Full download Chiral building blocks in asymmetric synthesis: synthesis and applications elzbieta wo

Page 1


Chiral Building Blocks in Asymmetric Synthesis: Synthesis and Applications Elzbieta Wojaczynska

Visit to download the full and correct content document: https://ebookmass.com/product/chiral-building-blocks-in-asymmetric-synthesis-synthe sis-and-applications-elzbieta-wojaczynska/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Catalytic Asymmetric Synthesis, 4th Edition Takahiko

Akiyama

https://ebookmass.com/product/catalytic-asymmetric-synthesis-4thedition-takahiko-akiyama/

Superatoms: Principles, Synthesis and Applications Puru

Jena

https://ebookmass.com/product/superatoms-principles-synthesisand-applications-puru-jena/

Quantum Dots: Fundamentals, Synthesis and Applications

Rakshit Ameta

https://ebookmass.com/product/quantum-dots-fundamentalssynthesis-and-applications-rakshit-ameta/

Stereochemistry and Organic Reactions Conformation, Configuration, Stereoelectronic Effects and Asymmetric Synthesis 1st Edition Dipak Kumar Mandal

https://ebookmass.com/product/stereochemistry-and-organicreactions-conformation-configuration-stereoelectronic-effectsand-asymmetric-synthesis-1st-edition-dipak-kumar-mandal/

Nanomaterials in Clinical Therapeutics. Synthesis and Applications 1st Edition Mainak Mukhopadhyay

https://ebookmass.com/product/nanomaterials-in-clinicaltherapeutics-synthesis-and-applications-1st-edition-mainakmukhopadhyay/

Nanomaterials Synthesis: Design, Fabrication and Applications Yasir Beeran Pottathara

https://ebookmass.com/product/nanomaterials-synthesis-designfabrication-and-applications-yasir-beeran-pottathara/

RAFT Polymerization - Methods, Synthesis, and Applications in 2 Vol. Moad Graeme (Ed.)

https://ebookmass.com/product/raft-polymerization-methodssynthesis-and-applications-in-2-vol-moad-graeme-ed/

Organofluorine Chemistry - Synthesis and Applications 1st Edition Reddy V. Prakash

https://ebookmass.com/product/organofluorine-chemistry-synthesisand-applications-1st-edition-reddy-v-prakash/

Nanowire Energy Storage Devices: Synthesis, Characterization and Applications Liqiang Mai

https://ebookmass.com/product/nanowire-energy-storage-devicessynthesis-characterization-and-applications-liqiang-mai/

ChiralBuildingBlocksinAsymmetricSynthesis

ChiralBuildingBlocksinAsymmetric Synthesis

SynthesisandApplications

Editedby

ElzbietaWojaczy´nska

JacekWojaczy´nski

Editors

Prof.ElzbietaWojaczy´nska WrocławUniversityofScienceand Technology

FacultyofChemistry

Wybrze ̇ zeWyspia ´ nskiego17 50370Wrocław Poland

Dr.JacekWojaczy´nski UniversityofWrocław FacultyofChemistry 14F.Joliot-CurieSt. 50383Wrocław Poland

CoverImage:Courtesyof Prof.E.Wojaczynska

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhis publicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>.

©2022WILEY-VCHGmbH,Boschstraße12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34946-3

ePDFISBN: 978-3-527-83418-1

ePubISBN: 978-3-527-83419-8

oBookISBN: 978-3-527-83420-4

Typesetting Straive,Chennai,India

Contents

Preface xv Foreword xix

1EnantioselectiveSynthesisofCyclopropenes 1 VirginieCarrerasandThierryOllevier

1.1Introduction 1

1.1.1SynthesisofCyclopropenes 1

1.1.2ReactivityofCyclopropenes 2

1.2Metal-CatalyzedEnantioselectiveSynthesesofCyclopropenes 3

1.2.1RhodiumCatalysis 3

1.2.2CopperCatalysis 9

1.2.3IridiumCatalysis 9

1.2.4Cobalt–ChiralPorphyrinCatalysis 10

1.2.5GoldandSilverCatalysis 10

1.2.6Biocatalysis 13

1.3OtherSyntheticRoutesandDerivatizationsofEnantioenriched Cyclopropenes 13

1.4SummaryandProspect 15 References 15

2ChiralHeterocyclesforAsymmetricSynthesis 21

Radovan ˇ SebestaandTiborPeˇnaška

2.1Introduction 21

2.2Small-RingHeterocycles 21

2.3Medium-RingAliphaticHeterocycles 29

2.4OtherHeterocyclicBuildingBlocks 37

2.5Conclusions 38 References 39

3SaturatedHeterocyclesasChiralAuxiliaries 43

AgnieszkaPa´zdzierniok-HolewaandSebastianStecko

3.1Introduction 43

3.2Proline-DerivedChiralAuxiliaries 43

3.32,5-trans-DisubstitutedPyrrolidines 46

3.4HeterocyclicHydrazones 50

3.5Oxazolidine-BasedChiralAuxiliaries 57

3.6Camphor-BasedChiralHeterocyclicAuxiliaries 60

3.7Phosphonamide-BasedChiralAuxiliaries 68

3.8Schöllkopf’sChiralAuxiliariesandRelatedHeterocyclesforthe AsymmetricSynthesisof α-AminoAcids 72

3.9Conclusions 73

References 74

4 trans-1,2-DiaminocyclohexaneandItsDerivativesin AsymmetricOrganocatalysis 87 MichałKopyt,MichałP.Głowacki,andPiotrKwiatkowski

4.1Introduction 87

4.2 trans-1,2-Diaminocyclohexane-BasedOrganocatalysts 89

4.3Applicationof trans-1,2-DiaminocyclohexaneDerivativesinAsymmetric Organocatalysis 96

4.3.1MichaelAdditionsofMalonateEsterstoNitrostyrene 97

4.3.2MichaelAdditionsofOther1,3-DicarbonylstoNitrostyrene 98

4.3.3MichaelAdditionsofEnolizableKetonesandAldehydesto Nitrostyrene 99

4.3.4MichaelAdditionsofOtherCarbonNucleophilestoNitrostyrene 101

4.3.5MichaelAdditionsofHeteronucleophilestoNitrostyrene 102

4.3.6MichaelReactionsofEnones 102

4.3.7MichaelReactionsofBenzylidenePyruvates 103

4.3.8ReactionsofIsatin-DerivedMichaelAcceptors 104

4.3.9MichaelReactionsofMaleimides 105

4.3.10AldolReactionandOtherAsymmetricReactionsofAldehydes 106

4.3.11ReactionsofIsatins 107

4.3.12ReactionsofImines 108

4.3.13Pictet–Spengler-TypeReactions 109

4.3.14ReactionsofNitrogenElectrophiles 110

4.3.15MiscellaneousReactions 111

4.4Conclusions 113 References 113

5DiketopiperazinesasChiralBuildingBlocks 139

JuanDomingoSánchez,JuanFranciscoGonzález,andJoséCarlosMenéndez

5.1Introduction 139

5.2ABriefOverviewoftheSynthesisof2,5-Diketopiperazines 140

5.2.1MethodsthatCreatetheN1 —C2 Bond 140

5.2.1.1CyclizationofDipeptides 140

5.2.1.2CyclizationofUgiReactionProducts 141

5.2.1.3Staudinger/IntramolecularAza-WittigSequences 142

5.2.1.4DKPFormationCoupledtoAdditionalCyclizationReactions 143

5.2.2MethodsthatCreatetheN1 —C6 Bond 143

5.2.2.1From α-HaloacylAminoAcids 143

5.2.2.2ByAza-MichaelAdditions 144

5.2.3MethodsthatCreateTwoBonds 144

5.2.3.1FormationofN1 —C6 andN4 —C3 Bonds 144

5.2.3.2FormationofN1 —C2 andN1 —C6 Bonds 144

5.2.4BiotechnologicalMethods 145

5.32,5-DiketopiperazinesinDrugSynthesis 145

5.3.1SynthesisofTadalafil 145

5.3.2SynthesisofTrofinetide(NNZ-2591) 146

5.3.3SynthesisofAplaviroc 147

5.3.4SynthesisofRetosiban 147

5.4NaturalProductSynthesis 148

5.4.1AsymmetricSynthesisofAminoAcids 148

5.4.2SynthesisofAlkaloidsContaininga2,5-DiketopiperazineCore 149

5.4.2.1TryprostatinB 149

5.4.2.2SpirotryprostatinB 150

5.4.2.3StephacidinB 150

5.4.2.4VersicolamideB 151

5.4.2.5VariecolortideA 151

5.4.2.6Dideoxyverticillin 152

5.4.3SynthesisofAlkaloidsContainingaModified2,5-Diketopiperazine Core 153

5.4.3.1Ardeemin 153

5.4.3.2Phakellin 153

5.4.3.3Sarcodonins 154

5.4.3.4Ecteinascidin743 155

5.5Conclusions 156 References 157

6AminoAcidsasChiralBuildingBlocks 161 ElisabeteP.CarreiroandAnthonyJ.Burke

6.1Introduction 161

6.2ChiralSubstrates/Reagents 161

6.2.1ChiralAminoAcids 161

6.3ChiralAuxiliaries 165

6.3.1ChiralPyrrolidineAuxiliaries 166

6.3.1.1YamadaAuxiliary 166

6.3.1.2EndersAuxiliaries 166

6.3.2Schöllkopf’sBis-lactimEthers(SchöllkopfChiralAuxiliaries):Glycine EnolateEquivalents 167

6.3.3Oxazolidinones 168

6.3.3.1Evans’ChiralAuxiliary 168

6.3.3.2SuperQuatChiralAuxiliaries 170

6.4Oxazaborolidines 172

6.5Organocatalysts 172

6.5.1AminoAcidandPeptide-BasedOrganocatalysts 173

6.5.2OrganocatalystsBasedonProline 174

6.5.2.1Proline 174

6.5.2.2ProlineAmidesandPeptides 177

6.5.2.3DiarylprolinolSilylEtherandAnalogousSystems 179

6.5.2.4OtherProlineAnalogues 184

6.5.3Imidazolidinones 187

6.5.4Amidine-BasedOrganocatalysts 190

6.6Conclusions 191

References 191

7Carbohydrate-BasedCatalystsandAuxiliariesinOrganic Synthesis 197

SebastianBa´s,SzymonBuda,andJacekMłynarski

7.1ChiralAuxiliaries 197

7.1.1ChiralImines 198

7.1.2ChiralOxazolidinones 202

7.1.3ChiralEsters 204

7.1.4ChiralEthers 211

7.2ChiralCatalysts 213

7.2.1ChiralComplexes 214

7.2.2Organocatalysts 220 References 225

8MonoterpenesasChiralBuildingBlocks 235

AgataJ.Pacuła-Miszewska,MagdalenaObieziurska-Fabisiak,andJacek ´ Scianowski

8.1Introduction 235

8.2AcyclicMonoterpeneBuildingBlocks 237

8.3MonocyclicTerpeneBuildingBlocks 243

8.4BicyclicTerpeneBuildingBlocks 256

8.5Conclusions 261 References 262

9DiterpeneAcidsasStartingMaterialsfortheSynthesisof BiologicallyActiveCompounds 267

IgnacioE.Tobal,AlejandroM.Roncero,RosalinaF.Moro,DavidDíez,and IsidroS.Marcos

9.1ZamoranicAcid1asaPrecursorofInterestingCompounds 269

9.1.1SynthesisofChrysolicAcidandIsofregenedol 269

9.1.2SynthesisofNewLabdaneDiterpenoids 271

9.1.3SynthesisofDrimanes 272

9.1.3.1SynthesisofPoligodial,Warburganal,PereniporinA,and PereniporinB 273

9.1.3.2SynthesisofIsodrimeninol 273

9.1.4SynthesisofLabdanolidesandFurolabdanes 274

9.1.4.1Synthesisof(+)-Limonidilactone 274

9.1.4.2SynthesisofGutierrezianolicAcid 274

9.1.5SynthesisofTri-andTetracyclicDiterpenes 275

9.2 Ent-halimicAcidasaPrecursorofBiologicallyActiveCompoundsand OtherInterestingDerivatives 276

9.2.1Synthesisof Ent-halimanolides 278

9.2.1.1SynthesisofNatural Ent-halimanolideSynthesis 278

9.2.1.2Synthesisof α and β-Hydroxyhalimanolides 280

9.2.1.3SynthesisofFuro-ent-halimanolide 280

9.2.2SynthesisofChettaphanins 281

9.2.3SynthesisofSesterterpenolides 281

9.2.3.1SynthesisofSesterterpenolides,AnaloguesofDysidiolide 282

9.2.4SynthesisofSesterterpenolideandGlycerolHybrids 283

9.2.5SynthesisofRearrangedCompounds 283

9.2.5.1Synthesisof Ent-labdanesfrom Ent-halimanes 283

9.2.5.2SynthesisofAbeopicrasanesfrom Ent-halimanes 284

9.2.5.3Synthesisof[4.3.3]propellanesfrom Ent-halimanes 285

9.2.6SynthesisofQuinone/HydroquinoneSesquiterpenes 285

9.2.7SynthesisofSesqui-andDiterpeneAlkaloids 286

9.2.7.1SynthesisoftheDiterpeneAlkaloid,(+)-AgelasineC 287

9.2.7.2SynthesisofDiterpeneAlkaloid,(+)-ThiersindoleC 288

9.2.7.3SynthesisofSesquiterpenylIndoles 289

9.2.7.4SynthesisofSesquiterpeneIndoles,AnaloguesofPolyalthenoland Pentacyclindole 289

Acknowledgments 290 References 291

10AlkaloidsasChiralBuildingBlocks,Auxiliaries,Ligands,and MolecularDiversity 297

KarolKacprzak,ElzbietaWojaczy´nska,AndrzejTrochimczuk,Franz Steppeler,andJacekWojaczy´nski

10.1Introduction 297

10.2EphedraAlkaloids 303

10.3TobaccoAlkaloids(NicotineandAnabasine) 311

10.4LupinAlkaloids 314

10.5 Cinchona Alkaloids 325

10.6TropaneAlkaloids 335

10.7AlkaloidsasBuildingBlocksintheSynthesesofChiralPolymersand TheirApplication 338

Acknowledgments 345 References 345

11ChiralBuildingBlocksforTotalSteroidSynthesisandtheUse ofSteroidsasChiralBuildingBlocksinOrganic Synthesis 367

IzabellaJastrze ˛ bskaandDouglasF.Covey

11.1Introduction 367

11.2ChiralBuildingBlocksfortheConstructionofSteroids 368

11.2.1ChiralBuildingBlock1(CBB1) 368

11.2.2ChiralBuildingBlock2(CBB2) 369

11.2.3ChiralBuildingBlock3(CBB3) 370

11.2.4ChiralBuildingBlock4(CBB4) 370

11.2.5ChiralBuildingBlock5(CBB5) 371

11.2.6ChiralBuildingBlock6(CBB6) 372

11.2.7ChiralBuildingBlock7(CBB7) 373

11.2.8ChiralBuildingBlock8(CBB8) 374

11.2.9ChiralBuildingBlock9(CBB9) 375

11.3SteroidsasChiralBuildingBlocks 376

11.3.1SynthesisofC-nor -D-homo-Steroids 376

11.3.2PregnenoloneasaChiralBuildingBlock:SynthesisofCyclocitrinol 377

11.3.34-Androstene-3,17-DioneasaChiralBuildingBlock:Synthesisof Vulgarobufotoxin 377

11.3.4ErgosterolasaChiralBuildingBlock 378

11.3.4.1SynthesisofPleurocinA/Matsutakone 378

11.3.4.2SynthesisofStrophasterolA 379

11.3.4.3SynthesisofHerbarulide 379

11.3.4.4SynthesisofPinnigorgiolEandPinnigorgiolB 380

11.3.5TigogeninasaChiralBuildingBlock 381

11.3.5.1SynthesisofClathsterol 381

11.3.5.2SynthesisofNortriterpenoidPropindilactoneG 383 References 384

12ChiralOrganophosphorusCompoundsinAsymmetric Synthesis 389

ElzbietaŁastawiecka,SylwiaSowa,KatarzynaSzwaczko,KamilDziuba, MarekStankeviˇc,andAdamWłodarczyk

12.1Introduction 389

12.2OrganophosphorusCompoundswithIncorporatedChiralTerpene Moieties 389

12.3OrganophosphorusCompoundswithAxialChirality 397

12.4ChiralAminophosphonicAcidsandTheirAnalogs 406

12.5StereogenicOrganophosphorusCompoundswithP—Nand/orP—O Bonds 418

12.6Summary 425 References 426

13OrganosulfurCompoundsasChiralBuildingBlocks 441

MariaA.M.CapozziandCosimoCardellicchio

13.1StateoftheArt 441

13.2Introduction 441

13.3TheTradition 442

13.3.1Menthyl(RS )-or(SS )-p-toluenesulfinate(Andersen’sReagent) 442

13.3.2(R)-p-Toluenesulfinamide(Davis’Reagent) 449

13.3.3(1S,2R,5S)-Menthyl(S)-p-Bromophenylsulfinate 451

13.3.4(R)-tert-Buthyl tert-Butanethiosulfinate(Ellman’sReagent) 452

13.3.5Sulfoximines 454

13.4IdeasfortheFuture 454

13.4.1DAG-Chemistry 454

13.4.2ArylBenzylSulfoxides 455

13.5Conclusions 456

References 456

14OrganoseleniumCompoundsasChiralBuildingBlocks 463

LuanaBagnoliandClaudioSanti

14.1Introduction 463

14.2AsymmetricSelenofuctionalizationReactionsPromotedbyElectrophilic SeleniumReagents 463

14.3VinylSelenonesasImportantBuildingBlocksinAsymmetric Processes 470

14.4AsymmetricSynthesisbyMichael-InitiatedRingClosureReactionsfrom VinylSelenones 470

14.5FunctionalizationofVinylSelenonesofCarbohydratesand Nucleotides 472

14.6AsymmetricOrganocatalyticTransformationsStartingwithVinyl Selenones 475

14.7Conclusion 481

References 481

15AllenesasChiralBuildingBlocksinAsymmetric Synthesis 489

RafałLoskaandAlicjaWasilewska-Rosa

15.1Introduction 489

15.2NucleophilicAdditionandSubstitution 490

15.3AllenylzincandIndiumReagents,Allenylsilanesand Allenylstannanes 491

15.4Epoxidation,Aziridination,andSilacyclopropanationofAllenes 494

15.5NazarovCyclizationofAllenylVinylKetones 499

15.6NucleophilicCyclizationandAdditionPromotedbyElectrophiles 500

15.7CycloisomerizationandOtherReactionsCatalyzedbyTransition Metals 510

15.8CycloadditionofAllenes 513

Acknowledgments 517 References 517

16TheSynthesisandApplicationofBINOLDerivativesas EffectiveBuildingBlocksforCatalystsEmployedin EnantioselectiveSynthesis 523

JanuszJurczak,PatrykNiedbała,andAgataTyszka-Gumkowska

16.1Introduction 523

16.2BINOLDerivativeswithFreeHydroxylGroups 524

16.2.1AllylborationReactions 525

16.2.2ConjugatedAdditionReactions 526

16.2.3OtherExamples 526

16.3OniumSaltsasChargedCatalystsinPTC 529

16.4ChiralPhosphoricAcidsDerivedfromBINOLPlatform 533

16.4.1MichaelReaction 533

16.4.2Friedel–CraftsReaction 534

16.4.3Diels–AlderReaction 535

16.4.41,3-DipolarCycloaddition 538

16.4.5MulticomponentReactions 539

16.4.6OtherExamples 543

Acknowledgments 544 References 545

17ChiralAcenes:SynthesisandApplications 551

AndreaNitti,GiovanniPreda,andDarioPasini

17.1Introduction 551

17.2ChiralCarbo[n]helicenes 552

17.2.1StructureandPropertiesofHelicenes 553

17.2.1.1TopologicalDescription 553

17.2.1.2AromaticityandOptoelectronicProperties 554

17.2.1.3ChiralityofHelicene 557

17.2.2RacemicSynthesisandOpticalResolutionMethods 559

17.2.2.1Metal-FreePhotocyclizationReactions 559

17.2.2.2Diels–AlderCycloaddition 560

17.2.2.3Friedel–Crafts-TypeCyclization 560

17.2.2.4Metal-CatalyzedReactions 561

17.2.2.5OpticalResolution 564

17.2.3AsymmetricSyntheses 565

17.2.4ApplicationofChiralCarbo[n]helicenes 567

17.2.4.1HelicenesinCatalysis 567

17.2.4.2HelicenesinOrganicElectronics 569

17.2.4.3HelicenesinBiochemistry 571

17.3Twistacenes 571

17.4ChiralNanobelts 572

17.5ConcludingRemarks 575

References 575

182-Aza-21-CarbaporphyrininConstructionofChiral SupramolecularAssemblies 583

SebastianKoniarzandPiotrJ.Chmielewski

18.1Preface 583

18.2Monomers 586

18.2.1FreeBases 586

18.2.2MetalComplexes 596

18.3DimersandOligomers 601

18.3.1CoordinatingOligomers 602

18.3.2CovalentlyLinkedDimers 606

18.4SummaryandOutlook 611

References 612

19Catenane,Rotaxane,andMolecularKnotChiralBuilding Blocks 623

Jean-ClaudeChambron

19.1Introduction 623

19.2ElementsofMolecularTopology 624

19.3TopologicalChiralityandChiralCatenanes 627

19.4Chiral[2]Rotaxanes 631

19.5TopologicallyChiralMolecularKnots 634

19.6Catenanes,Rotaxanes,andKnotsasChiralBuildingBlocks 638

19.6.1Catenanes 639

19.6.2Rotaxanes 639

19.6.3MolecularKnots 642

19.6.3.1CovalentLinkingofTrefoilKnotBuildingBlocks 642

19.6.3.2CompositeKnots 644

19.7Conclusions 648

References 650

Index 653

Preface

Theconceptofchiralbuildingblockshasemergedwiththefirsttotalsynthesesof naturalproducts.Theircomplexarchitecturewithadefinedstereochemistrycould beconvenientlyaffordedwiththeuseofenantiopure,easilyavailablereactants: aminoacids,carbohydrates,terpenes,simplealkaloids–compoundsfromacollectioncalleda“chiralpool.”Theirintroductionattheearlystageopenstheroute tostereoselectivecreationofsubsequentstereogeniccentersduetothepossible chiralinduction.Themaindrawbacksofthisapproachlieinthenecessityofusing stoichiometricamountsofchiralstartingmaterialsandinthefactthattheyare typicallyfoundinoneenantiomericform–limitingtheaccessibleconfigurationof thetargetmolecule.

Overtheyears,withthedevelopmentofasymmetricsynthesis,theattractiveness ofbuildingblockshasfaded,asmethodsbasedonchiral,reusableauxiliaries,and catalysts(metalcomplexes,organicmolecules,andenzymes)havegainedpopularity.Chiralitymultiplicationresultingfromtheuseofsubstoichiometric(“catalytic,” touseacommon,butimpreciseword)dosesofsuchinducers,typicallyavailableas bothopticalantipodes,hascapturedtheimaginationofsyntheticchemists.Their significancewasalsomanifestedbytwoNobelPrizesawardedin2001toWilliam S.Knowles,RyojiNoyori,andK.BarrySharplessfortheirworkonstereoselective catalysis,and20yearslatertoBenjaminListandDavidMcMillanforthedevelopmentofasymmetricorganocatalysis.

Itdoesnotmean,however,thatchiralpoolconcepthasbeencompletelyforgotten orneglected.Perhapspushedtothebackgroundbynewdiscoveriesandattracting lessacademicinterest,ithasalwaysbeenofpracticalimportancefortheindustry, inparticular,forpharmaceuticalcompaniesexploitingallefficientandcheap routesforproductionofchiraldrugs.Formanypreparations,theuseofstarting enantiomericallypurematerialisstillthemethodofchoice.Andnowadaysthe chiralpoolhasbeensignificantlyenriched,toincludenotonlycompoundsisolated fromnaturalsources,butalsosimplesyntheticbuildingblocks,nowavailable throughefficientsynthesis(sometimescombinedwithseparationofenantiomers) or–moreandmoreoften–usingbiotechnologicalmethods.Theydeliverboth “natural,”traditionalbuildingblocks(amino-andhydroxyacids,terpenes,certain alkaloids)butalsotheirlessabundantenantiomersordiastereomers,andaddnew typesoffunctionalities,e.g.aminesorepoxides.Ablendofapproachesbecomes

common:reagentsfromthechiralpooloftenserveastheprimarysourceofoptical activityofmanynonracemiccompoundsappliedincatalyticprocesses,but,inturn, someofthemareproducedinasymmetricsynthesisorwiththeuseofenzymes. Wehopethatthisbookillustratesthecurrentstatusofchiralbuildingblocksin chemistry.

Thebookdoesnotpretendtobecomprehensive;insteadofshowingafulllandscape,ratherversatilityanddiversityofchiralbuildingblocksarepresented,from simpletocomplexones,representingvarioustypesofchirality,originatingfrom thepresenceofastereogeniccenter(carbonatomorheteroatom),axis,orplaneto helicalandtopologicalchirality.Theauthors–specialistsinthefield,somemore experienced,andsomeatearlierstageoftheircareers–focusonthepreparationof syntheticbuildingblocks,andapplicationofthemaswellasofnaturalchiralcompoundsintheconstructionofcomplexchiralscaffolds:drugs,agrochemicals,but alsoligandsandcatalystsfororganicsynthesis.

Westartwiththesmallestcyclicchiralbuildingblocks,namelycyclopropene derivatives,whosestereoselectivepreparationispresentedinChapter1.Two subsequentchaptersfocusonvariousringsystemscontainingheteroatoms:their preparation,andapplicationaschiralreagentsandauxiliaries.Again,thereisno clearlinebetweenbuildingblocksandauxiliaries:uptothemomentwhenthe chiralelementremainsintheproduct,itcanbetreatedasabuildingblockwhich maybeeventuallyremoved,butsometimesnotentirely.

Theoverlapofchiralbuildingblockandchiralligand/catalystconceptisclearly visibleinChapter4,devotedtoderivativesof1,2-diaminocyclohexane(DACH), andChapter16whichconcentrateson1,1,-bi-2-naphthol(BINOL)andsimilar compounds–theirpreparationandapplicationsinasymmetrictransformations.

Diketopiperazines,describedinChapter5,serveasabridgebetweensynthetic cycliccompoundsand–asthesimplestcyclicdipeptides–naturalchiralbuilding blocks.Aseriesofchaptersthatfollowsfocusontypicalchiralpoolmembers:amino acids(Chapter6),carbohydrates(Chapter7),terpenes(monoterpenesinChapter8, andexamplesofditerpenesinChapter9),andalkaloids(Chapter10).Incaseof steroids(Chapter11),thestressisontheirsynthesisfromtheappropriatebuilding blocks,butrepresentativetransformationsarealsoshown.

Chapters12,13,and14describeapplicationsinasymmetricsynthesisofchiral phosphorus,sulfur,andselenium-containingcompounds,respectively.ThepresenceofstereogenicPorSatomsinthestructureopenstheroutetoefficienttransfer ofchirality.

Preparationofaxiallychiralallenesandtheiruseforgenerationofnewstereogenic elementsintheproductoftheirtransformationisasubjectofChapter15.Afterthe already-mentionedBINOLrepresentingplanaroraxialchirality,chiralacenesare describedasanexampleofhelicalbuildingblocks(Chapter17).Chiralassemblies basedonalow-symmetryisomerofaregularporphyrinaresubsequentlypresented. Thebookisconcludedwithachapterdevotedtopreparationofmoleculesexhibiting topologicalchirality:catenanes,rotaxanes,andmolecularknotsfurtherusedinthe constructionofmorecomplexchiralarchitectures.

Preface xvii

Webelievethatthecontentofthebookwillmeetthedemandofallreadersinterestedinthesynthesisandapplicationsofchiralcompoundswhocanfindherethe inspirationfortheirfurtherresearch.

Thechapterscontainasignificantamountofthegatheredandthoroughly reviewedmaterial.Theeffortofallthecontributorsishighlyappreciated.Wewould liketoexpressalsoourgratitudetoMs.KatherineWongandDr.ElkeMaasefrom Wileyfortheirpatienceandcoordinatingthework.

WrocławUniversityofScienceandTechnology

UniversityofWrocław

March2022

ElzbietaWojaczy ´ nska

JacekWojaczy ´ nski

Foreword

Chiralityisa“SignatureofLife”andbeyondanydoubtoneofthemostfascinating andfundamentalaspectsofthechemicalsciences.Thegreatimportanceofcontrollingmolecularchiralitywithhighprecisiongoesfarbeyonditskeyroleinmedicinal chemistrytoencompassamongothersnaturalproductsynthesis,asymmetriccatalysis,materialsdesign,supramolecularsystems,andmolecularmachines.Atthebasis ofthedesignandsynthesisofmoleculesandmaterials,wherehomochiralityisan essentialstructuralfeature,areusuallythechiralbuildingblocksavailable.Frequently,theaccesstoandversatilityofchiralbuildingblocksdictatethesynthesis strategytobechosen.Traditionallywehavebeenhighlydependentonchiralnaturalproductsandtheirderivativesdenotedasthe“naturalchiralpool.”Inthepast decades,duetotheamazingprogressinasymmetricsynthesisandcatalysis,wehave seenamultitudeofnovelchiralbuildingsblocksrapidlyemerging.

Inthishighlytimelyvolumeonchiralbuildingblocksinasymmetricsynthesis theauthorsnotonlyprovideanoverviewofthemostimportantchiralcompounds availabletothesyntheticchemistbutalsoshowtherichnessandversatilityoftheir structures.Itgoeswithoutsayingthatsugars,terpenes,aminoacids,andalkaloids andtheirderivativeswillcontinuetooccupycentralstageastheyareasuperbgift frommothernature.Theyareoftenindispensableaschiralsynthons,tomakethe chiralligandsfortransitionmetalcatalysts,arecrucialinasymmetricorganocatalysis,andserveaschiralauxiliariesinasymmetrictransformations.Buttheavailability ofnovelchiralbuildingblocks,withthebenefitofeasyaccesstobothenantiomers, enhancedfunctionalityorstereo-elementsbasedon,e.g.sulfurandphosphorus,has drasticallyexpandedoursyntheticrepertoire.

Despiteallthefascinatingproblemsanddiscoveriesinstereochemistryitshould berememberedthatthesyntheticchemistneedschiralbuildingblocks,andtheir essentialrolealsointhefutureofourdisciplinecanhardlybeoverestimated.This bookalsovividlyremindsmeofmyfirststridesasayoungstudentinstereochemistrymakingBinolviaasymmetricoxidativecoupling.HowcouldIhaverealized thatthechiralBinolunitisdecadeslateroneofthekeychiralbuildingsblocksfor numerouschiralligandsandcatalystsinmodernasymmetricsynthesis.Havinga scholarlyandstate-of-the-artoverviewofthevarietyofchiralbuildingblockscurrentlyavailableanddetailedinsightintotheirsyntheticversatilityistobeapplauded

xx Foreword andwillbehighlybeneficialtothepractitionerofmodernsyntheticchemistry.Controllingchirality,especiallywithincreasingmolecularcomplexity,isoftenstillabit ofanadventureandIhopethisvolumewillbeagreatsourceofinspirationandprovidethestereochemicalinsightsandshowopportunitiesforthenextstepsonyour journeyintoasymmetricsynthesis.

UniversityofGroeningenBenL.Feringa

EnantioselectiveSynthesisofCyclopropenes

VirginieCarrerasandThierryOllevier

UniversitéLaval,Départementdechimie,1045avenuedelaMédecine,Québec,QCG1V0A6,Canada

1.1Introduction

Cyclopropeneisthesmallestunsaturatedcyclichydrocarbon.Itspreparationisrelativelytrickybecauseitisanunstablecompoundthathasahighringstrain.This strainenergyofcyclopropene(228kJmol 1 )isbasicallydoubleoftheoneofcyclopropane(115kJmol 1 ),mainlybecauseofthehighangularstrainpresentinthe former[1,2].However,cyclopropenescontainingoneortwosubstituentsonthe aliphaticpositionarerelativelystableandeasilyaccessiblecompounds.

1.1.1SynthesisofCyclopropenes

ThesynthesisofthefirstcyclopropenewascarriedoutbyDemyanovandDoyarenko in1922viathethermaldecompositionathightemperature(320∘ C)oftrimethylcyclopropylammoniumhydroxideunderacarbondioxideatmosphere.Afterthe Hofmanneliminationstep,cyclopropenewasobtainedwithlowyield[3,4]. Animprovedprocedurewasreportedstartingfromallylchlorideandsodium bis(trimethylsilyl)amidethatallowedtoisolatecyclopropeneinabetteryield(40%) thaninthepreviouslypublishedprocedure[5].Anenantioenrichedcyclopropene waspreparedforthefirsttimebyBreslowandDouekviaaresolutionusing cinchonine[6].

Cyclopropenespossessingvarioussubstitutionscanbeprepared:(i)by[2+1] cycloadditionbetweenanalkyneandafreecarbeneorametalcarbene,mostoften resultingfromthedecompositionofdiazocompounds;bycyclecontraction,by retro-Diels–Alderreaction;fromthenucleophilicattackonapreviouslysynthesized cyclopropene;byisomerization;byrearrangementinitiatedbyphotochemistry;and finally,viaeliminationreactionsinducedbystrongbases[7].

Diazocompoundshavealsobeenusedinthedevelopmentofasymmetricversionsofcyclopropenationsofalkynes.Thevariouscatalyticasymmetricmethods arereviewedinthischapter.

ChiralBuildingBlocksinAsymmetricSynthesis:SynthesisandApplications,FirstEdition. EditedbyElzbietaWojaczy ´ nskaandJacekWojaczy ´ nski. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

1.1.2ReactivityofCyclopropenes

Cyclopropenescanbeinvolvedinalargevarietyofchemicaltransformations,whose drivingforceisthereleaseoftheringstrain.Afewreviewshighlightingthesynthetic potentialofcyclopropeneshavebeenpublished[8–14].

Thereactivityofcyclopropeneshasbeenillustratedinvarioussyntheticallyuseful transformations.Releasingthestrainenergyenablescyclopropenestoundergoreactionsthatwouldbemorechallenginginotheralkenes,e.g.hydrofunctionalization andcycloadditionreactions.

Thecatalyticstereoselectivefunctionalizationofcyclopropeneshasbeenreported throughoutvarioussynthetictransformations(Scheme1.1),i.e.carbocupration [15],carbozincation[16,17],carbomagnesiation[18],Fe-[19]andPd-catalyzedcarbozincation[20],hydroboration[21],hydroformylation[22],hydroacylation[23], hydroalkylation[24],hydroalkynylation[25],andhydrosilylation[26,27].Also,chiralcyclopropylamineshavebeenobtainedviahighlyenantioselectiveCu-catalyzed three-componentcyclopropenealkenylamination[28].Usingthesemethods,alarge diversityofenantioenrichedcyclopropanescanbeaccessed.Gettinghighselectivities,i.e.ring-retentionvs.ring-openingprocesses,isoftenachallenge.Inthisregard, Dongandcoworkerselegantlydemonstratedthatthechoiceofabisphosphineligandcouldorientthehydrothiolationofcyclopropenestowardtheformationofcyclopropylsulfidesorallylicsulfides[29].ThePd-catalyzedselectivealkynylallylation oftheC—C �� bondoftetrasubstitutedcyclopropeneshasalsobeendisclosed[30].

Cyclopropenesundergoaring-openingprocesstogeneraterhodiumcarbenesdue totheringstrain.Thisapproachhasbeenusedinvarioussynthetictransformations, e.g.thesynthesisofdicarbonyl-functionalized1,3-dienesbythereactionofenaminoneswithcyclopropenesinthepresenceofarhodiumcatalyst[31].

Cyclopropeneshavebeenusedincopper-catalyzed[3+2]cycloadditionreactionsasdipolarophiles[32].Donor–acceptorcyclopropeneshavebeenusedin [4+3]-cycloadditionreactionswithbenzopyryliumsalts[33],andinFavorskii-type ringopening[34].

Cyclopropeneshavealsobeenusedinradicalchemistry.Waserhasreportedthe radicalazidationofcyclopropenesleadingtoalkenylnitrilesandpolycyclicaromatic compounds[35].Avisible-light-promotedadditionof �� -bromoacetophenonesonto thecyclopropene π-systeminthepresenceofthe fac-Ir(ppy)3 hasbeendescribedby Landaisandcoworkers[36].

Thesynthesisofdifluoro-andtrifluoromethylatedderivativesofcyclopropenes hasbeendisclosedusingdiazocompounds[37–39].Continuous-flowmethodshave beenreportedforthedifluorocyclopropenationofalkynesusingtrimethylsilyltrifluoromethane(TMSCF3 )[40]andforthephotochemicalcyclopropenationofalkynes usingtrifluoromethyldiazirines[41].

Cyclopropeneshaveappearedtobekeyintermediatesinvarioustotalsyntheses. TheintramolecularPauson–Khandreactionofacyclopropenewithanalkynehas beenusedinthesynthesisof( )-pentaleneneand( )-spirochensilideA[42,43].

Thepolymerizationofcyclopropenes,inparticularthewell-developed ring-openingmetathesispolymerization,takesadvantageoftheirhighstrain

1.2Metal-CatalyzedEnantioselectiveSynthesesofCyclopropenes 3

Scheme1.1 Catalyticstereoselectivefunctionalizationofcyclopropenes.

energy[44].Recentusesofcyclopropeneunitshaverecentlyemergedinthestudy ofbiologicalsystems.Cyclopropenescanreactquicklyintetrazineandphotoclick ligationreactions[43].

1.2Metal-CatalyzedEnantioselectiveSyntheses ofCyclopropenes

The[2+1]cycloadditionbetweenanalkyneandametalcarbeneisthemainenantioselectiveapproachtopreparecyclopropenes.Themetalcarbeneusuallyresultsfrom thedecompositionofadiazocompoundusingachiralmetalcatalyst. Apracticalnon-enantioselectivemethodwasfirstpublishedbyTeyssiéand coworkersusingaRh-catalyzed[2+1]cycloadditionofmethyldiazoacetatewith alkynes[45].

1.2.1RhodiumCatalysis

Asymmetricversionsofthesetransformationscameoutwithpioneeringwork ofDoyleandcoworkersandMüllerwiththeuseofchiralcomplexesbasedon rhodium[46–61].Doyleandcoworkersfocusedtheirworkonthecyclopropenation

1EnantioselectiveSynthesisofCyclopropenes

ofterminalalkylatedalkyneswiththeuseofchiraldirhodium(II)tetrakis[methyl 2-oxopyrrolidine-5(R)-carboxylate]Rh2 (5R-MEPY)4 .Thismethodwasappliedto variousdiazoacetatesandwasevenextendedtochiraldiazopossessingauxiliaries derivedfrommenthol(Scheme1.2)[46,47].Usingasignificantexcessofalkyne(20 equiv),cyclopropeneswereobtainedinhighenantioselectivities.

Scheme1.2 AsymmetriccyclopropenationofterminalalkyneswithRh2 (5R-MEPY)4 catalyst.

MüllerusedRh2 (5R-MEPY)4 forthecyclopropenationofpropargylaminesbearingtwocarboxylorsulfonylprotectinggroupsusingethyldiazoacetate[48,49].The cycloadditionreactionproceedssmoothlyatroomtemperatureinCH2 Cl2 witha slowadditionofthediazocompoundsviaasyringepumpto10equivofthealkyne. Thismethodemploying3–7%ofrhodiumaffordshighyieldsandexcellentenantioselectivitiesintherangeof90–97%ee(Scheme1.3).FurtherderivatizationsviaselectivedeprotectionoftheTEOCderivatives(N ,N -di-(2-trimethylsilylethoxycarbonyl)) couldbeillustratedbythesynthesisof �� -aminobutyricacid(GABA)analoguescontainingthecyclopropenering.

Scheme1.3 AsymmetriccyclopropenationofterminalalkyneswithRh2 (5S-MEPY)4 .

Thesetransformationswereinitiallyconductedwithdiazoesters,i.e.ethyl diazoacetate.AsshowninScheme1.4,Davies’workwithdirhodiumtetrakis (S)-N -(dodecylbenzenesulfonyl)prolinateRh2 (S-DOSP)4 demonstratedthatthe catalystwasefficientforthistransformationtogethighenantioselectivitiesofthe cyclopropenesviatheasymmetriccyclopropenationofterminalalkynesusingaryl orvinyldiazoacetates[62,63].Alargeexcessofaromaticalkynesisusedvs.the aliphaticones,showinganimprovedreactivityofthelatter.Computationalstudies

1.2Metal-CatalyzedEnantioselectiveSynthesesofCyclopropenes 5

Scheme1.4 AsymmetriccyclopropenationofterminalalkyneswithRh2 (S-DOSP)4 .

demonstratedthatthechiralinductionoftheprocessisgovernedbythespecific orientationofthealkyneasitapproachesthemetalcarbene.Specificorientation occursduetothepresenceofabindinginteractionbetweenthealkynehydrogen andthecarboxylateligandonthedirhodiumcatalyst.

AcloselyrelatedobservationwasmadebyHashimotoandcoworkerswith dirhodiumcarboxylatecatalyst[Rh2 (S-tbpttl)4 ]emergingasacatalystofchoice forenantioselectivecyclopropenationreactionsofterminalalkyneswithvarious alkyl-diazoacetates,inwhichhighlevelsofasymmetricinduction(upto99%ee)as wellashighchemoselectivitieshavebeenachieved[64].Inadditiontothebinding interactionbetweenthealkynehydrogenandthecarboxylateligand,thealkene formationthrougha1,2-hydrideshiftwashighlighted.

CoreyandcoworkersdevelopedanewchiralrhodiumcatalystRh2 (OAc)x (DPTI)y (DPTI:diphenyltriflylimidazolidinone)capableofaffordingexcellentyieldsand enantioselectivitiesofvariousC1-andC3-substitutedcyclopropenes[50–53].This routeinvolvedmildreactionconditionswiththeuseof0.05–0.5mol%ofcatalyst (Scheme1.5).Arationaleforunderstandingthechiralityinductionwasprovided withthehelpofX-raystructuraldata.Amechanisticmodelinwhichoneofthe

1EnantioselectiveSynthesisofCyclopropenes

ligandbridgesisbrokenintheintermediateRh–carbenecomplexwasdisclosed.The syntheticresultsledtoconclusionsregardingkineticallyandthermodynamically favoredpathwaysforthesynthesisofmixedacetate–DPTIcomplexes.Experimental 13 CKIEswereinvestigatedbySingletonandcomparedtocalculatedonestoestablishthemechanismofthecyclopropenationreaction[65].Theplanegeometryof thecarbenoidcarbonisorientedperpendiculartodonatingproximalRh–Nbonds. Thealkyneapproach anti totheRh—Nbondremainsunobstructed.Thechirality isdeterminedbytheorientationofthecarboalkoxygrouponthecarbenoidwhich isaffectedbytheproximalphenylgroupfromtheDPTIligand.

TheuseofmixedligandsonpaddlewheelcomplexeswasalsotackledbyFoxand coworkers.Theyshowedthatthisrouteoffersaversatilehandlefordiversifying catalyststructureandreactivityforcyclopropenationofterminalalkynesandcyclopropanationreactions[66].

Inthesamecategoryofdonor–acceptordiazocompounds,Koenigs’workwith theuseoftrifluoromethyldiazocompoundsfurtherdemonstratesthepotentialofa rhodiumchiralcatalystfortheenantioselectivesynthesisofcyclopropenes[38].Up to97%yieldwith98%eeoftrifluoromethylcyclopropenesusingaliphaticterminal alkynesbutalsoaromaticalkyneshavebeenobtained(Scheme1.6).Themethod wasalsotestedonoligo-alkynes,thusmakingitpossibletogenerateasubclassof rareracemicoligo-cyclopropeneswithexcellentyields.

Charetteandcoworkersdevelopedasimpleandhighlystereoselectivemethod ofcyclopropenationofalkynescatalyzedbyrhodium(II)withdiacceptor-type diazocompounds[67].Thisrouterepresentsaveryefficientmethodtoaccess cyano-phosphonatecyclopropeneswithhighyieldsandenantioselectivities (Scheme1.7).Mildconditionsandanormaladditionofdiazocompoundsby avoidingtheuseofasyringepumpaffordedexcellentresultswithaneasyand practicalprotocol.Giventhereactivityofthecyano-carbeneintermediatesgenerated insitu,thescopeofthesubstrateswasalsoextendedtotheuseofsubstituted allenes.Thisstudyhighlightedthefirstenantioselectivemethodforthesynthesis ofcyclopropanealkylidenediacceptors.Scheme1.6illustratestheresultsobtained forthecyclopropenationofalkynes.

Earlyworktoincorporateafluorinemotifonthechiralcyclopropeneunitwas reportedbyMarekandcoworkers(Scheme1.8)[37].Thismotifisincorporated throughtheuseofdifluorodiazoethane,obtainedviadiazotizationofthecorrespondingamine.Thisstudyoffersawiderangeofenantioenricheddifluoromethylatedcyclopropenes(40examples,upto99%yield,97%ee)withinashort reactiontime.Disubstitutedalkyneshavebeenmainlyemployedwithanexcessof thedifluorinateddiazocompound.Indeed,theuseofterminalalkynedidnotgive themsatisfactoryresults(noenantioselectivityobtainedornoconversion).This cyclopropenationreactioniscarriedoutatlowtemperaturewithareactiontime of40minutesallowingfortotalconversions.Thesyntheticutilityofthedifluorinatedcyclopropenesobtainedwasdemonstratedwithsubsequentapplications, suchascross-couplingreactions,hydrogenation,Diels–Aldercyclization,and Pauson–Khandreaction.

Scheme1.5 Enantioselective[2+1]-cycloadditionreactionsofethyldiazoacetateandterminalacetylenesusingmixed-ligandRh(II)complexes.

1EnantioselectiveSynthesisofCyclopropenes

Scheme1.6 Asymmetriccyclopropenationofterminalalkynesusing Rh2 (S-BTPCP)4

Scheme1.7 Rh2 (S-IBAZ)4-catalyzedcyclopropenationofterminalalkyneswithdiacceptor diazocompounds.

1.2Metal-CatalyzedEnantioselectiveSynthesesofCyclopropenes 9

Scheme1.8 Firstenantioselectivesynthesisoffluorinatedcyclopropenesandtheir applications.Source:Zhangetal.[37]/JohnWiley&Sons.

1.2.2CopperCatalysis

Unlikerhodiumcatalysis,coppercatalysisisunderused.Indeed,onlyoneexample intheliteratureillustratesthiscyclopropenationofalkyneswithdiazocompounds (Scheme1.9)[56,68].Twointramolecularcyclopropenationsallowingtheformation ofmacrocycleswerecarriedoutusingCuI andbis-oxazolineaschiralligand.Poor resultscomparedtorhodiumweregenerallyobservedexceptforthesynthesisofa macrocyclewhereayieldof85%and79%eewasobtained.

1.2.3IridiumCatalysis

Katsukiandcoworkersdevelopedasynthesisofachiraliridium(Ir(salen))complex suitabletoefficientlycatalyzethecyclopropenationreactionofalkyneswithtwo familiesofdiazocompounds[69].Thiscyclopropenationmethodcanbecarriedout usingdonor–acceptor-typediazocompounds,butalsousingacceptor–acceptor-type diazocompounds(Scheme1.10).Thelatterarelessreactivetowardmetal-catalyzed decomposition.However,oncedecompositionbyametaltakesplace,theresulting metalcarbenesarehighlyelectrophilicandtheirreactionsarelessselective.Thisis why,inordertocounterbalancethisreactivity,alargeexcessofalkynewasused. Thereactionsprovidedhighlyenantioenrichedcyclopropenesinexcellentyields. Alkylatedalkynesandterminalarylswereemployedtoshowtheselectivityof

Scheme1.9 Macrocyclizationviacyclopropenationofalkynesusingcoppercatalysis. thistransformationintoacyclopropene.Ingeneral,theyieldsarehigherforthe cyclopropenationofarylatedalkynesthanforalkylatedones.Moreover,thelevelsof enantioselectivitiesremainunchangedbetweenthevariousfamiliesofalkynes, beingmoredependentonthenatureoftheelectronwithdrawinggroup(EWG) presentonthediazosubstrate.

1.2.4Cobalt–ChiralPorphyrinCatalysis

Cobalt(II)complexwithachiral D2 -symmetricalporphyrinligandwasfoundtobea highlyefficientchiralcatalystfortheenantioselectivecyclopropenationofalkynes withdiazocompoundsbearingacceptor–acceptorgroups,suchascyanodiazoacetamidesandcyanodiazoacetates(Scheme1.11)[70].Metalcatalystsbasedon aCoII –porphyrinwereshownbyZhangandcoworkerstobeveryeffectivein asymmetriccyclopropanationofawiderangeofolefinicsubstrateswithdiazocompounds[71].Thiscobalt(II)–porphyrincomplexalsocatalyzesthecyclopropenation reactionofalargevarietyofterminalaromaticandconjugatedalkynespossessing variousstericandelectronicproperties,providingtri-substitutedcyclopropenes withhighyieldsandexcellentenantioselectivities(upto99%ee).Onlyterminal alkyneswereused.Inadditiontothemildreactionconditions,thiscatalytic transformationexhibitsahighdegreeoftoleranceforthepresenceoffunctional groupsaroundthealkyne.Theconsecutivediastereoselectiveadditionofthiolson generatedcyclopropenesallowedthesynthesisofseveralcyclopropanesretaining 98%ee.

1.2.5GoldandSilverCatalysis

Daviesandcoworkerdevelopedagoldcatalyst ((S)-xylylBINAP(AuCl)2 dimer), which,onceactivatedbysilverhexafluoroantimonate(AgSbF6 ),enableshighly enantioselectivecyclopropenationreactionsofinternalalkyneswitharyldiazoacetates[72].EnantioselectivecyclopropenationofterminalalkyneswithRhII ,

Scheme1.10 Iridium-catalyzedenantioselectivecyclopropenationofterminalalkynes.

Scheme1.11 Enantioselectivecyclopropenationwithacobalt–porphyrincomplex.

Source:Cuietal.[70]/AmericanChemicalSociety.

Scheme1.12 Enantioselectivecyclopropenationreactioncatalyzedbyagold–silverchiral complex.

CoII ,andIrIII catalystsiswellestablishedaspreviouslyseen.Despitethisprogress, extendingasymmetriccyclopropenationreactionstodisubstitutedalkynesremains achallenge.Reactivityofgoldcarbenesandsilvercarbenesappearstobesimilar, wheregoldcarbeneshaveaverydifferentreactivityprofilefromthatofrhodium carbenes.Indeed,thesecarbenicspeciesaremuchlesssensitivetostericeffects, thusallowinganeasierapproachtodisubstitutedalkynes.Differentdisubstituted alkynesinslightexcesshavebeenusedwithvariousaryldiazoacetatesunder mildreactionconditions(Scheme1.12).Yieldsaround80%havebeenobtained withhighenantioselectivities.ThejointuseofAgSbF6 isessentialforthegold catalysttoinitiatethecyclopropenationreaction.However,theexactstructure oftheactivecatalysthasnotbeendetermined.Hypotheseshavenevertheless beenproposed,suchasmassspectrometrydataofL2 Au2 AgCl2 catalyst,suggestingthepossibilityofthepresenceofamixedgold–silvercomplex.Indeed, itiswellknownthatcombiningasilversaltwithagoldpre-catalystleadstoa morecomplexstructurethanasimplephenomenonofligandexchangebyhalide removal.

1.3OtherSyntheticRoutesandDerivatizationsofEnantioenrichedCyclopropenes 13

Scheme1.13 Directedevolutioncatalysisforenantioselectivesynthesisofcyclopropenes.

1.2.6Biocatalysis

Arnolddemonstratedthedirectedevolutioncatalysisfortheenantioselectivesynthesisofcyclopropenes.Shedevelopedabiocatalyticsystembasedoncytochrome P411intheformof Escherichiacoli whole-cellcatalystsabletoprovideaccesstoa rangeofcyclopropenesbytransferringcarbenefromethyldiazoacetatewithdisubstitutedalkynesinequimolarmixture[73,74].Thisevolutionarybiocatalyticsystem provideshightotalturnovernumber(TTN)andcyclopropeneswithunprecedented stereoselectivities(>99%eeforall,Scheme1.13).Thisenzymeplatformisalsoadaptablefortheproductionofcyclopropenesonlargescale(1mmol),withevenhigher yields,whichisnotoriousinthefieldofbiocatalysis.Enantioselectivecyclopropenationofinternalaliphaticalkyneshasalsobeenshownpossible,butcatalytically muchlessefficient[74].

1.3OtherSyntheticRoutesandDerivatizations ofEnantioenrichedCyclopropenes

Anotherapproachthatcouldbeenvisionedforthepreparationofchiralcyclopropenesinvolvestheenantioselectivedesymmetrizationofpreviouslygenerated cyclopropenes[32,75].Scheme1.14illustratesaneasyandstereoselectivesynthesis ofanenrichedcyclopropene.SubsequentacyltransferwithazideandCurtius rearrangementprovidesprotected α-aminoacidderivatives,whichareshowntobe stabletoharshlyacidicandbasicreactionconditions.Startingachiralcyclopropenes aregeneratedviathecyclopropenationofthecorrespondingterminalalkynewith diazomalonate.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.