RAFTPolymerization
Methods,SynthesisandApplications
Volume2 Editedby
GraemeMoad EzioRizzardo
Editors
Prof.Dr.GraemeMoad
CSIROManufacturing ResearchWay
Clayton,Victoria3168
Australia
Dr.EzioRizzardo
CSIROManufacturing ResearchWay
Clayton,Victoria3168
Australia
Allbookspublishedby WILEY-VCH arecarefullyproduced.Nevertheless, authors,editors,andpublisherdonot warranttheinformationcontainedin thesebooks,includingthisbook,to befreeoferrors.Readersareadvised tokeepinmindthatstatements,data, illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate.
LibraryofCongressCardNo.: appliedfor
BritishLibraryCataloguing-in-Publication Data
Acataloguerecordforthisbookis availablefromtheBritishLibrary.
Bibliographicinformationpublishedby theDeutscheNationalbibliothek
TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>
©2022WILEY-VCHGmbH,Boschstr. 12,69469Weinheim,Germany
Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc. usedinthisbook,evenwhennot specificallymarkedassuch,arenotto beconsideredunprotectedbylaw.
PrintISBN: 978-3-527-34495-6
ePDFISBN: 978-3-527-82134-1
ePubISBN: 978-3-527-82136-5
oBookISBN: 978-3-527-82135-8
CoverDesign Formgeber,Mannheim, Germany
Typesetting Straive,Chennai,India
Printedonacid-freepaper
10987654321
Preface xv
Acknowledgements xvii
1OverviewofRAFTPolymerization 1
GraemeMoadandEzioRizzardo References 5
2TerminologyinReversibleDeactivationRadical Polymerization(RDRP)andReversible Addition–FragmentationChainTransfer(RAFT) Polymerization 15 GraemeMoad
2.1TerminologyforReversibleDeactivationRadicalPolymerization (RDRP) 15
2.2TerminologyinReversibleAddition–FragmentationChainTransfer (RAFT)Polymerization 18
2.3TerminologyThatIsNotRatifiedbyIUPAC 24 References 24
3HowtoDoaRAFTPolymerization 25 AlmarPostmaandMelissaSkidmore
3.1Introduction 25
3.2IPLandscape 29
3.3GeneralExperimentalConditions 29
3.3.1Initiator 32
3.3.2Solvent 32
3.3.3Temperature 32
3.3.4Pressure 33
3.4RAFTPolymerizationofStyrene 33
3.4.1ExperimentalProceduresfortheRAFTPolymerizationofStyrene 34
3.5RAFTPolymerizationofMethacrylatesandAcrylates 37
3.5.1Methacrylates 38
3.5.2Acrylates 38
3.5.3ExperimentalProceduresfortheRAFTPolymerizationof Methacrylates 39
3.5.4ExperimentalProceduresfortheRAFTPolymerizationofAcrylates 41
3.6RAFTPolymerizationofAcrylamidesandMethacrylamides 43
3.6.1Methacrylamides 44
3.6.2Acrylamides 44
3.6.3ExperimentalProceduresfortheRAFTPolymerizationofAcrylamides andMethacrylamides 45
3.7RAFTPolymerizationofVinylEstersandVinylAmides 46
3.7.1ExperimentalProceduresfortheRAFTPolymerizationofVinylEsters andVinylAmides 47
3.8Copolymers 48
3.8.1ExperimentalProceduresforRAFTCopolymers 49
3.9BlockCopolymers 50
3.9.1ExperimentalProceduresforRAFTBlockCopolymers 51
3.10Conclusion 53 References 54
4KineticsandMechanismofRAFTPolymerizations 59 MichaelBuback
4.1Introduction 59
4.2IdealRAFTPolymerizationKinetics 60
4.3PulsedLaserExperimentsinConjunctionwithEPRDetection 61
4.4QuantumChemicalCalculationsoftheRAFTEquilibrium 65
4.5Xanthate-,Trithiocarbonate-andDithiobenzoate-Mediated Polymerizations 66
4.5.1GeneralAspectsofActualRAFTPolymerizations 66
4.5.2Xanthates 69
4.5.3Trithiocarbonates 72
4.5.4Dithiobenzoates 76
4.5.5The‘MissingStep’Reaction 77
4.5.6KineticAnalysisofDithiobenzoate-MediatedBAPolymerizations 85
4.5.7QuantumChemicalCalculationsfortheCIP*–CPDBModelSystem 87
4.5.8Dithiobenzoate-MediatedMMAPolymerizationsandModel Systems 88
4.6SummaryofResultsandConcludingRemarks 89 References 91
5RAFTPolymerization:MechanisticConsiderations 95 JohnF.Quinn,GraemeMoad,andChristopherBarner-Kowollik
5.1Introduction 95
5.2RoleoftheRGroup 96
5.2.1ChainTransferandLeavingGroupAbility 96
5.2.2MeasurementoftheChainTransferConstant 97
5.2.3MechanisticImplicationsforBlockCopolymerSynthesis 103
5.2.4Re-InitiationandInitialization 105
5.2.5RGroupStabilityandImplicationsforChainTransferKinetics 109
5.2.6DifferentialLeavingGroupAbilityandMechanisticDiscrimination 109
5.3RoleoftheZGroup 112
5.3.1TheZGroupandRadicalAdditiontotheThiocarbonyl 112
5.3.2TheZ-GroupandSideReactions 114
5.3.3ManipulatingZtoDictateReactivity:‘Switchable’RAFTAgents 116
5.3.4TheZ-GroupandReactionKinetics 118
5.3.5IntermediateRadicalTermination 119
5.3.6SlowFragmentationoftheIntermediateRadical 123
5.3.7StabilityoftheZGroupDuringReaction 126
5.4LightEffectsontheRateofPolymerization 130
5.5Conclusion 131 References 132
6QuantumChemicalStudiesofRAFTPolymerization 139 MichelleL.Coote
6.1Introduction 139
6.2Methodology 140
6.2.1ElectronicStructureCalculations 140
6.2.2KineticsandThermodynamics 143
6.2.3SolventEffects 147
6.2.4AccuracyandOutstandingChallenges 147
6.3ComputationalModellingofRAFTKinetics 152
6.3.1SimplifiedModelsforTheoryandExperiment 153
6.3.2SideReactions 156
6.3.3ComputationalModelPredictions 159
6.3.4 Abinitio KineticModelling 165
6.4Structure–ReactivityStudies 167
6.4.1FundamentalAspects 167
6.4.2Structure–ReactivityinPracticalRAFTSystems 171
6.4.3RAFTAgentDesign 176
6.5Outlook 180 Abbreviations 180 References 181
7MathematicalModellingofRAFTPolymerization 187 PorfirioLópez-Domínguez,IvánZapata-González,EnriqueSaldívar-Guerra, andEduardoVivaldo-Lima
7.1Introduction 187
7.2DeterministicModellingTechniques(DMTs) 188
7.2.1MethodofMoments(MM) 188
7.2.1.1HomogeneousSystems 190
7.2.1.2HeterogeneousSystems 194
7.2.2Diffusion-ControlledorCL-DependentCoefficients 196
7.2.3CalculationofFullMolecularWeightDistributions 198
7.2.3.1ExplicitIntegrationMethods 199
7.2.3.2Probability-GeneratingFunction 201
7.2.3.3CalculationsUsingthePredici®Software 201
7.3StochasticModellingTechniques(SMTs) 204
7.3.1MonteCarlo 204
7.3.1.1HomogeneousSystems 205
7.3.1.2HeterogeneousSystems 205
7.4HybridMethods 206
7.5SpecificorNovelPolymerizationProcesses 206
7.5.1SemibatchPolymerization 206
7.5.2PolymerizationsinCSTRs/PFR 208
7.5.3BranchedCopolymerizations 209
7.5.4Microwave-Assisted(MA)RAFTPolymerization 210
7.6ClosingRemarks 211
Acknowledgments 212 References 212
8DithioestersinRAFTPolymerization 223 GraemeMoad
8.1Introduction 223
8.2MechanismofRAFTPolymerizationwithDithioesterMediators 224
8.2.1TransferCoefficientsofDithioesters 226
8.2.2RAFTEquilibriumCoefficientswithDithioesters 230
8.3ChoiceofRAFTAgents 230
8.3.1AromaticDithioesters(Z = ArylorHeteroaryl) 233
8.3.2FunctionalAromaticDithioesters(Z = ArylorHeteroaryl) 235
8.3.3Bis-aromaticDithioesters(Z = ArylorHeteroaryl) 235
8.3.4AliphaticDithioesters(Z = AlkylorAralkyl) 236
8.3.5Bis-aliphaticDithioesters(Z = AlkylorAralkyl) 237
8.4SynthesisofDithioesterRAFTAgents 237
8.5MonomersforDithioester-MediatedRAFTPolymerization 239
8.5.11,1-DisubsitutedMonomers 239
8.5.1.1Methacrylates 239
8.5.1.2Methacrylamides 240
8.5.1.3Other1,1-DisubsitutedMonomers 240
8.5.2MonosubstitutedMAMs 240
8.5.2.1Acrylates 240
8.5.2.2Acrylamides 273
8.5.2.3Styrenics 275
8.5.2.4DieneMonomers 278
8.5.31,2-DisubstitutedMAMs 279
8.5.4MonosubstitutedIAMsandLAMs 279
8.5.5MonomerswithReactiveFunctionality 279
8.5.6Macromonomers 280
8.6Cyclopolymerization 287
8.7Ring-OpeningPolymerization 287
8.8RAFTCrosslinkingPolymerization 288
8.9RAFTSelf-condensingVinylPolymerization 292
8.10RAFT-Single-UnitMonomerInsertion(RAFT-SUMI)into Dithioesters 292
8.11DithioestersinMechanism-TransformationProcesses 295
8.11.1Ring-OpeningPolymerization(ROP) 295
8.11.2Ring-OpeningMetathesisPolymerization(ROMP) 296
8.11.3AtomTransferRadicalPolymerization(ATRP) 296
8.11.4Nitroxide-MediatedPolymerization(NMP) 297
8.12ThermallyInitiatedRAFTPolymerizationwithDithioesters 298
8.13PhotoinitiatedRAFTwithDithioesters 299
8.14Redox-InitiatedRAFTwithDithioesters 300
8.15ReactionConditionsandSideReactionsofDithioesters 300
8.16RAFTEmulsion/MiniemulsionPolymerizationMediatedby Dithioesters 301
8.17DithioesterGroupRemoval/Transformation 302
8.17.1DithioesterGroupRemovalbyReactionwithNucleophiles 302
8.17.2DithioesterGroupRemovalbyRadical-InducedReactions 303
8.17.2.1Radical-InducedCoupling/Disproportionation 303
8.17.2.2Radical-InducedReduction 306
8.17.3DithioesterGroupRemovalbyOxidation 306
8.17.4DithioesterGroupRemovalbyThermolysis 309
8.17.5ElectrocyclicReactionsofDithioesters 310
8.17.6BoronicAcidCross-Coupling 311
8.17.7ConclusionsandOutlook 311 Abbreviations 313 References 318
9TrithiocarbonatesinRAFTPolymerization 359 GraemeMoad
9.1Introduction 359
9.2MechanismofRAFTPolymerizationwithTrithiocarbonate Mediators 359
9.2.1TransferCoefficientsforTrithiocarbonatesinRAFT Polymerization 362
9.2.2RAFTEquilibriumCoefficientsforTrithiocarbonates 367
9.3ChoiceofHomolyticLeavingGroupRforTrithiocarbonateRAFT Agents 367
9.3.1HomolyticLeavingGroup‘R’for1,1-DisubsitutedMAMs 368
9.3.2HomolyticLeavingGroup‘R’forMonosubstitutedMAMs 369
9.3.3HomolyticLeavingGroup‘R’forIAMsandLAMs 369
9.3.4Macro-leavingGroup‘R’forBlockCopolymerSynthesis 369
9.4ChoiceofActivatingGroup‘Z’forTrithiocarbonateRAFTAgents 370
9.5SymmetricTrithiocarbonates 370
9.5.1Bis-trithiocarbonates 370
9.6Non-symmetricTrithiocarbonates 378
9.7FunctionalTrithiocarbonates 379
9.8SynthesisofTrithiocarbonates 408
9.9PolymerSyntheseswithTrithiocarbonates 409
9.9.1Methacrylates 409
9.9.2Methacrylamides 424
9.9.3Other1,1-DisubstitutedMonomers 424
9.9.4Acrylates 424
9.9.5Acrylamides 424
9.9.6Styrenics 425
9.9.7DieneMonomers 425
9.9.8OtherMonosubstitutedMonomers(MAMs,IAMs,LAMs),Vinyl Monomers 425
9.9.9MonomerswithReactiveFunctionality 426
9.10Macromonomers 426
9.11Cyclopolymerization 426
9.12RadicalRing-OpeningPolymerization 428
9.13RAFTCrosslinkingPolymerization 428
9.14RAFTSelf-condensingVinylPolymerization 430
9.15RAFT-Single-UnitMonomerInsertion(RAFT-SUMI)into Trithiocarbonates 430
9.16TrithiocarbonatesinMechanismTransformationProcesses 433
9.16.1Ring-OpeningPolymerization(ROP) 434
9.16.2Ring-OpeningMetathesisPolymerization(ROMP) 434
9.16.3Ring-OpeningOpeningAlkyneMetathesisPolymerization (ROAMP) 435
9.16.4CationicPolymerization 435
9.16.5AnionicPolymerization 435
9.16.6NitroxideMediatedPolymerization(NMP) 435
9.16.7AtomTransferRadicalPolymerization(ATRP) 435
9.17PhotoinitiatedRAFTwithTrithiocarbonates 436
9.18Redox-InitiatedRAFTwithTrithiocarbonates 436
9.19RAFTEmulsion/Miniemulsion/DispersionPolymerizationMediatedby Trithiocarbonates 437
9.20ReactionConditionsandSideReactionsofTrithiocarbonates 438
9.21TrithiocarbonateGroupRemoval/Transformation 439
9.21.1TrithiocarbonateGroupRemovalbyRadical-InducedCoupling 439
9.21.2TrithiocarbonateGroupRemovalbyRadical-Induced Disproportionation 442
9.21.3TrithiocarbonateGroupRemovalbyRadical-InducedReduction 443
9.21.4TrithiocarbonateGroupRemovalbyReactionwithNucleophiles 444
9.21.5TrithiocarbonateGroupRemovalbyThermolysis 444
9.21.6TrithiocarbonateGroupRemovalbyOxidation 446
9.22ConclusionsandOutlook 446
Abbreviations 447
References 452
10XanthatesinRAFTPolymerization 493
MingxiWang,Jean-DanielMarty,andMathiasDestarac
10.1Introduction 493
10.2SynthesisofRAFT/MADIXAgents 493
10.2.1ReactionofaXanthateSaltwithanAlkylatingAgent 500
10.2.2ReactionwithXanthogenDisulfides 500
10.2.3XanthatesUsedasPrecursorstoProvideNewXanthates 500
10.3ExperimentalConditions 504
10.3.1Initiation 504
10.3.1.1ThermalInitiators 504
10.3.1.2UVorVisibleLight 504
10.3.1.3 60 Co γ-rayIrradiation 505
10.3.1.4RedoxInitiation 505
10.3.2PolymerizationConditions 506
10.3.2.1High-PressurePolymerization 506
10.3.2.2HeterogeneousPolymerizations 506
10.4Kinetics 507
10.5Monomers 508
10.5.1Styrenics 508
10.5.2AcrylatesandAcrylamides 508
10.5.3Methacrylates 509
10.5.4VinylEsters 510
10.5.5 S-VinylMonomers 510
10.5.6VinylPhosphonicAcid 511
10.5.7 N -VinylMonomers 511
10.5.8Halo-olefins 512
10.5.9Ethylene 513
10.5.10CyclicKeteneAcetals(CKAs) 513
10.5.11DiallylMonomers 514
10.6MacromolecularArchitectures 514
10.6.1End-FunctionalHomopolymers/StatisticalCopolymers 515
10.6.2BlockCopolymers 516
10.6.3GradientCopolymers 519
10.6.4CyclicCopolymers 519
10.6.5Graft/Comb/BrushCopolymers 520
10.6.6StarPolymers 521
10.6.7HyperbranchedPolymers/PolymerGels 524
10.7MethodologiesforXanthateEnd-GroupRemoval 525
10.7.1NucleophilicReaction(Aminolysis/Hydrolysis/IonicReduction) 525
10.7.2Oxidation 526
10.7.3Thermolysis 527
10.7.4Radical-InducedReduction 528
10.8IndustrialApplicationsofRAFT/MADIXPolymerization 529
10.9Conclusion 530
References 531
11DithiocarbamatesinRAFTPolymerization 549 GraemeMoad
11.1Introduction 549
11.2DithiocarbamateTransferConstants 552
11.3DithiocarbamatesandRAFTPolymerization 554
11.4MonomersforRAFTPolymerization 555
11.4.11,1-DisubstitutedMAMs(Methacrylates) 555
11.4.2MonosubstitutedMAMs(Acrylates,Acrylamides,Styrenes) 572
11.4.3LAMs,IAMs(VinylMonomers) 572
11.5SynthesisofDithiocarbamateRAFTAgents 575
11.5.1MethodA–ReactionofaCarbodithioateAnionwithanAlkylating Agent 575
11.5.2MethodB–ReactionofaDithiochloroformateora Thiocarbonyl-bis-imidazolewithaNucleophile 577
11.5.3MethodC–AdditionofaDithioicAcidAcrossanOlefinicDouble Bond 578
11.5.4MethodD–Radical-inducedDecompositionofaThiuram Disulfide 578
11.5.5MethodE–KetoformReaction 580
11.5.6MethodF–OtherMethods 580
11.5.7MethodG–CommerciallyAvailable 580
11.6ActivityofDithiocarbamateRAFTAgents 580
11.6.1DithiocarbamateRAFTAgentswithBalancedActivity 582
11.6.2SwitchableDithiocarbamateRAFTAgents 583
11.6.3DithiocarbamatesasMediatorsofCationicPolymerization 585
11.6.4DithiocarbamateRSubstituents 585
11.6.5PredictionofDithiocarbamateActivity 585
11.7DithiocarbamatesinRAFTEmulsionPolymerization 587
11.8DithiocarbamatesinMechanism-TransformationProcesses 587
11.8.1Ring-OpeningPolymerization(ROP) 587
11.8.2Ring-OpeningMetathesisPolymerization(ROMP) 587
11.8.3AtomTransferRadicalPolymerization(ATRP) 588
11.9DithiocarbamateGroupRemoval/Transformation 588
11.9.1DithiocarbamateGroupRemovalbyRadical-InducedCoupling 588
11.9.2DithiocarbamateGroupRemovalbyRadical-Induced Disproportionation 588
11.9.3DithiocarbamateGroupRemovalbyRadical-InducedReduction 589
11.9.4DithiocarbamateGroupRemovalbyReactionwith Nucleophiles 589
11.9.5DithiocarbamateGroupRemovalbyThermolysis 590
11.9.6DithiocarbamateGroupRemovalbyOxidation 591
11.9.7DithiocarbamateGroupRemovalbyOtherMethods 591
11.10DithiocarbamateZ′ Z′′ NC(=S)Sgroups 591
11.11Conclusions 593
Acknowledgements 593
Abbreviations 593
References 595
12PhotoRAFTPolymerization 611
RobertChapman,KenwardJung,andCyrilleBoyer
12.1Introduction 611
12.2Photoinitiation 612
12.3PhotoiniferterPolymerizations 613
12.3.1Catalyst-FreePhotoiniferter 614
12.3.2PhotoredoxCatalysis 617
12.3.2.1PET–RAFTwithIr/Ru 618
12.3.2.2PET–RAFTwithPorphyrins 619
12.3.2.3Metal-FreePhotocatalysts 622
12.4Applications 625
12.4.1SingleUnitMonomerInsertion(SUMI) 625
12.4.2WavelengthOrthogonalPolymerization 628
12.4.3High-ThroughputPolymerLibraries 629
12.4.4Hydrogelsand3DPrinting 633
12.4.5LiveCellGraftPolymerizations 634
12.5ConclusionsandOutlook 635
References 636
Volume2
13Redox-InitiatedRAFTPolymerizationand(Electro)chemical ActivationofRAFTAgents 647
FrancescaLorandi,MarcoFantin,andKrzysztofMatyjaszewski
14ConsiderationsforandApplicationsofAqueousRAFT Polymerization 679
AlexanderW.Fortenberry,CharlesL.McCormick,andAdamE.Smith
15RAFT-MediatedPolymerization-InducedSelf-Assembly (PISA) 707
FranckD’Agosto,MurielLansalot,andJuttaRieger
16RAFT-FunctionalEndGroups:Installationand Transformation 753
AndrewB.LoweandElenaDallerba
17Sequence-EncodedRAFTOligomersandPolymers 805
JorisJ.Haven,JeroenDeNeve,andTanjaJunkers
18SynthesisandApplicationofReactivePolymersviaRAFT Polymerization 829
MartinGauthier-Jaques,HaticeMutlu,HebaGaballa,andPatrickTheato
19RAFTCrosslinkingPolymerization 873
PatriciaPérez-Salinas,PorfirioLópez-Domínguez,AlbertoRosas-Aburto, JulioCésarHernández-Ortiz,andEduardoVivaldo-Lima
20ComplexPolymericArchitecturesSynthesizedthroughRAFT Polymerization 933
ThomasG.Floyd,SatuHäkkinen,MatthiasHartlieb,AndrewKerr,and SébastienPerrier
21StarPolymersbyRAFTPolymerization 983
StephanieAllison-Logan,FatemehKarimi,MitchellD.Nothling, andGregG.Qiao
22SurfaceandParticleModificationviaRAFTPolymerization:An Update 1017
JuliaPribylandBrianC.Benicewicz
23High-Throughput/High-OutputExperimentationinRAFT PolymerSynthesis 1051
CarlosGuerrero-Sanchez,RobertoYañez-Macias,MiguelRosales-Guzmán, MarcoA.DeJesus-Tellez,ClaudiaPiñon-Balderrama,JorisJ.Haven, GraemeMoad,TanjaJunkers,andUlrichS.Schubert
24AnIndustrialHistoryofRAFTPolymerization 1077 GraemeMoad
25CationicRAFTPolymerization 1171
MinetoUchiyama,KotaroSatoh,andMasamiKamigaito
Index 1195
Preface xv
Acknowledgements xvii
1OverviewofRAFTPolymerization 1 GraemeMoadandEzioRizzardo
2TerminologyinReversibleDeactivationRadical Polymerization(RDRP)andReversible Addition–FragmentationChainTransfer(RAFT) Polymerization 15 GraemeMoad
3HowtoDoaRAFTPolymerization 25 AlmarPostmaandMelissaSkidmore
4KineticsandMechanismofRAFTPolymerizations 59 MichaelBuback
5RAFTPolymerization:MechanisticConsiderations 95 JohnF.Quinn,GraemeMoad,andChristopherBarner-Kowollik
6QuantumChemicalStudiesofRAFTPolymerization 139 MichelleL.Coote
7MathematicalModellingofRAFTPolymerization 187 PorfirioLópez-Domínguez,IvánZapata-González,EnriqueSaldívar-Guerra, andEduardoVivaldo-Lima
8DithioestersinRAFTPolymerization 223 GraemeMoad
9TrithiocarbonatesinRAFTPolymerization 359 GraemeMoad
10XanthatesinRAFTPolymerization 493
MingxiWang,Jean-DanielMarty,andMathiasDestarac
11DithiocarbamatesinRAFTPolymerization 549 GraemeMoad
12PhotoRAFTPolymerization 611
RobertChapman,KenwardJung,andCyrilleBoyer
Volume2
13Redox-InitiatedRAFTPolymerizationand(Electro)chemical ActivationofRAFTAgents 647
FrancescaLorandi,MarcoFantin,andKrzysztofMatyjaszewski
13.1Introduction 647
13.2RedoxInitiation 648
13.3ChemicalActivationofRAFTAgents 656
13.4ElectrochemicalActivationofRAFTAgents 660
13.4.1ElectrochemistryofRAFTAgents 661
13.4.2DirectandMediatedElectro-reductionofRAFTAgents 665
13.4.2.1OrganicMediatorsfor eRAFTPolymerizations 667
13.4.2.2ActivationofRAFTAgentsviaElectro-reductionofATRPCatalysts 668
13.5Electro-reductionofRadicalInitiators 670
13.6ConclusionsandPerspectives 673 Acknowledgement 673 References 673
14ConsiderationsforandApplicationsofAqueousRAFT Polymerization 679
AlexanderW.Fortenberry,CharlesL.McCormick,andAdamE.Smith
14.1Introduction 679
14.2ChainTransferAgents 679
14.2.1HydrolysisoftheCTA 680
14.2.2Aminolysis 681
14.3Initiation 684
14.3.1InitiationviaAzo-containingSpecies 684
14.3.2PhotochemicalInitiation 685
14.3.2.1ExternallyInitiatedaRAFTPhotopolymerization 685
14.3.2.2Initiator-FreeaRAFTPhotopolymerization 686
14.3.2.3PET-RAFTPhotopolymerizations 688
14.4DeoxygenationMethods 690
14.4.1PET-RAFT 690
14.4.2Enzyme-CatalyzedDeoxygenation 691
14.4.2.1InitiationbyThermalInitiation 691
14.4.2.2EnzymaticInitiationSystems 693
14.5Polymerization-InducedSelf-assembly 696
14.6GraftingfromBiomolecules 699
References 701
15RAFT-MediatedPolymerization-InducedSelf-Assembly (PISA) 707
FranckD’Agosto,MurielLansalot,andJuttaRieger
15.1Introduction 707
15.2History/OriginofPISA 709
15.3PISAProcess 710
15.3.1Emulsion,Dispersion,andPrecipitationPolymerizations:TheReference Processes 710
15.3.2MainParametersatPlayforaSuccessfulPISAataGlance 712
15.3.2.1MacroRAFTType 712
15.3.2.2InitiationinRAFT-PISA 712
15.3.2.3ChemicalNatureoftheBlocks 713
15.3.3PITSA,PICA,PIESA,andPIHSA:DifferentAcronymsHoweverAll BoilingDowntoPISA 714
15.3.4PISA-InspiredSynthesisofSurfactant-FreeLatexes 715
15.4Reactive/FunctionalNano-objects 716
15.4.1ViatheRAFTAgent:Functionalizationofthe α-EndoftheShell Polymer 717
15.4.2ViatheSolvophilicBlock:FunctionalizationAlongtheShell Polymer 718
15.4.2.1AVarietyofFunctions 718
15.4.2.2SurfaceFunctionalizationbySugarMoietiesandAminoAcids 719
15.4.2.3FluorinatedShells 720
15.4.2.4PISAandCO2 721
15.4.3ViatheSolvophobicBlock:CoreFunctionalization 722
15.4.3.1Fluoroparticles 722
15.4.3.2Core-crosslinking 723
15.4.3.3AddingaFunctionAllowingDegradationoftheParticleCore 725
15.4.3.4CO2 -sensitiveParticles 725
15.5ControlovertheParticleMorphology 726
15.5.1FromSphericaltoAnisotropicBlockCopolymerParticles 726
15.5.2MainParametersthatImpacttheParticleMorphology 728
15.5.2.1VaryingtheMolarMass 729
15.5.2.2VaryingtheChemicalNatureoftheSolvophobicBlock 729
15.5.2.3VaryingtheTopologyoftheShellortheCore 730
15.5.2.4VaryingtheSolventQuality 731
15.5.2.5PISAinAqueousMedia:VaryingpHand/orIonicStrength 731
15.5.2.6VaryingtheBlockCopolymerArchitectureviatheRAFTAgent 732
15.5.3StrategiestoStirSpecificMorphologies 733
15.5.3.1UsingPICA 733
15.5.3.2UsingMesogenicMonomers(PIHSA) 733
15.5.3.3UsingIonicComplexes(PIESA)andHydrogen-BondingUnits 734
15.5.3.4HierarchicalAssemblyBetweenParticles 735
15.5.4Post-polymerizationMorphologicalTransitions/Chain Reorganization 735
15.5.4.1Temperature 735
15.5.4.2pH 736
15.5.4.3‘Reactive’Groups 736
15.5.4.4Light 737
15.5.4.5Oxygen 738
15.6Applications 738
15.7Conclusions 740
Acknowledgements 741 Abbreviations 741 References 742
16RAFT-FunctionalEndGroups:Installationand Transformation 753
AndrewB.LoweandElenaDallerba
16.1Introduction 753
16.2FunctionalizationandTransformationofRAFTPolymersviathe R-group 757
16.3ThiocarbonylthioEndGroupRemovalandTransformation 762
16.3.1DesulfurizationofRAFT(Co)Polymers 763
16.3.1.1Thermolysis 763
16.3.1.2Radical-MediatedReduction 765
16.3.1.3Addition–FragmentationCoupling 766
16.3.1.4Radical-InducedOxidation 768
16.3.2HeteroatomDiels–AlderChemistry 769
16.3.3GenerationandApplicationofMacromolecularThiols 772
16.3.3.1RadicalThiol–EneReaction 775
16.3.3.2RadicalThiol–YneReaction 776
16.3.3.3CatalyzedThiol-MichaelAdditions 777
16.3.3.4Thiol-IsocyanateModification 780
16.3.3.5Thiol-EpoxyRingOpening 782
16.3.3.6Thiol-HaloSubstitution 783
16.3.3.7DisulfideReactions 787
16.3.3.8MiscellaneousExamplesofEndGroupTransformationand Applications 790
16.4Summary 793
References 794
17Sequence-EncodedRAFTOligomersandPolymers 805 JorisJ.Haven,JeroenDeNeve,andTanjaJunkers
References 825
18SynthesisandApplicationofReactivePolymersviaRAFT Polymerization 829
MartinGauthier-Jaques,HaticeMutlu,HebaGaballa,andPatrickTheato
18.1Introduction 829
18.2N-Hydroxysuccinimide(NHS) 830
18.3Pentafluorophenyl(PFP)EsterandItsDerivatives 832
18.4 p-NitrophenylEstersandTheirDerivatives 835
18.5MiscellaneousActivatedEsterFunctionalGroupTransformations 836
18.6AcetoneOxime(AO) 836
18.7SalicylicAcid(SA) 837
18.8 p-DialkylsulfoniumPhenoxyEster(DASPE) 837
18.91,1,1,3,3,3-Hexafluoroisopropanol(HFIP) 838
18.10Di(Boc)-Acrylamide(DBAm) 838
18.11AcylChloride 839
18.12AlkylHalide 839
18.13Trichlorotriazine(TCT) 840
18.14Isocyanate(NCO) 840
18.15Azlactone 842
18.16Anhydride 842
18.17Thiolactone 843
18.18ThiolExchange(Disulphide)/MichaelAddition/Thiol–Ene 843
18.19Epoxide 843
18.20Diels–AlderCycloaddition 845
18.21Triazolinedione 845
18.22CarbonylGroupsandtheirDerivatives 846
18.23Copper-CatalysedAzide–AlkyneCycloaddition(CuAAC) 847
18.24Strain-PromotedAzide–AlkyneCycloaddition(SPAAC) 848
18.25Nitrone–andNitrileOxide–AlkyneCycloadditions (SPANOC/SPANC) 848
18.26Cross-couplingReactions 848
18.27BoronicAcid/DiolCondensation 849
18.28MulticomponentReactions(MCR) 849
18.29Metal–LigandCoordination 850
18.30BioapplicationsofReactivePolymers 850
18.31DrugDelivery 851
18.32Bio-conjugation 855
18.33Surface/ParticleModification 859
18.34ConclusionandOutlook 864 References 864
19RAFTCrosslinkingPolymerization 873
PatriciaPérez-Salinas,PorfirioLópez-Domínguez,AlbertoRosas-Aburto, JulioCésarHernández-Ortiz,andEduardoVivaldo-Lima
19.1Introduction 873
19.2StructureandCharacteristicsofPolymerNetworks 875
19.3RAFTCrosslinkingPolymerization 876
19.3.1SynthesisPathwaystoObtainPolymerNetworks 877
19.3.2RAFTControllersUsedintheSynthesisofPolymerNetworks 879
19.4SynthesisofPolymerNetworksbyRAFTCopolymerizationof Vinyl/MultivinylMonomersinSupercriticalCarbonDioxideasGreen Solvent 898
19.5ModellingofPolymerNetworkFormation 904
19.5.1BackgroundonModellingofCrosslinkingandRAFT 906
19.5.2TrifunctionalPolymerMoleculeModellingApproach 907
19.5.3MultifunctionalPolymerMoleculeModellingApproach 910
19.5.4KineticRandomBranchingTheory(KRBT) 915
19.6ClosingRemarks 918
Acknowledgements 918 References 918
20ComplexPolymericArchitecturesSynthesizedthroughRAFT Polymerization 933
ThomasG.Floyd,SatuHäkkinen,MatthiasHartlieb,AndrewKerr,and SébastienPerrier
20.1Introduction 933
20.2RAFTSynthesisofBlockCopolymers 933
20.2.1BlockCopolymerbySequentialPolymerizationSteps 934
20.2.1.1ChoiceofCTA 935
20.2.1.2BlockOrder 937
20.2.1.3PolymerLivingness 938
20.2.1.4InitiationSystem 941
20.2.1.5FurtherConsiderations 942
20.2.1.6MultiblockCopolymers 942
20.2.2BlockCopolymersbyChainExtensionofaPre-functionalized MacroCTA 943
20.2.3BlockCopolymersbyConjugationofTwoPolymericChains 944
20.2.3.1BlockCopolymerSynthesisThroughClickChemistry 945
20.2.3.2SupramolecularBlockCopolymers 947
20.2.4GeneralGuidelines 948
20.3GradientCopolymers 948
20.4CyclicPolymers 949
20.5Star-ShapedPolymers 950
20.5.1MethodstoProduceStar-ShapedCopolymers 950
20.5.1.1DivergentSynthesisofStar(Co)Polymers 950
20.5.1.2ConvergentSynthesisofStarPolymersbyRAFTPolymerization 953
20.5.2ClassificationbyComposition 955
20.6GraftPolymers 956
20.6.1GraftingThrough 958
20.6.2GraftingOnto 959
20.6.3GraftingFrom 960
20.6.4GeneralGuidelines 963
20.7HyperbranchedPolymers 964
20.7.1Self-condensingVinylPolymerization 964
20.7.2CopolymerizationofMultifunctionalMonomers 966
20.7.3AlternativeMethodsofHyperbranchedSynthesis 967
20.7.4GeneralGuidelines 968
20.8Conclusion 968 Acknowledgements 968 References 969
21StarPolymersbyRAFTPolymerization 983
StephanieAllison-Logan,FatemehKarimi,MitchellD.Nothling, andGregG.Qiao
21.1StarPolymers 983
21.2SynthesisofStarPolymersviaRAFTPolymerization 985
21.2.1Core-firstApproach 985
21.2.1.1Z-groupApproach 987
21.2.1.2R-groupApproach 988
21.2.1.3DevelopmentsinSynthesis 991
21.2.2Arm-firstApproach 994
21.2.2.1DevelopmentsinSynthesis 996
21.2.3Grafting-toApproach 1002
21.3ApplicationofStarpolymers 1002
21.3.1StarPolymersinBiomedicalApplications 1003
21.3.2StarPolymersinOtherApplications 1004
21.3.2.1EmulsionStabilization 1006
21.3.2.2AdvancedMaterials 1007
21.4Conclusion 1010 References 1010
22SurfaceandParticleModificationviaRAFTPolymerization:An Update 1017
JuliaPribylandBrianC.Benicewicz
22.1Introduction 1017
22.2ComplexBrushArchitectures 1020
22.3BioconjugationandStimuli-responsivePolymerBrushes 1027
22.4AdvancedComposites 1030
22.5ShapedPolymer-GraftedParticles 1039
22.6Conclusion 1042
Acknowledgements 1042 References 1043
23High-Throughput/High-OutputExperimentationinRAFT PolymerSynthesis 1051
CarlosGuerrero-Sanchez,RobertoYañez-Macias,MiguelRosales-Guzmán, MarcoA.DeJesus-Tellez,ClaudiaPiñon-Balderrama,JorisJ.Haven, GraemeMoad,TanjaJunkers,andUlrichS.Schubert
23.1Introduction 1051
23.2FundamentalExperimentationandLimitationsofHT/HO-EinRAFT PolymerSynthesis 1052
23.3HT/HO-EKineticInvestigations 1053
23.4UtilizationofHT/HO-EfortheRAFTSynthesisofPolymer Libraries 1056
23.5ApplicationsofRAFTPolymerLibrariesinNanomedicineandDrug DeliverySystems 1059
23.5.1ApplicationsofRAFTPolymerLibrariesasAntimicrobialAgents 1064
23.6Conclusions 1065
Abbreviations 1067
Acknowledgements 1069 References 1069
24AnIndustrialHistoryofRAFTPolymerization 1077
GraemeMoad
24.1Introduction 1077
24.2MacromonomerRAFTPolymerization 1077
24.3Thiocarbonylthio-RAFTPolymerization 1082
24.3.1DevelopmentofRAFTPolymerization 1086
24.3.2RAFTEmulsionPolymerization 1097
24.3.3SynthesisofStarsandNano-orMicrogelsbyRAFT Polymerization 1137
24.3.4RAFTApplications 1137
24.3.5RAFTThiocarbonylthio-End-GroupRemoval/Transformation 1137 Abbreviations 1141 References 1141
25CationicRAFTPolymerization 1171 MinetoUchiyama,KotaroSatoh,andMasamiKamigaito
25.1Introduction 1171
25.2BackgroundandOverviewofCationicRAFTPolymerizations 1172
25.2.1LivingCationicPolymerizationandMechanism 1172
25.2.2OverviewofCationicRAFTPolymerizationsandComparisontoRadical RAFTPolymerizations 1173
25.3DesignofCationicRAFTorDTPolymerizations 1175
25.3.1RAFTorDTAgentsforCationicPolymerizations 1175
25.3.2Initiators,Cationogens,orCatalystsforCationicRAFTorDT Polymerizations 1179
25.3.3MonomersforCationicRAFTorDTPolymerizations 1182
25.4DesignofWell-DefinedPolymersbyCationicRAFTorDT Polymerizations 1184
25.4.1End-FunctionalizedPolymers 1184
25.4.2BlockCopolymers 1185
25.4.3StarPolymers 1189
25.5SummaryandOutlookforCationicRAFTorDTPolymerizations 1190 Abbreviations 1191 References 1191
Index 1195
Preface
ThisvolumeisintendedtoprovideadetailedsynopsisofthecurrentstateofRAFT (reversibleadditionfragmentationchaintransfer)polymerization.Itisanupdateof the2008HandbookofRAFTPolymerizationandofthereviewseries‘LivingRadical PolymerizationbytheRAFTProcess’publishedovertheperiod2005–2012inthe AustralianJournalofChemistry
RAFTpolymerizationhasbeenasuccess,therearenowmorethan10000publicationsthatrelatetotheunderstanding,development,and/orapplicationofthe technique,andtherateofpublicationshowsnosignsofwaning.Commercialsuccessismoredifficulttojudge.Asearchrevealsover1000patentfamilies.Onthe otherhand,therearefewexamplesofactualRAFTproducts.Maybecommercial implementationwillincreasenowthatthefirstRAFTpatentshavereachedtheend oftheirenforceablelife.
AlthoughsomemightarguethatRAFTisnowamaturetechnique,therearestill significanteffortsstrivingforamorecompleteunderstandingofthemechanismand scopeoftheprocess.Itisourhopethatbycompilingthisworkandbyhighlighting recentachievementsinRAFTchemistry,wewillinspirefurtherresearchandfurther drivetheever-increasingrangeofapplications.
Clayton,Victoria,Australia September2021
GraemeMoadandEzioRizzardo
Acknowledgements
TheeditorsareextremelygratefultoCarolineBray,GuoxinLi,CatherineMoad,and LisaStroverforproofreadingthevariouschaptersandtoCSIROforallowingsubstantialtimetobespentonthisexercise.