Full download Natural fiber-reinforced composites: thermal properties and applications senthilkumar

Page 1


Natural Fiber-Reinforced Composites: Thermal Properties and Applications Senthilkumar Krishnasamy

Visit to download the full and correct content document: https://ebookmass.com/product/natural-fiber-reinforced-composites-thermal-propertie s-and-applications-senthilkumar-krishnasamy/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Wool Fiber Reinforced Polymer Composites Sabu Thomas

https://ebookmass.com/product/wool-fiber-reinforced-polymercomposites-sabu-thomas/

Dietary Fiber: Properties, Recovery and Applications

Charis M. Galanakis

https://ebookmass.com/product/dietary-fiber-properties-recoveryand-applications-charis-m-galanakis/

Renewable Polymers and Polymer-Metal Oxide Composites: Synthesis, Properties, and Applications Sajjad Haider

https://ebookmass.com/product/renewable-polymers-and-polymermetal-oxide-composites-synthesis-properties-and-applicationssajjad-haider/

Strengthening of Concrete Structures Using Fiber

Reinforced Polymers (FRP): Design, Construction and Practical Applications Hwai-Chung Wu

https://ebookmass.com/product/strengthening-of-concretestructures-using-fiber-reinforced-polymers-frp-designconstruction-and-practical-applications-hwai-chung-wu/

Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials, and Biomedical Fields Thomas

https://ebookmass.com/product/non-thermal-plasma-technology-forpolymeric-materials-applications-in-composites-nanostructuredmaterials-and-biomedical-fields-thomas/

Reinforced polymer composites processing, characterization and post life cycle assessment WileyVch

https://ebookmass.com/product/reinforced-polymer-compositesprocessing-characterization-and-post-life-cycle-assessment-wileyvch/

MXenes and their Composites: Synthesis, Properties and Potential Applications (Micro and Nano Technologies) 1st Edition Kishor Kumar Sadasivuni (Editor)

https://ebookmass.com/product/mxenes-and-their-compositessynthesis-properties-and-potential-applications-micro-and-nanotechnologies-1st-edition-kishor-kumar-sadasivuni-editor/

Interfaces

in Particle and Fibre Reinforced Composites: From Macro to Nano Scales De Silva

https://ebookmass.com/product/interfaces-in-particle-and-fibrereinforced-composites-from-macro-to-nano-scales-de-silva/

Thermophysical Properties of Individual Hydrocarbons of Petroleum and Natural Gases: Properties, Methods, and Low-Carbon Technologies Boris A. Grigoriev

https://ebookmass.com/product/thermophysical-properties-ofindividual-hydrocarbons-of-petroleum-and-natural-gasesproperties-methods-and-low-carbon-technologies-boris-a-grigoriev/

NaturalFiber-ReinforcedComposites

NaturalFiber-ReinforcedComposites

ThermalPropertiesandApplications

EditedbySenthilkumarKrishnasamy,SenthilMuthuKumar Thiagamani,ChandrasekarMuthukumar,RajiniNagarajan,and SuchartSiengchin

Editors

Dr.SenthilkumarKrishnasamy DepartmentofMaterialsandProduction Engineering

TheSirindhornInternational Thai-GermanGraduateSchoolof Engineering(TGGS) KingMongkut’sUniversityof TechnologyNorthBangkok 1518WongsawangRoad,Bangsue Bangkok,10800 Thailand

Dr.SenthilMuthuKumarThiagamani DepartmentofMechanicalEngineering KalasalingamAcademyofResearchand Education Krishnankoil,626126 AnandNagar,TamilNadu India

Dr.ChandrasekarMuthukumar SchoolofAeronauticalSciences HindustanInstituteofTechnology& Science Padur,Kelambakkam Chennai,603103,TamilNadu India

Prof.RajiniNagarajan DepartmentofMechanicalEngineering KalasalingamAcademyofResearchand Education Krishnankoil,626126 AnandNagar,TamilNadu India

Prof.SuchartSiengchin DepartmentofMaterialsandProduction Engineering

TheSirindhornInternational Thai-GermanGraduateSchoolof Engineering(TGGS) KingMongkut’sUniversityof TechnologyNorthBangkok 1518WongsawangRoad,Bangsue Bangkok,10800 Thailand

CoverImage: ©derrrek/GettyImages

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedbythe DeutscheNationalbibliothek

TheDeutscheNationalbibliothekliststhis publicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>

©2022WILEY-VCHGmbH,Boschstr.12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34883-1

ePDFISBN: 978-3-527-83155-5

ePubISBN: 978-3-527-83157-9

oBookISBN: 978-3-527-83156-2

Typesetting Straive,Chennai,India

Printedonacid-freepaper 10987654321

Contents

Preface xiii

1ThermalCharacterizationoftheNaturalFiber-BasedHybrid Composites:AnOverview 1

ChandrasekarMuthukumar,SenthilkumarKrishnasamy,SenthilMuthu KumarThiagamani,RajiniNagarajan,andSuchartSiengchin

1.1Introduction 1

1.2ThermalCharacterization 3

1.2.1DMA 3

1.2.2TMA 5

1.2.3DSC 6

1.2.4TGA 6

1.3Conclusion 10 Acknowledgment 11 References 11

2ThermalPropertiesofHybridNaturalFiber-Reinforced ThermoplasticComposites 17

A.Vinod,YashasGowda,SenthilkumarKrishnasamy,M.RSanjay,and SuchartSiengchin

2.1Introduction 17

2.2ThermalProperties 18

2.2.1ThermogravimetricAnalysis(TGA) 18

2.2.2DifferentialScanningCalorimetry(DSC) 20

2.2.3ThermomechanicalAnalysis(TMA) 21

2.2.4DynamicMechanicalAnalysis(DMA) 23

2.2.5MeltFlowIndex(MFI) 24

2.3Conclusions 25 References 26

3ThermalPropertiesoftheNaturalFiber-ReinforcedHybrid PolymerComposites:AnOverview 31

JyotishkumarParameswaranpillai,SenthilkumarKrishnasamy,Suchart Siengchin,SabarishRadoor,RoshnyJoy,JinuJacobGeorge,Chandrasekar Muthukumar,SenthilMuthuKumarThiagamani,NisaV.Salim,andNishar Hameed

3.1Introduction 31

3.2ThermalPropertiesofNaturalFiberComposites 33

3.2.1ThermogravimetricAnalysis(TGA) 33

3.2.2DifferentialScanningCalorimetry(DSC) 38

3.2.3DynamicMechanicalAnalysis(DMA) 41

3.3Conclusion 45 Acknowledgment 45 References 46

4ThermalPropertiesofSugarPalmFiber-BasedHybrid Composites 53

R.A.Ilyas,S.M.Sapuan,A.Atiqah,M.R.M.Asyraf,N.M.Nurazzi,MohdN.F. Norrrahim,MohdA.Jenol,M.M.Harussani,R.Ibrahim,M.S.N.Atikah,and ChandrasekarMuthukumar

4.1Introduction 53

4.2ThermalAnalysisofSugarPalmFiber-BasedHybridComposites 58

4.2.1TGAPropertiesofSugarPalmComposites 58

4.2.2TGAPropertiesofSugarPalmHybridComposites 60

4.3DynamicMechanicalPropertiesofSugarPalmFiber-BasedHybrid Composites 63

4.3.1SugarPalm/GlassFiber 63

4.3.2SugarPalm/CassavaBagasse 66

4.3.3SugarPalm/Flax 66

4.4PotentialApplications 66

4.5Conclusions 72 Acknowledgment 72 References 72

5ThermalPropertiesofSisalFiber-BasedHybrid Composites 85 TamilMoliLoganathan,JesuarockiamNaveen,KoduriNagaGanapathi LakshmiReshwanth,KandasamyJayakrishna,andChandrasekar Muthukumar

5.1Introduction 85

5.2ThermalPropertiesofSisalFiber-ReinforcedPolymericComposites 87

5.3ThermalPropertiesofHybridSisalFiber/SyntheticFiber-Reinforced PolymericComposites 88

5.4ThermalPropertiesofSisal/OtherNaturalFiber-ReinforcedPolymeric Composites 89

5.5Conclusions 91 References 91

6ThermalPropertiesofFlaxFiberHybridComposites 93 CarloSantulli

6.1Introduction 93

6.2TechniquesforThermalAnalysisofNaturalFiberComposites 95

6.3GeneralPropertiesandCompositionofFlaxFibers 97

6.4ThermalAnalysisofFlaxFibers 98

6.5ThermalAnalysisofFlaxFiberComposites 99

6.6Conclusions 100 References 101

7ThermalPropertiesofthePineappleLeafFiber-BasedHybrid Composites 107 BheemappaSuresha,RajashekaraiahHemanth,andGurumurthyHemanth

7.1Introduction 107

7.2ThermalPropertiesofPolymers 108

7.2.1TheHypothesisofThermalConductivity 108

7.2.2FactorsInfluencingThermalConductivityofCompositeMaterials 109

7.2.2.1Fibers 109

7.2.2.2Resins 111

7.2.2.3Fillers 112

7.2.2.4Additives 112

7.2.2.5ThermalConductivityoftheComposites 113

7.3ImprovingtheThermalPropertiesofEpoxies 114

7.3.1ModificationofEpoxieswithOtherPolymersorAdditives 114

7.3.2ModificationofEpoxiesbyReinforcingFibers 115

7.3.3ModificationofEpoxiesbyMicron-sizedParticulateFillers 115

7.3.4ModificationofEpoxiesbyFillingNano-SizedParticulateFillers 116

7.3.5ModificationofEpoxiesbyHybridization 116

7.4TheThermalPropertiesofPALFComposites 116

7.4.1ThermogravimetricAnalysisofPALFComposites 116

7.4.2DynamicMechanicalAnalysisofPALFComposites 120

7.4.3DifferentialScanningCalorimetricAnalysisofPALFComposites 124

7.4.4ThermalConductivityofPALFComposites 126

7.5ConcludingRemarks 127

References 129

8ThermalPropertiesoftheGrass/CaneFiber-BasedHybrid Composites 135 ManickamRamesh,JaganathanManiraj,andSengottuveluRamesh

8.1Introduction 135

8.2HybridCompositeMaterials 137

8.3Cane/GrassFiberHybridComposites 138

8.4PropertiesofCane/GrassFiberHybridComposites 140

8.5ThermalProperties 140

8.5.1ThermalConductivity 141

8.5.2ThermogravimetricAnalysis 142

8.5.3DifferentialScanningCalorimetryAnalysis 142

8.5.4FlammabilityTest 142

8.5.5HeatDeflectionTemperatureTest 143

8.5.6SpecificHeatCapacityMeasurement 143

8.5.7ThermalDiffusivity 143

8.6ApplicationsofGrass/CaneHybridComposites 144

8.7Conclusion 145 References 145

9ThermalPropertiesoftheBananaFiber-BasedHybrid Composites 153

NasmiHerlinaSariandSenthilMuthuKumarThiagamani

9.1Introduction 153

9.2FabricationofBananaFiber-BasedHybridComposite 154

9.2.1HandLayup 154

9.2.2VacuumBag-AssistedResinInfusionTechnique 155

9.3ThermalPropertiesofBananaFiber-BasedComposites 155

9.3.1ThermalStability 155

9.3.2LimitingOxygenIndex(LOI) 155

9.3.3 ThermogravimetricAnalysis(TGA) 156

9.3.3.1JuteandBananaFiberHybridComposites 156

9.3.3.2GlassandBananaFiberHybridComposites 157

9.3.3.3Banana/Flax-BasedGlassFiberHybridComposite 158

9.4SpecificHeatofBananaFiberHybridComposites 159

9.4.1BananaandPineappleLeafFiberHybridComposites 159

9.5ThermalConductivityofBananaFiberHybridComposites 160

9.5.1ThePineappleLeafandBananaFiberHybridComposites 160

9.6ThermalDiffusivity 160

9.7Applications 162

9.8Conclusions 162 References 163

10ThermalPropertiesofKenafFiber-BasedHybrid Composites 167

ChinnaiyanDeepa,LakshminarasimhanRajeshkumar,andManickam Ramesh

10.1Introduction 167

10.2HybridComposites 168

10.3ThermalProperties 169

10.3.1ThermogravimetricAnalysis 169

10.3.2DynamicMechanicalAnalysis 172

10.3.3DerivativeThermogravimetricAnalysis 174

10.3.4DifferentialScanningCalorimetry 175

10.3.5ThermalMechanicalAnalysis 176

10.3.6FlammabilityTests 177

10.3.7HeatDeflectionTemperature 178

10.4Conclusion 178 References 179

11ThermalPropertiesofHempFiber-BasedHybrid Composites 183 HomNathDhakalandMohiniSain

11.1Introduction 183

11.2ThermalPropertiesMeasurementsandImportance 185

11.2.1ThermogravimetricAnalysis(TGA) 185

11.2.2HybridApproachforThermalPropertiesImprovement 186

11.2.3DifferentialScanningCalorimetry(DSC) 189

11.2.4ThermalConductivity 190

11.2.5LinearCoefficientofThermalExpansion 192

11.2.6DynamicMechanicalAnalysis(DMA) 193

11.3ConclusionsandPerspectives 197 References 198

12ThermalPropertiesofCelluloseNanofibersandTheir Composites 201 SadiaKhalid,TaniaAli,AsiyaGul,andSaraQaisar

12.1Introduction 201

12.2Nanocellulose 202

12.3CelluloseNanofibers(CNFs) 202

12.4CNFPreparation 203

12.5SurfaceFunctionalizationofCNFs 203

12.6CNF-BasedComposites 205

12.7ThermalPropertiesofCNFComposites 208

12.8CurrentStatus:CNF-BasedComposites 209

12.9OutlookandFuturePerspective 212 References 214

13InfluenceofGrapheneNanoparticlesonThermalPropertiesof theNaturalFiber-BasedHybridComposites 219 TheivasanthiThirugnanasambandan

13.1Introduction 219

13.2Graphene 220

13.3Polymer/GrapheneComposites 220

13.4Polymer/NaturalFiberComposites 223

13.5Polymer/NaturalFiber/GrapheneComposites 226

13.6Conclusion 233 Acknowledgments 233 References 233

14InfluenceofNanoclayontheThermalPropertiesofthe NaturalFiber-BasedHybridComposites 239 SabarishRadoor,JasilaKarayil,ReshmaSoman,AswathyJayakumar, EdayileveettilK.Radhakrishnan,JyotishkumarParameswaranpillai,and SuchartSiengchin

14.1Introduction 239

14.2EffectofNanoclayontheThermalStabilityofNaturalFiber-Based HybridComposites 240

14.3EffectofNanoclayontheInflammabilityofNaturalFiber-BasedHybrid Composites 244

14.4EffectofNanoclayontheMeltingandCrystallization(DSC)ofNatural Fiber-BasedHybridComposites 246

14.5EffectofNanoclayontheGlassTransitionTemperatureofNatural Fiber-BasedHybridComposites 247

14.6Conclusion 248 Acknowledgments 249 References 249

15EffectofCNTFillersonThermalPropertiesoftheBamboo Fiber-BasedHybridComposites 255 MohitHemath,BabuV.Hemath,HemathK.Govindarajulu,SanjayM. Rangappa,SuchartSiengchin,andSureshN.Sundaram

15.1Introduction 255

15.2MaterialsandMethods 257

15.2.1MaterialsUsed 257

15.2.2ExtractionofBambooMicrofibers 258

15.2.3AminoFunctionalizationofSWCNTs 258

15.2.4FabricationofSWCNT/BambooFiber(BF)/EpoxyHybrid Nanocomposites 258

15.2.5Characterization 259

15.2.5.1ThermalProperties 259

15.2.5.2FourierTransformInfrared(FTIR)Spectroscopy 259

15.2.5.3MechanicalPropertiesofSWCNT/BF/EpoxyComposites 259

15.2.5.4MorphologicalCharacteristics 260

15.3ResultsandDiscussion 260

15.3.1EffectonFTIRSpectra 260

15.3.2EffectonThermalDegradationProperties 260

15.3.3EffectonThermalConductivity 262

15.3.4EffectonMechanicalCharacteristics 264

15.3.4.1FlexuralandTensileProperties 264

15.3.5TensileFracture 265

15.3.5.1ImpactStrengthandHardness 266

15.4Conclusion 267 Acknowledgment 267 References 267

16EffectofMetalOxideFillersonThermalPropertiesofthe NaturalFiber-BasedHybridComposites 273 MohitHemath,HemathK.Govindarajulu,SanjayM.Rangappa,Suchart Siengchin,RubanRamalingam,andBabuV.Hemath

16.1Introduction 273

16.2MaterialsandMethods 274

16.2.1Materials 274

16.2.2ExtractionofBambooNanocelluloseFiber(BNF) 275

16.2.3FabricationofEpoxyHybridNanocomposites 275

16.2.4EpoxyHybridNanocompositeCharacterization 275

16.2.4.1ThermalProperties 275

16.2.4.2Flame-RetardantProperties 275

16.2.4.3MechanicalProperties 275

16.2.4.4MorphologicalProperties 276

16.2.4.5FourierTransformInfrared(FTIR)Spectra 276 16.3ResultsandDiscussion 276

16.3.1EffectonFTIRSpectra 276

16.3.2EffectonFlammability 277

16.3.3EffectonThermalStability 280

16.3.4EffectonMechanicalProperties 280

16.3.4.1TensileProperties 280

16.3.4.2TensileFracture 282

16.3.4.3FlexuralProperties 282

16.3.4.4CompressionProperties 283

16.3.4.5ImpactStrength 285

16.4Conclusion 286 References 286

17InfluenceofChemicalTreatmentsontheThermalProperties ofNaturalFiber-ReinforcedHybridComposites(NFRHC) 291 RafaeldeAvilaDelucisandJoséHumbertoS.AlmeidaJr

17.1Introduction 291

17.2ChemicalModificationsforNaturalFibersAppliedinHybrid Composites 295

17.2.1ChemicalTreatments 295

17.2.1.1ChemicallyTreatedNaturalFibersinHybridThermoset Composites 295

17.2.1.2ChemicallyTreatedFibersinHybridThermoplasticComposites 298

17.2.2ChemicalCouplingAgents 299

17.2.2.1MaleicAnhydride 299

17.2.2.2Silanization 300

17.2.3Two-StepTreatments 301

17.3ConcludingRemarks 302 References 303

18Physical,Mechanical,andThermalPropertiesof Fiber-ReinforcedHybridPolymerComposites 309 SubramanianRavichandran,SureshSagadevan,andMdEnamulHoque

18.1Introduction 309

18.2PreparationofCompositeMaterial 311

18.3CharacterizationofCompositeMaterial 312

18.3.1TensileTest 312

18.3.2FlexuralTest 312

18.3.3TestofWaterAbsorption 312

18.4ResultsandDiscussion 313

18.4.1MechanicalProperties 313

18.4.2WaterAbsorptionStudies 315

18.4.3ThermalProperties 316

18.5Conclusions 317

ConflictsofInterest 318 References 318

Index 321

Preface

Wearegladtopresentthebookentitled“NaturalFiber-ReinforcedComposites: ThermalPropertiesandApplications”tothermalanalysts,materialsscientists, materialsengineers,materialchemists,andresearchersworkinginthefieldof bio-composites.

Thisbookfocusesonexploringthethermalpropertiesofhybridcomposites reinforcedwithnaturalfibers.Asperliterature,thethermalpropertiesofthese compositescouldbeanalyzedbythetechniquessuchasdifferentialscanning calorimetry(DSC),thermomechanicalanalysis(TMA),thermogravimetricanalysis (TGA),anddynamicmechanicalanalysis(DMA).Inlieuofthis,allthechaptersare designedtocoverabroadaudiencewiththeaforementionedtechniquesonhybrid compositesreinforcedwithnaturalfibers.

Thisbookconsistsof18chaptersandisstructuredasfollows:Chapters1,2,and3 presenttheoverviewofthermalpropertiesofnaturalfiberreinforcedthermosetand thermoplastichybridcomposites.Chapters4to11discussthethermalpropertiesof hybridcompositesmadeupofdifferentnaturalfiberssuchassugarpalm,sisalfiber, flaxfiber,pineappleleaffiber,grass/canefiber,bananafiber,kenaffiberandhemp fiber.Chapters12to16provideinsightsontheeffectofnanofillers(e.g.graphene, nanoclay,CNT,metaloxide)onthermalpropertiesofnaturalfiberreinforced hybridcomposites.Chapter17discussestheeffectsofchemicaltreatmentsof hybridcompositesonthermalproperties.Chapter18providesanoverviewof physical,mechanical,andthermalpropertiesofhybridpolymercomposites.

Wethankourparentsandsincerelyappreciatethepublisher,thetypesetting professionalassociatedwiththisbook,andthankallthecontributingauthorsfor theirvaluabletimeandeffortsinsubmittingtheirworktothisbook.

ThermalCharacterizationoftheNaturalFiber-BasedHybrid Composites:AnOverview

ChandrasekarMuthukumar 1 ,SenthilkumarKrishnasamy 2,3 ,SenthilMuthu KumarThiagamani 3 ,RajiniNagarajan 3 ,andSuchartSiengchin 4

1 HindustanInstituteofTechnology&Science,DepartmentofAeronauticalEngineering,Kelambakkam, Chennai603103,Tamilnadu,India

2 KingMongkut’sUniversityofTechnologyNorthBangkok,CenterofInnovationinDesignandEngineering forManufacturing(CoI-DEM),1518WongsawangRoad,Bangsue,Bangkok10800,Thailand

3 KalasalingamAcademyofResearchandEducation,DepartmentofMechanicalEngineering,Krishnankoil 626126,TamilNadu,India

4 KingMongkut’sUniversityofTechnologyNorthBangkok,TheSirindhornInternationalThai-German GraduateSchoolofEngineering(TGGS),DepartmentofMaterialsandProductionEngineering,1518 WongsawangRoad,Bangsue,Bangkok10800,Thailand

1.1Introduction

Hybridcompositeisfabricatedbyaddingtwoormorefibersintoasinglepolymer system[1].Theresultingmaterialhasauniquefeaturethatcombinestheadvantages ofeachfiber.Sincedifferentfibersareaddedtogether,thebenefitsofoneparticulartypeoffiberpropertycouldbecompensatedwiththeotherfiberlackingaspecificproperty.Theperformanceofhybridcompositescouldbeinfluencedbymany factors[2–7]:

i.Fiberlength

ii.Fiberloading

iii.Fiberorientation

iv.Fiberlayersequence

v.Fiber/matrixinterfacialbonding

vi.Failurestrainoffiber

Thehybrideffectistermedasanapparentsynergisticimprovementofproperties duetodifferentfibersinasinglematrixsystem.Theselectionoffibersandtheir propertiesisofmainimportancetoachievetheenhancedpropertiesforthehybrid composites.Besidesthephysical,chemical,andmechanicalstabilitiesoffiber,the

NaturalFiber-ReinforcedComposites:ThermalPropertiesandApplications, FirstEdition. EditedbySenthilkumarKrishnasamy,SenthilMuthuKumarThiagamani, ChandrasekarMuthukumar,RajiniNagarajanandSuchartSiengchin. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

1ThermalCharacterizationoftheNaturalFiber-BasedHybridComposites:AnOverview matrixsystemalsodefinesthestrengthofthehybridcomposites.Thedifferenttypes ofhybridcompositesarecharacterizedasfollows[8–12]:

i.Towbytow:thefibersaremixeduprandomlyorregularly.

ii.Sandwichhybridcomposites:onematerialissandwichedbetweentwodifferent layers.

iii.Inter-plyorlaminated:twoormorefiberlayersarealternativelystackedregularly.

iv.Intimatelymixedfibers:varioustypesoffibersaremixeduprandomly.

Thoughthehybridcompositeshavemanyadvantages,theprimechallenges arereplacingthesyntheticfiber-reinforcedcompositesusingbiocomposites.Biocompositesexhibitfunctionalandstructuralstabilityduringstorageanddegrade upondisposalintotheenvironment.“Engineerednaturalfiber”isoneofthe excitingconceptstoobtaintheenhancedstrengthinthebiocomposites,which involvestheblendingoftheleafandstemfibers.Thecorrectblendingofthesetwo fibersexhibitsoptimumbalanceinmechanicalproperties,resultinginbalanced stiffness–toughnessproperties[13–15].

Themechanicalandphysicalcharacteristicsofthenaturalfiberareinfluenced bymanyfactors:(i)maturityoftheplantfiber,(ii)harvestingtimeandregion, (iii)soilcondition,(iv)rain,(v)sun,etc.Sincethenaturalfibersarenonabrasiveand hypoallergenic,theycouldbeprocessedefficiently.Amongstthevariousproperties ofnaturalfibers,thelowdensityandthecellularstructureallowthemtoexhibit betterthermalproperties.However,theamorphoushemicelluloseonthefiber surfacecanbeapotentialthreattothebetterinterfacialbondingbetweenthematrix andthefiber,therebyreducingtheproperties.Hence,themechanicalandthermal propertiesofthebiocompositescouldbefurtherenhancedthroughchemical treatments[16].Naturalfiberhascellulose,hemicellulose,andligninsusceptible todegradationonexposuretoelevatedtemperature[17–19].Thus,manystudies exploringthethermalpropertiesofthebiocompositeshavebeenpublishedoverthe years[20–22].Bybotanicaltype,thenaturalfibersareclassifiedintosixmajortypes (Table1.1).

Table1.1 Classificationofthenaturalfibers.

1.2ThermalCharacterization

Thethermalanalysesencompassafamilyoftechniquesthatwouldshareacommon feature,wherebyanymaterial’sresponsecouldbemeasuredthroughheatingor cooling.Thus,asignificantconnectionisheldbetweenthetemperatureandthe physicalpropertyofthematerials.Themostcommonthermaltechniquesthat havebeenusedbyresearchersandbyindustrialorganizationsforthermalcharacterizationarethermomechanicalanalysis(TMA),thermogravimetricanalysis (TGA),differentialscanningcalorimetry(DSC),anddynamicmechanicalanalysis (DMA).Thesetechniquesarenotonlyusedformeasuringthephysicalproperties withrespecttothetemperaturechangesbutalsousedinthefollowingareas:(i)to substantiatemechanicalpropertiesandthermalhistoryofthebiocomposites,(ii)to estimatetheservicelifeofcompositesindifferentenvironments,and(iii)asone ofthequalitycontrolapproachesinpolymersandtheirmanufacturingindustries. Figure1.1showssomeoftheessentialthermalanalysistechniquesandthe characteristicsmeasured[23–25].Intermsofresearch,thermalbehaviorofthebiocompositeshasbeeninvestigatedbyvaryingfibervolumefractions[26–28],varying fiberlayeringpatterns[29,30],usingdifferenttypesofchemicaltreatments[31,32], addingdifferentkindsoffillers[19,33,34],andusingpolymerblends[35,36].

Forinstance,Table1.2presentssomeoftheexperimentalworkscarriedouton thermalpropertiesusingdifferentnaturalfibers.

1.2.1DMA

Figure1.2presentsthestep-by-stepprocessinvolvedintheDMAofthepolymers andpolymer-basedcomposites.Outputparameterssuchasstoragemodulus(E′ or G′ ),lossmodulus(E′′ or G′′ ),anddampingfactor(tan �� )obtainedasthefunction oftemperatureareshowninFigure1.3a.Asthepolymerorcompositeisheated inthetemperaturerangewiththesimultaneousapplicationofoscillatoryload,it undergoesdisplacementorstrainwheresomeenergygetsstoredinthematerial, Thermal analysis techniques

Figure1.1 Variousthermalanalysistechniquesandtheirapplications.DFA,dielectric analysis.

1ThermalCharacterizationoftheNaturalFiber-BasedHybridComposites:AnOverview

Table1.2 Reportedthermalbasedworksofnaturalfiber-reinforcedhybridcomposites.

HybridcompositesDetailsofstudyReferences

Thermosetpolymers

Flax/sugarpalm/epoxyDMA[6]

Flax/wovenaloevera/epoxyTGA,DMA[20]

Sisal/cattail/polyesterThermalconductivity[37]

Datepalm/coirfiber/epoxyTGA[38]

Sisal/jute/sorghum/polyesterTGA[39]

Coir/Luffacylindrica/epoxyDMA[40]

Bamboo/kenaf/epoxyTGA,DMA,DSC[41]

Ramie/sisal/epoxySisal/curaua/epoxyTGA,DSC[42]

Flax/aloevera/hemp/epoxyTGA,DMA[43]

Kenaf/pineappleleaffiber/phenolicTGA[44]

Thermoplasticpolymers

Sugarpalm/roselle/polyurethaneTGA[45]

Jute/bamboo/polyethyleneDSC,TGA[46]

Sugarpalm/roselle/polyurethaneTGA[47]

Seaweed/sugarpalmfiber/thermoplasticsugar palmstarchagar TGA[48]

Coir/pineappleleaffiber/polylacticacid(PLA)TGA[49]

Coir/pineappleleaffiber/PLATGA,TMA[50]

Biodegradablepolymers

Sisal/hemp/bioepoxyDMA,TGA[29]

Kenaf/sisal/bioepoxyTGA,DSC,DMA[51]

Sisal/hemp/bioepoxyTGA[52]

whilesomeenergyisdissipatedasheatduetotheinternalfriction.Theresultant strainmeasuredbyapplyingtheoscillatoryloadisrepresentedaslossmodulus,storagemodulus,andphaseangleordampingfactor.Theabilityofthetestedmaterialto storetheenergyistermedasthestoragemoduluswhilethetendencyofthematerial todissipateheatenergyistermedasthelossmodulus.Storagemodulusrepresents thestiffnessofapolymerorcompositeandisoftenrelatedtoYoung’smodulus.Loss modulusisrelatedtothemolecularchainmotionssuchastransitionandrelaxation withinthepolymerduringtheheatingprocessandappliedload.Tan �� isadimensionlessnumberobtainedthroughtheratiooflossmodulustothestoragemodulus. Lowertan �� indicateshigherstiffnessandbetterinterfacialbondingbetweenfiber andpolymermatrix,whichrestrictsthemolecularmobilitywithinthepolymeric chains.

ASTM

standards

Input

D4440 Standard Test Method for Plastics: Dynamic Mechanical Properties Melt Rheology

D4473 Standard Test Method for Plastics: Dynamic Mechanical Properties: Cure Behavior

D5023 Standard Test Method for Plastics: Dynamic Mechanical Properties: In Flexure (Three-Point Bending)

D5024 Standard Test Method for Plastics: Dynamic Mechanical Properties: In Compression

D5026 Standard Test Method for Plastics: Dynamic Mechanical Properties: In Tension

D5279 Standard Test Method for Plastics: Dynamic Mechanical Properties: In Torsion

D5418 Standard Test Method for Plastics: Dynamic Mechanical Properties: In Flexure (Dual Cantilever Beam)

Specimen geometry

Frequency or strain

Type of load and clamping

Temperature program

Elastic Modulus vs. temperature

Viscous Modulus vs. temperature,

Damping Coefficient (tan ��) vs. temperature

Output

Assessment

Complex shear modulus in torsional mode

Glass transition temperature

Peak on loss modulus curve

Peak on tan �� curve

Peak on storage modulus curve

Figure1.2 Thermalcharacterizationsofthepolymerandpolymer-basedcomposite throughDMA,step-by-stepprocess.

Polymersareviscoelasticandcanbeclassifiedintocrystalline,amorphous, andsemicrystalline(hasbothcrystallineandamorphouscharacteristics)dependinguponthecomposition.Itisbecauseofthischaracteristicthatpolymersor polymer-basedcompositeundergoesphasechangeduringthesimultaneousapplicationoftheloadandheatingprocess(Figure1.3b).Figure1.3ashowsthetypical dataobtainedfromDMA.Glasstransitiontemperature(T g )isthetangentobtained inthephasechangeregionbetweenglassystateandrubberystate. T g canbebelow themeltingtemperatureforapolymer,whichhasbothcrystallineandamorphous characteristics.Thematerialtendstogetsofterratherthanmeltingat T g .DMAis particularlyusefulinidentifyingthecross-linkingdensityofthepolymer,asshown inFigure1.3b.Itcanbenoticedthatpolymerswithahighcross-linkingdensity havehigher T g andgreaterlossmodulusandstoragemodulus,whileitisviceversa forpolymerswithlowcross-linkingdensity[53].

1.2.2TMA

TMAisacommontechniqueusedforinvestigatingthedimensionalchangeofmaterialunderthecombinationoftemperatureandafixedload.Figure1.4presents thestep-by-stepprocessinvolvedintheTMAofthepolymersandpolymer-based composites.Dimensionalchangeofmaterial(atnanoscale)undertheinfluenceof temperatureandloadcanbemeasuredinvarioustestingmodesshowninFigure1.5. Changesinthefreevolumeofmaterialdependingupontheheatabsorptionorheat releasewithrespecttothetemperaturecanalsobedeterminedwiththistechnique. Figure1.6a–cshowsthatthe T g measurementforapolymerorapolymercompositecanbederivedfromtheTMA,DSC,andDMA.

Figure1.3 Thermalcharacterizationofpolymerandpolymer-basedcompositewithDMA. (a)Typicalcurve.(b)Viscoelasticcharacteristicsofthepolymer.Source:Sabaetal.[53].

1.2.3DSC

Figure1.7presentsthestep-by-stepprocessinvolvedintheDSCofthepolymers andpolymer-basedcomposites.InDSC,thesampleisheatedaround30totheelevatedtemperaturebeyond300 ∘ Cwiththeconstantsupplyofliquidnitrogenina controlledchamber.Heatflowfromthesampleismeasuredasafunctionofthe temperatureshowninFigure1.8.Thechangesincrystallineproperties(T g ),melting temperature(T m ),andcoldcrystallizationtemperature(T c )duetotheintroduction oftwoormorenaturalfibersinthehybridcompositecanbeevaluated.

1.2.4TGA

Figure1.9presentsthestep-by-stepprocessinvolvedintheTGAofthepolymers andpolymer-basedcomposites.Itisaneffectivetechniqueforevaluatingthermal

D696 Standard Test Method for Coefficient of Linear Thermal Expansion of Plastics Between –30 and 30 °C with a Vitreous Silica Dilatometer

E831-19 Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis

Specimen preparation

Type of load

Heating rate

Start/end temperature

Change in dimension vs. temperature

Volumetric change vs. temperature

Coefficient of linear thermal expansion

Free volume

Glass transition temperature

Shear modulus

Young’s modulus

Creep

Flexural stress

Softening point and heat deflection temperature

Figure1.4 Thermalcharacterizationsofthepolymerandpolymer-basedcomposite throughTMA,step-by-stepprocess.

Figure1.5 TestmodesinTMA.Source:SabaandJawaid[54].

decompositioncharacteristicsofthepolymersandpolymercompositereinforced withthenaturalfibersorthesyntheticfibers.Itprovidesthequantitativemass changeofthesampleduetotheheatingunderthecontrolledatmosphere.Anatural fiberobtainedfromtheplantsandtreesismadeupoftheconstituentssuchascellulose,hemicellulose,lignin,pectin,wax,moisture,andash.Thepercentageofconstituentscanvaryfromonefibertoanother,whichhasasignificantinfluenceonthe thermaldecompositioncharacteristicsofnaturalfiberandtheircomposites.Also, thesefiberconstituentsarevolatileandcandecomposeatelevatedtemperatures.

8 1ThermalCharacterizationoftheNaturalFiber-BasedHybridComposites:AnOverview

Figure1.6 T g measuredfromthevariousthermalcharacterizationtechniques:(a)TMA,(b) DSC,and(c)DMA.Source:SabaandJawaid[54].

D3418-15 Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry

E1269-05 Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry

Specimen preparation Specimen weight Purge gas and gas flow rate Heating rate Start/end temperature

vs.

Figure1.7 Thermalcharacterizationsofthepolymerandpolymer-basedcomposite throughDSC,step-by-stepprocess.

AfewmilligramofsampleisplacedintheTGAchamberandheatedfromroom temperaturetoashighas700 ∘ Catadefinedramprateinthepresenceofnitrogento preventoxidationinsidethechamber.Thethermalstabilityofapolymer-basedcompositeisusuallyassessedfromthethermogram(TGcurve)andthederivativethermogram(DTGcurve)obtainedfromtheTGA,asshowninFigure1.10.Parameters

Figure1.8 ThermogramfromtheDSC.Source:Chandrasekaretal.[55].

ASTM

D2288 Test Method for Weight Loss of Plasticizers on Heating

D4202 Test Method for Thermal Stability of PVC Resin

D2115 Test Method for Volatile Matter (including water) of Vinyl Chloride Resins

D2126 Test Method for Response of Rigid Cellular Plastics to Thermal and Humid Aging

D3045 Recommended Practice for Heat Aging of Plastics Without Load

D1870 Practice for Elevated Temperature Aging Using a Tubular Oven

D4218 Test Method for Determination of Carbon Black Content in Polyethylene Compounds by a Muffle-Furnace

D1603 Test Method for Carbon Black in Olefin Plastics

D5510 Practice for Heat Aging of Oxidatively Degradable Plastics

E1131 Standard Test Method for Compositional Analysis by TGA

E1641 Standard Test Method for Decomposition Kinetics by TGA

Specimen preparation

Specimen weight

Purge gas and flow rate

Heating rate

Weight % vs. Temperature

Derivative weight % vs. Temperature,

Residue %

Onset temperature

Inflection temperature

Endset temperature

Filler content

Figure1.9 Thermalcharacterizationsofpolymerandpolymer-basedcompositesthrough TGA,step-by-stepprocess.

suchastheonset,endset,inflectiontemperature,andresiduepercentageattheend oftheheatingprocessintheTGAchamberareusuallycomparedtoidentifychanges duetothereinforcementpercentageandtypeoffiber.Degradationtemperature at5%,10%,20%,40%,and80%weightlossalongwiththeresiduecanalsobe discussed.

Inthecaseofapolymer,thermaldecompositionusuallyoccursinsinglestage, whereas,forthenaturalfiber,thermaldecompositionoccursintwoorthreestages

1ThermalCharacterizationoftheNaturalFiber-BasedHybridComposites:AnOverview

Figure1.10 AtypicalTGAcurveofthehybridcompositewithkenafandbamboofibers. (a)Thermogram.(b)Derivativethermogram.Source:Cheeetal.[41].

dependingonthefiberconstituents.Initialmasslossbetween50and150 ∘ Cisdue totheevaporationofmoistureinthefiber.Theweightlossatatemperaturerange between150and300 ∘ Cisassociatedwiththedecompositionofhemicelluloseand lignin.Thefinalweightlossbetween300and700 ∘ Cisattributedtothedecompositionofcellulose.Sincethefiberconstituentsvaryfromonefibertoanother,TGA hasprovedtobeanexcellenttoolfordeterminingthechangesinthermaldecompositioncharacteristicsofthehybridpolymercompositereinforcedwithtwoormore naturalfibers.Thermalstabilityisalsoevaluatedbyresiduepercentageattheendof theheatingprocess.Thehighertheresidues,thebetterthethermalstabilityofthe composite.

1.3Conclusion

Thermalcharacterizationofthehybridcompositesusingvariouscommercially availabletechniquessuchasDMA,TMA,DSC,andTGAhasbeendiscussed.The followingaretheconclusions:

● DMAisusefulindeterminingthecreeppropertiesandinterfacialinteractionsof thecompositesandmeasuringtheirstiffness,materialbehaviorwithrespectto thephasetransitions,damping,andrelaxationprocessesinarangeoffrequencies andtemperatures.

● TMAhelpsindefiningthematerialstructurewithrespecttothedimensional andvolumetricchange,surfaceroughness,molecularstructure,cure,and cross-linkingpolymerizationunderbothstaticanddynamicloads.

● DSCisconsideredasoneoftheprimarytoolsforthermodynamicanalysisand curekinetics.Itgivesusefulinformationonthephasetransitionsuponheating andquantifiestheglasstransitiontemperature,meltingtemperature,andcrystallizationtemperaturerelatedtothepolymersandpolymer-basedbiocomposites.

● TGAhasbeenwidelyusedtoillustratethethermalstabilityofthecomposites, whichprovidesthequantitativemasschangeofthesampleduetoheating.Italso providesvitalinformationonthedecompositioncharacteristicsoftheconstituents ofthecompositesatelevatedtemperatures.

Theforthcomingchaptersofthisbookwouldgiveextensiveinformationonthe above-discussedthermalcharacterizationtechniqueswithrespecttodifferentnaturalfibersandpolymerstargetedforvariousapplications.

Acknowledgment

ThisstudywasfinanciallysupportedbytheKingMongkut’sUniversityofTechnologyNorthBangkok(KMUTNB),Thailand,throughgrantno.KMUTNB-BasicR64-16andthroughgrantno.KMUTNB-64-KNOW-07.

References

1 Naveen,J.,Jawaid,M.,Amuthakkannan,P.,andChandrasekar,M. (2018).Mechanicalandphysicalpropertiesofsisalandhybridsisal fiber-reinforcedpolymercomposites. MechanicalandPhysicalTestingof Biocomposites,Fibre-ReinforcedCompositesandHybridComposites:427–440. https://doi.org/10.1016/B978-0-08-102292-4.00021-7.

2 Senthilkumar,K.,Kumar,T.S.M.,Chandrasekar,M.etal.(2019).Recent advancesinthermalpropertiesofhybridcellulosicfiberreinforcedpolymer composites. InternationalJournalofBiologicalMacromolecules 141:1–13.

3 Asim,M.,Paridah,M.T.,Chandrasekar,M.etal.(2020).Thermalstabilityof naturalfibersandtheirpolymercomposites. Cellulose 174:175.

4 Nayak,S.Y.,Sultan,M.T.H.,Shenoy,S.B.etal.(2020).Potentialofnaturalfibers incompositesforballisticapplications–areview. JournalofNaturalFibers: 1–11.

5 Thiagamani,S.M.K.,Krishnasamy,S.,andSiengchin,S.(2019).Challengesof biodegradablepolymers:anenvironmentalperspective. AppliedScienceand EngineeringProgress 12:149.

6 Chandrasekar,M.,Shahroze,R.M.,Ishak,M.R.etal.(2019).Flaxandsugar palmreinforcedepoxycomposites:effectofhybridizationonphysical,mechanical,morphologicalanddynamicmechanicalproperties. MaterialsResearch Express 6(10):1–11.

7 Chandrasekar,M.,Siva,I.,Kumar,T.S.M.etal.(2020).Influenceoffibre inter-plyorientationonthemechanicalandfreevibrationpropertiesofbanana fibrereinforcedpolyestercompositelaminates. JournalofPolymersandthe Environment:1–12.

8 Matykiewicz,D.(2020).Hybridepoxycompositeswithbothpowderandfiber filler:areviewofmechanicalandthermomechanicalproperties. Materials(Basel) 13:1802.

1ThermalCharacterizationoftheNaturalFiber-BasedHybridComposites:AnOverview

9 Ravishankar,B.,Nayak,S.K.,andKader,M.A.(2019).Hybridcompositesfor automotiveapplications–areview. JournalofReinforcedPlasticsandComposites 38:835–845.

10 Mochane,M.J.,Mokhena,T.C.,Mokhothu,T.H.etal.(2019).Recentprogress onnaturalfiberhybridcompositesforadvancedapplications:areview.13(2): 159–198.

11 Senthilkumar,K.,Saba,N.,Rajini,N.etal.(2018).Mechanicalpropertiesevaluationofsisalfibrereinforcedpolymercomposites:areview. Constructionand BuildingMaterials https://doi.org/10.1016/j.conbuildmat.2018.04.143.

12 Guna,V.,Ilangovan,M.,Ananthaprasad,M.G.,andReddy,N.(2018).Hybrid biocomposites. PolymerComposites 39:E30–E54.

13 Dong,C.(2018).Reviewofnaturalfibre-reinforcedhybridcomposites. JournalofReinforcedPlasticsandComposites 37:331–348.https://doi.org/ 10.1177/0731684417745368.

14 Li,M.,Pu,Y.,Thomas,V.M.etal.(2020).Recentadvancementsofplant-based naturalfiber–reinforcedcompositesandtheirapplications. Composites.PartB, Engineering 108254.

15 Thakur,V.K.,Thakur,M.K.,andPappu,A.(2017). HybridPolymerComposite Materials:PropertiesandCharacterisation.WoodheadPublishing.

16 Thiagamani,S.M.K.,Nagarajan,R.,Jawaid,M.etal.(2017).Utilizationofchemicallytreatedmunicipalsolidwaste(spentcoffeebeanpowder)asreinforcement incellulosematrixforpackagingapplications. WasteManagement 69:445–454. https://doi.org/10.1016/j.wasman.2017.07.035.

17 Shahroze,R.M.,Ishak,M.R.,Sapuan,S.M.etal.(2019).Effectofsilicaaerogel additiveonmechanicalpropertiesofthesugarpalmfiber-reinforcedpolyester composites. InternationalJournalofPolymerScience 2019:1–4.

18 Shahroze,R.M.,Ishak,M.R.,Salit,M.S.etal.(2018).Effectoforgano-modified nanoclayonthemechanicalpropertiesofsugarpalmfiber-reinforcedpolyester composites. BioResources 13:7430–7444.

19 Shahroze,R.M.,Ishak,M.R.,Salit,M.S.etal.(2019).Sugarpalmfiber/polyester nanocomposites:influenceofaddingnanoclayfillersonthermal,dynamic mechanical,andphysicalproperties. JournalofVinyl&AdditiveTechnology 26(3):236–243.

20 Arulmurugan,M.,Selvakumar,A.S.,Prabu,K.,andRajamurugan,G.(2020). Effectofbariumsulphateonmechanical,DMAandthermalbehaviourofwoven aloevera/flaxhybridcomposites. BulletinofMaterialsScience 43:58.

21 Sarasini,F.,Tirillò,J.,Sergi,C.etal.(2018).Effectofbasaltfibrehybridisation andsizingremovalonmechanicalandthermalpropertiesofhempfibre reinforcedHDPE. Composites https://doi.org/10.1016/j.compstruct.2018.01.046.

22 Monteiro,S.N.,Calado,V.,Rodriguez,R.J.S.,andMargem,F.M.(2012).Thermogravimetricbehaviorofnaturalfibersreinforcedpolymercomposites–an overview. MaterialsScienceandEngineeringA 557:17–28.

23 Hatakeyama,T.andHatakeyama,H.(2006). ThermalPropertiesofGreen PolymersandBiocomposites.SpringerScience&BusinessMedia.

24 Menczel,J.D.andPrime,R.B.(2009). ThermalAnalysisofPolymers:FundamentalsandApplications.Wiley.

25 Menczel,J.D.,Judovits,L.,Prime,R.B.etal.(2009).Differentialscanning calorimetry(DSC). ThermalAnalysisofPolymers:Fundamentalsand Applications:7–239.

26 Nurazzi,N.M.,Khalina,A.,Chandrasekar,M.etal.(2020).Effectoffiberorientationandfiberloadingonthemechanicalandthermalpropertiesofsugarpalm yarnfiberreinforcedunsaturatedpolyesterresincomposites. Polimery 65:35.

27 Krishnasamy,S.,Muthukumar,C.,Nagarajan,R.etal.(2019).Effectoffibre loadingandCa(OH)2 treatmentonthermal,mechanical,andphysicalpropertiesofpineappleleaffibre/polyesterreinforcedcomposites. MaterialsResearch Express 6:085545.https://doi.org/10.1088/2053-1591/ab2702.

28 SenthilMuthuKumar,T.,Rajini,N.,ObiReddy,K.etal.(2018).All-cellulose compositefilmswithcellulosematrixandNapiergrasscellulosefibril fillers. InternationalJournalofBiologicalMacromolecules 112:1310–1315. https://doi.org/10.1016/j.ijbiomac.2018.01.167.

29 Krishnasamy,S.,Thiagamani,S.M.K.,Muthukumar,C.etal.(2019).Effectsof stackingsequencesonstatic,dynamicmechanicalandthermalpropertiesof completelybiodegradablegreenepoxyhybridcomposites. MaterialsResearch Express. 6:105351.https://doi.org/10.1088/2053-1591/ab3ec7.

30 Chandrasekar,M.,Ishak,M.R.,Sapuan,S.M.etal.(2018).Fabricationoffibre metallaminatewithflaxandsugarpalmfibrebasedepoxycompositeandevaluationoftheirfatigueproperties. JournalofPolymerMaterials 35:463–473.

31 Liu,K.,Zhang,X.,Takagi,H.etal.(2014).Effectofchemicaltreatmentson transversethermalconductivityofunidirectionalabacafiber/epoxycomposite. Composites.PartA,AppliedScienceandManufacturing 66:227–236.

32 Arrakhiz,F.Z.,Elachaby,M.,Bouhfid,R.etal.(2012).Mechanicalandthermal propertiesofpolypropylenereinforcedwithAlfafiberunderdifferentchemical treatment. MaterialsandDesign 35:318–322.

33 SenthilMuthuKumar,T.,Rajini,N.,Siengchin,S.etal.(2019).Influence of Musaacuminate bio-filleronthethermal,mechanicalandvisco-elastic behaviorofpoly(propylene)carbonatebiocomposites. InternationalJournalof PolymerAnalysisandCharacterization 24:439–446.https://doi.org/10.1080/ 1023666X.2019.1602910.

34 SenthilMuthuKumar,T.,Senthilkumar,K.,Chandrasekar,M.etal.(2019). Characterization,thermalanddynamicmechanicalpropertiesofpoly(propylene carbonate)lignocellulosic Cocosnucifera shellparticulatebiocomposites. MaterialsResreachExpress 6https://doi.org/10.1088/2053-1591/ab2f08.

35 Ahmetli,G.,Deveci,H.,Soydal,U.etal.(2012).Epoxyresin/polymerblends: improvementofthermalandmechanicalproperties. JournalofAppliedPolymer Science 125:38–45.

36 Hassan,E.,Wei,Y.,Jiao,H.,andMuhuo,Y.(2013).Dynamicmechanicalpropertiesandthermalstabilityofpoly(lacticacid)andpoly(butylenesuccinate)blends composites. JournalofFiberBioengineeringandInformatics 6:85–94.

1ThermalCharacterizationoftheNaturalFiber-BasedHybridComposites:AnOverview

37 Mbeche,S.M.andOmara,T.(2020).Effectsofalkalitreatmentonthemechanicalandthermalpropertiesofsisal/cattailpolyestercommingledcomposites. PeerJ MaterialsScience 2:e5.

38 Dixit,S.,Joshi,B.,Kumar,P.,andYadav,V.L.(2020).Novelhybridstructural biocompositesfromalkalitreated-datepalmandcoirfibers:morphology,thermalandmechanicalproperties. JournalofPolymersandtheEnvironment 28: 2386–2392.

39 Kumar,S.S.(2020).EffectofnaturalFiberloadingonmechanicalproperties andthermalcharacteristicsofhybridpolyestercompositesforindustrialand constructionfields. FibersandPolymers 21:1508–1514.

40 Krishnudu,D.M.,Sreeramulu,D.,andReddy,P.V.(2020).Astudyoffillercontentinfluenceondynamicmechanicalandthermalcharacteristicsofcoirand luffacylindricareinforcedhybridcomposites. ConstructionandBuildingMaterials 251:119040.

41 Chee,S.S.,Jawaid,M.,Sultan,M.T.H.etal.(2019).Acceleratedweathering andsoilburialeffectsoncolour,biodegradabilityandthermalpropertiesof bamboo/kenaf/epoxyhybridcomposites. PolymerTesting 79:106054.

42 Pereira,A.L.,Banea,M.D.,Neto,J.S.S.,andCavalcanti,D.K.K.(2020).Mechanicalandthermalcharacterizationofnaturalintralaminarhybridcompositesbased onsisal. Polymers(Basel) 12:866.

43 Murugan,M.A.,Kumar,A.S.S.,andDineshkumar,C.(2020).Analysisof thermal,dynamicandmechanicalpropertiesofhybridaloevera/hempFRE bio-composites. Mater.TodayProc. 22:970–975.

44 Asim,M.,Jawaid,M.,Paridah,M.T.etal.(2019).Dynamicand thermo-mechanicalpropertiesofhybridizedkenaf/PALFreinforcedphenolic composites. PolymerComposites 40:3814–3822.

45 Radzi,A.M.,Sapuan,S.M.,Jawaid,M.,andMansor,M.R.(2019).Waterabsorption,thicknessswellingandthermalpropertiesofroselle/sugarpalmfibre reinforcedthermoplasticpolyurethanehybrid. Composites:1–7.

46 Liew,F.K.,Hamdan,S.,Rahman,M.R.etal.(2020).Thermo-mechanicalpropertiesofjute/bamboo/polyethylenehybridcomposites:thecombinedeffectsof silanecouplingagentandcopolymer. PolymerComposites 41(11):4830–4841.

47 Radzi,A.M.,Sapuan,S.M.,Jawaid,M.,andMansor,M.R.(2019).Effectofalkalinetreatmentonmechanical,physicalandthermalpropertiesofroselle/sugar palmfiberreinforcedthermoplasticpolyurethanehybridcomposites. Fibersand Polymers 20:847–855.

48 Jumaidin,R.,Sapuan,S.M.,Jawaid,M.etal.(2017).Thermal,mechanical, andphysicalpropertiesofseaweed/sugarpalmfibrereinforcedthermoplastic sugarpalmstarch/agarhybridcomposites. InternationalJournalofBiological Macromolecules 97:606–615.https://doi.org/10.1016/j.ijbiomac.2017.01.079.

49 Siakeng,R.,Jawaid,M.,Ariffin,H.,andSapuan,S.M.(2018).Thermal propertiesofcoirandpineappleleaffibrereinforcedpolylacticacidhybrid composites. IOPConferenceSeries:MaterialsScienceandEngineering 368 https://doi.org/10.1088/1757-899X/368/1/012019.

50 Siakeng,R.,Jawaid,M.,Asim,M.etal.(2020).Alkalitreatedcoir/pineappleleaf fibresreinforcedPLAhybridcomposites:evaluationofmechanical,morphological,thermalandphysicalproperties. ExpressPolymerLetters 14:717–730.

51 Yorseng,K.,Rangappa,S.M.,Pulikkalparambil,H.etal.(2020).Acceleratedweatheringstudiesofkenaf/sisalfiberfabricreinforcedfullybiobased hybridbioepoxycompositesforsemi-structuralapplications:morphology, thermo-mechanical,waterabsorptionbehaviorandsurfacehydrophobicity. ConstructionandBuildingMaterials 235:117464.https://doi.org/10.1016/ j.conbuildmat.2019.117464.

52 Senthilkumar,K.,Ungtrakul,T.,Chandrasekar,M.etal.(2020).Performanceof sisal/hempbio-basedepoxycompositesunderacceleratedweathering. Journalof PolymersandtheEnvironment:1–13.

53 Saba,N.,Jawaid,M.,Alothman,O.Y.,andParidah,M.T.(2016).Areviewon dynamicmechanicalpropertiesofnaturalfibrereinforcedpolymercomposites. ConstructionandBuildingMaterials 106:149–159.https://doi.org/10.1016/ j.conbuildmat.2015.12.075.

54 Saba,N.andJawaid,M.(2018).Areviewonthermomechanicalpropertiesof polymersandfibersreinforcedpolymercomposites. JournalofIndustrialand EngineeringChemistry 67:1–11.https://doi.org/10.1016/j.jiec.2018.06.018.

55 Chandrasekar,M.,Ishak,M.R.,Sapuan,S.M.etal.(2017).Areview onthecharacterisationofnaturalfibresandtheircompositesafter alkalitreatmentandwaterabsorption. Plastics,RubberandComposites https://doi.org/10.1080/14658011.2017.1298550.

ThermalPropertiesofHybridNaturalFiber-Reinforced ThermoplasticComposites

A.Vinod,YashasGowda,SenthilkumarKrishnasamy,M.RSanjay,andSuchart Siengchin

NaturalCompositesResearchGroupLab,TheSirindhornInternationalThai-GermanGraduateSchoolof Engineering(TGGS),KingMongkut’sUniversityofTechnologyNorthBangkok,1518Pracharat1road, Wongsawang,Bangsue,Bangkok,10800,Thailand

2.1Introduction

Theprolongeduseofsyntheticmaterialsiscausingharmfuleffectsontheenvironmentthroughproductionanddisposal.Theadventofhazardsontheenvironment hasinfluencedmanyindustrialistsandresearcherstoadoptecofriendlymaterials likenaturalfibersasreinforcementsinthermoplasticpolymercomposites.Over thepastfewdecades,duetotheindustrialrevolution,manynaturalfiberslikejute, sisal,andhempareusedtodevelopcomponentsintheautomotive,household, andcivilconstructions.Thisextensiveuseofnaturalresourceshascreateda demandandanurgetoidentifynewpotentialresources[1–5].Inthisregard,many newnaturalfiberslike Tridaxprocumbens,Saccharumbengalense,Parthenium hysterophorus, and Catharanthusroseus areidentifiedaspotentialreinforcements inpolymermatrices[6–9].Theplantfibersareconsideredasbetterreinforcements duetotheirremarkablepropertieslikelowdensity,biodegradability,availability, andprocessability.Plantfiber-reinforcedlightweightstructuresinautomobiles improveditsperformancebyimprovingthefueleconomyandreducingthelandfill ondisposal.Thenaturalfibershaveothergoodpropertieslikeexcellentelectrical, thermal,andacousticinsulationproperties[9–11].

Despitetheiradvantages,therearecertaindeficiencieslikelowerstiffness,lower thermalstability,strengthdegradationwithrespecttotime,watersensitivity,lower impactresistance,andeasilypronetobacterialandfungalattacks.Inmanycases,a singletypeofreinforcementcannotofferthedesirablepropertiesrequiredforthe application.Toovercometheissue,hybridcompositesaredeveloped,whichisa combinationoftwoormorematerialslikenatural–naturalornatural–synthetic[12]. Thereinforcementsinhybridthermoplasticpolymercompositemaybeintheform offillers,mats,orfibers.Thehybridizationofnaturalfibercompositesprovidesan optionforachievingablendofhighstrengthtoweightratio,goodthermalstability,

NaturalFiber-ReinforcedComposites:ThermalPropertiesandApplications, FirstEdition. EditedbySenthilkumarKrishnasamy,SenthilMuthuKumarThiagamani, ChandrasekarMuthukumar,RajiniNagarajanandSuchartSiengchin. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

2ThermalPropertiesofHybridNaturalFiber-ReinforcedThermoplasticComposites

anddurablecomponentswhencomparedtoasingletypeofreinforcements.This approachofhybridizationmainlyhelpsinachievingcost-effectivenessandreduces theuseofsyntheticmaterialswhichpollutestheenvironment[13].

Thethermalbehaviorofthecompositeisavitalpropertythatdefinesthefunctionalityofthematerialsintemperature-sensitiveenvironments.Applicationsof compositesinautomobiles,aerospace,andindustrialinsulationaremostlyprone totemperaturefluctuation.Itisessentialtostudythethermalaspectsofthehybrid compositetodevelopamoresustainableanddurablematerialthatissuitablefor commercialization[14].Varioustechniquesinvolvingthethermalstudyofnatural fiberhybridcompositesarediscussedintheforthcomingsections2.2.1to2.2.4.

2.2ThermalProperties

Thermalpropertieslikethermalstability,glasstransitiontemperature(T g ),storage modulus(E′ ),lossmodulus(E′′ ),andmeltflowpropertiesofcomposites,mustbe evaluatedbeforeusinginversatiletemperature-fluctuatingapplications[15,16]. Thesepropertieshelptotailorthepropertiesofthermoplasticpolymercomposites toenhancetheirthermalaspectsforsuitabilityandsustainabilityintheapplication.Currently,therearevariousthermoplasticpolymerslikepolypropylene (PP),polyethylene(PE),polystyrene(PS),polylacticacid(PLA),polyamide,and polyhydroxyalkonates(PHA),whicharecommonlyusedasamatrixinnatural fiberhybridcomposites[17,18].Thermoplasticpolymersareverymuchsensitive totemperature,whichresultsinphasetransitioninelevatedtemperatures.The phasetransitiontemperaturesofthethermoplasticpolymerscanbealteredby reinforcingthemwithvariousnaturalfibersorwiththecombinationofnaturaland syntheticfibers.Thesekindsofreinforcementblocktheheatflowandrestrictthe polymerchainmovementbyelevatingtheglasstransitiontemperature(T g ),which subsequentlyraisesthetemperature-withstandingability.Thesereinforcements playavitalroleincontrollingcertainfactorssuchasheatdiffusion,thermal insulationcapacity,meltflow,phasetransitiontemperature,etc.Hence,itisvery crucialtostudythethermalpropertiesofcomposites.Adetailedsurveyaboutthe thermalpropertiesofhybridnaturalfiber-basedthermoplasticcompositesisgiven intheforthcomingsections2.2.1to2.2.4.Thecurrentworkwillbeverybeneficial fortheresearchers,industries,scientists,andacademicianstoknowaboutthe recentadvancesintestingprocedures,characterizationprinciples,andthermal propertiesofrecentlyidentifiedhybridthermoplasticcomposites.

2.2.1ThermogravimetricAnalysis(TGA)

TGAanalysisisperformedtomeasuretherateofchangeinmasswithafunctionof temperatureandtimeinacontrolledenvironmentandtopredictthethermalstabilityandthecompositionofthecomposite.InstrumentslikeMettlerToledo(Model: TGA2SF)andPerkinElmer(Model:TGA8000N5320011,N5320010,TGA4000system)arecommonlyusedtoperformtheanalysis[19].Asampleof5mgisplacedin

0/40 SP/G 10/30 SP/G 20/20 SP/G 30/10 SP/G

Figure2.1 (a)TGAsugarpalm/glassfibercomposite(b)DTGSugarpalm/glassfiber composite.Source:Atiqahetal.[21].

analuminumcruciblewithinafurnace.Thetestiscarriedoutinacontrolledenvironmentataheatingrateof10 ∘ Cmin 1 withintherangeof30–1000 ∘ Cdepending uponthecomposite’scomposition.Theresultingthermogramisthegraphicalrepresentationoftemperaturevs.mass,whichprovidesinformationaboutthermalstability,compositionsofinitialsamples,andtheintermediatecompoundsformedduring heating.Theseresultfromphysicalphenomenalikephasetransitions,absorption anddesorption,solid–gasreactions,anddecompositionwithrespecttotemperature. TheTGAanalysisalsoprovidesderivativethermogravimetrycharts(DTG),which isthefirstderivativeofthermogravimetry.Furthermore,ithelpsintheinvestigation ofreactionkinetics,appliedkinetics,oxidativedegradation,andoxidativestability [20].ThehighestpeakoftheDTGcurveatanytemperaturegivestherateoflossin mass.Incaseofoverlappingreactions,therearedifficultiesinpredictingtheinitial andfinaldegradationtemperaturesusingTGcurves,whiletheDTGcurvesprovide preciseinformationoninitialandfinaldegradationtemperatures.AmodelTGAand DTGresultsarepresentedinFigure2.1.

Figure2.1a,bshowsthethermogravimetryresultsofsugarpalm/glassfiberreinforcedthermoplasticpolyurethanehybridcomposites.DTGcurvesfrom Figure2.1bshowthattheincreasedadditionofSPF(30/10SPF/GF)totheTPU matrixincreasedtheweightlossattemperature T max 435 ∘ C.Furthermore,it reducedthedecompositiontemperatureoftheTPUhybridcomposites.ItisconcludedthatthereductioninGFandincreaseintheSPFdidnotaffectthethermal stabilityofcomposites[21].Asimilarbehaviorisobservedinjute–glassepoxy thermosetcomposites[22].Whenglassfibersarehybridizedwithbamboofibersin thepolypropylenematrix,theresultingthermogramsrevealanincreaseinthermal stabilityfor15%bamboofiber/15%glassfiber/2%maleicanhydridecouplingagent, duetoincreasedbondingandthehigherthermalstabilityofglassfibers[23]. Variousstudiesshowedthatthehybridizationofsyntheticfiberswithnaturalfibers providesdesirablethermalstability,andtheuseofsyntheticmaterialsisreduced bythesubstitutionofnaturalfibers.Moreover,theresultingthermalpropertiesare comparablewiththoseofsyntheticreinforcements.Similarly,whenglassfibers andshorthempfibersarehybridizedinpolypropylene,theTGAresultsrevealan

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.