the CoGEFpredictionsareingoodagreementwiththeexperimentalvaluesobtained fromthesingle-moleculeforcespectroscopymeasurements.Inthissection,we willfocusondiscussingthechemistriesinvolvedandthetunabilityofthebond dynamics.

1.4.1Pyran-BasedMechanochromophores

Spiropyran(SP)isawell-knownphotochromicmolecule.UnderUVradiation,the colorlessandnonfluorescentSPundergoes6π electrocyclicringopeningtoform merocyanine(MC)species(Scheme1.1).TheincreaseinconjugationinMCshifts theabsorptiontolongerwavelengths,givingrisetovisiblecolorandfluorescence [72].RingopeningofSPcanalsobemechanicallyactivatedwhenincorporatedinto polymerbackbonesbytetheringitstwoends.Underuniaxialstress,theconversionofSPtoMCresultedinacolorchangeofthepolymerfromyellowtopurple andtoredoncefailed[72].SP-functionalizedpolymericmaterialshavealsoshown mechanochromisminducedbygrinding,ultrasonication[73],andshearstress[74]. EventhoughSPincorporatedpolymersaretypicallycolorlessoryellow,theirMC formscanshowdifferentcolors,suchasblue,purple,orred,underdifferentstrains. AsshowninFigure1.11,thepolymerturnedbluewhenstretched.Uponrelease, itscolorchangedtopurpleviatheisomerizationofthemethinebridgethatlinks thetwocycliccomponents[75].Thecolorlessformisrestoredafterradiationwith visiblelight.

Itiscrucialthatthetensilestressisappliedacrossthespiro-junctiontopull aparttheindolineandbenzopyranmoietiestoexclusivelycleavetheCspiro —O bond.Thiscanbeachievedbytetheringthepolymerchainstotheopposingsides ofthespiro-junction,suchaspositions7or8ofthebenzopyranand5′ or6′ of theindoline[72].FunctionalizingSPatotherpositions,suchas1′ and5′ ofthe indolinecomponent,preventsthemechanicalforcetransductionacrossthereactive

Electrocyclicringopeningofspiropyrantoformmerocyanine.

Figure1.11 Originalspiropyransampleiscolorless(a)andturnsbluewhenstretched(b). Oncethesampleisrelaxed,itturnspurple(c).Source:Reproducedwithpermissionfrom Gossweileretal.[75]/AmericanChemicalSociety.

Spiropyran (SP)Merocyanine (MC)
Scheme1.1

Cspiro —Obond,althoughSPtoMCtransformationcanstilltakeplacebyheating orUVradiation[76].Regiochemicaleffectsonmechanicalactivationhavebeen quantifiedbyusingtwoSPregioisomersviasingle-moleculeforcespectroscopy measurements[77].Inoneisomerthepolymerchainsweretetheredtopositions5′ and8,whileinthesecondisomerthepolymerchainswereattachedtopositions8 andindole’sNatom,andthethresholdforcesforactivationweredeterminedtobe 260and240pN,respectively.Therateofmechanochromismisgovernedbyseveral factorsthatincludethenatureofthematerials(e.g.elastomericpolymershave demonstratedfasterdecayofthecolorchangethanthoseofglassyones)[72],local environment(e.g.temperatureandplasticizers)[78],andsubstituentsontheSP (i.e.thehighertheelectrondensityonthearomaticringofbenzopyran,thefaster theringclosure)[79].

Spirothiopyran(STP),anSPanalog,displaysbothmechanochromismand stress-inducedadditionreactionsrenderingitaversatilemechanophore.Ring openingofthethiopyranringformsthecorrespondingthiomerocyanine(TMC) initsthiophenolateform(Scheme1.2),whichcantakepartinthiol-eneclick reactionsinthepresenceofolefinicdoublebonds.Ultrasonication-activated polyester-functionalizedSTPshowedyellowtogreencolorchangebecauseof theformationoftheTMCform;however,thegreencolorquicklyfadedinthe presenceof N -methylmaleimideduetothethiol-eneclickreaction[80].When N -methylmaleimideisreplacedwiththebifunctional1,6-bismaleimidehexnae crosslinker,mechanical-inducedcrosslinkingofthelinearpolymerswasachieved, givinginsolublenetworks.

Mechanochromismcanbeaffectedbybothelectronicandstericeffects.This isshownfornaphthopyran(NP)inScheme1.3.Theactivatedmerocyaninesnot onlyexhibitdifferentcolorsbutalsotheirthresholdforcesvarydependingonthe natureofthesubstituents.NPspecies(Scheme1.3a)formsayellowMC,whereas NPmodifiedwithelectron-donatingpyrrolidine(Scheme1.3b)givesapurpleMC [81].CoGEFcalculationsindicatethatelectron-donatingandbulkypyrrolidine decreasestheactivationforceformechanicalscission[71].Oncethemechanical forceiseliminated,heat-inducedringclosureresultsinthereformationofNPand NP-Pyr.

AsistrueforSPandNP,oxazine(OX)-derivedmechanophoresalsodemonstrate regioisomer-dependentmechanochromism[82].AsshowninScheme1.4,thebulk

Scheme1.3 Electrocyclicringopeningof(a)naphthopyrans(NP)and (b)pyrrolidine-appendednaphthopyrans(NP-Pyr).

Scheme1.4 Electrocyclicringopeningofoxazinetogivezwitterionicindoliumspecies.

polymer-embeddedOXcoreundergoesmechanicalstress-inducedpericyclicring openingtogenerateacolored,zwitterionicindoliumisomer,whichrevertstothe ring-closedformuponremovalofthetensilestresswithinlessthanasecond.This markedlyfastermechanoresponsivenessofOXwithoutanyphaselagorfatiguecomparedtoSPorNPisstriking.ItshouldbenotedthattheringopeningofbothSP andNPisfollowedbyadouble-bondisomerizationprocesstoformthecorresponding trans-MCs,butsuchanisomerizationdoesnottakeplacewithOX,whichmight explainOX’sfastermechanoresponse.IncomparisontoSPorNP,OXmechanophore mayholdbetterpromiseasamolecularforceprobesinceOXhasashortercleavage displacement(e.g.SPandNPframeworksneedtobestretchedaboutthriceasmuch asOXforthebondrupture)aswellasitslesscomplicatedring-openingprocesswithoutthedouble-bondisomerization.

Theabove-mentionedmechanophoresallcontainonepyranringandgivethe samemechano-andphoto-product.Mechanochromicbis(naphthopyran)(BNP) featuringdoublyclosedpyranring(BNPC–C )configurationexhibitsadifferent

Scheme1.5 Electrocyclicringopeningofbis(naphthopyran).UVirradiationleadsto stepwiseringopeningviaBNPO–C ,whilemechanicalforcedirectlytransformsBNPC–C to BNPO–O

mechanochemicalpathway[83].AsshowninScheme1.5,undercontinuousUV irradiation,BNPC–C undergoesringopeningofoneofthepyranringstofirstform anopen–closedBNPO–C MCspecies,followedbyafullyopenMCform(BNPO–O ).In contrasttothissequentialphotochemicalring-openingprocess,undermechanical activation,anequilibriumofBNPC–C ,BNPO–C ,andBNPO–O isreachedbutthrough adifferentmechanism.BNPO–O isformeddirectlyfromBNPC–C bymechanical activation;therefore,itsconcentrationisforcedependent.BNPO–C isproduced predominatelyfromthethermalelectrocyclizationofBNPO–O .Meanwhile,BNPO–C canbemechanicallyactivatedtogenerateBNPO–O again.Therefore,thedistribution ofBNPO–C andBNPO–O varieswiththemagnitudeofforce.SincethetwoMC productshavedistinctlydifferentabsorptionsinthevisiblerange,BNPexhibits gradientmulticolormechanochromism,whichcanbeusedasastresssensor. Systematicstudiesofthesecompoundshavebeenconductedtoillustratethe substituenteffects[43,71],stereochemistry,andregioselectivity[71].Computation andexperimentalstudiesallowustounderstandmechanismsofmechanochemical reactions,asdiscussedinSection1.3.

1.4.2Retro-Cycloadditions

Inacycloadditionreaction,two π reactantsreacttoformacyclicadductthat containstwonew σ bonds.Theadductsaresusceptibleforreversereactions(i.e.

BNPO–C
BNPC–C
BNPO–O

1FromMechanochemistrytoMechanoresponsiveMaterials retro-cycloadditions)undersufficientmechanicalforce.Here,wewillsummarize theuseofretro-cycloadditionsindesigningpolymericmaterialsforsensing,release ofsmallmolecules,gatedringopening,anddegradablematerials.

Anthracene-derivedDiels–Alderadductshavebeenwidelyusedasmechanofluorophoresbecauseoftheirhighfluorescentquantumyields.Anthracene dimers[84],anthracene–maleimideadducts[85–88],aswellas π-extended anthracene–maleimideadducts[89]incorporatedintopolymerscanbemechanicallyactivated.Theliberationoffluorescentanthracenederivativestakesplacevia stress-inducedretroDiels–Alderoftheanthraceneadducts,whichinturnleads tothescissionofthepolymerchains.Usingthisconcept,anthracene–maleimide adductshavebeenemployedasdamagesensorsatheterointerfaces[90,91]. Ananthracene–maleimideadduct-embeddedpolymerchainwasgraftedonto thesurfaceofsilicananoparticles.Here,anthracenespecieswasliberatedvia ultrasound.Thisshowedtheselectiveruptureoractivationofmechanophores undermechanochemicalstressataheterointerface.Themechanochemical activationof π-extendedanthracene–maleimideadducts(Scheme1.6a)isparticularlyinterestingbecausetheygiveafluorescencequantumyieldof0.72,which isabout2ordersofmagnitudehigherthanthosereportedformerocyanines derivedfromspiropyrans[89].Besides,thefluorescenceisstableinthepresenceofexcessoxygenandthesystemisnotsusceptibletothermalreversibility. Theappropriatefunctionalizationofthismechanofluorochromophore(viathe substituentsinanthracene)givestheopportunitytotuneexcitationandemissionwavelengthswhilemaintainingmechanochemicalpropertiesofthesystem. Thishighlysensitive π-extendedanthracene–maleimideadductwasusedasa crosslinkerinapoly(N -isopropylacrylamide)hydrogelnetworktodetectand accuratelylocalizethecovalentbondscissioninducedbyaneedle-puncturing (hand)[92].Anthracene–maleimideadductshavebeenemployedasdamage sensorsinpolymersusingthematheterointerfaces[90,91].Forexample,an anthracene–maleimideadduct-embeddedpolymerchainhasbeenlinkedtoa surfaceofsilicananoparticles,andultrasoundactivationofthemechanophorehas ledtotheliberationoftheanthracenespeciestherebyensuringtheruptureofthe polymerchain.

Mechanochemicalactivationofthemechanophore-centeredpolymerchains notonlyyieldsopticalresponsesbutalsocandisplaychemicalresponsesbythe releaseofsmallmolecularcargos,suchasfurans[93,94],coumarin[95],and phenyltriazolinedione[75].Adifunctionalcrosslinkercomprisingmechanophore oxanorbornadiene,whichisaDiels–Alderadductoffuranandacetylenedicarboxylate,wasincorporatedintoapolymethylacrylate(PMA)matrixinwhich compression-inducedretro-[4 + 2]Diels–Alderreactionliberatedthebenzyl furfurylethersmallmolecules(Scheme1.6b)[93].Inthisexample,thecleaved covalentbondswerenotanintegralpartofthepolymermainchain,which isquitecounterintuitive.Theactivationoccurredbybondbendinginsteadof stretching.Hencetheoverallpolymerarchitectureisretainedintact,whileindeed reinforcingthebondsinthepolymerbackbone.Force-accelerateddissociation ofunloadedbondsalsooccurredforphosphotriesters[96].Inanotherstudy,

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.