Full download Liquid crystals, 3rd edition iam-choon khoo pdf docx

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/liquid-crystals-3rd-edition-iam-choon-khoo/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Liquid-Liquid and Solid-Liquid Extractors 1st Edition

Jean-Paul Duroudier

https://ebookmass.com/product/liquid-liquid-and-solid-liquidextractors-1st-edition-jean-paul-duroudier/

The Meaning of If Justin Khoo

https://ebookmass.com/product/the-meaning-of-if-justin-khoo/

Liquid-phase Extraction Poole Colin F. (Ed.)

https://ebookmass.com/product/liquid-phase-extraction-poolecolin-f-ed/

Stones of the Goddess: Crystals for the Divine Feminine

Nicholas Pearson

https://ebookmass.com/product/stones-of-the-goddess-crystals-forthe-divine-feminine-nicholas-pearson/

Liquid Biofuels: Fundamentals, Characterization, and Applications 1st Edition Krushna Prasad Shadangi

https://ebookmass.com/product/liquid-biofuels-fundamentalscharacterization-and-applications-1st-edition-krushna-prasadshadangi/

Liquid-Gas and Solid-Gas Separators 1st Edition JeanPaul Duroudier

https://ebookmass.com/product/liquid-gas-and-solid-gasseparators-1st-edition-jean-paul-duroudier/

Agitator Design for Gas-Liquid Fermenters and Bioreactors Gregory T. Benz

https://ebookmass.com/product/agitator-design-for-gas-liquidfermenters-and-bioreactors-gregory-t-benz/

Indo-Pacific Security: Us-China Rivalry and Regional States' Responses Nicholas Kay Siang Khoo

https://ebookmass.com/product/indo-pacific-security-us-chinarivalry-and-regional-states-responses-nicholas-kay-siang-khoo/

Direct liquid fuel cells : fundamentals, advances and technical roadmaps Ay■e Bayrakçeken Yurtcan

https://ebookmass.com/product/direct-liquid-fuel-cellsfundamentals-advances-and-technical-roadmaps-ayse-bayrakcekenyurtcan/

LiquidCrystals

LiquidCrystals

ThirdEdition

IAM-CHOONKHOO

PennsylvaniaStateUniversity

UniversityPark,Pennsylvania

Thiseditionfirstpublished2022 ©2022JohnWiley&Sons,Inc.

EditionHistory

Wiley-Interscience,2e2007;Wiley,1e1994

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyform orbyanymeans,electronic,mechanical,photocopying,recording,orotherwise,exceptaspermittedbylaw.Adviceon howtoobtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/permissions.

TherightofIam-ChoonKhootobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts,visitusat www.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsin standardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Thecontentsofthisworkareintendedtofurthergeneralscientificresearch,understanding,anddiscussiononlyandare notintendedandshouldnotberelieduponasrecommendingorpromotingscientificmethod,diagnosis,ortreatmentby physiciansforanyparticularpatient.Inviewofongoingresearch,equipmentmodifications,changesingovernmental regulations,andtheconstantflowofinformationrelatingtotheuseofmedicines,equipment,anddevices,thereaderis urgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsforeachmedicine,equipment, ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusageandforaddedwarningsand precautions.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecifically disclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticular purpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterials,orpromotional statementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitationand/or potentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservices theorganization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwiththe understandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readers shouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswritten andwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Khoo,Iam-Choon,author.

Title:Liquidcrystals/Iam-ChoonKhoo,PennsylvaniaStateUniversity, UniversityPark,Pennsylvania.

Description:Thirdedition.|Hoboken,NJ:JohnWiley&Sons,Inc.,[2022] |Series:Wileyseriesinpureandappliedoptics|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2021038545(print)|LCCN2021038546(ebook)|ISBN 9781119705826(hardback)|ISBN9781119705857(adobepdf)|ISBN 9781119705796(epub)

Subjects:LCSH:Liquidcrystals –Congresses.

Classification:LCCQD923.L531592021(print)|LCCQD923(ebook)|DDC 530.4/29–dc23

LCrecordavailableathttps://lccn.loc.gov/2021038545

LCebookrecordavailableathttps://lccn.loc.gov/2021038546

Coverimage:©Sensvector/Shutterstock ImagerybyIam-ChoonKhoo

CoverdesignbyWiley

Setin10/12ptTimesbyStraive,Pondicherry,India

10987654321

1.2.1.ElectronicOpticalTransitionsandUVAbsorption3

1.2.2.VisibleandInfraredAbsorption;Terahertz,Microwave4 1.3.Lyotropic,Polymeric,andThermotropicLiquidCrystals6

1.3.1.LyotropicLiquidCrystals

1.3.3.ThermotropicLiquidCrystals:Smectic,Nematic, Cholesteric,andBlue-phaseLiquidCrystals

1.4.2.Dye-dopedLiquidCrystals

1.4.3.Polymer-dispersedandPolymer-stabilizedLiquidCrystals14

1.5.4.PhotosensitiveandTunableOpticalWaveguide,Photonic Crystals,andMetamaterialNanostructures

1.5.5.IsotropicLiquidCrystalCoredFiberArray

2.3.MolecularTheoriesandResultsfortheLiquidCrystallinePhase34 2.3.1.Maier–SaupeTheory:OrderParameterNear Tc

2.3.2.NonequilibriumandDynamicalDependenceoftheOrder

2.4.2.FreeEnergyinthePresenceofanAppliedField41

3.1.Introduction

3.2.1.TheVectorField:DirectorAxis

3.2.2.ElasticConstants,FreeEnergies,andMolecularFields46

3.3.DielectricConstantsandRefractiveIndices

3.3.1.DCandLow-frequencyDielectricPermittivity, Conductivities,andMagneticSusceptibility

3.3.2.FreeEnergyandTorquesbyElectricandMagneticFields52

3.4.OpticalDielectricConstantsandRefractiveIndices

3.4.1.LinearSusceptibilityandLocalFieldEffect

3.4.2.EquilibriumTemperatureandOrderParameter DependencesofRefractiveIndices

3.5.FlowsandHydrodynamics

3.5.1.HydrodynamicsofOrdinaryIsotropicFluids

3.5.2.GeneralStressTensorforNematicLiquidCrystals64

3.5.3.FlowswithFixedDirectorAxisOrientation

3.5.4.FlowswithDirectorAxisReorientation

3.6.Field-inducedDirectorAxisReorientationEffects

3.6.1.Field-inducedReorientationWithoutFlowCoupling: FreederickszTransition

4.1.CholestericLiquidCrystals

4.1.1.FreeEnergies

4.1.2.Field-inducedEffectsandDynamics

4.1.3.TwistandConicModeRelaxationTimes

4.2.OpticalPropertiesofCholesterics

4.2.1.BraggRegime(OpticalWavelength Pitch)

4.2.2.ReflectionandTransmissionofPolarizedLight:Normal Incidence 79

4.2.3.CholestericLiquidCrystalasaOne-dimensionalPhotonic Crystal,PhotonicBandgap,andDispersion 84

4.2.4.CholestericLiquidCrystalswithMagneto-opticActivity: NegativeIndexofRefraction 89

4.2.5.PolarizationRotationandSwitchingbyHighPeriod NumberCLC – AdiabaticRotation and CircularBragg Resonance 90

4.3.CholestericBluePhaseLiquidCrystals 97

4.3.1.FreeEnergiesandEquationofMotionunderanApplied Field 97

4.3.2.Field-inducedLatticeDistortionandNewCrystalline Structures 98

4.3.3.Polymer-stabilizationandElectro-opticalProperties ofNon-cubicBPLC 99

4.4.SmecticandFerroelectricLiquidCrystals:ABriefSurvey100

4.4.1.Smectic-ALiquidCrystals 101

4.4.2.Smectic-CLiquidCrystals 104

4.4.3.Smectic-C ∗ andFerroelectricLiquidCrystals 106

4.4.4.Smectic-C ∗ – Smectic-APhaseTransition111

5.1.Introduction

5.2. Electroma gneticFormalismofLightScatteringinLiquid Crystals

5.3.ScatteringFromDirectorAxisFluctuationsinNematicLiquid Crystals

5.4.LightScatteringintheIsotropicPhaseofLiquidCrystals122

5.5.Temperature,Wavelength,andCellGeometryEffectson Scattering 125

5.6.SpectrumofLightandOrientationFluctuationDynamics127

5.7.RamanScatterings

5.7.1.Introduction

5.7.2.QuantumTheoryofSpontaneousandStimulated RamanScattering:ScatteringCross-section

5.7.3.SpontaneousRamanScattering

5.7.4.StimulatedRamanScattering

5.8.BrillouinandRayleighScatterings

5.8.1.BrillouinScattering

5.8.2.RayleighScattering

5.9.ABriefIntroductiontoNonlinearLightScattering

6.1.Introduction

6.2.Review ofElectro-OpticsofAnisotropicandBirefringent

6.2.1.Anisotropic,UniaxialandBiaxialOpticalCrystals143

6.2.2.IndexEllipsoidinthePresenceofanElectric Field–Electro-opticsEffect 145

6.2.3.PolarizersandRetardationPlate 146

6.2.4.BasicElectro-opticsModulation

6.3.Electro-OpticsofNematicLiquidCrystals

6.3.1.DirectorAxisReorientationinHomeotropicand PlanarCell;DualFrequencyLiquidCrystals

6.3.2.FreederickszTransitionRevisited

6.3.3.Field-inducedRefractiveIndexChangeandPhaseShift154

6.4.NematicLiquidCrystalSwitchesforDisplayApplication156

6.4.1.LiquidCrystalSwitch – onAxisConsiderationforTwist, Planar,andHomeotropicAlignedCells 156

6.4.2.Off-axisTransmission,ViewingAngle,and BirefringenceCompensation 157

6.4.3.LiquidCrystalDisplayElectronics 159

6.5.Electro-OpticalEffectsinOtherPhasesofLiquidCrystals159

6.5.1.SurfaceStabilizedFLC 160

6.5.2.Soft-modeFLCs 161

6.6.Non-DisplayApplicationsofLiquidCrystals

6.6.1.LiquidCrystalSpatialLightModulator

6.6.2.TunablePhotonicCrystalswithLiquidCrystal InfiltratedNanostructures

6.6.3.TunableFrequencySelectiveStructures,Metamaterial, andMetasurfaces 167

6.6.4.LiquidCrystalsforMolecularSensingandDetection168

6.6.5.BeamSteering,Routing,andTunableMicro-ring Resonator,andHigh-powerLaserOptics

7.1.ElectromagneticFormalismsforOpticalPropagation 175

7.1.1. Maxwell EquationsandWaveEquationsinAnisotropic Media 176

7.1.2.ComplexRefractiveIndex – RealandImaginary Components 177

7.1.3.NegativeIndexMaterial 178

7.1.4.NormalModes,PowerFlowandPropagationVectors inaLosslessIsotropicMedium 179

7.1.5.NormalModesandPropagationVectorsinaLossless AnisotropicMedium 181

7.2.PolarizedLightPropagationinLiquidCrystalDisplayPanel185

7.2.1.PanePolarizedWaveandJonesVectors 185

7.2.2.JonesMatrixMethod 189

7.2.3.ObliqueIncidence – 4×4MatrixMethods 191

7.3.ExtendedJonesMatrixMethod 193

7.4.Finite-differenceTime-domaintechnique 196

7.5.NonlinearLightPropagationinLiquidCrystals – aFirstLook197

7.6.SystemsofUnits 198 References 200

Chapter8.Laser-inducedReorientationNonlinearOpticalEffects203

8.1.Introduction 203

8.2. Laser-InducedMolecularReorientationsintheIsotropicPhase204

8.2.1.IndividualMolecularReorientationsinAnisotropic Liquids 204

8.2.2.CorrelatedMolecularReorientationDynamics 207

8.2.3.InfluenceofMolecularStructureonIsotropicPhase ReorientationNonlinearities 210

8.3.MolecularReorientationsintheNematicPhase 212

8.3.1.SimplifiedTreatmentofOpticalField-inducedDirector AxisReorientation 213

8.3.2.MoreExactTreatmentofOpticalField-inducedDirector AxisReorientation 215

8.3.3.NonlocalDirectorAxisReorientationandNonlocal OpticalNonlinearity 217

8.4.NematicPhaseReorientationDynamics 219

8.4.1.PlaneWaveOpticalField 219

8.4.2.SinusoidalOpticalIntensity 222

8.4.3.PolarizationGratingwithUniformOpticalIntensity224

8.5.Laser-InducedDirectorAxisRealignmentinDye-Doped LiquidCrystals 225

8.5.1.ReorientationCausedbyInter-MolecularTorque225

8.5.2.Laser-inducedTrans–CisIsomerisminDye-doped LiquidCrystals 226

8.6.DCFieldAidedOpticallyInducedNonlinearOpticalEffects inLiquidCrystals – Photorefractivity 226

8.6.1.OrientationPhotorefractivity – BulkEffects 229

8.6.2.ExperimentalResultsandSurfaceCharge/Field Contribution 233

8.7.ReorientationinOtherPhasesofPristine(Undoped)Liquid Crystals 234

8.7.1.SmecticPhase 234

8.7.2.CholestericandBlue-phaseLiquidCrystals 235 References 236

Chapter9.Thermal,Density,LatticeDistortionOpticalNonlinearities inNematic,Cholesteric,andBlue-phaseLiquidCrystals241

9.1.Introduction

9.2.Electrostricti onandFlowsinNon-AbsorbingLiquidCrystals –aGeneralOverview

9.3.Laser-InducedDensityandTemperatureModulationsinLiquid Crystals

9.3.1.ModulationsbySinusoidalOpticalIntensity

9.3.2.RefractiveIndexChanges:TemperatureandDensity Effects

9.4.OpticalNonlinearitiesofNematicLiquidCrystals

9.4.1.Steady-StateThermalNonlinearityofNematicLiquid Crystals

9.4.2.ShortLaserPulse-inducedThermalIndexChangein NematicsandNear-Tc Effect

9.4.3.OpticalNonlinearitiesofIsotropicLiquidCrystals258

9.5.CoupledNonlinearOpticalEffectsinNematic LiquidCrystals

9.5.1.ThermalOrientationCouplingEffect

9.5.2.Flow-reorientationEffect

9.6.NonlinearOpticalResponsesofCholestericBlue-PhaseLiquid Crystals

9.6.1.GeneralOverview

9.6.2.Non-electronicsOpticalNonlinearitiesofBPLC268

10.1.IntroductiontoQuantumMechanicalTreatmentofMolecules275

10.2. DensityMatrixFormalismforOpticalInducedMolecular ElectronicPolarizabilities

10.2.1.Field-inducedPolarizations – FirstandHigherOrders280

10.2.2.LinearandNonlinearAbsorptions

10.3.LinearandNonlinearElectronicSusceptibilities

10.3.1.LinearOpticalPolarizabilitiesofaMolecule

10.3.2.ComplexSusceptibilitiesandIndexofRefraction –Dispersion,Absorption,andAmplificationofLight, Lasers

10.3.3.Second-orderElectronicPolarizabilities

10.3.4.Third-orderElectronicPolarizabilities

10.3.7.PermanentDipoleandMolecularOrdering

10.3.8.QuadrupoleContributionandField-inducedSymmetry Breaking

10.3.9.InfluenceofMolecularStructures

10.4.Intensity-DependentRefractiveIndexChangeandnonlinear Absorption

10.4.1.NonlinearAbsorption

References

Chapter11.NonlinearOptics

11.1.Introduction

11.1.1 GeneralNonlinearPolarizationandSusceptibility302

11.1.2.ConventionandSymmetry

11.2.CoupledMaxwellWaveEquations

11.3.NonlinearOpticalPhenomena

11.3.1.StationaryDegenerateOpticalWaveMixing

11.3.2.OpticalPhaseConjugation

11.3.3.TransientandNearlyDegenerateWaveMixing316

11.3.4.NondegenerateOpticalWaveMixing;Harmonic Generations 320

11.3.5.StationarySelf-phaseModulationandSelf-action323

11.4.StimulatedScatterings

11.4.1.StimulatedRamanScatterings

11.4.2.StimulatedBrillouinScatterings

11.4.3.StimulatedOrientationScatteringinLiquidCrystals336

11.4.4.StimulatedThermalScattering 341

11.5.UltrafastLaserPulseSelf-ActionEffectsinCholestericLiquid Crystals 342

11.5.1.CoupledWaveEquationsforForwardandBackward PropagatingWaves 342

11.5.2.UltrafastPulseModulations – Compression,Stretching, andRecompressionwithCholestericLiquidCrystals344

12.1.Self-ActionNonlinearOpticalProcesses

12.1.1. Self-inducedSpatialandTemporalPhaseShift348

12.1.2.Self-phaseModulation,Self-focusing,-defocusing ofContinuous-Wave(CW)orPulsedLaser

12.1.3.Self-guiding,SpatialSolitonandPatternFormation353

12.1.4.PulseModulations,PolarizationRotationofand SwitchingbyUltrafast(Picosecond–Femtoseconds) Laser

12.2.OpticalWaveMixings

12.2.1.StimulatedOrientationalScatteringandPolarization Self-switching–SteadyState

12.2.2.StimulatedOrientationalScattering – Nonlinear Dynamics

12.2.3.OpticalPhaseConjugationwithOrientationand ThermalGratings

12.2.4.Self-startingOpticalPhaseConjugation

12.3.LiquidCrystalsforAll-OpticalImageProcessing

12.3.1.LiquidCrystalsasAll-opticalInformationProcessing Materials

12.3.2.All-opticalImageProcessing

12.4.HarmonicGenerationsandSum-FrequencySpectroscopy374

12.5.OpticalSwitching

12.6.NonlinearAbsorptionandOpticalLimitingofLasersfor Eye/SensorProtection

12.6.1.Introduction

12.6.2.NonlinearFiberArray – An IntensityDependentSpatial FrequencyFilter

12.6.3.OpticalLimitingActionofFiberArrayContainingRSA

12.6.4.OpticalLimitingActionofFiberArrayContainingTPA

Preface

Importantprogressandadvanceshavebeenmadeinthemultidisciplinarystudyof liquidcrystalssincethelasteditionofthisbookwentintoprintin2007.Thisnew editionconsistsof12chapters,mostofwhichhavebeencompletelyrevampedwith thelatestfundamentalbreakthroughandunderstandingofoptical,electro-,andnonlinearopticalpropertiesofliquidcrystals.

Chapters1–5coverthebasicphysicsandopticalpropertiesofliquidcrystals. Besidesnematicsthatarewidelyusedinubiquitousdevices,Ihaveincludedsufficientdiscussionsonothermesophasesofliquidcrystalssuchasthesmectics,ferroelectrics,cholesterics,andtheBlue-phasetoenablethereaderstoproceedtomore advancedorspecializedtopicselsewhere.Severalnewsectionshavebeenadded. Forexample,inChapter1,Ihaveincludedadetailedaccountofthefabrication methodsforgrowingmassivesingle-crystallinechiral1-Dand3-Dphotoniccrystals basedoncholestericandBlue-phaseliquidcrystalsandthefeasibilityofusingcholestericliquidcrystalsforultrafastmodulationofpicosecondandfemtosecondlasers ofcomplexvectorfields.

InChapter6,weexplorethefundamentalsofliquidcrystalsforelectro-opticsand displayandnon-display-relatedapplicationssuchassensing,switching,andspecializednanostructuredtunablephotoniccrystals,frequencyselectivesurfaces,and metamaterials.InChapter7,weprovideathoroughaccountoftheoreticalandcomputationaltechniquesusedtodescribeopticalpropagationthroughliquidcrystals andanisotropicmaterials.Chapters8–12provideacomprehensive,self-contained treatmentofnonlinearopticsofliquidcrystals,fromclassicalaswellasquantum mechanicalstandpoints,andhavegreatlyexpandedonthecoverageofthesamesubjectmatterinthepreviouseditionofthebookwithupdatedliteraturereviewsand fundamentaldiscussions.

Ihavelimitedmostdiscussionstoonlythefundamentalsanddeviceworking principlesthatcanwithstandthepassageoftime.Whereverpossibleandforthesake ofclarity,Ihavereplacedvigoroustheoreticalformalismswiththeirsimplifiedversions.Almostalloftheresultscontainedinthebookaretakenfrommyresearch projects,whichhavebeensupportedovertheyearsbygrantsandcontractsfrom theNationalScienceFoundation,AirForceOfficeofScientificResearch,Army ResearchOffice,the(PatuxentRiver)NavalAirDevelopmentCenter,theDefense AdvancedResearchProjectsAgencyandWrightPattersonResearchLaboratory. Iwouldliketothankmygraduatestudentsfortheirvaluableparticipationinthese projects,andsupportfromcolleaguesandcollaboratorsfromallovertheworld IhavebefriendedandinteractedwithinthefourdecadessinceIventuredinto thewonderfulworldofliquidcrystals. xiii

IamgratefultothePennsylvaniaStateUniversityforgrantingasabbaticalleave whenmostofthewritingisdone.Duringthecourseofwritingthiseditionofthe book,Ihaveenjoyedconstantencouragementandsupportfrommywife,Chor San;occasionalvisitsbymygrandsonLeoandgranddaughterKairi,anddailyvisits bylivelydovesandhummingbirdstofloweringplantsoutsidemyCarlsbadhome haveprovidedbriefbutmuchneededanddelightfulbreaks.

IAM-CHOON KHOO

Carlsbad,California,June2021

1

IntroductiontoLiquidCrystals

Liquidcrystalsarewonderfulmaterials.Inadditiontothesolidcrystallineandisotropicliquidphases,theyexhibitmanyso-calledmesophasesinwhichtheyflowlike ordinaryliquidsyetpossesscrystallineproperties[1].Thesemesophasesarecharacterizedbymanyuniquephysicalandopticalpropertiesandofferafertileground forseveralareasoffundamentalpursuits,aswellasapplicationsindisplayscreensof ubiquitousdevices,photonics,THzandmicrowaveandbiomedicalsystems[2–8].

1.1.MOLECULARSTRUCTURESANDCHEMICALCOMPOSITIONS

Withfewexceptions,liquidcrystalsarecomposedoforganicsubstanceswitha typicalstructure,asdepictedinFigure1.1.Theyarearomaticand,iftheycontain benzenerings,theyareoftenreferredtoasbenzenederivatives.Ingeneral,aromatic liquidcrystalmoleculessuchasthoseshowninFigure1.1compriseasidechainR, twoormorearomaticringsAandA ,connectedbylinkagegroupsXandY,andat theotherendconnectedtoaterminalgroupR

Examplesofsidechainandterminalgroupsarealkyl(CnH2n+1),alkoxy (CnH2n+1O),andotherssuchasacyloxyl,alkylcarbonate,alkoxycarbonyl,andthe nitroandcyanogroups.TheXsofthelinkagegroupsaresimplebondsorgroupssuch asstilbene( CH==CH ),ester( O C O ),tolane( C C ),azoxy ( N==N ),Schiffbase( CH==N ),acetylene( C C ),anddiacetylene( C C C C ).Thenamesofliquidcrystalsareoftenfashionedafterthelinkagegroup(e.g.Schiff-baseliquidcrystal).Therearequitea numberofaromaticrings.Theseincludesaturatedcyclohexaneorunsaturated phenyl,biphenyl,andterphenylinvariouscombinations.

Themajorityofliquidcrystalsarebenzenederivatives;therestincludeheterocyclics,organometallics,sterols,andsomeorganicsaltsorfattyacids.Theirtypical structuresareshowninFigures1.2–1.4.Heterocyclicliquidcrystalsaresimilarin

LiquidCrystals,ThirdEdition.Iam-ChoonKhoo. ©2022JohnWiley&Sons,Inc.Published2022byJohnWiley&Sons,Inc.

2 INTRODUCTIONTOLIQUIDCRYSTALS

Side Chain Terminal Group Aromatic Ring Aromatic Ring Linkage Group

'

' =Cl,Br,I,...etc.

structuretobenzenederivatives,withoneormoreofthebenzeneringsreplacedbya pyridine,pyrimidine,oranothersimilargroup.Cholesterolderivativesarethemost commonchemicalcompoundsthatexhibitthecholesteric(orchiralnematic)phase ofliquidcrystals.Organometalliccompoundsarespecialinthattheycontainmetallicatomsandpossessinterestingdynamicalandmagneto-opticalproperties.

Allthephysicalandopticalpropertiesofliquidcrystalssuchasdielectric constants,elasticconstants,viscosities,absorptionspectra,transitiontemperatures, theexistenceofmesophases,anisotropies,andopticalnonlinearitiesaregovernedby thepropertiesoftheseconstituentgroupsandhowtheyarechemicallysynthesized together.Sincethesemoleculesarequitelargeandanisotropic,andthereforevery complex,itwouldtakeatreatisetodiscussallthepossiblevariationsinthemoleculararchitectureandtheresultingchangesintheirphysicalproperties.Nevertheless, therearesomegeneralobservationsonecanmakeonthedependenceofthephysical propertiesonthemolecularconstituents[2].Forexample,thechemicalstabilityof liquidcrystalsdependsverymuchonthecentrallinkagegroup.Schiff-baseliquid

Figure1.1. Molecularstructureofatypicalliquidcrystal.
H19C9C9H19 NN NN
Figure1.2. Molecularstructureofaheterocyclicliquidcrystal.
OH3CHg CHN
Figure1.3. Molecularstructureofanorganometallicliquidcrystal. H3CCH3 CH3
Figure1.4. Molecularstructureofasterol.

crystalsareusuallyquiteunstable.Ester,azo,andazoxycompoundsaremorestable butarealsoquitesusceptibletomoisture,temperaturechange,andultraviolet(UV) radiation.Compoundswithoutacentrallinkagegroupareamongthemoststable liquidcrystalseversynthesized.Themostwidelystudiedoneis5CB(pentyl cyanobiphenyl),whosestructureisshowninFigure1.5.Othercompoundssuch aspyrimideandphenylcyclohexanearealsoquitestable.

1.2.OPTICALPROPERTIES

Ingeneral,opticalpropertiesofliquidcrystalsfallintotwodistinctcategories:those characteristicsof individual constituentmoleculesandthoseuniquetothe bulkcrystalline mesophases.Herewediscussopticalpropertiesthatarelargelydecidedbythe individualconstituentmolecules;opticalpropertiesassociatedwithvariousordered mesophasesofliquidcrystalsareelaboratedinlaterchapters.

1.2.1.ElectronicOpticalTransitionsandUVAbsorption

Sinceliquidcrystalconstituentmoleculesarequitelarge,theirenergylevelstructuresarerathercomplex.Inessence,thebasicquantummechanicaltheoryissimilar totheonedescribedinChapter10foramultilevelmolecule.Generally,theenergy levelsarereferredtoasorbitals: π , n,and σ orbitalsforthegroundandlow-lying levelsand π ∗ , n ∗,and σ ∗ fortheirexcitedcounterparts.Sincemostliquidcrystals arearomaticcompounds,containingoneormorearomaticrings,theenergylevels ororbitalsofaromaticringsplayamajorrole.Inparticular,the π π ∗ transitions inabenzenemoleculehavebeenextensivelystudied.Figure1.6showsthreepossible π π ∗ transitionsinabenzenemolecule.

Ingeneral,thesetransitionscorrespondtotheabsorptionoflightinthenear-UV spectralregion(≤200nm)[2].Theseresultsforabenzenemoleculecanalsobeused forinterpretingtheabsorptionofliquidcrystalscontainingphenylrings.Onthe otherhand,inasaturatedcyclohexaneringorband,usuallyonly σ electronsare involved.The σ σ ∗ transitionscorrespondtoabsorptionoflightofshorterwavelength(≤180nm)incomparisontothe π π ∗ transitionmentionedpreviously.

Theseopticalpropertiesarealsorelatedtothepresenceorabsenceofconjugation (i.e.alternationsofsingleanddoublebonds,asinthecaseofabenzenering).Insuch conjugatedmolecules,the π electron’swavefunctionisdelocalizedalongthe conjugationlength,resultinginabsorptionoflightinalongerwavelengthregion comparedto,forexample,thatassociatedwiththe σ electronincompoundsthat

Figure1.5. Molecularstructureof5CB(pentylcyanobiphenyl).

donotpossessconjugation.Absorptiondataandspectraldependenceforavarietyof molecularconstituents,includingphenylrings,biphenyls,terphenyls,tolanes,and diphenyl-diacetylenes,maybefoundin[2].

1.2.2.VisibleandInfraredAbsorption;Terahertz,Microwave

Thespectraltransmissiondependenceoftwotypicalliquidcrystalsisshownin Figure1.7aandb.LiquidcrystalsarequiteabsorptiveintheUVregion,asaremostorganicmolecules/liquids.Inthevisibleandnear-infrared(IR)regime(i.e.from 0.4to~2 μm),therearenoabsorptionbands,andthusliquidcrystalsarequitetransparentinthisregime.Inthemid-IR(3–5 μm)andIR(9–12 μm),rovibrationaltransitionsbegintodominate,andliquidcrystalsarequiteabsorptiveinthisspectral area(Table1.1).

TABLE1.1.AnisotropicPhysicalParametersofaTypicalNematicLiquidCrystals(E7)

Thermaldiffusionconstant:

Elasticconstants:

Figure1.6. The π π ∗ electronictransitionsinabenzenemolecule.

Figure1.7. Transmissionspectraofnematicliquidcrystals:(a)5CB;(b) N-(4-methoxybenzylidene)-4butylaniline(MBBA).

Theabsorptioncoefficient α intheUV(~0.2 μm)regimeisontheorder of10 3 cm 1 ;inthevisible(~0.5 μm)regime, α 10 0 cm 1 ;inthenear-IR (~3 – 5 μmand~9 – 12 μm)regime, α ~10 2 cm 1 .Thereare,ofcourse,largevariationsamongthethousandsofliquidcrystalsthathavebeensynthesized.Itispossibletoidentifyliquidcrystalswiththe desirableabsorption/transparencyfora wavelengthofinterest.Forexample,theterahertzandmicrowaveregime,[5,6] haveidentified/synthesizedliquidcrystals(LC’ s)withrelativelylowabsorption coefficient α ~100 cm 1;lowabsorptionisimportantsinceapplicationsinsuchlong-wavelength regimesrequiremuchthickerinteractionlength(cellthickness).

6INTRODUCTIONTOLIQUIDCRYSTALS

Auniqueadvantageofliquidcrystalsi sthesizeablebirefringencethroughout theentirevisible – IR-terahertz-microwavespectrum.Atthe20 – 60GHzregion, [6]hasshownthatforatypicalliquidcrystalsuchasE7, εe =3.17(refractive index ne =1.78)and ε0 =2.72(refractiveindex n 0 =1.65),i.e.abirefringence Δn ~0.13.

1.3.LYOTROPIC,POLYMERIC,ANDTHERMOTROPIC LIQUIDCRYSTALS

Thereareseveraldistincttypesofliquidcrystals:lyotropic,polymeric,thermotropic, anddiscotic.Thesematerialsexhibitliquidcrystallinepropertiesasafunction ofdifferentphysicalparametersandenvironmentssuchastemperature,molecular constituents ’ structure,andconcentration.

1.3.1.LyotropicLiquidCrystals

Lyotropicliquidcrystalsareobtainedwhenanappropriateconcentrationofmaterial isdissolvedinsomesolvent.Themostcommonsystemsarethoseformedbywater andamphiphilicmolecules(moleculesthatpossessahydrophilicpartthatinteracts stronglywithwaterandahydrophobicpartthatiswaterinsoluble)suchassoaps, detergents,andlipids.Herethemostimportantvariablecontrollingtheexistence oftheliquidcrystallinephaseistheamountofsolvent(orconcentration).There arequiteanumberofphasesobservedinsuchwater-amphiphilicsystems,asthe compositionandtemperaturearevaried;someappearassphericalmicelles,and otherspossessorderedstructureswith1-,2-,or3-Dpositionalorder.

Examplesofthesekindsofmoleculesaresoaps(Figure1.8)andvariousphospholipidslikethosepresentincellmembranes.Lyotropicliquidcrystalsareofinterestinbiologicalstudies[7]. 3C

Chemicalstructureandcartoonrepresentationofsodiumdodecylsulfate(soap)forming micelles.

Figure1.8.

1.3.2.PolymericLiquidCrystals

PolymericliquidcrystalsarebasicallythepolymerversionsofthemonomersdiscussedinSection1.1.Agoodaccountofpolymericliquidcrystalsmaybefound in[9].Therearethreecommontypesofpolymers,asshowninFigure1.9a–c,which arecharacterizedbythedegreeofflexibility.Thevinyltype(Figure1.9a)isthemost flexible,theDupontKevlarpolymer(Figure1.9b)issemirigid,andthepolypeptide chain(Figure1.9c)isthemostrigid.Mesogenic(orliquidcrystalline)polymersare classifiedinaccordancewiththemoleculararchitecturalarrangementofthemesogenicmonomer.Main-chainpolymersarebuiltbylinkingrigidmesogenicgroupsin amannerdepictedschematicallyinFigure1.10a;thelinkmaybeadirectbondor someflexiblespacer.Liquidcrystalside-chainpolymersareformedbypendantside attachmentofmesogenicmonomerstoaconventionalpolymericchain,asdepicted inFigure1.10b.

Figure1.9. Threedifferenttypesofpolymericliquidcrystals:(a)vinyltype;(b)Kevlarpolymer; (c)polypeptidechain.

1.3.3.ThermotropicLiquidCrystals:Smectic,Nematic,Cholesteric, andBlue-phaseLiquidCrystals

Althoughthemolecularstructuresofthermotropicliquidcrystalsarequitecomplicated,theyareoftenrepresentedas “rigidrods” thatinteractwithoneanothertoform distinctiveorderedstructures(orphases)asafunctionofascendingtemperature: crystals,smectic,nematic,cholesteric(includingblue-phase),andtheisotropicliquidphase.Insmecticliquidcrystals,thereareseveralsubclassificationsinaccordancewiththepositionalanddirectionalarrangementofthemolecules.

Asexplainedingreaterdetailinthefollowingchapters,thesemesophasesare definedandcharacterizedbymanyphysicalparameterssuchaslong-andshortrangeorder,orientationaldistributionfunctions,andsoon.Herewecontinueto usetherigid-rodmodelandpictoriallydescribethesephasesintermsoftheirmoleculararrangement.

Figure1.11adepictsthecollectivearrangementoftherodlikemoleculesinthe nematicphaseschematically.Thesemoleculesare,however,directionallycorrelated;theyarealignedinageneraldirectiondefinedbyaunitvector ñ,theso-called directoraxis,whichmayberegardedasthecrystalaxis.Nevertheless,themolecules arepositionallyrandomandexhibitflowverymuchlikeliquids;X-raydiffraction fromnematicsdoesnotexhibitanydiffractionpeak.

Althoughindividualmoleculesofnematicliquidcrystal(NLC),cholestericliquid crystal(CLC),andblue-phaseliquidcrystal(BPLC)maybepolar,i.e.carryapermanentdipole,theytendtoself-assemblethemselvesinsuchamannerthatbulkliquidcrystalsarecentrosymmetric,cf.Figure1.12;theirphysicalpropertiesarethe sameinthe+ n andtheopticallyuniaxial n directions.

Cholestericliquidcrystals,oftenalsocalledchiralnematicliquidcrystals,resemblenematicliquidcrystalsexceptthatthemoleculesassembledinahelicalmanner, asdepictedinFigure1.11.Thispropertyresultsfromtheadditionofchiralagentsto nematicconstituentsinthestartingmixture.Owingtothespatially(helical)varying refractiveindex,CLCspossessspecialopticalpropertiessuchasphotonicbandgaps

Figure1.10. Polymericliquidcrystals:(a)mainchain;(b)sidechain.

Rod-shapeLCmolecule

others(e.g.BluePhase) 3-DPhotonicCrystals

Naturalself-assembly

nematicsmectic

1-DPhotonicCrystals

cholesteric

Figure1.11. Self-organizationoftherod-shapedLCmoleculesvialocalandlong-rangeordergiving risetovariousorderedphasesofliquidcrystal.

Figure1.12. Arrangementofdipolesinthecentrosymmetricbulkcrystalsuchasnematics.

fortransmissionofcircularlypolarizedlights.MoredetailsonCLCaswellascholestericBPLCsobtainedbyincreasingtheconcentrationofthechiralconstituent [10]inthestartingmixturearepresentedinChapter4.

Smecticliquidcrystals,unlikenematics,possesspositionalorder;thatis,the positionofthemoleculesiscorrelatedinsomeorderedpattern.Wediscussherethree representativeones:smectic-A,smectic-C,andsmectic-C∗ (ferroelectrics)dueto

Layernormal LayernormalLayernormal

Liquidcrystal molecules

Figure1.13. Moleculararrangementsofliquidcrystals:(a)smectic-A;(b)smectic-C;(c)smectic-C∗ or ferroelectric;(d)unwoundsmectic-C

theirrelevancetoopticalandphotonicstudies/applicationsnotingthatmanyother subphasesofsmecticssuchassmecticG,H,I,F Qwithdifferentmolecular arrangementandordershavebeenidentified.

Figure1.13adepictsthelayeredstructureofasmectic-Aliquidcrystal.Ineach layer,themoleculesarepositionallyrandombutdirectionallyordered,withtheir longaxisnormaltotheplaneofthelayer.Similartonematics,smectic-Aliquid crystalsareopticallyuniaxial;thatis,thereisarotationalsymmetryaroundthe directoraxis.

Thesmectic-Cphaseisdifferentfromthesmectic-Aphaseinthatthematerialis opticallybiaxial,andthemoleculararrangementissuchthatthelongaxisistilted awayfromthelayernormal z (cf.Figure1.13b).

MIXTURES,POLYMER-DISPERSED,ANDDYE-DOPEDLIQUIDCRYSTALS

Insmectic-C∗ liquidcrystals,asdepictedinFigure1.13c,thedirectoraxis n is tiltedawayfromthelayernormal z andprecessesaroundthe z axisinsuccessive layers.Thisisanalogoustocholestericsandisduetotheintroductionofopticalactiveorchiralmoleculestothesmectic-Cliquidcrystals.

Smectic-C ∗ liquidcrystalsareinterestinginoneimportantaspect;namely,they compriseasystemthatpermits,bythesymmetryprinciple,theexistenceofspontaneouselectricpolarization.Thiscanbeexplainedsimplyinthefollowingway. Thespontaneouselectricpolarization p isavectorandrepresentsabreakdownof symmetry;thatis,thereisadirectionalpreference.Iftheliquidcrystalproperties areindependentofthedirectoraxis n direction(i.e.+ n isthesameas n ), p , ifitexists,mustbelocallyperpendicularto n .Inthecaseofsmectic-A,which possessesrotationalsymmetryaround n , p mustthereforebevanishing.Inthe caseofsmectic-C,thereisareflectionsymmetry(mirrorsymmetry)abouttheplane definedbythe n and z axes,so p isalsovanishing.Thisreflectionsymmetryis brokenifachiralcenterisintroducedtothemolecule,resultinginasmectic-C∗ system.

Byconvention, p isdefinedaspositiveifitisalongthedirectionof z × n ,and negativeotherwise.Figure1.13cshowsthatsince n precessesaround z , p also precessesaround z .If,bysomeexternalfield,thehelicalstructureisunwound and n pointsinafixeddirection,asinFigure1.12d,then p willpointinonedirection. Clearly,thisandotherdirectoraxisreorientationprocessesareaccompaniedbya considerablechangeintheopticalrefractiveindexandotherpropertiesofthesystem,andtheycanbeutilizedinpracticalelectro-andopto-opticalmodulation devices.MoredetaileddiscussionsofsmecticliquidcrystalsaregiveninChapter4.

1.3.4.FunctionalizedandDiscoticLiquidCrystals

Throughvariouschemicalsynthesistechniquesaswellasnanotechnologies,anentire classofnovelorso-calledfunctionalizedliquidcrystalshaveemerged[11–13]. Figure1.14shows,forexample,theshuttlecock-shapedliquidcrystalformedby incorporatingfullereneC60tovariouscrystalsandliquidcrystalsreportedby Sawamuraetal.[11].Othershaveinvestigatedaspecialclassofliquidcrystalscomprisingdisc-likemolecules,discoticliquidcrystals,thatpossessinterestinganduseful semiconductingpropertiessuitableforoptoelectronicapplications[12,13].

1.4.MIXTURES,POLYMER-DISPERSED,ANDDYE-DOPED LIQUIDCRYSTALS

Ingeneral,temperaturerangesforthevariousmesophasesofsingleconstituent liquidcrystalsarequitelimited.Therefore,whilemanyfundamentalstudiesarestill conductedonsuchliquidcrystallinematerials,industrialapplicationsemploy mostlymixtures,composites,orspeciallydopedliquidcrystalswithlargeoperating temperaturerangeandtailor-madephysicalandopticalproperties.

2:R′O=C12H25O 3:R′O=C14H29O 4:R′O=C16H33O 5:R′O=C18H37O

Figure1.14. Ashuttlecock-shapedliquidcrystalformedbyincorporatingfullereneC60intovarious liquidcrystalswasreported[11].

Therearemanytechniquesformodifyingthephysicalpropertiesofaliquidcrystal.Atthemostfundamentallevel,variouschemicalgroupssuchasbondsoratoms canbeintroducedtomodifytheLCmolecule.Agoodexampleisthecyanobiphenyl homologousseries nCB(n =1,2,3…).As n isincreasedthroughsynthesis,theviscosities,anisotropies,molecularsizes,andmanyotherparametersaregreatlymodified.Someofthesephysicalpropertiescanalsobemodifiedbysubstitution.For example,thehydrogeninthe2,3,and4positionsofthephenylringmaybesubstitutedbysomefluoro(F)orchloro(Cl)group[14].

Besidesthesemolecularsynthesistechniques,thereareotherwaystodramaticallyimprovetheperformancecharacteristicsofliquidcrystals.Inthefollowingsections,wedescribethreewell-developedmethods,focusingourdiscussionon nematicliquidcrystalsastheyexemplifytheuniquecharacteristicsofliquidcrystals widelyusedinopticalandphotonicapplications.

1.4.1.Mixtures

Alargemajorityofliquidcrystalsinubiquitousdevicesareeutecticmixturesoftwo ormoremesogenicsubstances.AgoodexampleisE7(fromEMChemicals),which isamixtureoffourliquidcrystals(cf.Figure1.15).Theopticalproperties,dielectric anisotropies,viscositiesofE7areverydifferentfromthoseoftheindividualmixture constituents.

Figure1.15. MolecularstructuresofthefourconstituentsmakinguptheliquidcrystalE7(fromEM Chemicals).

Creatingmixturesisanart,guided,ofcourse,bysomescientificprinciples.One oftheguidingprinciplesformakingtherightmixturecanbeillustratedbytheexemplaryphasediagramoftwomaterialswithdifferentmelting(i.e.crystal nematic) andclearing(i.e.nematic isotropic)points,asshowninFigure1.16.Both

Figure1.16. Phasediagramofthemixtureoftwoliquidcrystals.

substanceshavesmallnematicranges(Ti–Tn and T ' i T ' n).Whenmixedattheright concentration[2],however,thenematicrange(T m i T m n )ofthemixturecanbeorders ofmagnitudelarger.Todate,thereisanassortmentofnematicliquidcrystals,for example,withanoperatingtemperaturerangefromsubfreezing(< 30 C)towell over100 Cthatfoundtheirwayinubiquitousdisplaydevices(Figure1.16).

Ifthemixturecomponentsdonotreactchemicallywithoneanother,theirbulk physicalproperties,suchasdielectricconstant,viscosity,andanisotropy,aresome weightedsumoftheindividualresponses.Sinceopticalandotherparameters(e.g. absorptionlinesorbands)arelargelydependentontheelectronicresponsesofindividualmolecules,theygenerallyfollowsuchasimpleadditiverule.Otherphysical parameterssuchasviscosities,transitiontemperature,andelasticconstantsare highlydependentonintermolecularforcesandthereforefollowmorecomplexphysio-chemicalrules(seee.g.[2,13]).

1.4.2.Dye-dopedLiquidCrystals

Anobviouseffectofintroducingdyemoleculetoliquidcrystalsistoincreasethe absorptionofaparticularliquidcrystalatsomespecifiedwavelengthregion.Inparticular,dyemoleculeswithabsorptionanisotropy,orthosethatundergoconformationchangessuchastrans–cisisomorphismorproducephoto-charges,areoften usedforphotonicapplications[15–17].Forexample,dichroicdyemoleculesthat aremoreabsorptiveforopticalfieldpolarizationparallelthanperpendiculartoits longaxisareoftenusedfortheguest–hosteffectastheiroblongshapemakesthem compatiblefordispersinginthehostnematicliquidcrystalswithoutdisturbingthe order.Thesedichroicmoleculescanthenbeorientedandreorientedbyanexternal fieldappliedtothehostNLCtoswitchthetransmissionofthecell(cf.Figure1.17); suchdichroicdye-dopedliquidcrystalshavebeenutilizedtodemonstrateoptical diodeaction[15]inthetransmissionofpolarizedlight.

Ifthedyemoleculesundergosomephysicalchangessuchastrans–cisisomorphismorproducespacechargesfollowingphotonabsorption,theycouldgiverise tononlinearopticaleffects[16];others[17]haveshownthatdyemoleculesdepositedonthecellwindowscanbeopticallyalignedasaneffectivemeansofsurface alignmentmechanismforLCcellfabrication.Theseandothereffectsduetothe presenceofdyemoleculesorotherphotosensitiveagentsinliquidcrystalsarediscussedinmoredetailinChapter8.

1.4.3.Polymer-dispersedandPolymer-stabilizedLiquidCrystals

Justasthepresenceofdyemoleculesmodifiestheabsorptioncharacteristicsofliquidcrystals,theinclusionofliquidcrystalsinthematerialofdifferentrefractive indexesmodifiesthelightscatteringpropertiesoftheresulting “mixed” system. Agoodexampleispolymer-dispersedliquidcrystals(PDLC)formedbyintroducing liquidcrystalsasmicron-orsub-micron-sizeddropletsintoapolymermatrix.The

LowtransmissionHightransmission

Figure1.17. Alignmentofadichroicdye-dopednematicliquidcrystal:(a)beforeapplicationof switchingelectricfield;(b)switchingfieldon.

opticalindicesoftheserandomlyorientedliquidcrystaldroplets,intheabsenceof anexternalalignmentfield,dependontheliquidcrystal–polymerinteractionatthe boundaryandthereforeassumearandomdistribution(cf.Figure1.18a).Thiscauses largescattering[18].Upontheapplicationofanexternalfield,thedropletswillbe aligned(Figure1.18b),andthesystemwillbecomeclearastherefractiveindexof theliquidcrystaldropletsmatchestheisotropicpolymerbackgrounds.

IncidentLight

NoAppliedField (ScatteringState)

(TransmissiveState)

Figure1.18. Schematicdepictionofapolymer-dispersedliquidcrystalmaterial:(a)intheabsence ofanexternalalignmentfield,highlyscatteredstate;(b)whenanexternalalignmentfieldison, transparentstate.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Full download Liquid crystals, 3rd edition iam-choon khoo pdf docx by Education Libraries - Issuu