Raft polymerization - methods, synthesis, and applications in 2 vol. moad graeme (ed.) all chapter i

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/raft-polymerization-methods-synthesis-and-applicatio ns-in-2-vol-moad-graeme-ed/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Advances in Synthesis Gas: Methods, Technologies and Applications, Volume 2: Syngas Purification and Separation Mohammad Reza Rahimpour

https://ebookmass.com/product/advances-in-synthesis-gas-methodstechnologies-and-applications-volume-2-syngas-purification-andseparation-mohammad-reza-rahimpour/

Photoinitiators: Structures, Reactivity and Applications in Polymerization Jean-Pierre Fouassier

https://ebookmass.com/product/photoinitiators-structuresreactivity-and-applications-in-polymerization-jean-pierrefouassier/

Chiral Building Blocks in Asymmetric Synthesis: Synthesis and Applications Elzbieta Wojaczynska

https://ebookmass.com/product/chiral-building-blocks-inasymmetric-synthesis-synthesis-and-applications-elzbietawojaczynska/

Advances in Synthesis Gas: Methods, Technologies and Applications, Volume 3: Syngas Products and Usages Mohammad Reza Rahimpour

https://ebookmass.com/product/advances-in-synthesis-gas-methodstechnologies-and-applications-volume-3-syngas-products-andusages-mohammad-reza-rahimpour/

Advances in Synthesis Gas: Methods, Technologies and Applications, Volume 1: Syngas Production and Preparation Mohammad Reza Rahimpour

https://ebookmass.com/product/advances-in-synthesis-gas-methodstechnologies-and-applications-volume-1-syngas-production-andpreparation-mohammad-reza-rahimpour/

Advances in Synthesis Gas: Methods, Technologies and Applications, Volume 4: Syngas Process Modelling and Apparatus Simulation Mohammad Reza Rahimpour

https://ebookmass.com/product/advances-in-synthesis-gas-methodstechnologies-and-applications-volume-4-syngas-process-modellingand-apparatus-simulation-mohammad-reza-rahimpour/

Superatoms: Principles, Synthesis and Applications Puru Jena

https://ebookmass.com/product/superatoms-principles-synthesisand-applications-puru-jena/

Nanomaterials in Clinical Therapeutics. Synthesis and Applications 1st Edition Mainak Mukhopadhyay

https://ebookmass.com/product/nanomaterials-in-clinicaltherapeutics-synthesis-and-applications-1st-edition-mainakmukhopadhyay/

Quantum Dots: Fundamentals, Synthesis and Applications Rakshit Ameta

https://ebookmass.com/product/quantum-dots-fundamentalssynthesis-and-applications-rakshit-ameta/

RAFTPolymerization

RAFTPolymerization

Methods,SynthesisandApplications

Volume1 Editedby

RAFTPolymerization

Methods,SynthesisandApplications

Volume2 Editedby

Editors

Prof.Dr.GraemeMoad

CSIROManufacturing ResearchWay

Clayton,Victoria3168

Australia

Dr.EzioRizzardo

CSIROManufacturing ResearchWay

Clayton,Victoria3168

Australia

Allbookspublishedby WILEY-VCH arecarefullyproduced.Nevertheless, authors,editors,andpublisherdonot warranttheinformationcontainedin thesebooks,includingthisbook,to befreeoferrors.Readersareadvised tokeepinmindthatstatements,data, illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-Publication Data

Acataloguerecordforthisbookis availablefromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek

TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>

©2022WILEY-VCHGmbH,Boschstr. 12,69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc. usedinthisbook,evenwhennot specificallymarkedassuch,arenotto beconsideredunprotectedbylaw.

PrintISBN: 978-3-527-34495-6

ePDFISBN: 978-3-527-82134-1

ePubISBN: 978-3-527-82136-5

oBookISBN: 978-3-527-82135-8

CoverDesign Formgeber,Mannheim, Germany

Typesetting Straive,Chennai,India

Printedonacid-freepaper

10987654321

Preface xv

Acknowledgements xvii

1OverviewofRAFTPolymerization 1

GraemeMoadandEzioRizzardo References 5

2TerminologyinReversibleDeactivationRadical Polymerization(RDRP)andReversible Addition–FragmentationChainTransfer(RAFT) Polymerization 15 GraemeMoad

2.1TerminologyforReversibleDeactivationRadicalPolymerization (RDRP) 15

2.2TerminologyinReversibleAddition–FragmentationChainTransfer (RAFT)Polymerization 18

2.3TerminologyThatIsNotRatifiedbyIUPAC 24 References 24

3HowtoDoaRAFTPolymerization 25 AlmarPostmaandMelissaSkidmore

3.1Introduction 25

3.2IPLandscape 29

3.3GeneralExperimentalConditions 29

3.3.1Initiator 32

3.3.2Solvent 32

3.3.3Temperature 32

3.3.4Pressure 33

3.4RAFTPolymerizationofStyrene 33

3.4.1ExperimentalProceduresfortheRAFTPolymerizationofStyrene 34

3.5RAFTPolymerizationofMethacrylatesandAcrylates 37

3.5.1Methacrylates 38

3.5.2Acrylates 38

3.5.3ExperimentalProceduresfortheRAFTPolymerizationof Methacrylates 39

3.5.4ExperimentalProceduresfortheRAFTPolymerizationofAcrylates 41

3.6RAFTPolymerizationofAcrylamidesandMethacrylamides 43

3.6.1Methacrylamides 44

3.6.2Acrylamides 44

3.6.3ExperimentalProceduresfortheRAFTPolymerizationofAcrylamides andMethacrylamides 45

3.7RAFTPolymerizationofVinylEstersandVinylAmides 46

3.7.1ExperimentalProceduresfortheRAFTPolymerizationofVinylEsters andVinylAmides 47

3.8Copolymers 48

3.8.1ExperimentalProceduresforRAFTCopolymers 49

3.9BlockCopolymers 50

3.9.1ExperimentalProceduresforRAFTBlockCopolymers 51

3.10Conclusion 53 References 54

4KineticsandMechanismofRAFTPolymerizations 59 MichaelBuback

4.1Introduction 59

4.2IdealRAFTPolymerizationKinetics 60

4.3PulsedLaserExperimentsinConjunctionwithEPRDetection 61

4.4QuantumChemicalCalculationsoftheRAFTEquilibrium 65

4.5Xanthate-,Trithiocarbonate-andDithiobenzoate-Mediated Polymerizations 66

4.5.1GeneralAspectsofActualRAFTPolymerizations 66

4.5.2Xanthates 69

4.5.3Trithiocarbonates 72

4.5.4Dithiobenzoates 76

4.5.5The‘MissingStep’Reaction 77

4.5.6KineticAnalysisofDithiobenzoate-MediatedBAPolymerizations 85

4.5.7QuantumChemicalCalculationsfortheCIP*–CPDBModelSystem 87

4.5.8Dithiobenzoate-MediatedMMAPolymerizationsandModel Systems 88

4.6SummaryofResultsandConcludingRemarks 89 References 91

5RAFTPolymerization:MechanisticConsiderations 95 JohnF.Quinn,GraemeMoad,andChristopherBarner-Kowollik

5.1Introduction 95

5.2RoleoftheRGroup 96

5.2.1ChainTransferandLeavingGroupAbility 96

5.2.2MeasurementoftheChainTransferConstant 97

5.2.3MechanisticImplicationsforBlockCopolymerSynthesis 103

5.2.4Re-InitiationandInitialization 105

5.2.5RGroupStabilityandImplicationsforChainTransferKinetics 109

5.2.6DifferentialLeavingGroupAbilityandMechanisticDiscrimination 109

5.3RoleoftheZGroup 112

5.3.1TheZGroupandRadicalAdditiontotheThiocarbonyl 112

5.3.2TheZ-GroupandSideReactions 114

5.3.3ManipulatingZtoDictateReactivity:‘Switchable’RAFTAgents 116

5.3.4TheZ-GroupandReactionKinetics 118

5.3.5IntermediateRadicalTermination 119

5.3.6SlowFragmentationoftheIntermediateRadical 123

5.3.7StabilityoftheZGroupDuringReaction 126

5.4LightEffectsontheRateofPolymerization 130

5.5Conclusion 131 References 132

6QuantumChemicalStudiesofRAFTPolymerization 139 MichelleL.Coote

6.1Introduction 139

6.2Methodology 140

6.2.1ElectronicStructureCalculations 140

6.2.2KineticsandThermodynamics 143

6.2.3SolventEffects 147

6.2.4AccuracyandOutstandingChallenges 147

6.3ComputationalModellingofRAFTKinetics 152

6.3.1SimplifiedModelsforTheoryandExperiment 153

6.3.2SideReactions 156

6.3.3ComputationalModelPredictions 159

6.3.4 Abinitio KineticModelling 165

6.4Structure–ReactivityStudies 167

6.4.1FundamentalAspects 167

6.4.2Structure–ReactivityinPracticalRAFTSystems 171

6.4.3RAFTAgentDesign 176

6.5Outlook 180 Abbreviations 180 References 181

7MathematicalModellingofRAFTPolymerization 187 PorfirioLópez-Domínguez,IvánZapata-González,EnriqueSaldívar-Guerra, andEduardoVivaldo-Lima

7.1Introduction 187

7.2DeterministicModellingTechniques(DMTs) 188

7.2.1MethodofMoments(MM) 188

7.2.1.1HomogeneousSystems 190

7.2.1.2HeterogeneousSystems 194

7.2.2Diffusion-ControlledorCL-DependentCoefficients 196

7.2.3CalculationofFullMolecularWeightDistributions 198

7.2.3.1ExplicitIntegrationMethods 199

7.2.3.2Probability-GeneratingFunction 201

7.2.3.3CalculationsUsingthePredici®Software 201

7.3StochasticModellingTechniques(SMTs) 204

7.3.1MonteCarlo 204

7.3.1.1HomogeneousSystems 205

7.3.1.2HeterogeneousSystems 205

7.4HybridMethods 206

7.5SpecificorNovelPolymerizationProcesses 206

7.5.1SemibatchPolymerization 206

7.5.2PolymerizationsinCSTRs/PFR 208

7.5.3BranchedCopolymerizations 209

7.5.4Microwave-Assisted(MA)RAFTPolymerization 210

7.6ClosingRemarks 211

Acknowledgments 212 References 212

8DithioestersinRAFTPolymerization 223 GraemeMoad

8.1Introduction 223

8.2MechanismofRAFTPolymerizationwithDithioesterMediators 224

8.2.1TransferCoefficientsofDithioesters 226

8.2.2RAFTEquilibriumCoefficientswithDithioesters 230

8.3ChoiceofRAFTAgents 230

8.3.1AromaticDithioesters(Z = ArylorHeteroaryl) 233

8.3.2FunctionalAromaticDithioesters(Z = ArylorHeteroaryl) 235

8.3.3Bis-aromaticDithioesters(Z = ArylorHeteroaryl) 235

8.3.4AliphaticDithioesters(Z = AlkylorAralkyl) 236

8.3.5Bis-aliphaticDithioesters(Z = AlkylorAralkyl) 237

8.4SynthesisofDithioesterRAFTAgents 237

8.5MonomersforDithioester-MediatedRAFTPolymerization 239

8.5.11,1-DisubsitutedMonomers 239

8.5.1.1Methacrylates 239

8.5.1.2Methacrylamides 240

8.5.1.3Other1,1-DisubsitutedMonomers 240

8.5.2MonosubstitutedMAMs 240

8.5.2.1Acrylates 240

8.5.2.2Acrylamides 273

8.5.2.3Styrenics 275

8.5.2.4DieneMonomers 278

8.5.31,2-DisubstitutedMAMs 279

8.5.4MonosubstitutedIAMsandLAMs 279

8.5.5MonomerswithReactiveFunctionality 279

8.5.6Macromonomers 280

8.6Cyclopolymerization 287

8.7Ring-OpeningPolymerization 287

8.8RAFTCrosslinkingPolymerization 288

8.9RAFTSelf-condensingVinylPolymerization 292

8.10RAFT-Single-UnitMonomerInsertion(RAFT-SUMI)into Dithioesters 292

8.11DithioestersinMechanism-TransformationProcesses 295

8.11.1Ring-OpeningPolymerization(ROP) 295

8.11.2Ring-OpeningMetathesisPolymerization(ROMP) 296

8.11.3AtomTransferRadicalPolymerization(ATRP) 296

8.11.4Nitroxide-MediatedPolymerization(NMP) 297

8.12ThermallyInitiatedRAFTPolymerizationwithDithioesters 298

8.13PhotoinitiatedRAFTwithDithioesters 299

8.14Redox-InitiatedRAFTwithDithioesters 300

8.15ReactionConditionsandSideReactionsofDithioesters 300

8.16RAFTEmulsion/MiniemulsionPolymerizationMediatedby Dithioesters 301

8.17DithioesterGroupRemoval/Transformation 302

8.17.1DithioesterGroupRemovalbyReactionwithNucleophiles 302

8.17.2DithioesterGroupRemovalbyRadical-InducedReactions 303

8.17.2.1Radical-InducedCoupling/Disproportionation 303

8.17.2.2Radical-InducedReduction 306

8.17.3DithioesterGroupRemovalbyOxidation 306

8.17.4DithioesterGroupRemovalbyThermolysis 309

8.17.5ElectrocyclicReactionsofDithioesters 310

8.17.6BoronicAcidCross-Coupling 311

8.17.7ConclusionsandOutlook 311 Abbreviations 313 References 318

9TrithiocarbonatesinRAFTPolymerization 359 GraemeMoad

9.1Introduction 359

9.2MechanismofRAFTPolymerizationwithTrithiocarbonate Mediators 359

9.2.1TransferCoefficientsforTrithiocarbonatesinRAFT Polymerization 362

9.2.2RAFTEquilibriumCoefficientsforTrithiocarbonates 367

9.3ChoiceofHomolyticLeavingGroupRforTrithiocarbonateRAFT Agents 367

9.3.1HomolyticLeavingGroup‘R’for1,1-DisubsitutedMAMs 368

9.3.2HomolyticLeavingGroup‘R’forMonosubstitutedMAMs 369

9.3.3HomolyticLeavingGroup‘R’forIAMsandLAMs 369

9.3.4Macro-leavingGroup‘R’forBlockCopolymerSynthesis 369

9.4ChoiceofActivatingGroup‘Z’forTrithiocarbonateRAFTAgents 370

9.5SymmetricTrithiocarbonates 370

9.5.1Bis-trithiocarbonates 370

9.6Non-symmetricTrithiocarbonates 378

9.7FunctionalTrithiocarbonates 379

9.8SynthesisofTrithiocarbonates 408

9.9PolymerSyntheseswithTrithiocarbonates 409

9.9.1Methacrylates 409

9.9.2Methacrylamides 424

9.9.3Other1,1-DisubstitutedMonomers 424

9.9.4Acrylates 424

9.9.5Acrylamides 424

9.9.6Styrenics 425

9.9.7DieneMonomers 425

9.9.8OtherMonosubstitutedMonomers(MAMs,IAMs,LAMs),Vinyl Monomers 425

9.9.9MonomerswithReactiveFunctionality 426

9.10Macromonomers 426

9.11Cyclopolymerization 426

9.12RadicalRing-OpeningPolymerization 428

9.13RAFTCrosslinkingPolymerization 428

9.14RAFTSelf-condensingVinylPolymerization 430

9.15RAFT-Single-UnitMonomerInsertion(RAFT-SUMI)into Trithiocarbonates 430

9.16TrithiocarbonatesinMechanismTransformationProcesses 433

9.16.1Ring-OpeningPolymerization(ROP) 434

9.16.2Ring-OpeningMetathesisPolymerization(ROMP) 434

9.16.3Ring-OpeningOpeningAlkyneMetathesisPolymerization (ROAMP) 435

9.16.4CationicPolymerization 435

9.16.5AnionicPolymerization 435

9.16.6NitroxideMediatedPolymerization(NMP) 435

9.16.7AtomTransferRadicalPolymerization(ATRP) 435

9.17PhotoinitiatedRAFTwithTrithiocarbonates 436

9.18Redox-InitiatedRAFTwithTrithiocarbonates 436

9.19RAFTEmulsion/Miniemulsion/DispersionPolymerizationMediatedby Trithiocarbonates 437

9.20ReactionConditionsandSideReactionsofTrithiocarbonates 438

9.21TrithiocarbonateGroupRemoval/Transformation 439

9.21.1TrithiocarbonateGroupRemovalbyRadical-InducedCoupling 439

9.21.2TrithiocarbonateGroupRemovalbyRadical-Induced Disproportionation 442

9.21.3TrithiocarbonateGroupRemovalbyRadical-InducedReduction 443

9.21.4TrithiocarbonateGroupRemovalbyReactionwithNucleophiles 444

9.21.5TrithiocarbonateGroupRemovalbyThermolysis 444

9.21.6TrithiocarbonateGroupRemovalbyOxidation 446

9.22ConclusionsandOutlook 446

Abbreviations 447

References 452

10XanthatesinRAFTPolymerization 493

MingxiWang,Jean-DanielMarty,andMathiasDestarac

10.1Introduction 493

10.2SynthesisofRAFT/MADIXAgents 493

10.2.1ReactionofaXanthateSaltwithanAlkylatingAgent 500

10.2.2ReactionwithXanthogenDisulfides 500

10.2.3XanthatesUsedasPrecursorstoProvideNewXanthates 500

10.3ExperimentalConditions 504

10.3.1Initiation 504

10.3.1.1ThermalInitiators 504

10.3.1.2UVorVisibleLight 504

10.3.1.3 60 Co γ-rayIrradiation 505

10.3.1.4RedoxInitiation 505

10.3.2PolymerizationConditions 506

10.3.2.1High-PressurePolymerization 506

10.3.2.2HeterogeneousPolymerizations 506

10.4Kinetics 507

10.5Monomers 508

10.5.1Styrenics 508

10.5.2AcrylatesandAcrylamides 508

10.5.3Methacrylates 509

10.5.4VinylEsters 510

10.5.5 S-VinylMonomers 510

10.5.6VinylPhosphonicAcid 511

10.5.7 N -VinylMonomers 511

10.5.8Halo-olefins 512

10.5.9Ethylene 513

10.5.10CyclicKeteneAcetals(CKAs) 513

10.5.11DiallylMonomers 514

10.6MacromolecularArchitectures 514

10.6.1End-FunctionalHomopolymers/StatisticalCopolymers 515

10.6.2BlockCopolymers 516

10.6.3GradientCopolymers 519

10.6.4CyclicCopolymers 519

10.6.5Graft/Comb/BrushCopolymers 520

10.6.6StarPolymers 521

10.6.7HyperbranchedPolymers/PolymerGels 524

10.7MethodologiesforXanthateEnd-GroupRemoval 525

10.7.1NucleophilicReaction(Aminolysis/Hydrolysis/IonicReduction) 525

10.7.2Oxidation 526

10.7.3Thermolysis 527

10.7.4Radical-InducedReduction 528

10.8IndustrialApplicationsofRAFT/MADIXPolymerization 529

10.9Conclusion 530

References 531

11DithiocarbamatesinRAFTPolymerization 549 GraemeMoad

11.1Introduction 549

11.2DithiocarbamateTransferConstants 552

11.3DithiocarbamatesandRAFTPolymerization 554

11.4MonomersforRAFTPolymerization 555

11.4.11,1-DisubstitutedMAMs(Methacrylates) 555

11.4.2MonosubstitutedMAMs(Acrylates,Acrylamides,Styrenes) 572

11.4.3LAMs,IAMs(VinylMonomers) 572

11.5SynthesisofDithiocarbamateRAFTAgents 575

11.5.1MethodA–ReactionofaCarbodithioateAnionwithanAlkylating Agent 575

11.5.2MethodB–ReactionofaDithiochloroformateora Thiocarbonyl-bis-imidazolewithaNucleophile 577

11.5.3MethodC–AdditionofaDithioicAcidAcrossanOlefinicDouble Bond 578

11.5.4MethodD–Radical-inducedDecompositionofaThiuram Disulfide 578

11.5.5MethodE–KetoformReaction 580

11.5.6MethodF–OtherMethods 580

11.5.7MethodG–CommerciallyAvailable 580

11.6ActivityofDithiocarbamateRAFTAgents 580

11.6.1DithiocarbamateRAFTAgentswithBalancedActivity 582

11.6.2SwitchableDithiocarbamateRAFTAgents 583

11.6.3DithiocarbamatesasMediatorsofCationicPolymerization 585

11.6.4DithiocarbamateRSubstituents 585

11.6.5PredictionofDithiocarbamateActivity 585

11.7DithiocarbamatesinRAFTEmulsionPolymerization 587

11.8DithiocarbamatesinMechanism-TransformationProcesses 587

11.8.1Ring-OpeningPolymerization(ROP) 587

11.8.2Ring-OpeningMetathesisPolymerization(ROMP) 587

11.8.3AtomTransferRadicalPolymerization(ATRP) 588

11.9DithiocarbamateGroupRemoval/Transformation 588

11.9.1DithiocarbamateGroupRemovalbyRadical-InducedCoupling 588

11.9.2DithiocarbamateGroupRemovalbyRadical-Induced Disproportionation 588

11.9.3DithiocarbamateGroupRemovalbyRadical-InducedReduction 589

11.9.4DithiocarbamateGroupRemovalbyReactionwith Nucleophiles 589

11.9.5DithiocarbamateGroupRemovalbyThermolysis 590

11.9.6DithiocarbamateGroupRemovalbyOxidation 591

11.9.7DithiocarbamateGroupRemovalbyOtherMethods 591

11.10DithiocarbamateZ′ Z′′ NC(=S)Sgroups 591

11.11Conclusions 593

Acknowledgements 593

Abbreviations 593

References 595

12PhotoRAFTPolymerization 611

RobertChapman,KenwardJung,andCyrilleBoyer

12.1Introduction 611

12.2Photoinitiation 612

12.3PhotoiniferterPolymerizations 613

12.3.1Catalyst-FreePhotoiniferter 614

12.3.2PhotoredoxCatalysis 617

12.3.2.1PET–RAFTwithIr/Ru 618

12.3.2.2PET–RAFTwithPorphyrins 619

12.3.2.3Metal-FreePhotocatalysts 622

12.4Applications 625

12.4.1SingleUnitMonomerInsertion(SUMI) 625

12.4.2WavelengthOrthogonalPolymerization 628

12.4.3High-ThroughputPolymerLibraries 629

12.4.4Hydrogelsand3DPrinting 633

12.4.5LiveCellGraftPolymerizations 634

12.5ConclusionsandOutlook 635

References 636

Volume2

13Redox-InitiatedRAFTPolymerizationand(Electro)chemical ActivationofRAFTAgents 647

FrancescaLorandi,MarcoFantin,andKrzysztofMatyjaszewski

14ConsiderationsforandApplicationsofAqueousRAFT Polymerization 679

AlexanderW.Fortenberry,CharlesL.McCormick,andAdamE.Smith

15RAFT-MediatedPolymerization-InducedSelf-Assembly (PISA) 707

FranckD’Agosto,MurielLansalot,andJuttaRieger

16RAFT-FunctionalEndGroups:Installationand Transformation 753

AndrewB.LoweandElenaDallerba

17Sequence-EncodedRAFTOligomersandPolymers 805

JorisJ.Haven,JeroenDeNeve,andTanjaJunkers

18SynthesisandApplicationofReactivePolymersviaRAFT Polymerization 829

MartinGauthier-Jaques,HaticeMutlu,HebaGaballa,andPatrickTheato

19RAFTCrosslinkingPolymerization 873

PatriciaPérez-Salinas,PorfirioLópez-Domínguez,AlbertoRosas-Aburto, JulioCésarHernández-Ortiz,andEduardoVivaldo-Lima

20ComplexPolymericArchitecturesSynthesizedthroughRAFT Polymerization 933

ThomasG.Floyd,SatuHäkkinen,MatthiasHartlieb,AndrewKerr,and SébastienPerrier

21StarPolymersbyRAFTPolymerization 983

StephanieAllison-Logan,FatemehKarimi,MitchellD.Nothling, andGregG.Qiao

22SurfaceandParticleModificationviaRAFTPolymerization:An Update 1017

JuliaPribylandBrianC.Benicewicz

23High-Throughput/High-OutputExperimentationinRAFT PolymerSynthesis 1051

CarlosGuerrero-Sanchez,RobertoYañez-Macias,MiguelRosales-Guzmán, MarcoA.DeJesus-Tellez,ClaudiaPiñon-Balderrama,JorisJ.Haven, GraemeMoad,TanjaJunkers,andUlrichS.Schubert

24AnIndustrialHistoryofRAFTPolymerization 1077 GraemeMoad

25CationicRAFTPolymerization 1171

MinetoUchiyama,KotaroSatoh,andMasamiKamigaito

Index 1195

Preface xv

Acknowledgements xvii

1OverviewofRAFTPolymerization 1 GraemeMoadandEzioRizzardo

2TerminologyinReversibleDeactivationRadical Polymerization(RDRP)andReversible Addition–FragmentationChainTransfer(RAFT) Polymerization 15 GraemeMoad

3HowtoDoaRAFTPolymerization 25 AlmarPostmaandMelissaSkidmore

4KineticsandMechanismofRAFTPolymerizations 59 MichaelBuback

5RAFTPolymerization:MechanisticConsiderations 95 JohnF.Quinn,GraemeMoad,andChristopherBarner-Kowollik

6QuantumChemicalStudiesofRAFTPolymerization 139 MichelleL.Coote

7MathematicalModellingofRAFTPolymerization 187 PorfirioLópez-Domínguez,IvánZapata-González,EnriqueSaldívar-Guerra, andEduardoVivaldo-Lima

8DithioestersinRAFTPolymerization 223 GraemeMoad

9TrithiocarbonatesinRAFTPolymerization 359 GraemeMoad

10XanthatesinRAFTPolymerization 493

MingxiWang,Jean-DanielMarty,andMathiasDestarac

11DithiocarbamatesinRAFTPolymerization 549 GraemeMoad

12PhotoRAFTPolymerization 611

RobertChapman,KenwardJung,andCyrilleBoyer

Volume2

13Redox-InitiatedRAFTPolymerizationand(Electro)chemical ActivationofRAFTAgents 647

FrancescaLorandi,MarcoFantin,andKrzysztofMatyjaszewski

13.1Introduction 647

13.2RedoxInitiation 648

13.3ChemicalActivationofRAFTAgents 656

13.4ElectrochemicalActivationofRAFTAgents 660

13.4.1ElectrochemistryofRAFTAgents 661

13.4.2DirectandMediatedElectro-reductionofRAFTAgents 665

13.4.2.1OrganicMediatorsfor eRAFTPolymerizations 667

13.4.2.2ActivationofRAFTAgentsviaElectro-reductionofATRPCatalysts 668

13.5Electro-reductionofRadicalInitiators 670

13.6ConclusionsandPerspectives 673 Acknowledgement 673 References 673

14ConsiderationsforandApplicationsofAqueousRAFT Polymerization 679

AlexanderW.Fortenberry,CharlesL.McCormick,andAdamE.Smith

14.1Introduction 679

14.2ChainTransferAgents 679

14.2.1HydrolysisoftheCTA 680

14.2.2Aminolysis 681

14.3Initiation 684

14.3.1InitiationviaAzo-containingSpecies 684

14.3.2PhotochemicalInitiation 685

14.3.2.1ExternallyInitiatedaRAFTPhotopolymerization 685

14.3.2.2Initiator-FreeaRAFTPhotopolymerization 686

14.3.2.3PET-RAFTPhotopolymerizations 688

14.4DeoxygenationMethods 690

14.4.1PET-RAFT 690

14.4.2Enzyme-CatalyzedDeoxygenation 691

14.4.2.1InitiationbyThermalInitiation 691

14.4.2.2EnzymaticInitiationSystems 693

14.5Polymerization-InducedSelf-assembly 696

14.6GraftingfromBiomolecules 699

References 701

15RAFT-MediatedPolymerization-InducedSelf-Assembly (PISA) 707

FranckD’Agosto,MurielLansalot,andJuttaRieger

15.1Introduction 707

15.2History/OriginofPISA 709

15.3PISAProcess 710

15.3.1Emulsion,Dispersion,andPrecipitationPolymerizations:TheReference Processes 710

15.3.2MainParametersatPlayforaSuccessfulPISAataGlance 712

15.3.2.1MacroRAFTType 712

15.3.2.2InitiationinRAFT-PISA 712

15.3.2.3ChemicalNatureoftheBlocks 713

15.3.3PITSA,PICA,PIESA,andPIHSA:DifferentAcronymsHoweverAll BoilingDowntoPISA 714

15.3.4PISA-InspiredSynthesisofSurfactant-FreeLatexes 715

15.4Reactive/FunctionalNano-objects 716

15.4.1ViatheRAFTAgent:Functionalizationofthe α-EndoftheShell Polymer 717

15.4.2ViatheSolvophilicBlock:FunctionalizationAlongtheShell Polymer 718

15.4.2.1AVarietyofFunctions 718

15.4.2.2SurfaceFunctionalizationbySugarMoietiesandAminoAcids 719

15.4.2.3FluorinatedShells 720

15.4.2.4PISAandCO2 721

15.4.3ViatheSolvophobicBlock:CoreFunctionalization 722

15.4.3.1Fluoroparticles 722

15.4.3.2Core-crosslinking 723

15.4.3.3AddingaFunctionAllowingDegradationoftheParticleCore 725

15.4.3.4CO2 -sensitiveParticles 725

15.5ControlovertheParticleMorphology 726

15.5.1FromSphericaltoAnisotropicBlockCopolymerParticles 726

15.5.2MainParametersthatImpacttheParticleMorphology 728

15.5.2.1VaryingtheMolarMass 729

15.5.2.2VaryingtheChemicalNatureoftheSolvophobicBlock 729

15.5.2.3VaryingtheTopologyoftheShellortheCore 730

15.5.2.4VaryingtheSolventQuality 731

15.5.2.5PISAinAqueousMedia:VaryingpHand/orIonicStrength 731

15.5.2.6VaryingtheBlockCopolymerArchitectureviatheRAFTAgent 732

15.5.3StrategiestoStirSpecificMorphologies 733

15.5.3.1UsingPICA 733

15.5.3.2UsingMesogenicMonomers(PIHSA) 733

15.5.3.3UsingIonicComplexes(PIESA)andHydrogen-BondingUnits 734

15.5.3.4HierarchicalAssemblyBetweenParticles 735

15.5.4Post-polymerizationMorphologicalTransitions/Chain Reorganization 735

15.5.4.1Temperature 735

15.5.4.2pH 736

15.5.4.3‘Reactive’Groups 736

15.5.4.4Light 737

15.5.4.5Oxygen 738

15.6Applications 738

15.7Conclusions 740

Acknowledgements 741 Abbreviations 741 References 742

16RAFT-FunctionalEndGroups:Installationand Transformation 753

16.1Introduction 753

16.2FunctionalizationandTransformationofRAFTPolymersviathe R-group 757

16.3ThiocarbonylthioEndGroupRemovalandTransformation 762

16.3.1DesulfurizationofRAFT(Co)Polymers 763

16.3.1.1Thermolysis 763

16.3.1.2Radical-MediatedReduction 765

16.3.1.3Addition–FragmentationCoupling 766

16.3.1.4Radical-InducedOxidation 768

16.3.2HeteroatomDiels–AlderChemistry 769

16.3.3GenerationandApplicationofMacromolecularThiols 772

16.3.3.1RadicalThiol–EneReaction 775

16.3.3.2RadicalThiol–YneReaction 776

16.3.3.3CatalyzedThiol-MichaelAdditions 777

16.3.3.4Thiol-IsocyanateModification 780

16.3.3.5Thiol-EpoxyRingOpening 782

16.3.3.6Thiol-HaloSubstitution 783

16.3.3.7DisulfideReactions 787

16.3.3.8MiscellaneousExamplesofEndGroupTransformationand Applications 790

16.4Summary 793

References 794

17Sequence-EncodedRAFTOligomersandPolymers 805 JorisJ.Haven,JeroenDeNeve,andTanjaJunkers

References 825

18SynthesisandApplicationofReactivePolymersviaRAFT Polymerization 829

MartinGauthier-Jaques,HaticeMutlu,HebaGaballa,andPatrickTheato

18.1Introduction 829

18.2N-Hydroxysuccinimide(NHS) 830

18.3Pentafluorophenyl(PFP)EsterandItsDerivatives 832

18.4 p-NitrophenylEstersandTheirDerivatives 835

18.5MiscellaneousActivatedEsterFunctionalGroupTransformations 836

18.6AcetoneOxime(AO) 836

18.7SalicylicAcid(SA) 837

18.8 p-DialkylsulfoniumPhenoxyEster(DASPE) 837

18.91,1,1,3,3,3-Hexafluoroisopropanol(HFIP) 838

18.10Di(Boc)-Acrylamide(DBAm) 838

18.11AcylChloride 839

18.12AlkylHalide 839

18.13Trichlorotriazine(TCT) 840

18.14Isocyanate(NCO) 840

18.15Azlactone 842

18.16Anhydride 842

18.17Thiolactone 843

18.18ThiolExchange(Disulphide)/MichaelAddition/Thiol–Ene 843

18.19Epoxide 843

18.20Diels–AlderCycloaddition 845

18.21Triazolinedione 845

18.22CarbonylGroupsandtheirDerivatives 846

18.23Copper-CatalysedAzide–AlkyneCycloaddition(CuAAC) 847

18.24Strain-PromotedAzide–AlkyneCycloaddition(SPAAC) 848

18.25Nitrone–andNitrileOxide–AlkyneCycloadditions (SPANOC/SPANC) 848

18.26Cross-couplingReactions 848

18.27BoronicAcid/DiolCondensation 849

18.28MulticomponentReactions(MCR) 849

18.29Metal–LigandCoordination 850

18.30BioapplicationsofReactivePolymers 850

18.31DrugDelivery 851

18.32Bio-conjugation 855

18.33Surface/ParticleModification 859

18.34ConclusionandOutlook 864 References 864

19RAFTCrosslinkingPolymerization 873

PatriciaPérez-Salinas,PorfirioLópez-Domínguez,AlbertoRosas-Aburto, JulioCésarHernández-Ortiz,andEduardoVivaldo-Lima

19.1Introduction 873

19.2StructureandCharacteristicsofPolymerNetworks 875

19.3RAFTCrosslinkingPolymerization 876

19.3.1SynthesisPathwaystoObtainPolymerNetworks 877

19.3.2RAFTControllersUsedintheSynthesisofPolymerNetworks 879

19.4SynthesisofPolymerNetworksbyRAFTCopolymerizationof Vinyl/MultivinylMonomersinSupercriticalCarbonDioxideasGreen Solvent 898

19.5ModellingofPolymerNetworkFormation 904

19.5.1BackgroundonModellingofCrosslinkingandRAFT 906

19.5.2TrifunctionalPolymerMoleculeModellingApproach 907

19.5.3MultifunctionalPolymerMoleculeModellingApproach 910

19.5.4KineticRandomBranchingTheory(KRBT) 915

19.6ClosingRemarks 918

Acknowledgements 918 References 918

20ComplexPolymericArchitecturesSynthesizedthroughRAFT Polymerization 933

ThomasG.Floyd,SatuHäkkinen,MatthiasHartlieb,AndrewKerr,and SébastienPerrier

20.1Introduction 933

20.2RAFTSynthesisofBlockCopolymers 933

20.2.1BlockCopolymerbySequentialPolymerizationSteps 934

20.2.1.1ChoiceofCTA 935

20.2.1.2BlockOrder 937

20.2.1.3PolymerLivingness 938

20.2.1.4InitiationSystem 941

20.2.1.5FurtherConsiderations 942

20.2.1.6MultiblockCopolymers 942

20.2.2BlockCopolymersbyChainExtensionofaPre-functionalized MacroCTA 943

20.2.3BlockCopolymersbyConjugationofTwoPolymericChains 944

20.2.3.1BlockCopolymerSynthesisThroughClickChemistry 945

20.2.3.2SupramolecularBlockCopolymers 947

20.2.4GeneralGuidelines 948

20.3GradientCopolymers 948

20.4CyclicPolymers 949

20.5Star-ShapedPolymers 950

20.5.1MethodstoProduceStar-ShapedCopolymers 950

20.5.1.1DivergentSynthesisofStar(Co)Polymers 950

20.5.1.2ConvergentSynthesisofStarPolymersbyRAFTPolymerization 953

20.5.2ClassificationbyComposition 955

20.6GraftPolymers 956

20.6.1GraftingThrough 958

20.6.2GraftingOnto 959

20.6.3GraftingFrom 960

20.6.4GeneralGuidelines 963

20.7HyperbranchedPolymers 964

20.7.1Self-condensingVinylPolymerization 964

20.7.2CopolymerizationofMultifunctionalMonomers 966

20.7.3AlternativeMethodsofHyperbranchedSynthesis 967

20.7.4GeneralGuidelines 968

20.8Conclusion 968 Acknowledgements 968 References 969

21StarPolymersbyRAFTPolymerization 983

StephanieAllison-Logan,FatemehKarimi,MitchellD.Nothling, andGregG.Qiao

21.1StarPolymers 983

21.2SynthesisofStarPolymersviaRAFTPolymerization 985

21.2.1Core-firstApproach 985

21.2.1.1Z-groupApproach 987

21.2.1.2R-groupApproach 988

21.2.1.3DevelopmentsinSynthesis 991

21.2.2Arm-firstApproach 994

21.2.2.1DevelopmentsinSynthesis 996

21.2.3Grafting-toApproach 1002

21.3ApplicationofStarpolymers 1002

21.3.1StarPolymersinBiomedicalApplications 1003

21.3.2StarPolymersinOtherApplications 1004

21.3.2.1EmulsionStabilization 1006

21.3.2.2AdvancedMaterials 1007

21.4Conclusion 1010 References 1010

22SurfaceandParticleModificationviaRAFTPolymerization:An Update 1017

22.1Introduction 1017

22.2ComplexBrushArchitectures 1020

22.3BioconjugationandStimuli-responsivePolymerBrushes 1027

22.4AdvancedComposites 1030

22.5ShapedPolymer-GraftedParticles 1039

22.6Conclusion 1042

Acknowledgements 1042 References 1043

23High-Throughput/High-OutputExperimentationinRAFT PolymerSynthesis 1051

CarlosGuerrero-Sanchez,RobertoYañez-Macias,MiguelRosales-Guzmán, MarcoA.DeJesus-Tellez,ClaudiaPiñon-Balderrama,JorisJ.Haven, GraemeMoad,TanjaJunkers,andUlrichS.Schubert

23.1Introduction 1051

23.2FundamentalExperimentationandLimitationsofHT/HO-EinRAFT PolymerSynthesis 1052

23.3HT/HO-EKineticInvestigations 1053

23.4UtilizationofHT/HO-EfortheRAFTSynthesisofPolymer Libraries 1056

23.5ApplicationsofRAFTPolymerLibrariesinNanomedicineandDrug DeliverySystems 1059

23.5.1ApplicationsofRAFTPolymerLibrariesasAntimicrobialAgents 1064

23.6Conclusions 1065

Abbreviations 1067

Acknowledgements 1069 References 1069

24AnIndustrialHistoryofRAFTPolymerization 1077

GraemeMoad

24.1Introduction 1077

24.2MacromonomerRAFTPolymerization 1077

24.3Thiocarbonylthio-RAFTPolymerization 1082

24.3.1DevelopmentofRAFTPolymerization 1086

24.3.2RAFTEmulsionPolymerization 1097

24.3.3SynthesisofStarsandNano-orMicrogelsbyRAFT Polymerization 1137

24.3.4RAFTApplications 1137

24.3.5RAFTThiocarbonylthio-End-GroupRemoval/Transformation 1137 Abbreviations 1141 References 1141

25CationicRAFTPolymerization 1171 MinetoUchiyama,KotaroSatoh,andMasamiKamigaito

25.1Introduction 1171

25.2BackgroundandOverviewofCationicRAFTPolymerizations 1172

25.2.1LivingCationicPolymerizationandMechanism 1172

25.2.2OverviewofCationicRAFTPolymerizationsandComparisontoRadical RAFTPolymerizations 1173

25.3DesignofCationicRAFTorDTPolymerizations 1175

25.3.1RAFTorDTAgentsforCationicPolymerizations 1175

25.3.2Initiators,Cationogens,orCatalystsforCationicRAFTorDT Polymerizations 1179

25.3.3MonomersforCationicRAFTorDTPolymerizations 1182

25.4DesignofWell-DefinedPolymersbyCationicRAFTorDT Polymerizations 1184

25.4.1End-FunctionalizedPolymers 1184

25.4.2BlockCopolymers 1185

25.4.3StarPolymers 1189

25.5SummaryandOutlookforCationicRAFTorDTPolymerizations 1190 Abbreviations 1191 References 1191

Index 1195

Preface

ThisvolumeisintendedtoprovideadetailedsynopsisofthecurrentstateofRAFT (reversibleadditionfragmentationchaintransfer)polymerization.Itisanupdateof the2008HandbookofRAFTPolymerizationandofthereviewseries‘LivingRadical PolymerizationbytheRAFTProcess’publishedovertheperiod2005–2012inthe AustralianJournalofChemistry

RAFTpolymerizationhasbeenasuccess,therearenowmorethan10000publicationsthatrelatetotheunderstanding,development,and/orapplicationofthe technique,andtherateofpublicationshowsnosignsofwaning.Commercialsuccessismoredifficulttojudge.Asearchrevealsover1000patentfamilies.Onthe otherhand,therearefewexamplesofactualRAFTproducts.Maybecommercial implementationwillincreasenowthatthefirstRAFTpatentshavereachedtheend oftheirenforceablelife.

AlthoughsomemightarguethatRAFTisnowamaturetechnique,therearestill significanteffortsstrivingforamorecompleteunderstandingofthemechanismand scopeoftheprocess.Itisourhopethatbycompilingthisworkandbyhighlighting recentachievementsinRAFTchemistry,wewillinspirefurtherresearchandfurther drivetheever-increasingrangeofapplications.

Clayton,Victoria,Australia September2021

Acknowledgements

TheeditorsareextremelygratefultoCarolineBray,GuoxinLi,CatherineMoad,and LisaStroverforproofreadingthevariouschaptersandtoCSIROforallowingsubstantialtimetobespentonthisexercise.

OverviewofRAFTPolymerization

CSIROManufacturing,ResearchWay,Clayton,VIC3168,Australia

ThefirstannouncementofRAFT(reversibleaddition–fragmentationchain transfer),polymerizationmakinguseofthiocarbonylthiotransferagentsasameans ofcontrollingtheoutcomeofradicalpolymerizationwasmadeattheIUPACWord PolymerCongressMacro98byDrEzioRizzardojustover21yearsagoinJuly1998. ThefirstpublicationonRAFTpolymerizationdetailingtheworkatCSIROwas publishedshortlythereafter[1].ThepaperinMacromolecules[1]thatannounced theRAFTprocess,iscurrentlythemosthighlycitedpaperinthatjournal.

RAFTpolymerizationhadbeendisclosedinaCSIRO/DuPontpatentthatwaspublishedinJanuary1998[2].ApatentdescribingtheparalleldevelopmentofMADIX (MAcromoleculeDesignbyInterchangeofXanthates–RAFTwithxanthatetransferagents)atRhodiawaspublishedinDecember1998[3].ThatfirstRAFTpatent [2]was,by2005,oneofthemosthighlycitedpatentsinthefieldofchemistryand relatedscience,andthepatentliteraturenowaboundswithastill-increasingnumberofRAFT-relatedinventions(Figure1.1).However,commercialsuccessstories associatedwithRAFTpolymerizationandotherreversible-deactivationradicalpolymerization(RDRP)arefew[4].WiththefirstRAFTpatentshavingreachedthe endoftheirenforceablelife,wemightnowenvisageanupsurgeincommercial applications.

ThefurtherdevelopmentofRAFTwaschronicledinaseriesofreviewsthat appearedintheAustralianJournalofChemistryin2005[5],2006[6],2009[7],and 2012[8].SincethattimereviewsofRAFTpolymerizationhavetargetedspecific applicationareasorhavebeenotherwiselimitedinscope.Anumberofperspectives haverecentlyappearedtomarkthe20thanniversaryofthediscoveryofRAFT polymerization[9–11].

Theyear2008sawthepublicationoftheHandbookofRAFTPolymerizationthat comprised12chaptersfrommajorplayersinthefieldatthetime[12].The10years leadinguptothehandbookhadseenarevolutioninthefieldofradicalpolymerization,whichcan,inlargepart,beattributedtotheinventionofRAFTandother RDRPmethods.Manyofthesameauthorswhocontributedtothathandbookhave alsoprovidedchaptersforthepresentwork.

RAFTPolymerization:Methods,SynthesisandApplications, FirstEdition. EditedbyGraemeMoadandEzioRizzardo. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

Figure1.1 CumulativepublicationsrelatingtoRAFTpolymerizationfortheperiod 1998–2019basedonaScifinderTM substructuresearchonthemajorclassesofRAFTagent carriedoutinFebruary2020ontheRAFTagentstructuresandtheterms‘RAFT’and ‘MADIX’(inthecaseofxanthates).

PublicationsrelatingtoRAFTpolymerizationshownosignsofabating.The presentworkisintendedasasurveyofdevelopmentsinRAFTpolymerization focusingonthelast10years.

RAFTpolymerizationisaformofRDRPandcanimpartlivingcharacteristics(low molarmassdispersity,high-endgroupfidelity,abilitytosynthesizecomplexarchitectures)toradicalpolymerization.Thetechniqueowesitssuccesstothewiderange oftoleratedfunctionalityandpolymerizationconditions,andtothevastrangeof monomerswhose(co)polymerizationcanbesuccessfullycontrolled.

In2008,atthetimetheRAFTHandbookwaspublished,onefactorseenassignificantinholdingbacktheexploitationofRAFTpolymerizationwasthatRAFTagents werenotcommerciallyavailable[13].Thissituationhasnowbeenredressed[14].

Ithasoftenbeenpointedoutthattoachievethehighestlevelofcontrolover polymerization,oneneedstoselecttheRAFTagentforthemonomer(s)beingpolymerized.AdizzyingarrayofRAFTagents,Z—C(=S)S—R,varyingintheactivating (Z)andreinitiating(R)substituents,arenowavailablecommerciallyorareableto besynthesized[15].However,withjusttwoRAFTagents,e.g.atrithiocarbonate,for moreactivatedmonomerssuchasstyrenesand(meth)acrylates,andaxanthateor adithiocarbamate,forlessactivatedmonomerssuchasvinylestersorvinylamides, onecanachieveacceptablecontroloverthefullmonomerspectrum[16].Moreover, byusingaswitchableRAFTagentoraRAFTagentwithbalancedactivity,e.g.a 1H -pyrazole-1-carbodithioate[17,18],onecanachieveonlyslightlycompromised controlwithjustoneRAFTagent.

Figure1.2 PublicationrateforRAFTpolymerizationusingdifferentclassesofRAFTagent fortheperiod1998–2019.Includesbothpatentandopenliteraturepublications.Basedon aScifinderTM substructuresearchcarriedoutinFebruary2020ontheRAFTagentstructures andtheterms‘RAFT’and‘MADIX’(inthecaseofxanthates).ThetotalRAFTnumberrelates toasearchontheterms‘RAFTpolymerization’or‘reversibleadditionfragmentationchain transfer’.

Inthefollowingtextwementionthechaptersofthisworkbytopicandreferto chaptersofthe2008HandbookofRAFTPolymerizationonsimilartopics.

WecommencewithachapteronterminologyinRDRPandRAFTpolymerization [19].Thenwegobacktothebasicsandprovideabeginner’sguideon HowtoDoa RAFTpolymerization [14].

Therearefourchaptersconcerningthedetailedkineticsandmechanismofthe RAFTprocess: KineticsandMechanismofRAFTPolymerizations [20], RAFTPolymerization,MechanisticConsiderations [21], Mechanisms, QuantumStudiesofRAFT Polymerization [22],and MathematicalModellingofRAFTPolymerization [23];these concernthedetailedkineticsandmechanismoftheRAFTprocessandtheongoing effortstoenhanceourunderstandingoftheprocess(2008chapters[24,25]).

ThenextfourchaptersprovideacriticalsurveyofthefourmajorclassesofRAFT agents,namely,dithioesters[26],trithiocarbonates[27],xanthates[28],anddithiocarbamates[29]asregardsactivityasRAFTagents,polymerizationmechanisms, andtheirapplicationinpolymersynthesis(2008chapters[16,30,31]).Theyear 2008markedthepointintimeatwhichtrithiocarbonatesbecamethemostpopular RAFTagents(Figure1.2).

TherearetwochaptersconcerningthemorerecentdevelopmentsinprocessesforinitiatingRAFTpolymerization. OverviewofPhotoregulatedReversible Addition–FragmentationChainTransfer(RAFT)Polymerization [32], Redox-Initiated RAFTPolymerization,and(Electro)ChemicalActivationofRAFTAgents [33].

FurthertwochaptersrelatespecificallytoRAFTpolymerizationinaqueoussolutionorinheterogeneousmediumandtopolymerization-inducedself-assembly: ConsiderationsforandApplicationsofAqueousRAFTPolymerization [34], RAFTMediatedPolymerization-InducedSelf-Assembly(PISA) (2008chapters[35,36])[37].

1OverviewofRAFTPolymerization

Threechaptersconcernthesynthesisoffunctionalpolymers,sequence-defined polymers,andRAFTend-grouptransformation. RAFTFunctionalEndGroups: InstallationandTransformation [38], Sequence-EncodedRAFTOligomersandPolymers [39], SynthesisandApplicationofReactivePolymersviaRAFTPolymerization (2008chapter[40])[41].

Wethengointodetailontheotheraspectsofpolymerarchitecturewithchapters on RAFTCrosslinkingPolymerization [42], ComplexPolymericArchitecturesSynthesizedThroughRAFTPolymerization [43], StarPolymersbyRAFTPolymerization [44], SurfaceandParticleModificationviaRAFTPolymerization:Anupdate (2008chapters [45–47]).

Twochaptersrelatetoapplicationareas. AnIndustrialHistoryofRAFTPolymerization [48]describesthedevelopmentofRAFTbyreferencetothepatentliterature andpointstowhereRAFTisbeingappliedinindustry(2008chapters[49,50]).

TheapplicationofhighthroughputroboticplatformstoRAFTpolymerizationas anaidtoshortcuttheprocessofselectingreactionconditionsandtocreatepolymerlibrariesforscreeningpurposesisdiscussedin HighThroughput/HighOutput ExperimentationinRAFTPolymerSynthesis [51].

AfinalchapterdemonstratesthattheRAFTprocessisnotapplicableonlytoradicalpolymerizationanddetailstherecentworkon CationicRAFTPolymerization [52].

ItisourhopethatbycompilingandhighlightingrecentachievementsinRAFT chemistry,wewillinspirefurtherresearchandfurtherdrivetheever-increasing rangeofapplications.

Itshouldbestatedthatthereisnolackofrecentreviewmaterialrelatingto RAFTpolymerizationanditsapplication.Atleast30reviewshavebeenpublished since2017specificallyonRAFTpolymerization(non-Englishlanguagereviewsare notincludedinthislist).Theseincludeoverviewsandperspectives[9–11,53,54], polymerization-inducedself-assembly(PISA)[55*,56–58],monomersfrom renewableresources[59],polymerbrushes[60],therapeuticsandbioapplications [61–63],starpolymersforbioapplications[64],hydrogelsfordrugdelivery[65], organic/inorganicnanohybridsforbioapplications[66],goldnanoparticles[67], 3D-printing[68],stimuli-responsivepolymers[69],conjugateddienemonomers [70],single-unitmonomerinsertion(RAFT-SUMI)[71],redoxinitiation[72], hydroxylradicalinitiation[73],photoRAFT[74],externallyregulatedpolymerization[75],initiationwithionizingradiation[76],dithiocarbamateRAFTagents [77]* ,optoelectronicapplications[78],andgraftcopolymersbytransfer-to[79]. Anasterisk(* )indicatesthatanupdatetothereviewappearsinthisvolume. EarlierreviewsonRAFTpolymerizationhavebeensummarizedpreviously [5–8,69].

ThereareadditionallymanyreviewsonradicalorRDRPmethodsmoregenerally thatcontainsubstantialcontentonRAFTpolymerizationorRAFTapplications. Themorethan50reviewspublishedsince2017includereviewsonultrahigh molarmasspolymers[80,81],self-condensingvinylpolymerization[82],complex architecturesbycopolymerizationofmulti-vinylmonomers[83],nanoparticles bysurface-initiatedpolymerization[84],synthesisofmulti-blockcopolymers

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.