[FREE PDF sample] The 4ds of energy transition : decarbonization, decentralization, decreasing use,

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/the-4ds-of-energy-transition-decarbonization-decentr alization-decreasing-use-and-digitalization-muhammad-asif/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Handbook of Energy and Environmental Security Muhammad

Asif

https://ebookmass.com/product/handbook-of-energy-andenvironmental-security-muhammad-asif/

Sustainable Energy Transitions: Socio-Ecological Dimensions of Decarbonization 1st ed. Edition Dustin Mulvaney

https://ebookmass.com/product/sustainable-energy-transitionssocio-ecological-dimensions-of-decarbonization-1st-ed-editiondustin-mulvaney/

Electrification: Accelerating the Energy Transition 1st Edition Pami Aalto

https://ebookmass.com/product/electrification-accelerating-theenergy-transition-1st-edition-pami-aalto/

Energy transition in metropolises, rural areas, and deserts Al Kabbani

https://ebookmass.com/product/energy-transition-in-metropolisesrural-areas-and-deserts-al-kabbani/

Transition Metal Oxides for Electrochemical Energy Storage

https://ebookmass.com/product/transition-metal-oxides-forelectrochemical-energy-storage-jagjit-nanda/

Globalisation and Energy Transition in Latin America and the Caribbean: Economic Growth and Policy Implications Matheus Koengkan

https://ebookmass.com/product/globalisation-and-energytransition-in-latin-america-and-the-caribbean-economic-growthand-policy-implications-matheus-koengkan/

Sustainable Development and Energy Transition in Europe and Asia, Volume 9 Bernadette Andreosso-O'Callaghan

https://ebookmass.com/product/sustainable-development-and-energytransition-in-europe-and-asia-volume-9-bernadette-andreossoocallaghan/

The Renewable Energy Transition: Realities for Canada and the World 1st ed. 2020 Edition John Erik Meyer

https://ebookmass.com/product/the-renewable-energy-transitionrealities-for-canada-and-the-world-1st-ed-2020-edition-john-erikmeyer/

Applications of hybrid nanofluids in solar energy, practical limitations and challenges_ A critical review Tayyab Raza Shah & Hafiz Muhammad Ali

https://ebookmass.com/product/applications-of-hybrid-nanofluidsin-solar-energy-practical-limitations-and-challenges_-a-criticalreview-tayyab-raza-shah-hafiz-muhammad-ali/

The4DsofEnergyTransition

The4DsofEnergyTransition

Decarbonization,Decentralization,DecreasingUse andDigitalization

TheEditor

Dr.MuhammadAsif

DepartmentofArchitectural Engineering

KingFahdUniversityofPetroleum andMinerals

Dhahran

SaudiArabia

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>.

©2022WILEY-VCHGmbH,Boschstraße12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34882-4

ePDFISBN: 978-3-527-83144-9

ePubISBN: 978-3-527-83143-2

oBookISBN: 978-3-527-83142-5

CoverDesign Wiley

Typesetting Straive,Chennai,India PrintingandBinding CPIAntonyRowe

Printedonacid-freepaper

Contents

Preface xv Foreword xvii

1IntroductiontotheFour-DimensionalEnergyTransition 1 MuhammadAsif

1.1Energy:ResourcesandConversions 1

1.2ClimateChangeinFocus 3

1.3TheUnfoldingEnergyTransition 4

1.4TheFourDimensionsoftheTwenty-FirstCenturyEnergyTransition 6

1.4.1Decarbonization 7

1.4.2Decentralization 7

1.4.3Digitalization 8

1.4.4DecreasingEnergyUse 8

1.5Conclusions 8 References 9

PartIDecarbonization 11

2GlobalEnergyTransitionandExperiencesfromChinaand Germany 13

HeikoThomasandBingXue

2.1GlobalEnergyTransition 13

2.2China 17

2.2.1HowtoAchieveCarbonNeutralityBefore2060andKeeptheWorld’s LargestEconomyRunning 17

2.2.2ChinaastheWorld’sLeaderinRenewableInstallations 19

2.2.3ParticularMeasurestoReduceGHGEmissions 20

2.3Germany 23

2.3.1ClimateActionandGHGEmissionReductionTargets 23

2.3.2SystemRequirementstoAchievetheGHGEmissionReduction Goals 24

2.3.3PotentialforGHGEmissionReductionintheBuildingSector 27

2.3.4UnderachievingintheTransportSector 27

2.3.5ANewEmissionTradingSchemeSpecificallyTacklestheHeatingand TransportSectors 29

2.4ComparingEnergyTransitionsinChinaandGermany 30

2.4.1DifferentStrategiesandBoundaryConditions 30

2.4.2ComparingtheMobilitySector 32

2.4.3PolicyInstrumentsandImplementation 33

2.5SummaryandFinalRemarks 37 References 38

3DecarbonizationintheEnergySector 41 MuhammadAsif

3.1Decarbonization 41

3.2DecarbonizationPathways 42

3.2.1RenewableEnergy 43

3.2.1.1SolarEnergy 43

3.2.1.2WindPower 44

3.2.1.3Hydropower 44

3.2.2ElectricMobility 44

3.2.3HydrogenandFuelCells 45

3.2.4EnergyStorage 46

3.2.5EnergyEfficiency 46

3.2.6DecarbonizationofFossilFuelSector 46

3.3Decarbonization:DevelopmentsandTrends 47 References 48

4RenewableTechnologies:ApplicationsandTrends 51 MuhammadAsif

4.1Introduction 51

4.2OverviewofRenewableTechnologies 52

4.2.1SolarEnergy 52

4.2.1.1SolarPV 52

4.2.1.2SolarThermalEnergy 54

4.2.2WindPower 57

4.2.3Hydropower 58

4.2.3.1Dam/Storage 59

4.2.3.2Run-of-the-River 59

4.2.3.3PumpedStorage 59

4.2.4Biomass 60

4.2.5GeothermalEnergy 61

4.2.6WaveandTidalPower 62

4.3RenewablesAdvancementsandTrends 63

4.3.1MarketGrowth 63

4.3.2Economics 65

4.3.3TechnologicalAdvancements 65

4.3.4PowerDensity 67

4.3.5EnergyStorage 67

4.4Conclusions 69 References 69

5FundamentalsandApplicationsofHydrogenandFuel Cells 73

BengtSundén

5.1Introduction 73

5.2Hydrogen–General 74

5.2.1ProductionofHydrogen 74

5.2.2StorageofHydrogen 75

5.2.3TransportationofHydrogen 76

5.2.4ConcernsAboutHydrogen 76

5.2.5AdvantagesofHydrogenEnergy 76

5.2.6DisadvantagesofHydrogenEnergy 76

5.3BasicElectrochemistryandThermodynamics 77

5.4FuelCells–Overview 78

5.4.1TypesofFuelCells 79

5.4.2ProtonExchangeMembraneFuelCells(PEMFC)orPolymerElectrolyte FuelCells(PEFC) 83

5.4.2.1PerformanceofaPEMFC 83

5.4.3SolidOxideFuelCells(SOFC) 83

5.4.4ComparisonofPEMFCsandSOFCs 84

5.4.5OverallDescriptionofBasicTransportProcessesandOperationsofa FuelCell 85

5.4.5.1ElectrochemicalKinetics 85

5.4.5.2HeatandMassTransfer 85

5.4.5.3ChargeandWaterTransport 86

5.4.5.4HeatGeneration 87

5.4.6ModelingApproachesforFuelCells 87

5.4.6.1Softwares 89

5.4.7FuelCellSystemsandApplications 90

5.4.7.1PortablePower 90

5.4.7.2BackupPower 91

5.4.7.3Transportation 91

5.4.7.4StationaryPower 92

5.4.7.5MaritimeApplications 93

5.4.7.6AerospaceApplications 94

5.4.7.7AircraftApplications 95

5.4.8BottlenecksforFuelCells 95

5.5Conclusions 97 Acknowledgments 97 Nomenclature 97

Abbreviations 98 References 99

6DecarbonizingwithNuclearPower,CurrentBuilds,andFuture Trends 103

HaslizaOmar,GeordieGraetz,andMarkHo

6.1Introduction 103

6.2TheHistoricCostofNuclearPower 104

6.3TheSmallModularReactor(SMR):CouldSmallerBeBetter? 109

6.3.1NewNuclearReactorinTown 109

6.3.2IsIttheSmallertheBetter? 110

6.4EvaluatingtheEconomicCompetitivenessofSMRs 113

6.4.1SizeMatters 113

6.4.2ConstructionTime 113

6.4.3Co-sitingEconomies 114

6.4.4LearningRates 115

6.4.5TheLevelizedCostofElectricity(LCOE):IsItaReliableMeasure? 118

6.4.6TheOvernightCapitalCost(OCC):SMRsvs.aLargeReactor 120

6.5NuclearEnergy:LookingBeyondItsPerceivedReputation 123

6.5.1Load-FollowingandCogeneration 123

6.5.2IndustrialHeat(DistrictandProcess) 125

6.5.3HydrogenProduction 127

6.5.4SeawaterDesalination 130

6.6WesternNuclearIndustryTrends 131

6.6.1TheUnitedStates 131

6.6.2TheUnitedKingdom 132

6.6.3Canada 135

6.7Conclusions 137 References 141

7DecarbonizationoftheFossilFuelSector 153

TianGohandBengWahAng

7.1Introduction 153

7.2TechnologiesfortheDecarbonizationoftheFossilFuelSector 154

7.2.1HistoricalDevelopments 154

7.2.2HydrogenEconomy 155

7.2.3CarbonCaptureandStorage 156

7.3RecentAdvancementsandPotential 157

7.3.1CarbonCaptureandStorage 158

7.3.2CarbonCaptureandUtilization 158

7.4FutureEmissionScenariosandChallengestoDecarbonization 160

7.4.1ApplicationinFutureEmissionScenarios 160

7.4.2ChallengestoDecarbonization 164

7.5ControversiesandDebates 167

7.5.1OpposingNarratives 167

7.5.2PublicPerceptions 169

7.6Conclusions 171 References 172

8ElectricVehicleAdoptionDynamicsontheRoadtoDeep Decarbonization 177 EmilDimanchev,DavoodQorbani,andMagnusKorpås

8.1Introduction 177

8.2CurrentStateofElectricVehicles 178

8.2.1ElectricVehicleTechnology 178

8.2.2ElectricVehicleEnvironmentalAttributes 179

8.2.3CompetingLow-CarbonVehicleTechnologies 180

8.3ContributionofRoadTransporttoDecarbonizationPolicy 181

8.3.1StateandTrendsofCO2 EmissionsfromTransportationandPassenger Vehicles 181

8.3.2DecarbonizationofTransport 182

8.3.3DecarbonizationPathwaysforPassengerVehiclesandtheRoleof ElectricVehicles 183

8.4DynamicsofVehicleFleetTurnover 190

8.4.1IllustrativeFleetTurnoverModel 190

8.4.2ImplicationsofFleetTurnoverDynamicsforMeetingDecarbonization Targets 191

8.5ElectricVehiclePolicy 194

8.5.1CaseStudyofElectricVehiclePolicyinNorway 195

8.6ProspectsforElectricVehicleTechnologyandEconomics 196

8.7Conclusions 199 References 200

9IntegratedEnergySystem:ALow-CarbonFutureEnabler 207 PengfeiZhao,ChenghongGu,ZhidongCao,andShuangqiLi

9.1ParadigmShiftinEnergySystems 207

9.2KeyTechnologiesinIntegratedEnergySystems 210

9.2.1ConversionTechnologies 211

9.2.1.1CombinedHeatandPower 211

9.2.1.2HeatPumpandGasFurnace 211

9.2.1.3PowertoGas 211

9.2.1.4GasStorage 212

9.2.1.5BatteryEnergyStorageSystems 212

9.2.2EnergyHubSystems 213

9.2.3ModelingofIntegratedEnergySystems 214

9.3ManagementofIntegratedEnergySystems 215

9.3.1OptimizationTechniquesforIntegratedEnergySystems 215

9.3.1.1StochasticOptimization 215

9.3.1.2RobustOptimization 215

9.3.1.3DistributionallyRobustOptimization 217

9.3.2SupplyQualityIssues 217

9.3.2.1VoltageIssues 217

9.3.2.2GasQualityIssues 218

x Contents

9.4Volt–PressureOptimizationforIntegratedEnergySystems 219

9.4.1ResearchGap 219

9.4.2ProblemFormulation 220

9.4.2.1Day-AheadConstraintsofVPO 220

9.4.2.2Real-TimeConstraintsofVPO 222

9.4.2.3ObjectiveFunctionofTwo-StageVPO 222

9.4.3ResultsandDiscussions 223

9.4.3.1StudiesonVVO 223

9.4.3.2StudiesonEconomicPerformance 227

9.4.3.3StudiesonGasQualityManagement 228

9.5Conclusions 229

AAppendix:Nomenclature 230

A.1IndicesandSets 230

A.2Parameters 230

A.3VariablesandFunctions 232 References 233

PartIIDecreasingUse 239

10DecreasingtheUseofEnergyforSustainableEnergy Transition 241 MuhammadAsif

10.1WhyDecreasetheUseofEnergy? 241

10.2EnergyEfficiencyApproaches 243

10.2.1ChangeofAttitude 243

10.2.2PerformanceEnhancement 244

10.2.3NewTechnologies 244

10.3ScopeofEnergyEfficiency 244 References 245

11EnergyConservationandManagementinBuildings 247 WahhajAhmedandMuhammadAsif

11.1EnergyandEnvironmentalFootprintofBuildings 247

11.2Energy-EfficiencyPotentialinBuildings 248

11.3Energy-EfficientDesignStrategies 250

11.3.1PassiveandActiveDesignStrategies 251

11.3.2EnergyModelingtoDesignEnergy-EfficientStrategies 251

11.4BuildingEnergyRetrofit 255

11.4.1BuildingEnergy-RetrofitClassifications 256

11.4.1.1Pre-andPost-RetrofitAssessmentStrategies 256

11.4.1.2NumberandTypeofEEMs 257

11.4.1.3ModelingandDesignApproach 258

11.5SustainableBuildingStandardsandCertificationSystems 260

11.6Conclusions 261 References 261

12MethodologiesfortheAnalysisofEnergyConsumptioninthe

IndustrialSector 267

VincenzoBianco

12.1Introduction 267

12.2OverviewofBasicIndexesforEnergyConsumptionAnalysis 269

12.2.1CompoundAnnualGrowthRate(CAGR) 269

12.2.2EnergyConsumptionElasticity(ECE) 270

12.2.3EnergyIntensity(EI) 270

12.2.4LinearCorrelationIndex(LCI) 271

12.2.5WeatherAdjustingCoefficient(WAC) 271

12.3DecompositionAnalysisofEnergyConsumption 272

12.4CaseStudy:TheItalianIndustrialSector 274

12.4.1Index-BasedAnalysis 274

12.4.2DecompositionofEnergyConsumption 276

12.5RelationshipBetweenEnergyEfficiencyandEnergyTransition 283

12.6Conclusions 284

References 285

PartIIIDecentralization 287

13DecentralizationinEnergySector 289 MuhammadAsif

13.1Introduction 289

13.2OverviewofDecentralizedGenerationSystems 290

13.2.1Classification 290

13.2.2Technologies 292

13.3DecentralizedandCentralizedGeneration–AComparison 293

13.3.1AdvantagesofDecentralizedGeneration 293

13.3.1.1Cost-Effectiveness 293

13.3.1.2EnhancedEnergyAccess 293

13.3.1.3EnvironmentFriendliness 294

13.3.1.4Security 294

13.3.1.5Reliability 294

13.3.1.6PeakShaving 294

13.3.1.7SupplyResilience 294

13.3.1.8NewBusinessStreams 294

13.3.1.9OtherBenefits 295

13.3.2DisadvantagesofDecentralizedGeneration 295

13.3.2.1PowerQuality 295

13.3.2.2EffectonGirdStability 295

13.3.2.3EnergyStorageRequirement 295

13.3.2.4InstitutionalResistance 295

13.4DevelopmentsandTrends 295 References 296

14DecentralizingtheElectricityInfrastructure:WhatIs EconomicallyViable? 299

MoritzVogel,MarionWingenbach,andDierkBauknecht

14.1Introduction 299

14.2DecentralizationofElectricitySystems 300

14.3TechnologicalDimensionsofDecentralization 301

14.3.1GridLevelofPowerPlants 302

14.3.2RegionalDistributionofPowerPlants 302

14.3.3GridLevelofFlexibilityOptions 302

14.3.4LevelofOptimization 303

14.4Decentralization:CostsandBenefits 303

14.4.1GridLevelofPowerPlants 304

14.4.2RegionalDistributionofPowerPlants 305

14.4.3GridLevelofFlexibilityOptions 306

14.4.4LevelofOptimization 307

14.5Germany’sDecentralizationExperience:ACaseStudy 310

14.5.1SystemCost 310

14.5.2GridExpansion 314

14.5.3KeyFindings 316

14.6HowFarShouldDecentralizationGo? 317

14.6.1GridLevelofPowerPlants 317

14.6.2RegionalDistributionofPowerPlants 317

14.6.3GridLevelofFlexibilityOptions 319

14.6.4LevelofOptimization 319

14.7Conclusions 320 References 320

15GoverningDecentralizedElectricity:TakingaParticipatory Turn 325

MarieClaireBrisbois

15.1Introduction 325

15.2HowIsDecentralizationAffectingTraditionalModesofElectricity Governance? 326

15.2.1StickingPointsforShiftingtoDecentralizedGovernance 327

15.3WhatKindsofGovernanceDoesDecentralizationRequire? 328

15.3.1Security 328

15.3.2Affordability 329

15.3.3Sustainability 331

15.4WhatDoWeKnowAboutDecentralizedGovernancefromOther Spheres? 332

15.4.1Nested,MultilevelGovernanceofCommonPoolResources 333

15.4.2KeyComponentsofCommonPoolResourceGovernance 334

15.4.2.1RolesandResponsibilities 334

15.4.2.2PolicyCoherence 335

15.4.2.3CapacityDevelopment 336

15.4.2.4TransparentandOpenData 336

15.4.2.5AppropriateRegulations 337

15.4.2.6StakeholderParticipation 338

15.5MovingTowardaDecentralizedGovernanceSystem 339

15.5.1PhaseOne 339

15.5.2PhaseTwo 340

15.5.3PhaseThree 341

15.6Conclusions 341 References 342

PartIVDigitalization 347

16DigitalizationinEnergySector 349 MuhammadAsif

16.1Introduction 349

16.2OverviewofDigitalTechnologies 350

16.2.1ArtificialIntelligenceandMachineLearning 350

16.2.2Blockchain 351

16.2.3RoboticsandAutomatedTechnologies 351

16.2.4InternetofThings 351

16.2.5BigDataandDataAnalytics 352

16.3Digitalization:ProspectsandChallenges 352 References 354

17SmartGridsandSmartMetering 357

HaroonFarooq,WaqasAli,andIntisarA.Sajjad

17.1Introduction 357

17.2GridModernizationandItsNeedintheTwenty-FirstCentury 358

17.3SmartGrid 360

17.4SmartGridvs.TraditionalGrid 362

17.5SmartGridCompositionandArchitecture 362

17.6SmartGridTechnologies 365

17.7SmartMetering 367

17.8RoleofSmartMeteringinSmartGrid 369

17.9KeyChallengesandtheFutureofSmartGrid 370

17.10ImplementationBenefitsandPositiveImpacts 372

17.11WorldwideDevelopmentandDeployment 373

17.12Conclusions 375 References 376

18BlockchaininEnergy 381

BerndTeufelandAntonSentic

18.1TransformationoftheElectricityMarketandanEmerging Technology 381

18.2BlockchainintheEnergySector 382

18.2.1DefiningBlockchain 383

18.2.2UtilizingBlockchaininEnergySystems 385

18.2.3CaseExamplesforBlockchainEnergy 386

18.2.4UtilizationofBlockchainEnergy:IntroducinganInnovation Perspective 387

18.3Blockchainasa(Disruptive)InnovationinEnergyTransitions 389

18.3.1TransitionStudies,Regimes,andNicheInnovations 389

18.3.2BlockchainTechnologiesBetweenNicheInnovationandthe Socio-TechnicalSystem 390

18.4ConclusionsandVenuesforFurtherInquiry 392 Acknowledgment 394 References 394

Epilogue 399 FereidoonSioshansi

Index 405

Preface

Thesustainabilityofthefossil-fuel-dominatedglobalenergyscenariofacesserious problems.Withchallengeslikegrowingenergydemand,depletingfossilfuel reserves,andescalatingenergyprices,energycrisesaremakingheadlinesworldwide.Problemslikesupplydisruptionsandshortagesandsoaringenergyprices arehappeningindevelopingcountriesanddevelopedandemergingeconomies liketheEuropeanUnion(EU),China,andIndia.Forexample,someEUmember stateshaveexperiencedelectricityandgaspricesincreaseby400–500%withina year.Energyinsecurityintermsofitscriticaldimensions–access,affordability, andreliability–remainstobeamajorproblemhinderingthesocio-economic progressindevelopingcountries,asglobally,aroundonebillionpeoplelackaccess toelectricity,andnearlythreebillionpeoplehavetorelyonrawbiomasstomeet cookingandheatingrequirements.However,thesesevereenergyproblemsare beingovershadowedbythemountingchallengeofclimatechange,deemedtobe thebiggestthreattotheplanet.

Climatechangealreadyhasitsimplicationslikeseasonaldisorder,risingsea level,atrendofmorefrequentandintenseweather-drivendisasters,suchas flooding,droughts,heatwaves,wildfires,storms,andtheconsequentlossoflives andeconomy.Foritsgreenhousegas(GHG)emissions,theenergysectorneedsto leadthefightagainstclimatechange,asalsoreiteratedbyCOP26.Respondingto climatechangeandotherchallengesandensuringenergysuppliescompatiblewith thedemandsofasustainablefuturefortheplanet,theglobalenergysectorisgoing throughatransition.

Theenergytransitionisanevolvingconcept.Alsoregardedasenergytransitions, theeighteenthandtwentieth-centuryswitchoversofenergysystemsfrombiomass tocoalandfromcoaltooilandgas,respectively,primarilysoughtmoreefficient fuelsinlogisticsandutilization.Althoughitpredominantlypursues decarbonization oftheenergysector,thetwenty-first-centuryenergytransitionhasseveralother importantdimensions,suchasdecentralizedordistributedenergygenerationand digitalizationofenergysystems.Decreasedenergyusethroughenergyefficiency measuresisalsoimperativeforthistransition.Theenergytransitionisanemerging andevolvingtopicinthepolicyandtechnologycirclesandacademicandscientific domains.Thebookaimstopresentacomprehensiveandintegratedperspective ofthetwenty-first-centuryenergytransition,definingitsfourdimensions(4Ds):

Decarbonization,Decentralization,DecreasingUse, and Digitalization.Itdiscusses thewiderangeoftechnologies,classifyingthemunderthese 4Ds oftheenergy transition.

Thebookhasfivesections.Thefirstisanopening,andsectionstwo,three,four, andfivearededicatedtothe4Dsoftheenergytransition: Decarbonization,Decentralization,DecreasingUse, and Digitalization,respectively.Theintroductorysection consistsoftwochapters;thefirstpresentsanoverviewofthefour-dimensional energytransition,whiletheseconddiscussestheenergytransitionthroughcase studiesfromGermanyandChina.Focusingon Decarbonization,thesecondsection isthelargestpartofthebook,containingsevenchapters.Theopeningchapterin thissectiondiscussesthebroaderdimensionsof Decarbonization intheenergy sector.Meanwhile,eachofthesubsequentsixchaptersfocusesonadifferentdecarbonizationtechnology,suchasrenewableenergy,hydrogenandfuelcells,nuclear power,decarbonizationinthefossilfuelsector,electricvehicles,andintegrated energysystems.Thesectionon Decentralization hasthreechapters;thefirstis anintroductorychapter,andthesecondandthirdchaptersdiscusstherelevant technologiesandgovernance,respectively.Thesectionon DecreasingEnergyUse alsohasthreechapters;thefirstintroducesthisimportantdimensionoftheenergy transition,andthesecondandthirdchaptersdiscussenergyefficiencyinbuildings andindustry,respectively.Thelastsectionofthebookcovers Digitalization inthree chapters;thefirstdiscussestheprospectsofbroaderdigitaltechnologiesinthe energytransition,andthesecondandthirdchaptersdiscuss Digitalization insmart metersandsmartgrids,andblockchaintechnologies,respectively.Finally,thebook concludeswithan Epilogue

Foreword

Theroleofenergyhasneverbeenmoreimportant.Astheglobalcommunitykeeps itssightsonthegoalof1.5 ∘ CsetintheParisandGlasgowagreements,theneed todecarbonizeenergyanddecarbonizeitatpacehasneverbeenstarker.Muchis alreadybeingachievedinpartsoftheenergysystem,notablyinthepowersector insomepartsoftheworld.Still,thesignificantchallengesaheadofdecarbonizing theentiresystem,particularlytransport,heat,andindustry,willbemuchharder. Atthesametime,wehaveaone-timechancetodeliveranenergytransition,which bringslow-carbonenergytoall8billionpeopleonEarth,createsprosperity,andbalancestheEarth’sbiosystemsandclimate.Ifwecangetitright,theenergytransition willrequireindustry,governments,andinter-governmentbodiestorespond.Itwill requirethebestandbrightestmindstoprovidetheingenuity,engineeringsolutions, andaboveall,thethoughtleadershiptotacklethegreatestchallengeourindustry haseverfaced.

Iamdelightedtowritetheforewordtothisthought-leadingbook.The4Dsofthe energytransitionhavetheirrootsinthinkingbysomeoftheEnergyInstitute’sFellows.Inthistext,Dr.Asifandsomeoftheleadingglobalexpertsonenergybring the4Dsrightuptodateandprovidedeepinsightsintothefast-evolvingchanges intheenergysector,focusedon: Decarbonization, Decentralization,DecreasingUse, and Digitalization.Ifirmlybelievethatallfourelementsarecriticaltoachievinga net-zeroenergysystem.

Theneedtodecarbonizeisclear;thebestmeansofdoingsoarenotalwaysclear. Understandingthedifferentpathways,compromisesanduncertaintiesarecritical, particularlyinaviation,shipping,andindustry.

Forover100years,theenergysystemindevelopedeconomieshasbeenahighly centralizedcommandandcontrolsystem.However,decentralizationcreatesthe opportunityforconsumerstobecomeenergyproducersandturnpartsofthe energysystemupsidedown.Thisisparticularlytrueindevelopingeconomies, andaspenetrationofEVsandheatgrowsdramatically,itwillbecomeincreasingly important,eveninthemostdevelopedeconomies.

Digitalizationwillplayacrucialroleinenablingdecentralizedsystemstooperatesuccessfully.However,incontrasttotelecommunications,media,andtravel,the potentialofdigitalintheenergysystemtomatchsupplyanddemand,optimize

infrastructure,andengageconsumersremainsavirtuallyuntappedopportunity. However,changeiscoming,anditiscomingfast.

Finally,anditdoesnormallycomelast,isthenotionofdecreasingourenergyuse. Improvingenergyefficiencymustbeattheheartofdeliveringtheenergytransition.Ourhomes,ourcars,ouroffices,everythingabouthowweproduceandconsumeenergyinvolvesshockinglevelsofinefficiency.Andyetimprovingefficiency anddecreasingenergyuseisoftenthecheapest,quickest,andeasiestroutetowards decarbonization.Soinsteadofcominglast,itshouldperhapscomefirst.Thisiswhy itisanintegralpartofthestrategy,trainingoffer,andcharteredqualificationsfocus atmyorganization,theEnergyInstitute.

Ihopethisbookwillhelpinformtheacademicandresearchcommunityonsome ofthecriticalchallengesaheadandhelpthemidentifynewandimportantareas toworkon.Ialsobelieveitwillequippolicymakers,internationalbodies,financial institutions,businesses,andmanyotherstounderstandthechallengesandopportunitiesaheadofusandhelpthemmaketherightdecisionstodelivertheenergy transition.Finally,IhopeyoulearnasmuchasIdidfromreadingit.

IntroductiontotheFour-DimensionalEnergyTransition MuhammadAsif

DepartmentofArchitecturalEngineering,KingFahdUniversityofPetroleumandMinerals,Dhahran, SaudiArabia

1.1Energy:ResourcesandConversions

Growinghumandependenceonenergyisoneofthedefiningcharacteristics ofthemodernage.Historically,theincreasinglyextensiveandefficientutilizationofenergyhasbeenpivotalintheevolutionofsocieties.However,the eighteenth/nineteenth-centuryindustrialrevolutionhasbeenaturningpointin human-energyinteraction.Energyhasattainedthestatusofaprerequisiteforall crucialaspectsofsocieties,i.e.mobility,agriculture,industry,health,education,and tradeandcommerce[1].Energyresourcesexistinmanyphysicalstates,harnessing andcapitalizingthroughvarioustechnologies.Theycanbebroadlyclassifiedinto twocategories:renewablesandnon-renewables.Renewableenergyresourcesare naturallyreplenishedorrenewed.

Examplesofrenewableresourcesincludesolarenergy,windpower,hydropower, andwaveandtidalpower.Energyresourcesthatarefiniteandexhaustibleare non-renewablesuchascoal,oil,andnaturalgas.Intermsofresources,energy canalsobeclassifiedintotwotypes:primaryresourcesandsecondaryresources. Primaryenergyresourcesconsistofnaturalorunrefinedresourcessuchasraw fossilfuel,biomass,solarradiation,wind,andflowingwater.Theseresourcescan beextractedorharnesseddirectlyfromnature.Secondaryenergyresourcesare refined/convertedfromprimaryresources.Forexample,electricityisasecondary energyresourcethatcanbeproducedbytransformingdifferentprimaryresources. Figure1.1showsexamplesofprimaryandsecondaryenergyresources.

Energycanbeclassifiedindifferentforms,typicallythroughseveralconversion andtransformationprocessesintheirusablelifecycle.Differentformsofenergy includechemicalenergy,thermalenergy,mechanicalenergy,electricalenergy, lightenergy,andsoundenergy.Thefourcommonlyusedformsofenergyandtheir mutualtransformationsareshowninFigure1.2.Italsohighlightstheassociated energyresources.

The4DsofEnergyTransition:Decarbonization,Decentralization,DecreasingUseandDigitalization, FirstEdition.EditedbyMuhammadAsif. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

2 1IntroductiontotheFour-DimensionalEnergyTransition

PrimaryresourcesSecondaryresources

Figure1.1 Primaryandsecondaryenergyresources.

Solar, nuclear, geothermal

Figure1.2 Energyresourcesandtransformations.

Theenergycontainedinfossilfuels–coal,oil,andnaturalgas–contributing toalmost80%oftheworld’stotalprimaryenergysuppliesischemicalenergy. Nuclearpowerandgeothermalenergyentertheusableenergyequationinthe formofthermalenergy.Windpower,hydropower,andwaveandtidalpower arecapitalizedasmechanicalenergy,whilesolarenergycanbeharnessedin theformofthermalenergyandelectricalenergy.Themostcommonenergy requirementsinday-to-daylifeincludeheat,electricity,andmechanizedmobility. Heatisprimarilyacquiredthroughfossilfuels,makingitachemicaltothermal energyconversionprocess.Useableheatcanalsobedirectlyacquiredfromsolar

1.2ClimateChangeinFocus 3

energy,geothermalenergy,andnuclearpower.Oneofthemostcommonenergy transformationpathwaysistoconvertchemicalenergyintomechanicalenergy. Thefirststageinthistransformationprocessinvolvesconvertingfossilfuel’s chemicalenergyintothermalenergy,usuallyintheformofsteam,hotwater, orhotgases,throughboilers,rotatingturbines,orinternalcombustionengines. Inthesecondstage,thermalenergyisconvertedtomechanicalenergythrough internalcombustionenginesandrotaryturbines.Theproducedmechanicalenergy isusedinmanyapplications,suchasrunningmachineryandtransportation.This mechanicalenergycanalsobeusedtoproduceelectricitywiththehelpofgenerators.Electricitycanbeproducedthroughvarioustransformationroutes,including chemical–thermal–mechanical–electrical,thermal–mechanical–electrical,and mechanical–electrical.

1.2ClimateChangeinFocus

Climatechangeisarguablythebiggestchallengetheworldfacestoday.Itiswidely regardedasaconsequenceofglobalwarming.ThegradualwarmingoftheEarth’s atmospherictemperatureasasmallfractionofthesolarradiationisentrappedby greenhousegases.GreenhousegasesarepartoftheEarth’satmosphere.Human activitiessuchasburningfossilfuels,transportation,powergeneration,andindustrialandagriculturalprocessesincreasetheconcentrationofthesegasesintheatmosphere.Theeighteenth-centuryindustrialrevolutionisconsideredtohavetriggered therapidgrowthinthereleaseofgreenhousegases.Forexample,theatmosphere’s carbondioxide(CO2 )concentrationhasincreasedfromthepre-industrialagelevel of280parts-per-million(ppm)to415ppm.TheaccelerationinthegrowthofCO2 concentrationcanbegaugedfromthefactthatalmost100ppmofthetotal135ppm incrementhasoccurredsince1960.Commonlyknowngreenhousegasesinclude watervapor,carbondioxide,nitrousoxide,methane,chlorofluorocarbons(CFCs), andhydrofluorocarbons(HFCs).Theimpactofagreenhousegasdependsonvariousfactorssuchastheirlevelofconcentrationorabundance,lifetime(durationof stayintheatmosphere),andabilitytotrapradiation(radiativeefficiency).Carbon dioxide(CO2 )istheprimarygreenhousegasemittedthroughhumanactivitiesand hasbeenadoptedasareferenceindextorepresenttheconcentrationofgreenhouse gases.Accordingly,theglobalwarmingpotential(GWP)–anindextocomparethe globalwarmingimpactofdifferentgreenhousegases–ofCO2 hasbeenregarded asone.

Duetonumerousinvolvedfactorsandtheirdynamicandcomplexinterrelationship,itisdifficulttopreciselypredictthenatureandextentoftheimplicationsofclimatechange.However,basedontheexpertinterpretationsofthe availabledataandscientificmodels,certainweather-relatedincidentsareattributed toclimatechangewithagreatdegreeofconfidence.Accordingly,climatechange leadstomanychallenges,includingseasonaldisorder,apatternofintenseandmore frequentweather-relatedeventssuchasfloods,droughts,storms,heatwavesand wildfires,financialloss,andhealthproblems[2].Climatechangealsoexacerbates

1IntroductiontotheFour-DimensionalEnergyTransition waterandfoodcrisesinmanypartsoftheworld.Inrecentdecades,theglobalfocus onclimatechangehasincreasedexponentially.Extremeweathereventsandnatural disasterssuchasfloods,storms,hurricanes,wildfires,anddroughtshaveplayed avitalrole.Since1880,theatmospherictemperaturehasincreasedby1.23 ∘ C (2.21 ∘ F).Therisingtemperatureisdrivenlargelybyincreasedanthropogenic greenhousegasemissions.AccordingtotheUSNationalAeronauticsandSpace Administration(NASA),mostatmosphericwarminghasoccurredoverthelastfour decades[3].Warmertemperaturesareincreasingthesealevelduetothemeltingof glaciers.Duringthetwentiethcentury,theglobalsealevelrosebyaround20cm. Theriseinsealevelhasbeenacceleratingeveryyear–overthelasttwodecades.It hasalmostdoubledthatofthelastcentury[3].Glaciersareshrinkingworldwide, includingtheHimalayas,Alps,Alaska,Rockies,andAfrica.

Extremeweatherconditionsandclimateabnormalitiesarebecomingmore frequent.Thesituationisalreadywidelydubbedastheclimatecrisis.Withthe recordedaccelerationintheaccumulationofgreenhousegasesandconsequent increaseinatmospherictemperature,climatechange-drivenweather-related disastersarebecomingmoreintenseandrecurrent.Therecentsevenyearshave beenthewarmestsincerecordsbegan,while2016and2020arereportedlytied forthehottestyearonrecord[3].July2021witnessedheatwaves,wildfires, storms,andfloodsworldwide.NorthAmericaparticularlyfacedintenseheat waves,besidesrecordhightemperaturesandmassivewildfires.California’sDeath Valleyrecordedatemperatureof54.4 ∘ C(130 ∘ F),potentiallythehighestever temperaturerecordedontheplanet,andBritishColumbiawitnessedatemperatureof49.6 ∘ C,obliteratingCanada’spreviousnationaltemperaturerecordby 8 ∘ C[4].Whiletheheatwavekilledover500peopleinCanadaalone,Europeand Asiawerehitbyunprecedentedflooding.Hightemperatures,heatwaves,and droughtsarealsocausingrecord-breakingwildfires.The2019–2020wildfirein Australiaburntaround19millionha,resultinginaneconomiclossofoverAU$ 100billionthatbecamethecostliestnaturaldisasterinnationalhistory[5].The year2021hasalsowitnessedheatwavesfuelingmassivewildfiresinAustralia, NorthAmerica,andEurope.Extremewildfiresarenowbecominganewnormal asexpertspredictmorefiresandhigherdegreesofdevastationaseachfireseason comes.

1.3TheUnfoldingEnergyTransition

Theglobalenergyscenarioexperiencesastringofchallengessuchasclimatechange, rapidgrowthinenergydemand,depletionoffossilfuelreserves,volatileenergy prices,andlackofuniversalaccesstoenergy.Thepost-industrialrevolutionenergy scenarioiscloselylinkedtoglobalwarmingasfossilfuelsareresponsibleforthe bulkofgreenhousegasemissions.Duetosurgingpopulation,economicandinfrastructuraldevelopment,andurbanization,fastgrowthintheglobalenergydemandis addingpressuresontheenergysupplychain.AccordingtotheEnergyInformation Administration(EIA),between2018and2050,theworldenergyrequirementsare

1.3TheUnfoldingEnergyTransition 5 projectedtoincreaseby50%[6].Mostofthisgrowthindemandisassociatedwith developingcountries.

Energyuseiscloselylinkedtotheenvironment.Itisestimatedthatdespite thepledgesandeffortsbytheglobalcommunitytotackleclimatechange,CO2 emissionsfromenergyandindustryhaveincreasedby60%sincetheUnitedNations FrameworkConventiononClimateChange(UNFCCC)wassignedin1992[7]. Climatechangeisalreadytherewithitsimplicationslikeseasonaldisorder,rising sealevel,atrendofmorefrequentandintenseweather-drivendisasterssuchas flooding,droughts,heatwaves,wildfires,storms,andassociatedfinanciallosses [8,9].Thesituationcallsforanurgentparadigmshiftintheenergysector.Asa responsetothechallenges,theglobalenergysectorisgoingthroughatransition toensureasupplyofenergycompatiblewiththedemandsofasustainablefuture fortheplanet.TheInternationalRenewableEnergyAgency(IRENA)definesthe energytransitionas“apathwaytowardthetransformationoftheglobalenergy sectorfromfossil-basedtozero-carbonbythesecondhalfofthiscentury.”The ongoingenergytransitionisneededtoreduceenergy-relatedCO2 emissionstolimit climatechange[10].

ThroughtheParisAgreement,theworldhasadoptedthefirst-everuniversally legallybindingglobalclimatedealtoavoidthedangersofclimatechangebylimitingglobalwarmingtobelow2 ∘ C.However,theIntergovernmentalPanelonClimate Change(IPCC)warnsthattheworldisseriouslyovershootingthistarget,heading towardahighertemperaturerise,askingformajorchangesinfourglobalsystems: energy,landuse,cities,andindustry.Theenergysectoriswherethegreatestchallengesandopportunitiesexist[11].

FollowingtheParisAgreement,manymajoreconomiesandeconomic blocks–suchastheUS,China,theEU,andtheUK–havecommittedtonet-zero carbonemissions.TheUS,EU,andtheUKaretargetingnet-zeroemissionsby 2050,whileChinaby2060.Eachcountryoreconomicblockisdevelopingitsplans forincrementallyachievingitsgoals,buttheywillallrequireatransformationof theenergysector[11].Forexample,theEUhasdecidedtoreduceemissionsby 55%fromthe1990levelby2030togonet-zeroby2050.TheUShasannouncedto cutemissionsby40–43%by2030.Someofthenotableinitiativesincludehaving 30GWofnewoffshorewindprojectsandcuttingthecostofsolarenergyfurtherby 60%overthenextdecadetoachieve100%renewableelectricityby2035[12].China targetsemissionstopeakby2030toreachcarbonneutralityby2060.Similarly, theUKhasplanstocutemissionsby68%by2030toreachthetargetby2050. AlandmarkdecisiontheUKhasmadeinshiftingawayfromfossilfuelsisclosing downallcoalpowerplantsby2024,whichmeansthecountryreducesitsreliance oncoalforpowergenerationfromaroundone-thirdtozerowithinadecade.Itis amajorsteptheUKhastakentowardthetransitionawayfromfossilfuelsand decarbonizationofthepowersectortoeliminatecontributionstoclimatechange by2050[13].

Renewableenergyisthebackboneoftheenergysector’stransitiontowardzero carbonemissions.Overthelastfewdecades,renewabletechnologies,especially solarphotovoltaic(PV)andwindturbines,havemadesignificanttechnological

1IntroductiontotheFour-DimensionalEnergyTransition andeconomicprogress.Theglobalinstalledcapacityofrenewablesincreased from2581GWin2019to2838GWin2020,exceedingexpansionintheprevious yearbyalmost50%.Forseveralyears,renewableenergyisaddingmorepower generationcapacitythanfossilfuelsandnuclearpowercombined.In2020, renewablescontributedtomorethan80%ofallnewpowergenerationcapacity addedworldwide.Therenewablesector’sgrowthispropelledbysolarandwind power,withthetwotechnologiesaccountingfor91%ofthenewrenewablesadded [14].TherewasoverUS$303billioninvestedinrenewableenergyprojectsduring theyear[15].Theupwardscaleoftherenewabledevelopmentscanbegaugedfrom China’sfirst100GWphaseofsolarandwindpowerbuildout.Theinitiativewill likelybeexpandedtoseveralhundredsofGWincapacityasChinaaimstodevelop 1200GWofrenewablesby2030[16].Therenewablesgrowthtrendsareprojected tocontinueastheannualcapacityadditionofsolarandwindpowerissettogrow fourfoldbetween2020and2030[11].

Renewables-baseddecentralizedordistributedgenerationsystemsarehelping bothurbanandruralsettings,providingseveralenergyservices.SolarPVisone ofthemostsuccessfultechnologies,especiallyatsmall-scaleandoff-gridlevels. Since2010,over180millionoff-gridsolarsystemshavebeeninstalledworldwide, including30millionsolar-homesystems.In2019,themarketforoff-gridsolar systemsgrewby13%,withsalestotaling35millionunits.Renewableenergyalso suppliedaroundhalfofthe19000mini-gridsinstalledbytheendof2019[15]. Efficientbiomasssystems,suchasimprovedcookingstovesandbiogassystems,are alsohelpingwiththeglobaleffortstoaccesscleanenergy[1,17].

1.4TheFourDimensionsoftheTwenty-FirstCentury EnergyTransition

Theuseofenergyhasevolvedthroughthecourseofhistory.Theavailabilityof refinedandefficientenergyresourceshasplayedadecisiveroleinadvancing societies,especiallysincetheindustrialrevolutionoftheeighteenthcentury.Inthe twenty-firstcentury,theinternationalenergyscenarioisexperiencingaprofound transitionastheworldincreasinglyembracesatrendawayfromfossilfuels.In recordedhistory,therehavebeentwomajorenergytransitions.Thefirstwasashift fromwoodandbiomasstocoalduringtheeighteenth-centuryindustrialrevolution, andthesecondwasthetwentiethcenturytransitionfromcoaltooilandgas.With theadventofthetwenty-firstcentury,theworldiswitnessingthedawnofthethird energytransition.

Theenergytransitionunfoldinginthetwenty-firstcenturyisunprecedented.It ismuchmorevibrant,intriguing,andimpactfulthantheearlierones.Itisfundamentallyasustainability-drivenenergypathwayfocusingondecarbonizingthe energysectorbyshiftingawayfromfossilfuels.Therefore,thisenergytransitioncan alsobetermed“sustainableenergytransition”or“low-carbonenergytransition.” However,theongoingenergytransitionisnotjustaboutreducingcarbonorshiftingawayfromfossilfuels.Thankstotheenormouschangesanddevelopmentson

1.4TheFourDimensionsoftheTwenty-FirstCenturyEnergyTransition 7 thefrontsofenergyresourcesandtheirconsumption,technologicaladvancements, socio-economicandpoliticalresponse,andevolvingpolicylandscape,itismuch moredynamic.Thisenergytransitionhasfourkeydimensions:decarbonization, decentralization,digitalization,anddecreasingenergyuse.

1.4.1Decarbonization

Decarbonizationoftheenergysectoristhemostimportantdimensionofthe ongoingenergytransition.ReductioninCO2 andothergreenhousegas(GHG) emissionsisfundamentaltothefightagainstclimatechange.Theenergysector canbedecarbonizedthroughvarioustechnologiesandsolutions,includingrenewableenergy,electricvehicles(EVs),hydrogenandfuelcells,carboncaptureand storage(CCS),andphasingoutoffossilfuels.Thereplacementoffossilfuelswith renewableenergyisthemostcriticalpartofthedecarbonizationdrive.Renewable energyisalreadysupplying26%oftheglobalelectricityneeds.Accordingto InternationalEnergyAgency(IEA),toachievenet-zeroemissionsby2050,almost 90%oftheglobalelectricitygenerationmustbesuppliedfromrenewables.While somedecarbonizationsolutionslikehydrogen,fuelcells,andCCSareyetto havetechno-economicmaturity,electricvehiclesarealreadymakinganimpact. Forexample,in2020,theworldwidesaleofEVsincreasedby41%despitethe COVID-relatedeconomicdownturnandadropof6%intheoverallsaleofvehicles. Duringthesameyear,Europerecordedtheregistrationofnewelectriccarsincrease by100%,andthenumberofelectriccarmodelsavailableworldwideincreasedfrom 260to370[18].Whileelectricmobilityisalsopavingitswayintheaviationandship industry,thesaleofelectriccarsisexpectedtoincreasefromaround3.5millionin 2020toover55millionby2030[11].

1.4.2Decentralization

Decentralizedordistributedgenerationistheenergygeneratedclosetothepoint ofuse.Decentralizedgeneration(DG)avoids/minimizestransmissionanddistributionsetup,savingcostsandlosses.Itoffersbetterefficiency,flexibility,andeconomythanlargeandcentralizedgenerationsystems.DGsystemscanemployvarious energyresourcesandtechnologiesandbegrid-connected,off-grid,orstand-alone. RenewableslikesolarandwindpowersystemsareleadingtheDGlandscape.DG isleadingintheglobalelectrificationefforts,presentingviablesolutionsformodernenergyneedsandenablingthelivelihoodsofhundredsofmillionswhostilllack accesstoelectricityorcleancookingsolutions[4].SolarPVisoneofthemostsuccessfulDGtechnologies,especiallyatsmall-scaleandoff-gridlevels.Itisestimated thatsince2010,over180millionoff-gridsolarsystemshavebeeninstalled,including30millionsolar-homesystems.In2019,themarketforoff-gridsolarsystems grewby13%,withsalestotaling35millionunits.Renewableenergyalsosupplied aroundhalfofthe19000mini-gridsinstalledworldwidebytheendof2019.Efficientbiomasssystemssuchasimprovedcookingstovesandbiogassystemsarealso helpingtheglobaleffortstowardcleanenergyaccess.In2020,theinstalledcapacity

1IntroductiontotheFour-DimensionalEnergyTransition ofoff-gridDGsystemsgrewby365MWtoreach10.6GW.Solarsystemsaloneadded 250MWtohaveatotalinstalledcapacityof4.3GW.

1.4.3Digitalization

Thedigitalrevolutionisalsorevampingtheenergysector.Digitalizationofthe energysectoremploystechnologieslikeartificialintelligence,machinelearning, bigdataanddataanalytics,InternetofThings,cloudcomputing,blockchain, androboticsandautomation.Thesetechnologiesareatvariousdegreesof techno-economicmaturityfortheirapplicationintheenergysector.Ingeneral, digitalizationisrevolutionizingtheenergysectorbyimprovingtheproductivity, safety,accessibility,andoverallsustainabilityofenergysystems.New,smartermodeling,monitoring,analyzing,andforecastingenergyproductionandconsumption arehelpingthesustainableenergytransition.However,withitsadvantages,digitalizationisalsoposingseveralchallenges.Mostimportantly,digitaltransformation heavilyreliesonlargedatasets,whichisincreasinglyexposingtheutilitiesand energyindustrytocybersecurityrisks.

1.4.4DecreasingEnergyUse

Energydemandisrisingworldwide,anditisestimatedthatbetween2018and2050, globalenergyrequirementswillincreaseby50%.Aone-dimensionalapproach tomatchingthegrowingenergydemandwithcorrespondingcapacityaddition isnotasustainablesolution,especiallywhentheplanetisalreadyovershooting itsbio-capacitybyalmost70%.Anysustainablewaytosatisfyglobalenergy requirementshastobeginwithdecreasingenergyusethroughenergyefficiency (EE)measures.Energyefficiencyisabettersolutiontoaddressenergyshortages thanaddingnewcapacity.Anegawatt–awattofenergynotusedthroughenergy efficiencymeasures–isconsideredthecheapestwattofenergy.Energyefficiency deliverseconomicandenvironmentalgainstoindustrialandcommercialentities, besidesofferingacompetitiveedge.Withtheavailabletechnologies,buildingand industrialsectorscanreducetheirenergyconsumptionby40–80%and18–26% [19,20].

1.5Conclusions

Thetwenty-firstcenturyenergytransitionisfundamentallyasustainability-driven energypathway.Inthefightagainstclimatechange,themainfocusoftheenergy transitionisondecarbonizationbyshiftingawayfromfossilfuel-basedenergysystems.Theenergytransitionisperceivedasapathwaytowardthetransformationof theglobalenergysectorfromfossil-basedtozero-carbonbythesecondhalfofthis century.FollowingtheParisAgreement,severalmajoreconomiesandeconomic blocks–includingtheUS,theUK,andtheEuropeanUnion–havecommittedto net-zerocarbonemissionsby2050,whileChinahastargeteditfor2060.However,

9 theongoingenergytransitionisnotjustaboutreducingcarbonorshiftingawayfrom fossilfuels.Itismorevibrantandimpactful,thankstotheenormouschangesand developmentsonenergyresourcesandtheirconsumption,technologicaladvancements,socio-economicandpoliticalresponse,andevolvingpolicylandscape.This energytransitionhasfourmainandcloselylinkeddimensions:decarbonization, decentralization,digitalization,anddecreasingenergyuse.Theenergysectorcan bedecarbonizedthroughvarioustechnologiesandsolutions,includingrenewable energy,electricvehicles(EVs),hydrogenandfuelcells,CCS,andphasingoutoffossilfuels.Renewableenergyhasapivotalroleindecarbonizingtheenergysector. Havingaccountedforover80%oftheworldwidenewlyaddedpowergeneration capacityin2020,renewableenergyhasalreadybecomeanimportantstakeholder intheglobalenergysector.However,itmaybechallengingforthedevelopedand industrializednationstoadjusttoremovingfossilfuelsandothercarbon-intensive processesfromtheireconomies.Energytransitionwillbeharderforthedeveloping nationsthatlackfinancialresources,infrastructure,policymeasures,andtechnical know-how.

References

1 Asif,M.(2021). EnergyandEnvironmentalSecurityinDevelopingCountries Springer.ISBN:978-3-030-63653-1.

2 Asif,M.(2019). EnergyandEnvironmentalSecurity,HandbookofEnvironmental Management.Taylor&Francis.

3 NASA(2021),Climatechange:howdoweknow,facts,NationalAeronautics andSpaceAdministration,Evidence|Facts–ClimateChange:VitalSignsofthe Planet(nasa.gov).

4 Samenow,J.(2021).‘Hardtocomprehend’:expertsreacttorecord121degreesin Canada,TheWashingtonPost.

5 Read,P.andDennis,R.(2020).Withcostsapproaching$100billion,thefiresare Australia’scostliestnaturaldisaster,TheConservation.

6 EIA(2019). EIAProjectsNearly50%IncreaseinWorldEnergyUsageby2050,led byGrowthinAsia,TodayinEnergy.U.S.EnergyInformationAdministration (EIA).

7 IEA(2021).Netzeroby2050:aroadmapfortheglobalenergysector,Flagship report,InternationalEnergyAgency.

8 Asif,M.(2021). EnergyandEnvironmentalOutlookforSouthAsia.Florida,USA: CRCPress.ISBN:978-0-367-67343-7.

9 Qudratullah,H.andAsif,M.(2020). DynamicsofEnergy,Environmentand Economy:ASustainabilityPerspective.Springer.ISBN:978-3-030-43578-3.

10 IRENA EnergyTransition.InternationalRenewableEnergyAgency(irena.org).

11 Gillam,E.andAsplund,R.(2021). WillSolarTaketheThrone.Invesco.

12 DOE(2021). HowWe’reMovingtoNet-zeroby2050.USDepartmentofEnergy.

13 GUK(2021). EndtoCoalPowerBroughtForwardtoOctober2024,Governmentof UK,PressRelease(www.gov.uk).

14 IRENA(2021). WorldAddsRecordNewRenewableCapacityin2020.Press Release,InternationalRenewableEnergyAgency(irena.org).

15 REN21(2020). Renewables2020GlobalStatusReport.RenewableEnergy Network.

16 Scully,J.(2021). ChinaSignalsConstructionStartof100GW,FirstPhaseofDesert RenewablesRollout.PV-Tech(pv-tech.org).

17 Asif,M.(2011). EnergyCrisisinPakistan:Origins,ChallengesandSustainable Solutions.OxfordUniversityPress.ISBN:978-0-19-547876-1.

18 K.Adler(2021),Globalelectricvehiclesalesgrew41%in2020,moregrowth comingthroughdecade.IEA,HISMarkit.https://ihsmarkit.com/researchanalysis/global-electric-vehicle-sales-grew-41-in-2020-more-growth-comi.html.

19 Hassan,M.T.,Burek,S.,andAsif,M.(2017). Barrierstoindustrialenergy efficiencyimprovement-manufacturingSMEsofPakistan. EnergyProcedia 113:135–142.

20 Asif,M.(2020).Roleofenergyconservationandmanagementinthe4D sustainableenergytransition. Sustainability 12:10006.https://doi.org/10.3390/ su122310006.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
[FREE PDF sample] The 4ds of energy transition : decarbonization, decentralization, decreasing use, by Education Libraries - Issuu