The4DsofEnergyTransition
Decarbonization,Decentralization,DecreasingUse andDigitalization
EditedbyMuhammadAsif
TheEditor
Dr.MuhammadAsif
DepartmentofArchitectural Engineering
KingFahdUniversityofPetroleum andMinerals
Dhahran
SaudiArabia
Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.
LibraryofCongressCardNo.: appliedfor
BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.
Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>.
©2022WILEY-VCHGmbH,Boschstraße12, 69469Weinheim,Germany
Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.
PrintISBN: 978-3-527-34882-4
ePDFISBN: 978-3-527-83144-9
ePubISBN: 978-3-527-83143-2
oBookISBN: 978-3-527-83142-5
CoverDesign Wiley
Typesetting Straive,Chennai,India PrintingandBinding CPIAntonyRowe
Printedonacid-freepaper
Contents
Preface xv Foreword xvii
1IntroductiontotheFour-DimensionalEnergyTransition 1 MuhammadAsif
1.1Energy:ResourcesandConversions 1
1.2ClimateChangeinFocus 3
1.3TheUnfoldingEnergyTransition 4
1.4TheFourDimensionsoftheTwenty-FirstCenturyEnergyTransition 6
1.4.1Decarbonization 7
1.4.2Decentralization 7
1.4.3Digitalization 8
1.4.4DecreasingEnergyUse 8
1.5Conclusions 8 References 9
PartIDecarbonization 11
2GlobalEnergyTransitionandExperiencesfromChinaand Germany 13
HeikoThomasandBingXue
2.1GlobalEnergyTransition 13
2.2China 17
2.2.1HowtoAchieveCarbonNeutralityBefore2060andKeeptheWorld’s LargestEconomyRunning 17
2.2.2ChinaastheWorld’sLeaderinRenewableInstallations 19
2.2.3ParticularMeasurestoReduceGHGEmissions 20
2.3Germany 23
2.3.1ClimateActionandGHGEmissionReductionTargets 23
2.3.2SystemRequirementstoAchievetheGHGEmissionReduction Goals 24
2.3.3PotentialforGHGEmissionReductionintheBuildingSector 27
2.3.4UnderachievingintheTransportSector 27
2.3.5ANewEmissionTradingSchemeSpecificallyTacklestheHeatingand TransportSectors 29
2.4ComparingEnergyTransitionsinChinaandGermany 30
2.4.1DifferentStrategiesandBoundaryConditions 30
2.4.2ComparingtheMobilitySector 32
2.4.3PolicyInstrumentsandImplementation 33
2.5SummaryandFinalRemarks 37 References 38
3DecarbonizationintheEnergySector 41 MuhammadAsif
3.1Decarbonization 41
3.2DecarbonizationPathways 42
3.2.1RenewableEnergy 43
3.2.1.1SolarEnergy 43
3.2.1.2WindPower 44
3.2.1.3Hydropower 44
3.2.2ElectricMobility 44
3.2.3HydrogenandFuelCells 45
3.2.4EnergyStorage 46
3.2.5EnergyEfficiency 46
3.2.6DecarbonizationofFossilFuelSector 46
3.3Decarbonization:DevelopmentsandTrends 47 References 48
4RenewableTechnologies:ApplicationsandTrends 51 MuhammadAsif
4.1Introduction 51
4.2OverviewofRenewableTechnologies 52
4.2.1SolarEnergy 52
4.2.1.1SolarPV 52
4.2.1.2SolarThermalEnergy 54
4.2.2WindPower 57
4.2.3Hydropower 58
4.2.3.1Dam/Storage 59
4.2.3.2Run-of-the-River 59
4.2.3.3PumpedStorage 59
4.2.4Biomass 60
4.2.5GeothermalEnergy 61
4.2.6WaveandTidalPower 62
4.3RenewablesAdvancementsandTrends 63
4.3.1MarketGrowth 63
4.3.2Economics 65
4.3.3TechnologicalAdvancements 65
4.3.4PowerDensity 67
4.3.5EnergyStorage 67
4.4Conclusions 69 References 69
5FundamentalsandApplicationsofHydrogenandFuel Cells 73
BengtSundén
5.1Introduction 73
5.2Hydrogen–General 74
5.2.1ProductionofHydrogen 74
5.2.2StorageofHydrogen 75
5.2.3TransportationofHydrogen 76
5.2.4ConcernsAboutHydrogen 76
5.2.5AdvantagesofHydrogenEnergy 76
5.2.6DisadvantagesofHydrogenEnergy 76
5.3BasicElectrochemistryandThermodynamics 77
5.4FuelCells–Overview 78
5.4.1TypesofFuelCells 79
5.4.2ProtonExchangeMembraneFuelCells(PEMFC)orPolymerElectrolyte FuelCells(PEFC) 83
5.4.2.1PerformanceofaPEMFC 83
5.4.3SolidOxideFuelCells(SOFC) 83
5.4.4ComparisonofPEMFCsandSOFCs 84
5.4.5OverallDescriptionofBasicTransportProcessesandOperationsofa FuelCell 85
5.4.5.1ElectrochemicalKinetics 85
5.4.5.2HeatandMassTransfer 85
5.4.5.3ChargeandWaterTransport 86
5.4.5.4HeatGeneration 87
5.4.6ModelingApproachesforFuelCells 87
5.4.6.1Softwares 89
5.4.7FuelCellSystemsandApplications 90
5.4.7.1PortablePower 90
5.4.7.2BackupPower 91
5.4.7.3Transportation 91
5.4.7.4StationaryPower 92
5.4.7.5MaritimeApplications 93
5.4.7.6AerospaceApplications 94
5.4.7.7AircraftApplications 95
5.4.8BottlenecksforFuelCells 95
5.5Conclusions 97 Acknowledgments 97 Nomenclature 97
Abbreviations 98 References 99
6DecarbonizingwithNuclearPower,CurrentBuilds,andFuture Trends 103
HaslizaOmar,GeordieGraetz,andMarkHo
6.1Introduction 103
6.2TheHistoricCostofNuclearPower 104
6.3TheSmallModularReactor(SMR):CouldSmallerBeBetter? 109
6.3.1NewNuclearReactorinTown 109
6.3.2IsIttheSmallertheBetter? 110
6.4EvaluatingtheEconomicCompetitivenessofSMRs 113
6.4.1SizeMatters 113
6.4.2ConstructionTime 113
6.4.3Co-sitingEconomies 114
6.4.4LearningRates 115
6.4.5TheLevelizedCostofElectricity(LCOE):IsItaReliableMeasure? 118
6.4.6TheOvernightCapitalCost(OCC):SMRsvs.aLargeReactor 120
6.5NuclearEnergy:LookingBeyondItsPerceivedReputation 123
6.5.1Load-FollowingandCogeneration 123
6.5.2IndustrialHeat(DistrictandProcess) 125
6.5.3HydrogenProduction 127
6.5.4SeawaterDesalination 130
6.6WesternNuclearIndustryTrends 131
6.6.1TheUnitedStates 131
6.6.2TheUnitedKingdom 132
6.6.3Canada 135
6.7Conclusions 137 References 141
7DecarbonizationoftheFossilFuelSector 153
TianGohandBengWahAng
7.1Introduction 153
7.2TechnologiesfortheDecarbonizationoftheFossilFuelSector 154
7.2.1HistoricalDevelopments 154
7.2.2HydrogenEconomy 155
7.2.3CarbonCaptureandStorage 156
7.3RecentAdvancementsandPotential 157
7.3.1CarbonCaptureandStorage 158
7.3.2CarbonCaptureandUtilization 158
7.4FutureEmissionScenariosandChallengestoDecarbonization 160
7.4.1ApplicationinFutureEmissionScenarios 160
7.4.2ChallengestoDecarbonization 164
7.5ControversiesandDebates 167
7.5.1OpposingNarratives 167
7.5.2PublicPerceptions 169
7.6Conclusions 171 References 172
8ElectricVehicleAdoptionDynamicsontheRoadtoDeep Decarbonization 177 EmilDimanchev,DavoodQorbani,andMagnusKorpås
8.1Introduction 177
8.2CurrentStateofElectricVehicles 178
8.2.1ElectricVehicleTechnology 178
8.2.2ElectricVehicleEnvironmentalAttributes 179
8.2.3CompetingLow-CarbonVehicleTechnologies 180
8.3ContributionofRoadTransporttoDecarbonizationPolicy 181
8.3.1StateandTrendsofCO2 EmissionsfromTransportationandPassenger Vehicles 181
8.3.2DecarbonizationofTransport 182
8.3.3DecarbonizationPathwaysforPassengerVehiclesandtheRoleof ElectricVehicles 183
8.4DynamicsofVehicleFleetTurnover 190
8.4.1IllustrativeFleetTurnoverModel 190
8.4.2ImplicationsofFleetTurnoverDynamicsforMeetingDecarbonization Targets 191
8.5ElectricVehiclePolicy 194
8.5.1CaseStudyofElectricVehiclePolicyinNorway 195
8.6ProspectsforElectricVehicleTechnologyandEconomics 196
8.7Conclusions 199 References 200
9IntegratedEnergySystem:ALow-CarbonFutureEnabler 207 PengfeiZhao,ChenghongGu,ZhidongCao,andShuangqiLi
9.1ParadigmShiftinEnergySystems 207
9.2KeyTechnologiesinIntegratedEnergySystems 210
9.2.1ConversionTechnologies 211
9.2.1.1CombinedHeatandPower 211
9.2.1.2HeatPumpandGasFurnace 211
9.2.1.3PowertoGas 211
9.2.1.4GasStorage 212
9.2.1.5BatteryEnergyStorageSystems 212
9.2.2EnergyHubSystems 213
9.2.3ModelingofIntegratedEnergySystems 214
9.3ManagementofIntegratedEnergySystems 215
9.3.1OptimizationTechniquesforIntegratedEnergySystems 215
9.3.1.1StochasticOptimization 215
9.3.1.2RobustOptimization 215
9.3.1.3DistributionallyRobustOptimization 217
9.3.2SupplyQualityIssues 217
9.3.2.1VoltageIssues 217
9.3.2.2GasQualityIssues 218
x Contents
9.4Volt–PressureOptimizationforIntegratedEnergySystems 219
9.4.1ResearchGap 219
9.4.2ProblemFormulation 220
9.4.2.1Day-AheadConstraintsofVPO 220
9.4.2.2Real-TimeConstraintsofVPO 222
9.4.2.3ObjectiveFunctionofTwo-StageVPO 222
9.4.3ResultsandDiscussions 223
9.4.3.1StudiesonVVO 223
9.4.3.2StudiesonEconomicPerformance 227
9.4.3.3StudiesonGasQualityManagement 228
9.5Conclusions 229
AAppendix:Nomenclature 230
A.1IndicesandSets 230
A.2Parameters 230
A.3VariablesandFunctions 232 References 233
PartIIDecreasingUse 239
10DecreasingtheUseofEnergyforSustainableEnergy Transition 241 MuhammadAsif
10.1WhyDecreasetheUseofEnergy? 241
10.2EnergyEfficiencyApproaches 243
10.2.1ChangeofAttitude 243
10.2.2PerformanceEnhancement 244
10.2.3NewTechnologies 244
10.3ScopeofEnergyEfficiency 244 References 245
11EnergyConservationandManagementinBuildings 247 WahhajAhmedandMuhammadAsif
11.1EnergyandEnvironmentalFootprintofBuildings 247
11.2Energy-EfficiencyPotentialinBuildings 248
11.3Energy-EfficientDesignStrategies 250
11.3.1PassiveandActiveDesignStrategies 251
11.3.2EnergyModelingtoDesignEnergy-EfficientStrategies 251
11.4BuildingEnergyRetrofit 255
11.4.1BuildingEnergy-RetrofitClassifications 256
11.4.1.1Pre-andPost-RetrofitAssessmentStrategies 256
11.4.1.2NumberandTypeofEEMs 257
11.4.1.3ModelingandDesignApproach 258
11.5SustainableBuildingStandardsandCertificationSystems 260
11.6Conclusions 261 References 261
12MethodologiesfortheAnalysisofEnergyConsumptioninthe
IndustrialSector 267
VincenzoBianco
12.1Introduction 267
12.2OverviewofBasicIndexesforEnergyConsumptionAnalysis 269
12.2.1CompoundAnnualGrowthRate(CAGR) 269
12.2.2EnergyConsumptionElasticity(ECE) 270
12.2.3EnergyIntensity(EI) 270
12.2.4LinearCorrelationIndex(LCI) 271
12.2.5WeatherAdjustingCoefficient(WAC) 271
12.3DecompositionAnalysisofEnergyConsumption 272
12.4CaseStudy:TheItalianIndustrialSector 274
12.4.1Index-BasedAnalysis 274
12.4.2DecompositionofEnergyConsumption 276
12.5RelationshipBetweenEnergyEfficiencyandEnergyTransition 283
12.6Conclusions 284
References 285
PartIIIDecentralization 287
13DecentralizationinEnergySector 289 MuhammadAsif
13.1Introduction 289
13.2OverviewofDecentralizedGenerationSystems 290
13.2.1Classification 290
13.2.2Technologies 292
13.3DecentralizedandCentralizedGeneration–AComparison 293
13.3.1AdvantagesofDecentralizedGeneration 293
13.3.1.1Cost-Effectiveness 293
13.3.1.2EnhancedEnergyAccess 293
13.3.1.3EnvironmentFriendliness 294
13.3.1.4Security 294
13.3.1.5Reliability 294
13.3.1.6PeakShaving 294
13.3.1.7SupplyResilience 294
13.3.1.8NewBusinessStreams 294
13.3.1.9OtherBenefits 295
13.3.2DisadvantagesofDecentralizedGeneration 295
13.3.2.1PowerQuality 295
13.3.2.2EffectonGirdStability 295
13.3.2.3EnergyStorageRequirement 295
13.3.2.4InstitutionalResistance 295
13.4DevelopmentsandTrends 295 References 296
14DecentralizingtheElectricityInfrastructure:WhatIs EconomicallyViable? 299
MoritzVogel,MarionWingenbach,andDierkBauknecht
14.1Introduction 299
14.2DecentralizationofElectricitySystems 300
14.3TechnologicalDimensionsofDecentralization 301
14.3.1GridLevelofPowerPlants 302
14.3.2RegionalDistributionofPowerPlants 302
14.3.3GridLevelofFlexibilityOptions 302
14.3.4LevelofOptimization 303
14.4Decentralization:CostsandBenefits 303
14.4.1GridLevelofPowerPlants 304
14.4.2RegionalDistributionofPowerPlants 305
14.4.3GridLevelofFlexibilityOptions 306
14.4.4LevelofOptimization 307
14.5Germany’sDecentralizationExperience:ACaseStudy 310
14.5.1SystemCost 310
14.5.2GridExpansion 314
14.5.3KeyFindings 316
14.6HowFarShouldDecentralizationGo? 317
14.6.1GridLevelofPowerPlants 317
14.6.2RegionalDistributionofPowerPlants 317
14.6.3GridLevelofFlexibilityOptions 319
14.6.4LevelofOptimization 319
14.7Conclusions 320 References 320
15GoverningDecentralizedElectricity:TakingaParticipatory Turn 325
MarieClaireBrisbois
15.1Introduction 325
15.2HowIsDecentralizationAffectingTraditionalModesofElectricity Governance? 326
15.2.1StickingPointsforShiftingtoDecentralizedGovernance 327
15.3WhatKindsofGovernanceDoesDecentralizationRequire? 328
15.3.1Security 328
15.3.2Affordability 329
15.3.3Sustainability 331
15.4WhatDoWeKnowAboutDecentralizedGovernancefromOther Spheres? 332
15.4.1Nested,MultilevelGovernanceofCommonPoolResources 333
15.4.2KeyComponentsofCommonPoolResourceGovernance 334
15.4.2.1RolesandResponsibilities 334
15.4.2.2PolicyCoherence 335
15.4.2.3CapacityDevelopment 336
15.4.2.4TransparentandOpenData 336
15.4.2.5AppropriateRegulations 337
15.4.2.6StakeholderParticipation 338
15.5MovingTowardaDecentralizedGovernanceSystem 339
15.5.1PhaseOne 339
15.5.2PhaseTwo 340
15.5.3PhaseThree 341
15.6Conclusions 341 References 342
PartIVDigitalization 347
16DigitalizationinEnergySector 349 MuhammadAsif
16.1Introduction 349
16.2OverviewofDigitalTechnologies 350
16.2.1ArtificialIntelligenceandMachineLearning 350
16.2.2Blockchain 351
16.2.3RoboticsandAutomatedTechnologies 351
16.2.4InternetofThings 351
16.2.5BigDataandDataAnalytics 352
16.3Digitalization:ProspectsandChallenges 352 References 354
17SmartGridsandSmartMetering 357
HaroonFarooq,WaqasAli,andIntisarA.Sajjad
17.1Introduction 357
17.2GridModernizationandItsNeedintheTwenty-FirstCentury 358
17.3SmartGrid 360
17.4SmartGridvs.TraditionalGrid 362
17.5SmartGridCompositionandArchitecture 362
17.6SmartGridTechnologies 365
17.7SmartMetering 367
17.8RoleofSmartMeteringinSmartGrid 369
17.9KeyChallengesandtheFutureofSmartGrid 370
17.10ImplementationBenefitsandPositiveImpacts 372
17.11WorldwideDevelopmentandDeployment 373
17.12Conclusions 375 References 376
18BlockchaininEnergy 381
BerndTeufelandAntonSentic
18.1TransformationoftheElectricityMarketandanEmerging Technology 381
18.2BlockchainintheEnergySector 382
18.2.1DefiningBlockchain 383
18.2.2UtilizingBlockchaininEnergySystems 385
18.2.3CaseExamplesforBlockchainEnergy 386
18.2.4UtilizationofBlockchainEnergy:IntroducinganInnovation Perspective 387
18.3Blockchainasa(Disruptive)InnovationinEnergyTransitions 389
18.3.1TransitionStudies,Regimes,andNicheInnovations 389
18.3.2BlockchainTechnologiesBetweenNicheInnovationandthe Socio-TechnicalSystem 390
18.4ConclusionsandVenuesforFurtherInquiry 392 Acknowledgment 394 References 394
Epilogue 399 FereidoonSioshansi
Index 405
Preface
Thesustainabilityofthefossil-fuel-dominatedglobalenergyscenariofacesserious problems.Withchallengeslikegrowingenergydemand,depletingfossilfuel reserves,andescalatingenergyprices,energycrisesaremakingheadlinesworldwide.Problemslikesupplydisruptionsandshortagesandsoaringenergyprices arehappeningindevelopingcountriesanddevelopedandemergingeconomies liketheEuropeanUnion(EU),China,andIndia.Forexample,someEUmember stateshaveexperiencedelectricityandgaspricesincreaseby400–500%withina year.Energyinsecurityintermsofitscriticaldimensions–access,affordability, andreliability–remainstobeamajorproblemhinderingthesocio-economic progressindevelopingcountries,asglobally,aroundonebillionpeoplelackaccess toelectricity,andnearlythreebillionpeoplehavetorelyonrawbiomasstomeet cookingandheatingrequirements.However,thesesevereenergyproblemsare beingovershadowedbythemountingchallengeofclimatechange,deemedtobe thebiggestthreattotheplanet.
Climatechangealreadyhasitsimplicationslikeseasonaldisorder,risingsea level,atrendofmorefrequentandintenseweather-drivendisasters,suchas flooding,droughts,heatwaves,wildfires,storms,andtheconsequentlossoflives andeconomy.Foritsgreenhousegas(GHG)emissions,theenergysectorneedsto leadthefightagainstclimatechange,asalsoreiteratedbyCOP26.Respondingto climatechangeandotherchallengesandensuringenergysuppliescompatiblewith thedemandsofasustainablefuturefortheplanet,theglobalenergysectorisgoing throughatransition.
Theenergytransitionisanevolvingconcept.Alsoregardedasenergytransitions, theeighteenthandtwentieth-centuryswitchoversofenergysystemsfrombiomass tocoalandfromcoaltooilandgas,respectively,primarilysoughtmoreefficient fuelsinlogisticsandutilization.Althoughitpredominantlypursues decarbonization oftheenergysector,thetwenty-first-centuryenergytransitionhasseveralother importantdimensions,suchasdecentralizedordistributedenergygenerationand digitalizationofenergysystems.Decreasedenergyusethroughenergyefficiency measuresisalsoimperativeforthistransition.Theenergytransitionisanemerging andevolvingtopicinthepolicyandtechnologycirclesandacademicandscientific domains.Thebookaimstopresentacomprehensiveandintegratedperspective ofthetwenty-first-centuryenergytransition,definingitsfourdimensions(4Ds):
Decarbonization,Decentralization,DecreasingUse, and Digitalization.Itdiscusses thewiderangeoftechnologies,classifyingthemunderthese 4Ds oftheenergy transition.
Thebookhasfivesections.Thefirstisanopening,andsectionstwo,three,four, andfivearededicatedtothe4Dsoftheenergytransition: Decarbonization,Decentralization,DecreasingUse, and Digitalization,respectively.Theintroductorysection consistsoftwochapters;thefirstpresentsanoverviewofthefour-dimensional energytransition,whiletheseconddiscussestheenergytransitionthroughcase studiesfromGermanyandChina.Focusingon Decarbonization,thesecondsection isthelargestpartofthebook,containingsevenchapters.Theopeningchapterin thissectiondiscussesthebroaderdimensionsof Decarbonization intheenergy sector.Meanwhile,eachofthesubsequentsixchaptersfocusesonadifferentdecarbonizationtechnology,suchasrenewableenergy,hydrogenandfuelcells,nuclear power,decarbonizationinthefossilfuelsector,electricvehicles,andintegrated energysystems.Thesectionon Decentralization hasthreechapters;thefirstis anintroductorychapter,andthesecondandthirdchaptersdiscusstherelevant technologiesandgovernance,respectively.Thesectionon DecreasingEnergyUse alsohasthreechapters;thefirstintroducesthisimportantdimensionoftheenergy transition,andthesecondandthirdchaptersdiscussenergyefficiencyinbuildings andindustry,respectively.Thelastsectionofthebookcovers Digitalization inthree chapters;thefirstdiscussestheprospectsofbroaderdigitaltechnologiesinthe energytransition,andthesecondandthirdchaptersdiscuss Digitalization insmart metersandsmartgrids,andblockchaintechnologies,respectively.Finally,thebook concludeswithan Epilogue
Foreword
Theroleofenergyhasneverbeenmoreimportant.Astheglobalcommunitykeeps itssightsonthegoalof1.5 ∘ CsetintheParisandGlasgowagreements,theneed todecarbonizeenergyanddecarbonizeitatpacehasneverbeenstarker.Muchis alreadybeingachievedinpartsoftheenergysystem,notablyinthepowersector insomepartsoftheworld.Still,thesignificantchallengesaheadofdecarbonizing theentiresystem,particularlytransport,heat,andindustry,willbemuchharder. Atthesametime,wehaveaone-timechancetodeliveranenergytransition,which bringslow-carbonenergytoall8billionpeopleonEarth,createsprosperity,andbalancestheEarth’sbiosystemsandclimate.Ifwecangetitright,theenergytransition willrequireindustry,governments,andinter-governmentbodiestorespond.Itwill requirethebestandbrightestmindstoprovidetheingenuity,engineeringsolutions, andaboveall,thethoughtleadershiptotacklethegreatestchallengeourindustry haseverfaced.
Iamdelightedtowritetheforewordtothisthought-leadingbook.The4Dsofthe energytransitionhavetheirrootsinthinkingbysomeoftheEnergyInstitute’sFellows.Inthistext,Dr.Asifandsomeoftheleadingglobalexpertsonenergybring the4Dsrightuptodateandprovidedeepinsightsintothefast-evolvingchanges intheenergysector,focusedon: Decarbonization, Decentralization,DecreasingUse, and Digitalization.Ifirmlybelievethatallfourelementsarecriticaltoachievinga net-zeroenergysystem.
Theneedtodecarbonizeisclear;thebestmeansofdoingsoarenotalwaysclear. Understandingthedifferentpathways,compromisesanduncertaintiesarecritical, particularlyinaviation,shipping,andindustry.
Forover100years,theenergysystemindevelopedeconomieshasbeenahighly centralizedcommandandcontrolsystem.However,decentralizationcreatesthe opportunityforconsumerstobecomeenergyproducersandturnpartsofthe energysystemupsidedown.Thisisparticularlytrueindevelopingeconomies, andaspenetrationofEVsandheatgrowsdramatically,itwillbecomeincreasingly important,eveninthemostdevelopedeconomies.
Digitalizationwillplayacrucialroleinenablingdecentralizedsystemstooperatesuccessfully.However,incontrasttotelecommunications,media,andtravel,the potentialofdigitalintheenergysystemtomatchsupplyanddemand,optimize
infrastructure,andengageconsumersremainsavirtuallyuntappedopportunity. However,changeiscoming,anditiscomingfast.
Finally,anditdoesnormallycomelast,isthenotionofdecreasingourenergyuse. Improvingenergyefficiencymustbeattheheartofdeliveringtheenergytransition.Ourhomes,ourcars,ouroffices,everythingabouthowweproduceandconsumeenergyinvolvesshockinglevelsofinefficiency.Andyetimprovingefficiency anddecreasingenergyuseisoftenthecheapest,quickest,andeasiestroutetowards decarbonization.Soinsteadofcominglast,itshouldperhapscomefirst.Thisiswhy itisanintegralpartofthestrategy,trainingoffer,andcharteredqualificationsfocus atmyorganization,theEnergyInstitute.
Ihopethisbookwillhelpinformtheacademicandresearchcommunityonsome ofthecriticalchallengesaheadandhelpthemidentifynewandimportantareas toworkon.Ialsobelieveitwillequippolicymakers,internationalbodies,financial institutions,businesses,andmanyotherstounderstandthechallengesandopportunitiesaheadofusandhelpthemmaketherightdecisionstodelivertheenergy transition.Finally,IhopeyoulearnasmuchasIdidfromreadingit.
Dr.NickWaythCEngFEIFIMechE ChiefExecutiveoftheEnergyInstitute
IntroductiontotheFour-DimensionalEnergyTransition MuhammadAsif
DepartmentofArchitecturalEngineering,KingFahdUniversityofPetroleumandMinerals,Dhahran, SaudiArabia
1.1Energy:ResourcesandConversions
Growinghumandependenceonenergyisoneofthedefiningcharacteristics ofthemodernage.Historically,theincreasinglyextensiveandefficientutilizationofenergyhasbeenpivotalintheevolutionofsocieties.However,the eighteenth/nineteenth-centuryindustrialrevolutionhasbeenaturningpointin human-energyinteraction.Energyhasattainedthestatusofaprerequisiteforall crucialaspectsofsocieties,i.e.mobility,agriculture,industry,health,education,and tradeandcommerce[1].Energyresourcesexistinmanyphysicalstates,harnessing andcapitalizingthroughvarioustechnologies.Theycanbebroadlyclassifiedinto twocategories:renewablesandnon-renewables.Renewableenergyresourcesare naturallyreplenishedorrenewed.
Examplesofrenewableresourcesincludesolarenergy,windpower,hydropower, andwaveandtidalpower.Energyresourcesthatarefiniteandexhaustibleare non-renewablesuchascoal,oil,andnaturalgas.Intermsofresources,energy canalsobeclassifiedintotwotypes:primaryresourcesandsecondaryresources. Primaryenergyresourcesconsistofnaturalorunrefinedresourcessuchasraw fossilfuel,biomass,solarradiation,wind,andflowingwater.Theseresourcescan beextractedorharnesseddirectlyfromnature.Secondaryenergyresourcesare refined/convertedfromprimaryresources.Forexample,electricityisasecondary energyresourcethatcanbeproducedbytransformingdifferentprimaryresources. Figure1.1showsexamplesofprimaryandsecondaryenergyresources.
Energycanbeclassifiedindifferentforms,typicallythroughseveralconversion andtransformationprocessesintheirusablelifecycle.Differentformsofenergy includechemicalenergy,thermalenergy,mechanicalenergy,electricalenergy, lightenergy,andsoundenergy.Thefourcommonlyusedformsofenergyandtheir mutualtransformationsareshowninFigure1.2.Italsohighlightstheassociated energyresources.
The4DsofEnergyTransition:Decarbonization,Decentralization,DecreasingUseandDigitalization, FirstEdition.EditedbyMuhammadAsif. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.
2 1IntroductiontotheFour-DimensionalEnergyTransition
PrimaryresourcesSecondaryresources
Figure1.1 Primaryandsecondaryenergyresources.
Solar, nuclear, geothermal
Figure1.2 Energyresourcesandtransformations.
Theenergycontainedinfossilfuels–coal,oil,andnaturalgas–contributing toalmost80%oftheworld’stotalprimaryenergysuppliesischemicalenergy. Nuclearpowerandgeothermalenergyentertheusableenergyequationinthe formofthermalenergy.Windpower,hydropower,andwaveandtidalpower arecapitalizedasmechanicalenergy,whilesolarenergycanbeharnessedin theformofthermalenergyandelectricalenergy.Themostcommonenergy requirementsinday-to-daylifeincludeheat,electricity,andmechanizedmobility. Heatisprimarilyacquiredthroughfossilfuels,makingitachemicaltothermal energyconversionprocess.Useableheatcanalsobedirectlyacquiredfromsolar
1.2ClimateChangeinFocus 3
energy,geothermalenergy,andnuclearpower.Oneofthemostcommonenergy transformationpathwaysistoconvertchemicalenergyintomechanicalenergy. Thefirststageinthistransformationprocessinvolvesconvertingfossilfuel’s chemicalenergyintothermalenergy,usuallyintheformofsteam,hotwater, orhotgases,throughboilers,rotatingturbines,orinternalcombustionengines. Inthesecondstage,thermalenergyisconvertedtomechanicalenergythrough internalcombustionenginesandrotaryturbines.Theproducedmechanicalenergy isusedinmanyapplications,suchasrunningmachineryandtransportation.This mechanicalenergycanalsobeusedtoproduceelectricitywiththehelpofgenerators.Electricitycanbeproducedthroughvarioustransformationroutes,including chemical–thermal–mechanical–electrical,thermal–mechanical–electrical,and mechanical–electrical.
1.2ClimateChangeinFocus
Climatechangeisarguablythebiggestchallengetheworldfacestoday.Itiswidely regardedasaconsequenceofglobalwarming.ThegradualwarmingoftheEarth’s atmospherictemperatureasasmallfractionofthesolarradiationisentrappedby greenhousegases.GreenhousegasesarepartoftheEarth’satmosphere.Human activitiessuchasburningfossilfuels,transportation,powergeneration,andindustrialandagriculturalprocessesincreasetheconcentrationofthesegasesintheatmosphere.Theeighteenth-centuryindustrialrevolutionisconsideredtohavetriggered therapidgrowthinthereleaseofgreenhousegases.Forexample,theatmosphere’s carbondioxide(CO2 )concentrationhasincreasedfromthepre-industrialagelevel of280parts-per-million(ppm)to415ppm.TheaccelerationinthegrowthofCO2 concentrationcanbegaugedfromthefactthatalmost100ppmofthetotal135ppm incrementhasoccurredsince1960.Commonlyknowngreenhousegasesinclude watervapor,carbondioxide,nitrousoxide,methane,chlorofluorocarbons(CFCs), andhydrofluorocarbons(HFCs).Theimpactofagreenhousegasdependsonvariousfactorssuchastheirlevelofconcentrationorabundance,lifetime(durationof stayintheatmosphere),andabilitytotrapradiation(radiativeefficiency).Carbon dioxide(CO2 )istheprimarygreenhousegasemittedthroughhumanactivitiesand hasbeenadoptedasareferenceindextorepresenttheconcentrationofgreenhouse gases.Accordingly,theglobalwarmingpotential(GWP)–anindextocomparethe globalwarmingimpactofdifferentgreenhousegases–ofCO2 hasbeenregarded asone.
Duetonumerousinvolvedfactorsandtheirdynamicandcomplexinterrelationship,itisdifficulttopreciselypredictthenatureandextentoftheimplicationsofclimatechange.However,basedontheexpertinterpretationsofthe availabledataandscientificmodels,certainweather-relatedincidentsareattributed toclimatechangewithagreatdegreeofconfidence.Accordingly,climatechange leadstomanychallenges,includingseasonaldisorder,apatternofintenseandmore frequentweather-relatedeventssuchasfloods,droughts,storms,heatwavesand wildfires,financialloss,andhealthproblems[2].Climatechangealsoexacerbates
1IntroductiontotheFour-DimensionalEnergyTransition waterandfoodcrisesinmanypartsoftheworld.Inrecentdecades,theglobalfocus onclimatechangehasincreasedexponentially.Extremeweathereventsandnatural disasterssuchasfloods,storms,hurricanes,wildfires,anddroughtshaveplayed avitalrole.Since1880,theatmospherictemperaturehasincreasedby1.23 ∘ C (2.21 ∘ F).Therisingtemperatureisdrivenlargelybyincreasedanthropogenic greenhousegasemissions.AccordingtotheUSNationalAeronauticsandSpace Administration(NASA),mostatmosphericwarminghasoccurredoverthelastfour decades[3].Warmertemperaturesareincreasingthesealevelduetothemeltingof glaciers.Duringthetwentiethcentury,theglobalsealevelrosebyaround20cm. Theriseinsealevelhasbeenacceleratingeveryyear–overthelasttwodecades.It hasalmostdoubledthatofthelastcentury[3].Glaciersareshrinkingworldwide, includingtheHimalayas,Alps,Alaska,Rockies,andAfrica.
Extremeweatherconditionsandclimateabnormalitiesarebecomingmore frequent.Thesituationisalreadywidelydubbedastheclimatecrisis.Withthe recordedaccelerationintheaccumulationofgreenhousegasesandconsequent increaseinatmospherictemperature,climatechange-drivenweather-related disastersarebecomingmoreintenseandrecurrent.Therecentsevenyearshave beenthewarmestsincerecordsbegan,while2016and2020arereportedlytied forthehottestyearonrecord[3].July2021witnessedheatwaves,wildfires, storms,andfloodsworldwide.NorthAmericaparticularlyfacedintenseheat waves,besidesrecordhightemperaturesandmassivewildfires.California’sDeath Valleyrecordedatemperatureof54.4 ∘ C(130 ∘ F),potentiallythehighestever temperaturerecordedontheplanet,andBritishColumbiawitnessedatemperatureof49.6 ∘ C,obliteratingCanada’spreviousnationaltemperaturerecordby 8 ∘ C[4].Whiletheheatwavekilledover500peopleinCanadaalone,Europeand Asiawerehitbyunprecedentedflooding.Hightemperatures,heatwaves,and droughtsarealsocausingrecord-breakingwildfires.The2019–2020wildfirein Australiaburntaround19millionha,resultinginaneconomiclossofoverAU$ 100billionthatbecamethecostliestnaturaldisasterinnationalhistory[5].The year2021hasalsowitnessedheatwavesfuelingmassivewildfiresinAustralia, NorthAmerica,andEurope.Extremewildfiresarenowbecominganewnormal asexpertspredictmorefiresandhigherdegreesofdevastationaseachfireseason comes.
1.3TheUnfoldingEnergyTransition
Theglobalenergyscenarioexperiencesastringofchallengessuchasclimatechange, rapidgrowthinenergydemand,depletionoffossilfuelreserves,volatileenergy prices,andlackofuniversalaccesstoenergy.Thepost-industrialrevolutionenergy scenarioiscloselylinkedtoglobalwarmingasfossilfuelsareresponsibleforthe bulkofgreenhousegasemissions.Duetosurgingpopulation,economicandinfrastructuraldevelopment,andurbanization,fastgrowthintheglobalenergydemandis addingpressuresontheenergysupplychain.AccordingtotheEnergyInformation Administration(EIA),between2018and2050,theworldenergyrequirementsare
1.3TheUnfoldingEnergyTransition 5 projectedtoincreaseby50%[6].Mostofthisgrowthindemandisassociatedwith developingcountries.
Energyuseiscloselylinkedtotheenvironment.Itisestimatedthatdespite thepledgesandeffortsbytheglobalcommunitytotackleclimatechange,CO2 emissionsfromenergyandindustryhaveincreasedby60%sincetheUnitedNations FrameworkConventiononClimateChange(UNFCCC)wassignedin1992[7]. Climatechangeisalreadytherewithitsimplicationslikeseasonaldisorder,rising sealevel,atrendofmorefrequentandintenseweather-drivendisasterssuchas flooding,droughts,heatwaves,wildfires,storms,andassociatedfinanciallosses [8,9].Thesituationcallsforanurgentparadigmshiftintheenergysector.Asa responsetothechallenges,theglobalenergysectorisgoingthroughatransition toensureasupplyofenergycompatiblewiththedemandsofasustainablefuture fortheplanet.TheInternationalRenewableEnergyAgency(IRENA)definesthe energytransitionas“apathwaytowardthetransformationoftheglobalenergy sectorfromfossil-basedtozero-carbonbythesecondhalfofthiscentury.”The ongoingenergytransitionisneededtoreduceenergy-relatedCO2 emissionstolimit climatechange[10].
ThroughtheParisAgreement,theworldhasadoptedthefirst-everuniversally legallybindingglobalclimatedealtoavoidthedangersofclimatechangebylimitingglobalwarmingtobelow2 ∘ C.However,theIntergovernmentalPanelonClimate Change(IPCC)warnsthattheworldisseriouslyovershootingthistarget,heading towardahighertemperaturerise,askingformajorchangesinfourglobalsystems: energy,landuse,cities,andindustry.Theenergysectoriswherethegreatestchallengesandopportunitiesexist[11].
FollowingtheParisAgreement,manymajoreconomiesandeconomic blocks–suchastheUS,China,theEU,andtheUK–havecommittedtonet-zero carbonemissions.TheUS,EU,andtheUKaretargetingnet-zeroemissionsby 2050,whileChinaby2060.Eachcountryoreconomicblockisdevelopingitsplans forincrementallyachievingitsgoals,buttheywillallrequireatransformationof theenergysector[11].Forexample,theEUhasdecidedtoreduceemissionsby 55%fromthe1990levelby2030togonet-zeroby2050.TheUShasannouncedto cutemissionsby40–43%by2030.Someofthenotableinitiativesincludehaving 30GWofnewoffshorewindprojectsandcuttingthecostofsolarenergyfurtherby 60%overthenextdecadetoachieve100%renewableelectricityby2035[12].China targetsemissionstopeakby2030toreachcarbonneutralityby2060.Similarly, theUKhasplanstocutemissionsby68%by2030toreachthetargetby2050. AlandmarkdecisiontheUKhasmadeinshiftingawayfromfossilfuelsisclosing downallcoalpowerplantsby2024,whichmeansthecountryreducesitsreliance oncoalforpowergenerationfromaroundone-thirdtozerowithinadecade.Itis amajorsteptheUKhastakentowardthetransitionawayfromfossilfuelsand decarbonizationofthepowersectortoeliminatecontributionstoclimatechange by2050[13].
Renewableenergyisthebackboneoftheenergysector’stransitiontowardzero carbonemissions.Overthelastfewdecades,renewabletechnologies,especially solarphotovoltaic(PV)andwindturbines,havemadesignificanttechnological
1IntroductiontotheFour-DimensionalEnergyTransition andeconomicprogress.Theglobalinstalledcapacityofrenewablesincreased from2581GWin2019to2838GWin2020,exceedingexpansionintheprevious yearbyalmost50%.Forseveralyears,renewableenergyisaddingmorepower generationcapacitythanfossilfuelsandnuclearpowercombined.In2020, renewablescontributedtomorethan80%ofallnewpowergenerationcapacity addedworldwide.Therenewablesector’sgrowthispropelledbysolarandwind power,withthetwotechnologiesaccountingfor91%ofthenewrenewablesadded [14].TherewasoverUS$303billioninvestedinrenewableenergyprojectsduring theyear[15].Theupwardscaleoftherenewabledevelopmentscanbegaugedfrom China’sfirst100GWphaseofsolarandwindpowerbuildout.Theinitiativewill likelybeexpandedtoseveralhundredsofGWincapacityasChinaaimstodevelop 1200GWofrenewablesby2030[16].Therenewablesgrowthtrendsareprojected tocontinueastheannualcapacityadditionofsolarandwindpowerissettogrow fourfoldbetween2020and2030[11].
Renewables-baseddecentralizedordistributedgenerationsystemsarehelping bothurbanandruralsettings,providingseveralenergyservices.SolarPVisone ofthemostsuccessfultechnologies,especiallyatsmall-scaleandoff-gridlevels. Since2010,over180millionoff-gridsolarsystemshavebeeninstalledworldwide, including30millionsolar-homesystems.In2019,themarketforoff-gridsolar systemsgrewby13%,withsalestotaling35millionunits.Renewableenergyalso suppliedaroundhalfofthe19000mini-gridsinstalledbytheendof2019[15]. Efficientbiomasssystems,suchasimprovedcookingstovesandbiogassystems,are alsohelpingwiththeglobaleffortstoaccesscleanenergy[1,17].
1.4TheFourDimensionsoftheTwenty-FirstCentury EnergyTransition
Theuseofenergyhasevolvedthroughthecourseofhistory.Theavailabilityof refinedandefficientenergyresourceshasplayedadecisiveroleinadvancing societies,especiallysincetheindustrialrevolutionoftheeighteenthcentury.Inthe twenty-firstcentury,theinternationalenergyscenarioisexperiencingaprofound transitionastheworldincreasinglyembracesatrendawayfromfossilfuels.In recordedhistory,therehavebeentwomajorenergytransitions.Thefirstwasashift fromwoodandbiomasstocoalduringtheeighteenth-centuryindustrialrevolution, andthesecondwasthetwentiethcenturytransitionfromcoaltooilandgas.With theadventofthetwenty-firstcentury,theworldiswitnessingthedawnofthethird energytransition.
Theenergytransitionunfoldinginthetwenty-firstcenturyisunprecedented.It ismuchmorevibrant,intriguing,andimpactfulthantheearlierones.Itisfundamentallyasustainability-drivenenergypathwayfocusingondecarbonizingthe energysectorbyshiftingawayfromfossilfuels.Therefore,thisenergytransitioncan alsobetermed“sustainableenergytransition”or“low-carbonenergytransition.” However,theongoingenergytransitionisnotjustaboutreducingcarbonorshiftingawayfromfossilfuels.Thankstotheenormouschangesanddevelopmentson
1.4TheFourDimensionsoftheTwenty-FirstCenturyEnergyTransition 7 thefrontsofenergyresourcesandtheirconsumption,technologicaladvancements, socio-economicandpoliticalresponse,andevolvingpolicylandscape,itismuch moredynamic.Thisenergytransitionhasfourkeydimensions:decarbonization, decentralization,digitalization,anddecreasingenergyuse.
1.4.1Decarbonization
Decarbonizationoftheenergysectoristhemostimportantdimensionofthe ongoingenergytransition.ReductioninCO2 andothergreenhousegas(GHG) emissionsisfundamentaltothefightagainstclimatechange.Theenergysector canbedecarbonizedthroughvarioustechnologiesandsolutions,includingrenewableenergy,electricvehicles(EVs),hydrogenandfuelcells,carboncaptureand storage(CCS),andphasingoutoffossilfuels.Thereplacementoffossilfuelswith renewableenergyisthemostcriticalpartofthedecarbonizationdrive.Renewable energyisalreadysupplying26%oftheglobalelectricityneeds.Accordingto InternationalEnergyAgency(IEA),toachievenet-zeroemissionsby2050,almost 90%oftheglobalelectricitygenerationmustbesuppliedfromrenewables.While somedecarbonizationsolutionslikehydrogen,fuelcells,andCCSareyetto havetechno-economicmaturity,electricvehiclesarealreadymakinganimpact. Forexample,in2020,theworldwidesaleofEVsincreasedby41%despitethe COVID-relatedeconomicdownturnandadropof6%intheoverallsaleofvehicles. Duringthesameyear,Europerecordedtheregistrationofnewelectriccarsincrease by100%,andthenumberofelectriccarmodelsavailableworldwideincreasedfrom 260to370[18].Whileelectricmobilityisalsopavingitswayintheaviationandship industry,thesaleofelectriccarsisexpectedtoincreasefromaround3.5millionin 2020toover55millionby2030[11].
1.4.2Decentralization
Decentralizedordistributedgenerationistheenergygeneratedclosetothepoint ofuse.Decentralizedgeneration(DG)avoids/minimizestransmissionanddistributionsetup,savingcostsandlosses.Itoffersbetterefficiency,flexibility,andeconomythanlargeandcentralizedgenerationsystems.DGsystemscanemployvarious energyresourcesandtechnologiesandbegrid-connected,off-grid,orstand-alone. RenewableslikesolarandwindpowersystemsareleadingtheDGlandscape.DG isleadingintheglobalelectrificationefforts,presentingviablesolutionsformodernenergyneedsandenablingthelivelihoodsofhundredsofmillionswhostilllack accesstoelectricityorcleancookingsolutions[4].SolarPVisoneofthemostsuccessfulDGtechnologies,especiallyatsmall-scaleandoff-gridlevels.Itisestimated thatsince2010,over180millionoff-gridsolarsystemshavebeeninstalled,including30millionsolar-homesystems.In2019,themarketforoff-gridsolarsystems grewby13%,withsalestotaling35millionunits.Renewableenergyalsosupplied aroundhalfofthe19000mini-gridsinstalledworldwidebytheendof2019.Efficientbiomasssystemssuchasimprovedcookingstovesandbiogassystemsarealso helpingtheglobaleffortstowardcleanenergyaccess.In2020,theinstalledcapacity
1IntroductiontotheFour-DimensionalEnergyTransition ofoff-gridDGsystemsgrewby365MWtoreach10.6GW.Solarsystemsaloneadded 250MWtohaveatotalinstalledcapacityof4.3GW.
1.4.3Digitalization
Thedigitalrevolutionisalsorevampingtheenergysector.Digitalizationofthe energysectoremploystechnologieslikeartificialintelligence,machinelearning, bigdataanddataanalytics,InternetofThings,cloudcomputing,blockchain, androboticsandautomation.Thesetechnologiesareatvariousdegreesof techno-economicmaturityfortheirapplicationintheenergysector.Ingeneral, digitalizationisrevolutionizingtheenergysectorbyimprovingtheproductivity, safety,accessibility,andoverallsustainabilityofenergysystems.New,smartermodeling,monitoring,analyzing,andforecastingenergyproductionandconsumption arehelpingthesustainableenergytransition.However,withitsadvantages,digitalizationisalsoposingseveralchallenges.Mostimportantly,digitaltransformation heavilyreliesonlargedatasets,whichisincreasinglyexposingtheutilitiesand energyindustrytocybersecurityrisks.
1.4.4DecreasingEnergyUse
Energydemandisrisingworldwide,anditisestimatedthatbetween2018and2050, globalenergyrequirementswillincreaseby50%.Aone-dimensionalapproach tomatchingthegrowingenergydemandwithcorrespondingcapacityaddition isnotasustainablesolution,especiallywhentheplanetisalreadyovershooting itsbio-capacitybyalmost70%.Anysustainablewaytosatisfyglobalenergy requirementshastobeginwithdecreasingenergyusethroughenergyefficiency (EE)measures.Energyefficiencyisabettersolutiontoaddressenergyshortages thanaddingnewcapacity.Anegawatt–awattofenergynotusedthroughenergy efficiencymeasures–isconsideredthecheapestwattofenergy.Energyefficiency deliverseconomicandenvironmentalgainstoindustrialandcommercialentities, besidesofferingacompetitiveedge.Withtheavailabletechnologies,buildingand industrialsectorscanreducetheirenergyconsumptionby40–80%and18–26% [19,20].
1.5Conclusions
Thetwenty-firstcenturyenergytransitionisfundamentallyasustainability-driven energypathway.Inthefightagainstclimatechange,themainfocusoftheenergy transitionisondecarbonizationbyshiftingawayfromfossilfuel-basedenergysystems.Theenergytransitionisperceivedasapathwaytowardthetransformationof theglobalenergysectorfromfossil-basedtozero-carbonbythesecondhalfofthis century.FollowingtheParisAgreement,severalmajoreconomiesandeconomic blocks–includingtheUS,theUK,andtheEuropeanUnion–havecommittedto net-zerocarbonemissionsby2050,whileChinahastargeteditfor2060.However,
9 theongoingenergytransitionisnotjustaboutreducingcarbonorshiftingawayfrom fossilfuels.Itismorevibrantandimpactful,thankstotheenormouschangesand developmentsonenergyresourcesandtheirconsumption,technologicaladvancements,socio-economicandpoliticalresponse,andevolvingpolicylandscape.This energytransitionhasfourmainandcloselylinkeddimensions:decarbonization, decentralization,digitalization,anddecreasingenergyuse.Theenergysectorcan bedecarbonizedthroughvarioustechnologiesandsolutions,includingrenewable energy,electricvehicles(EVs),hydrogenandfuelcells,CCS,andphasingoutoffossilfuels.Renewableenergyhasapivotalroleindecarbonizingtheenergysector. Havingaccountedforover80%oftheworldwidenewlyaddedpowergeneration capacityin2020,renewableenergyhasalreadybecomeanimportantstakeholder intheglobalenergysector.However,itmaybechallengingforthedevelopedand industrializednationstoadjusttoremovingfossilfuelsandothercarbon-intensive processesfromtheireconomies.Energytransitionwillbeharderforthedeveloping nationsthatlackfinancialresources,infrastructure,policymeasures,andtechnical know-how.
References
1 Asif,M.(2021). EnergyandEnvironmentalSecurityinDevelopingCountries Springer.ISBN:978-3-030-63653-1.
2 Asif,M.(2019). EnergyandEnvironmentalSecurity,HandbookofEnvironmental Management.Taylor&Francis.
3 NASA(2021),Climatechange:howdoweknow,facts,NationalAeronautics andSpaceAdministration,Evidence|Facts–ClimateChange:VitalSignsofthe Planet(nasa.gov).
4 Samenow,J.(2021).‘Hardtocomprehend’:expertsreacttorecord121degreesin Canada,TheWashingtonPost.
5 Read,P.andDennis,R.(2020).Withcostsapproaching$100billion,thefiresare Australia’scostliestnaturaldisaster,TheConservation.
6 EIA(2019). EIAProjectsNearly50%IncreaseinWorldEnergyUsageby2050,led byGrowthinAsia,TodayinEnergy.U.S.EnergyInformationAdministration (EIA).
7 IEA(2021).Netzeroby2050:aroadmapfortheglobalenergysector,Flagship report,InternationalEnergyAgency.
8 Asif,M.(2021). EnergyandEnvironmentalOutlookforSouthAsia.Florida,USA: CRCPress.ISBN:978-0-367-67343-7.
9 Qudratullah,H.andAsif,M.(2020). DynamicsofEnergy,Environmentand Economy:ASustainabilityPerspective.Springer.ISBN:978-3-030-43578-3.
10 IRENA EnergyTransition.InternationalRenewableEnergyAgency(irena.org).
11 Gillam,E.andAsplund,R.(2021). WillSolarTaketheThrone.Invesco.
12 DOE(2021). HowWe’reMovingtoNet-zeroby2050.USDepartmentofEnergy.
13 GUK(2021). EndtoCoalPowerBroughtForwardtoOctober2024,Governmentof UK,PressRelease(www.gov.uk).
14 IRENA(2021). WorldAddsRecordNewRenewableCapacityin2020.Press Release,InternationalRenewableEnergyAgency(irena.org).
15 REN21(2020). Renewables2020GlobalStatusReport.RenewableEnergy Network.
16 Scully,J.(2021). ChinaSignalsConstructionStartof100GW,FirstPhaseofDesert RenewablesRollout.PV-Tech(pv-tech.org).
17 Asif,M.(2011). EnergyCrisisinPakistan:Origins,ChallengesandSustainable Solutions.OxfordUniversityPress.ISBN:978-0-19-547876-1.
18 K.Adler(2021),Globalelectricvehiclesalesgrew41%in2020,moregrowth comingthroughdecade.IEA,HISMarkit.https://ihsmarkit.com/researchanalysis/global-electric-vehicle-sales-grew-41-in-2020-more-growth-comi.html.
19 Hassan,M.T.,Burek,S.,andAsif,M.(2017). Barrierstoindustrialenergy efficiencyimprovement-manufacturingSMEsofPakistan. EnergyProcedia 113:135–142.
20 Asif,M.(2020).Roleofenergyconservationandmanagementinthe4D sustainableenergytransition. Sustainability 12:10006.https://doi.org/10.3390/ su122310006.