Full download Distributed acoustic sensing in geophysics: methods and applications yingping li pdf d

Page 1


Distributed Acoustic Sensing

Yingping Li

Visit to download the full and correct content document: https://ebookmass.com/product/distributed-acoustic-sensing-in-geophysics-methodsand-applications-yingping-li/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Techniques and methods in urban remote sensing Weng

https://ebookmass.com/product/techniques-and-methods-in-urbanremote-sensing-weng/

Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation

Qiang Li

https://ebookmass.com/product/tactile-sensing-skill-learning-androbotic-dexterous-manipulation-qiang-li/

System Reliability Assessment and Optimization : Methods and Applications 1st Edition Yan-Fu Li & Enrico Zio

https://ebookmass.com/product/system-reliability-assessment-andoptimization-methods-and-applications-1st-edition-yan-fu-lienrico-zio/

Gas Injection Methods Zhaomin Li

https://ebookmass.com/product/gas-injection-methods-zhaomin-li/

Systems programming: designing and developing distributed applications Anthony

https://ebookmass.com/product/systems-programming-designing-anddeveloping-distributed-applications-anthony/

Emerging 2D Materials and Devices for the Internet of Things: Information, Sensing and Energy Applications (Micro and Nano Technologies) 1st Edition Li Tao (Editor)

https://ebookmass.com/product/emerging-2d-materials-and-devicesfor-the-internet-of-things-information-sensing-and-energyapplications-micro-and-nano-technologies-1st-edition-li-taoeditor/

Hyperspectral Remote Sensing: Theory and Applications Prem Chandra Pandey

https://ebookmass.com/product/hyperspectral-remote-sensingtheory-and-applications-prem-chandra-pandey/

Atmospheric Remote Sensing: Principles and Applications Abhay Kumar Singh

https://ebookmass.com/product/atmospheric-remote-sensingprinciples-and-applications-abhay-kumar-singh/

Basic Principles of Induction Logging. Electromagnetic Methods in Borehole Geophysics 1st Edition Edition Alexander Kaufman And Gregory Itskovich (Auth.)

https://ebookmass.com/product/basic-principles-of-inductionlogging-electromagnetic-methods-in-borehole-geophysics-1stedition-edition-alexander-kaufman-and-gregory-itskovich-auth/

GeophysicalMonographSeries

212TheEarlyEarth:AccretionandDifferentiation JamesBadroand MichaelWalter(Eds.)

213GlobalVegetationDynamics:ConceptsandApplicationsinthe MC1Model DominiqueBacheletandDavidTurner(Eds.)

214ExtremeEvents:Observations,ModelingandEconomics Mario Chavez,MichaelGhil,andJaimeUrrutia-Fucugauchi(Eds.)

215AuroralDynamicsandSpaceWeather YongliangZhangand LarryPaxton(Eds.)

216Low-FrequencyWavesinSpacePlasmas AndreasKeiling,DongHunLee,andValeryNakariakov(Eds.)

217DeepEarth:PhysicsandChemistryoftheLowerMantleand Core HidenoriTerasakiandRebeccaA.Fischer(Eds.)

218IntegratedImagingoftheEarth:TheoryandApplications Max Moorkamp,PeterG.Lelievre,NiklasLinde,andAmirKhan(Eds.)

219PlateBoundariesandNaturalHazards JoaoDuarteandWouter Schellart(Eds.)

220IonosphericSpaceWeather:LongitudeandHemispheric DependencesandLowerAtmosphereForcing TimothyFullerRowell,EndawokeYizengaw,PatriciaH.Doherty,andSunanda Basu(Eds.)

221TerrestrialWaterCycleandClimateChangeNaturaland Human-InducedImpacts QiuhongTangandTaikanOki(Eds.)

222Magnetosphere-IonosphereCouplingintheSolarSystem CharlesR.Chappell,RobertW.Schunk,PeterM.Banks,JamesL. Burch,andRichardM.Thorne(Eds.)

223NaturalHazardUncertaintyAssessment:Modelingand DecisionSupport KarinRiley,PeterWebley,andMatthew Thompson(Eds.)

224HydrodynamicsofTime-PeriodicGroundwaterFlow:Diffusion WavesinPorousMedia JoeS.DepnerandToddC Rasmussen(Auth.)

225ActiveGlobalSeismology IbrahimCemenandYucel Yilmaz(Eds.)

226ClimateExtremes SimonWang(Ed.)

227FaultZoneDynamicProcesses MarionThomas(Ed.)

228FloodDamageSurveyandAssessment:NewInsightsfrom ResearchandPractice DanielaMolinari,SciraMenoni,and FrancescoBallio(Eds.)

229Water-Energy-FoodNexus – PrinciplesandPractices P.Abdul Salam,SangamShrestha,VishnuPrasadPandey,andAnil KAnal(Eds.)

230Dawn–DuskAsymmetriesinPlanetaryPlasmaEnvironments SteinHaaland,AndreiRounov,andColinForsyth(Eds.)

231BioenergyandLandUseChange ZhangcaiQin,UmakantMishra, andAstleyHastings(Eds.)

232MicrostructuralGeochronology:PlanetaryRecordsDownto AtomScale DesmondMoser,FernandoCorfu,JamesDarling, StevenReddy,andKimberlyTait(Eds.)

233GlobalFloodHazard:ApplicationsinModeling,Mappingand Forecasting GuySchumann,PaulD.Bates,GiuseppeT. Aronica, andHeikoApel(Eds.)

234Pre-EarthquakeProcesses:AMultidisciplinaryApproachto EarthquakePredictionStudies DimitarOuzounov,Sergey Pulinets,KatsumiHattori,andPatrickTaylor(Eds.)

235ElectricCurrentsinGeospaceandBeyond AndreasKeiling, OctavMarghitu,andMichaelWheatland(Eds.)

236QuantifyingUncertaintyinSubsurfaceSystems CelineScheidt, LewisLi,andJefCaers(Eds.)

237PetroleumEngineering MoshoodSanni(Ed.)

238GeologicalCarbonStorage:SubsurfaceSealsandCaprock Integrity StephanieVialle,JonathanAjo-Franklin,andJ.William Carey(Eds.)

239LithosphericDiscontinuities HuaiyuYuanandBarbara Romanowicz(Eds.)

240ChemostratigraphyAcrossMajorChronologicalEras AlcidesN. Sial,ClaudioGaucher,MuthuvairavasamyRamkumar,and ValderezPintoFerreira(Eds.)

241MathematicalGeoenergy:Discovery,Depletion,andRenewal PaulPukite,DennisCoyne,andDanielChallou(Eds.)

242OreDeposits:Origin,Exploration,andExploitation Sophie Decree andLaurenceRobb (Eds.)

243 KuroshioCurrent:Physical,BiogeochemicalandEcosystem Dynamics TakeyoshiNagai,HiroakiSaito,KojiSuzuki,and MotomitsuTakahashi(Eds.)

244GeomagneticallyInducedCurrentsfromtheSuntothePower Grid JenniferL.Gannon,AndreiSwidinsky,andZhonghua Xu(Eds.)

245Shale:SubsurfaceScienceandEngineering ThomasDewers, JasonHeath,andMarceloSánchez(Eds.)

246SubmarineLandslides:SubaqueousMassTransportDeposits FromOutcropstoSeismicProfiles KeiOgata,AndreaFesta,and GianAndreaPini(Eds.)

247Iceland:Tectonics,Volcanics,andGlacialFeatures TamieJ Jovanelly

248DaysideMagnetosphereInteractions QiugangZong, PhilippeEscoubet,DavidSibeck,GuanLe,and HuiZhang(Eds.)

249CarboninEarth’sInterior CraigE.Manning,Jung-FuLin,and WendyL.Mao(Eds.)

250NitrogenOverload:EnvironmentalDegradation,Ramifications, andEconomicCosts BrianG.Katz

251BiogeochemicalCycles:EcologicalDriversandEnvironmental Impact KaterinaDontsova,ZsuzsannaBalogh-Brunstad,and GaëlLeRoux(Eds.)

252SeismoelectricExploration:Theory,Experiments,and Applications NielsGrobbe,AndréRevil,ZhenyaZhu,andEvert Slob(Eds.)

253ElNiñoSouthernOscillationinaChangingClimate MichaelJ. McPhaden,AgusSantoso,andWenjuCai(Eds.)

254DynamicMagmaEvolution FrancescoVetere(Ed.)

255LargeIgneousProvinces:ADriverofGlobalEnvironmentaland BioticChanges Richard.E.Ernst,AlexanderJ.Dickson,and AndreyBekker(Eds.)

256CoastalEcosystemsinTransition:AComparativeAnalysisofthe NorthernAdriaticandChesapeakeBay ThomasC.Malone, AlenkaMalej,andJadranFaganeli(Eds.)

257Hydrogeology,ChemicalWeathering,andSoilFormation Allen Hunt,MarkusEgli,andBorisFaybishenko(Eds.)

258SolarPhysicsandSolarWind NourE.RaouafiandAngelos Vourlidas(Eds.)

259MagnetospheresintheSolarSystem RomainMaggiolo, NicolasAndré,HiroshiHasegawa,andDaniel T.Welling(Eds.)

260IonosphereDynamicsandApplications ChaosongHuangand GangLu(Eds.)

261UpperAtmosphereDynamicsandEnergetics WenbinWangand YongliangZhang(Eds.)

262SpaceWeatherEffectsandApplications AntheaJ.Coster,PhilipJ. Erickson,andLouisJ.Lanzerotti(Eds.)

263MantleConvectionandSurfaceExpressions HaukeMarquardt, MaximBallmer,SanneCottaar,andJasperKonter(Eds.)

264CrustalMagmaticSystemEvolution:Anatomy,Architecture,and Physico-ChemicalProcesses MatteoMasotta,ChristophBeier, andSilvioMollo(Eds.)

265GlobalDroughtandFlood:Observation,Modeling,and Prediction HuanWu,DennisP.Lettenmaier,QiuhongTang,and PhilipJWard(Eds.)

266MagmaRedoxGeochemistry RobertoMorettiandDanielR. Neuville(Eds.)

267WetlandCarbonandEnvironmentalManagement KenW. Krauss,ZhiliangZhu,andCamilleL.Stagg(Eds.)

268DistributedAcousticSensinginGeophysics:Methodsand Applications YingpingLi,MartinKarrenbach,andJonathanB. Ajo-Franklin(Eds.)

DistributedAcousticSensingin

Geophysics

MethodsandApplications

Thisworkisaco-publicationoftheAmericanGeophysicalUnionandJohnWiley&Sons,Inc.

Thiseditionfirstpublished2022

©2022AmericanGeophysicalUnion

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyany means,electronic,mechanical,photocopying,recording,orotherwise,exceptaspermittedbylaw.Adviceonhowtoobtain permissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/permissions.

TherightsofYingpingLi,MartinKarrenbach,andJonathanB.Ajo-Franklintobeidentifiedastheeditorsofthisworkhavebeen assertedinaccordancewithlaw.

PublishedundertheaegisoftheAGUPublicationsCommittee

MatthewGiampoala,VicePresident,Publications CarolFrost,Chair,PublicationsCommittee

FordetailsabouttheAmericanGeophysicalUnionvisitusatwww.agu.org.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts,visitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprintondemand.Somecontentthatappearsinstandardprint versionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswith respecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties,includingwithout limitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedby salesrepresentatives,writtensalesmaterials,orpromotionalstatementsforthiswork.Thefactthatanorganization,website,or productisreferredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherand authorsendorsetheinformationorservicestheorganization,website,orproductmayprovideorrecommendationsitmaymake. Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceand strategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further, readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenand whenitisread.Neitherthepublishernortheauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,including, butnotlimitedto,special,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Li,Yingping,editor.|Karrenbach,Martin,editor.|Ajo-Franklin, Jonathan,editor.

Title:Distributedacousticsensingingeophysics:methodsand applications/YingpingLi,MartinKarrenbach,JonathanAjo-Franklin, editor.

Description:Firstedition.|Hoboken,NJ:Wiley-AmericanGeophysical Union,[2021]|Series:Geophysicalmonographseries|Includes bibliographicalreferences.

Identifiers:LCCN2021015330(print)|LCCN2021015331(ebook)|ISBN 9781119521792(cloth)|ISBN9781119521822(adobepdf)|ISBN 9781119521778(epub)

Subjects:LCSH:Geophysics–Methodology.|Opticalfiberdetectors.| Imagingsystemsingeophysics.|Microseisms.|Tomography.

Classification:LCCQC808.5.D572021(print)|LCCQC808.5(ebook)|DDC 681/.25–dc23

LCrecordavailableathttps://lccn.loc.gov/2021015330

LCebookrecordavailableathttps://lccn.loc.gov/2021015331

CoverDesign:Wiley

CoverImage:©JonathanAjo-Franklin

Setin10/12ptTimesNewRomanbyStraive,Pondicherry,India

10987654321

CONTENTS

ListofContributors .................................................................................................................................................vii

ListofReviewers ....................................................................................................................................................xiii

Preface ....................................................................................................................................................................xv

PartIDistributedAcousticSensing(DAS)Concept,Principle,andMeasurements

1HighDefinitionSeismicandMicroseismicDataAcquisitionUsingDistributedandEngineered FiberOpticAcousticSensors ...........................................................................................................................3 SergeyShatalin,TomParker,andMahmoudFarhadiroushan

2ImportantAspectsofAcquiringDistributedAcousticSensing(DAS)DataforGeoscientists .......................33 MarkE.Willis,AndreasEllmauthaler,XiangWu,andMichelJ.LeBlanc

3DistributedMicrostructuredOpticalFiber(DMOF)BasedUltrahighSensitiveDistributedAcoustic Sensing(DAS)forBoreholeSeismicSurveys .................................................................................................45 QizhenSun,ZhijunYan,HaoLi,CunzhengFan,FanAi,WeiZhang,XiaoleiLi,DemingLiu, FeiLi,andGangYu

4DistributedAcousticSensingSystemBasedonPhase-GeneratedCarrierDemodulationAlgorithm ............57 TuanweiXu,ShengwenFeng,FangLi,LilongMa,andKaihengYang

PartIIDistributedAcousticSensing(DAS)ApplicationsinOilandGas,Geothermal, andMiningIndustries

5FieldTrialofDistributedAcousticSensinginanActiveRoom-and-PillarMine ...........................................67 XiangfangZeng,HerbertF.Wang,NealLord,DanteFratta,andThomasColeman

6OntheSurmountableLimitationsofDistributedAcousticSensing(DAS)VerticalSeismic Profiling(VSP) – DepthCalibration,Directionality,andNoise:LearningsFromFieldTrials .......................81 AlbenaMateeva,YutingDuan,DenisKiyashchenko,andJorgeLopez

7DenoisingAnalysisandProcessingMethodsofDistributedAcousticSensing(DAS)Vertical SeismicProfiling(VSP)Data ...........................................................................................................................93 Yuan-ZhongChen,Guang-MinHu,Jun-JunWu,GangYu,Yan-PengLi,Jian-HuaHuang, Shi-ZeWang,andFeiLi

8High-ResolutionShallowStructureatBradyHotSpringsUsingAmbientNoiseTomography(ANT) onaTrenchedDistributedAcousticSensing(DAS)Array ...........................................................................101 XiangfangZeng,CliffordH.Thurber,HerbertF.Wang,DanteFratta,andKurtL.Feigl

PartIIIDistributedAcousticSensing(DAS)ApplicationsinMonitoringofDeformations, Earthquakes,andMicroseismsbyFracturing

9IntroductiontoInterferometryofFiber-OpticStrainMeasurements ..........................................................113 EileenR.Martin,NathanielJ.Lindsey,JonathanB.Ajo-Franklin,andBiondoL.Biondi

10UsingTelecommunicationFiberInfrastructureforEarthquakeMonitoringandNear-Surface Characterization ...........................................................................................................................................131

BiondoL.Biondi,SiyuanYuan,EileenR.Martin,FantineHuot,andRobertG.Clapp

11ProductionDistributedTemperatureSensingversusStimulationDistributedAcousticSensing fortheMarcellusShale .................................................................................................................................149 PayamKavousiGhahfarokhi,TimothyRobertCarr,CodyWilson,andKeithanMartin

12CoalescenceMicroseismicMappingforDistributedAcousticSensing(DAS)andGeophone HybridArray:AModel-BasedFeasibilityStudy ...........................................................................................161 TakasheiMizuno,JoelLeCalvez,andDanielRaymer

PartIVDistributedAcousticSensing(DAS)ApplicationsinEnvironmental andShallowGeophysics

13ContinuousDownholeSeismicMonitoringUsingSurfaceOrbitalVibratorsandDistributed AcousticSensingattheCO2CRCOtwayProject:FieldTrialforOptimumConfiguration .........................177 JuliaCorrea,RomanPevzner,BarryM.Freifeld,MichelleRobertson,ThomasM.Daley, ToddWood,KonstantinTertyshnikov,SinemYavuz,andStanislavGlubokovskikh

14IntroductiontoDistributedAcousticSensing(DAS)ApplicationsforCharacterizationof Near-SurfaceProcesses ................................................................................................................................191

WhitneyTrainor-GuittonandThomasColeman

15SurfaceWaveImagingUsingDistributedAcousticSensingDeployedonDarkFiber:Moving BeyondHigh-FrequencyNoise .....................................................................................................................197

VerónicaRodríguezTribaldos,JonathanB.Ajo-Franklin,ShanDou,NathanielJ.Lindsey, CraigUlrich,MichelleRobertson,BarryM.Freifeld,ThomasDaley,InderMonga,andChrisTracy

16UsingDistributedAcousticSensing(DAS)forMultichannelAnalysisofSurfaceWaves(MASW) .............213 ChelseaE.Lancelle,JonathanA.Baldwin,NealLord,DanteFratta,AthenaChalari,and HerbertF.Wang

17ALiteratureReview:DistributedAcousticSensing(DAS)GeophysicalApplicationsOverthe Past20Years ................................................................................................................................................229

YingpingLi,MartinKarrenbach,andJonathanB.Ajo-Franklin

LISTOFCONTRIBUTORS

FanAi

SchoolofOpticalandElectronicInformation NationalEngineeringLaboratoryforNextGeneration InternetAccessSystem HuazhongUniversityofScienceandTechnology Wuhan,China

JonathanB.Ajo-Franklin DepartmentofEarth,EnvironmentalandPlanetary Sciences RiceUniversity Houston,Texas,USA and EnergyGeosciencesDivision LawrenceBerkeleyNationalLaboratory Berkeley,California,USA

JonathanA.Baldwin U.S.ArmyCorpsofEngineers Washington,DistrictofColumbia,USA

BiondoL.Biondi DepartmentofGeophysics StanfordUniversity Stanford,California,USA and InstituteforComputationalandMathematical Engineering Stanford,California,USA

JoelLeCalvez Schlumberger Houston,Texas,USA

TimothyRobertCarr DepartmentofGeologyandGeography WestVirginiaUniversity Morgantown,WestVirginia,USA

AthenaChalari SilixaLtd. Elstree,UK

Yuan-ZhongChen SchoolofInformationandCommunicationEngineering UniversityofElectronicScienceandTechnology ofChina Chengdu,China and BGPInc. ChinaNationalPetroleumCorporation Zhuozhou,China

RobertG.Clapp DepartmentofGeophysics

StanfordUniversity Stanford,California,USA

ThomasColeman SilixaLLC., Missoula,Montana,USA

JuliaCorrea EnergyGeosciencesDivision LawrenceBerkeleyNationalLaboratory Berkeley,California,USA and CentreforExplorationGeophysics CurtinUniversity Perth,Australia and CO2CRCLimited Melbourne,Australia

ThomasM.Daley EnergyGeosciencesDivision LawrenceBerkeleyNationalLaboratory Berkeley,California,USA

ShanDou VisierInc. Vancouver,BritishColumbia,Canada

YutingDuan ShellTechnologyCenter Houston,Texas,USA

AndreasEllmauthaler Halliburton Houston,Texas,USA

CunzhengFan SchoolofOpticalandElectronicInformation NationalEngineeringLaboratoryforNextGeneration InternetAccessSystem HuazhongUniversityofScienceandTechnology Wuhan,China

MahmoudFarhadiroushan SilixaLtd. Elstree,UK

KurtL.Feigl DepartmentofGeoscience UniversityofWisconsin–Madison Madison,Wisconsin,USA

ShengwenFeng KeyLaboratoriesofTransducerTechnology InstituteofSemiconductors ChineseAcademyofSciences Beijing,China and CollegeofMaterialsScienceandOpto-Electronic Technology UniversityofChineseAcademyofSciences Beijing,China

DanteFratta DepartmentofCivilandEnvironmentalEngineering UniversityofWisconsin–Madison Madison,Wisconsin,USA

BarryM.Freifeld ClassVISolutionsInc. Oakland,California,USA

StanislavGlubokovskikh CentreforExplorationGeophysics CurtinUniversity Perth,Australia and CO2CRCLimited Melbourne,Australia

Guang-MinHu SchoolofInformationandCommunicationEngineering UniversityofElectronicScienceandTechnology ofChina Chengdu,China

Jian-HuaHuang BGPInc. ChinaNationalPetroleumCorporation Zhuozhou,China

FantineHuot DepartmentofGeophysics StanfordUniversity Stanford,California,USA

PayamKavousiGhahfarokhi DepartmentofGeologyandGeography WestVirginiaUniversity Morgantown,WestVirginia,USA

MartinKarrenbach OptaSenseInc.(ALUNACompany) Brea,California,USA

DenisKiyashchenko ShellTechnologyCenter Houston,Texas,USA

ChelseaE.Lancelle DepartmentofCivilandEnvironmentalEngineering UniversityofWisconsin–Platteville Platteville,Wisconsin,USA

MichelJ.LeBlanc Halliburton Houston,Texas,USA

FangLi KeyLaboratoriesofTransducerTechnology InstituteofSemiconductors ChineseAcademyofSciences Beijing,China and CollegeofMaterialsScienceandOpto-Electronic Technology UniversityofChineseAcademyofSciences Beijing,China

FeiLi BGPInc. ChinaNationalPetroleumCorporation Zhuozhou,China

HaoLi SchoolofOpticalandElectronicInformation NationalEngineeringLaboratoryforNextGeneration InternetAccessSystem HuazhongUniversityofScienceandTechnology Wuhan,China

XiaoleiLi OVLINKInc. Wuhan,China

Yan-PengLi BGPInc. ChinaNationalPetroleumCorporation Zhuozhou,China

YingpingLi BlueSkyDas(formerlyShell) Houston,Texas,USA

NathanielJ.Lindsey FiberSense Sydney,Australia

DemingLiu SchoolofOpticalandElectronicInformation NationalEngineeringLaboratoryforNextGeneration InternetAccessSystem HuazhongUniversityofScienceandTechnology Wuhan,China

JorgeLopez ShellBrasilPetróleoLtda. RiodeJaneiro,Brazil

NealLord DepartmentofGeoscience UniversityofWisconsin–Madison Madison,Wisconsin,USA

LilongMa KeyLaboratoriesofTransducerTechnology InstituteofSemiconductors ChineseAcademyofSciences Beijing,China and CollegeofMaterialsScienceandOpto-Electronic Technology UniversityofChineseAcademyofSciences Beijing,China

EileenR.Martin DepartmentofMathematics VirginiaPolytechnicInstituteandStateUniversity Blacksburg,Virginia,USA

KeithanMartin DepartmentofGeologyandGeography WestVirginiaUniversity Morgantown,WestVirginia,USA

AlbenaMateeva ShellTechnologyCenter Houston,Texas,USA

TakashiMizuno Schlumberger Houston,Texas,USA

InderMonga EnergySciencesNetwork LawrenceBerkeleyNationalLaboratory Berkeley,California,USA

TomParker SilixaLtd. Elstree,UK

RomanPevzner CentreforExplorationGeophysics CurtinUniversity Perth,Australia and CO2CRCLimited Melbourne,Australia

DanielRaymer Schlumberger Houston,Texas,USA

MichelleRobertson EnergyGeosciencesDivision LawrenceBerkeleyNationalLaboratory Berkeley,California,USA

VerónicaRodríguezTribaldos EnergyGeosciencesDivision LawrenceBerkeleyNationalLaboratory Berkeley,California,USA

SergeyShatalin SilixaLtd. Elstree,UK

QizhenSun SchoolofOpticalandElectronicInformation NationalEngineeringLaboratoryforNextGeneration InternetAccessSystem HuazhongUniversityofScienceandTechnology Wuhan,China

KonstantinTertyshnikov CentreforExplorationGeophysics CurtinUniversity Perth,Australia and

CO2CRCLimited Melbourne,Australia

CliffordH.Thurber DepartmentofGeoscience UniversityofWisconsin–Madison Madison,Wisconsin,USA

ChrisTracy EnergySciencesNetwork LawrenceBerkeleyNationalLaboratory Berkeley,California,USA

WhitneyTrainor-Guitton DepartmentofGeophysics ColoradoSchoolofMines Golden,Colorado,USA and

WTeamGeosolutions TwinFalls,Idaho,USA

CraigUlrich EnergyGeosciencesDivision LawrenceBerkeleyNationalLaboratory Berkeley,California,USA

HerbertF.Wang DepartmentofGeoscience UniversityofWisconsin–Madison Madison,Wisconsin,USA

Shi-ZeWang BGPInc.

ChinaNationalPetroleumCorporation Zhuozhou,China

MarkE.Willis Halliburton Houston,Texas,USA

CodyWilson DepartmentofGeologyandGeography WestVirginiaUniversity Morgantown,WestVirginia,USA

ToddWood EnergyGeosciencesDivision LawrenceBerkeleyNationalLaboratory Berkeley,California,USA

Jun-JunWu BGPInc. ChinaNationalPetroleumCorporation Zhuozhou,China

XiangWu HalliburtonFarEastPte.Ltd. Singapore

TuanweiXu KeyLaboratoriesofTransducerTechnology InstituteofSemiconductors ChineseAcademyofSciences Beijing,China and CollegeofMaterialsScienceandOpto-Electronic Technology UniversityofChineseAcademyofSciences Beijing,China

ZhijunYan SchoolofOpticalandElectronicInformation NationalEngineeringLaboratoryforNextGeneration InternetAccessSystem HuazhongUniversityofScienceandTechnology Wuhan,China

KaihengYang

KeyLaboratoriesofTransducerTechnology InstituteofSemiconductors ChineseAcademyofSciences Beijing,China and CollegeofMaterialsScienceandOpto-Electronic Technology UniversityofChineseAcademyofSciences Beijing,China

SinemYavuz CentreforExplorationGeophysics CurtinUniversity Perth,Australia and CO2CRCLimited Melbourne,Australia

GangYu BGPInc. ChinaNationalPetroleumCorporation Zhuozhou,China and SchoolofInformationandCommunicationEngineering UniversityofElectronicScienceandTechnology ofChina Chengdu,China

SiyuanYuan DepartmentofGeophysics StanfordUniversity Stanford,California,USA

XiangfangZeng StateKeyLaboratoryofGeodesyandEarth’s Dynamics InnovationAcademyforPrecision MeasurementScienceandTechnology ChineseAcademyofSciences Wuhan,China and DepartmentofGeoscience UniversityofWisconsin–Madison Madison,Wisconsin,USA

WeiZhang SchoolofOpticalandElectronicInformation NationalEngineeringLaboratoryforNextGeneration InternetAccessSystem HuazhongUniversityofScienceandTechnology Wuhan,China

LISTOFREVIEWERS

RezaBarati

MattBecker

GaryBinder

BiondoL.Biondi

StefanBuske

DongjieCheng

FengCheng

SteveCole

JuliaCorrea

ThomasM.Daley

TimothyDean

YutingDuan

MahmoudFarhadiroushan

BarryM.Freifeld

AndrewGreenwood

AlirezaHaghighat

GeJin

JohnMichaelKendall

HunterKnox

IvanLimChenNing

NathanielJ.Lindsey

MinLou

LinquingLuo

StefanLüth

EileenR.Martin

RobertMellors

KhalidMiah

DouglasMiller

TakashiMizuno

GerritOlivier

RomanPevzner

MichelleRobertson

VerónicaRodríguezTribaldos

BillRoggenthen

BaishaliRoy

AliSayed

AlirezaShahkarami

RobertStewart

AlekseiTitov

WhitneyTrainor-Guitton

MilovanUrosevic

GuchangWang

HerbertF.Wang

ErikWestman

EthanWilliams

MarkE.Willis

XiangfangZeng

GeZhan

ZhongwenZhan

HaijiangZhang

RanZhou

DingZhu

TieyuanZhu

PREFACE

Distributedacousticsensing(DAS)systemsareoptoelectronicinstrumentsthatmeasureacousticinteractions (distributedstrainorstrainrate)alongthelengthofa fiber-opticsensingcable.DASobservationsystemscan recordsoundandvibrationsignalsalongseveraltensof kilometersofsensingopticalfiberwithfinespatial resolution(1–10m)andoverawidefrequencyrange (frommillihertztotensofkilohertz).DASprovidesa largesensingapertureforacquiringhigh-resolution acousticdatainbothtimeandspacedomains.TheadvantagesofDAStechnologyhaveenableditsrapidadoption acrossarangeofapplications,includinggeophysics geohydrology,environmentalmonitoring,geotechnical andcivilengineering(railroad,tunnel,andbridgemonitoring),hazardmitigationandprevention,andsafety andsecurityfields.

ThismonographfocusesonvariousDASapplications ingeophysics.TheuseofDASintheoil,gas,geothermal, andminingindustriesforhigh-resolutionboreholeand surfaceseismicimaging,andmicroseismicmonitoring forhydraulicfractureshasacceleratedwithimprovements inthesensitivityofDASinstruments,advancesinrealtimebigdataprocessing,andflexibleandeconomic deploymentoffiber-opticsensingcables.Thereisalso growinginterestinusingDASforcriticalgeophysical infrastructureapplications,suchasearthquakeand near-surfacepassiveseismicanalysis,includingthedevelopmentoftailoredornovelnumericaltechniques.This bookaimstoengageboththescientificandindustrial communitiestosharetheirknowledgeandexperiences ofusingDASfornovelgeophysicalapplications.

Theoriginofthisbookwasthe2017American GeophysicalUnion(AGU)FallMeeting,whenscientists andengineersfrombothindustryandacademiagathered inNewOrleanstopresenttheirfantasticresearchoutcomes onDASinstrumentationsandapplicationsingeophysics andseismology.AsDAStechnologieshavecontinuedto advance,moreandmoresuccessfulgeophysicalDAS applicationshavebeenreportedandpublishedindifferent geophysicalandseismologicaljournals,abstracts,andproceedingsoftechnicalconferences,suchastheAGU,the SocietyofExplorationGeophysicists(SEG),theEuropean AssociationofGeoscientistsandEngineers(EAGE),the SocietyofPetroleumEngineers(SPE),andtheSeismologicalSocietyofAmerica(SSA).However,fewDASbooks areavailableonDASprinciples,instrumentation,andgeophysicalapplications.ManyattendeesattheDASsessions atthe2017AGUFallMeetingexpressedthattherewasa

needforabookonDASgeophysicalapplications.Wehad interestingdiscussionswithmanyscientistsandengineers workingonthefrontierofDASgeophysicalapplications aboutthepotentialforabook.Wespeciallyrecognize BiondoL.Biondi,ThomasM.Daley,WilliamEllsworth, MahmoudFarhadiroushan,BarryM.Freifeld,Albena Mateeva,RobertMellors,CliffordH.Thurber,Herbert Wang,andMarkE.Willis,aswellasmanyothersfortheir encouragement.

Duringthe2017AGUFallMeetinginNewOrleans, wefortunatelygotanopportunitytomeetwiththe AGUBooksEditor,Dr.Bose,whowasalreadyaware ofthisrapidlygrowingscientificfield.Wediscusseda potentialbookonDASgeophysicalapplications,and shewasverysupportiveandinvitedustosubmitabook proposalforanAGUmonograph.Withnosurprise,this DASbookproposalreceivedverypositivecommentsand constructivesuggestionsfromallreviewers.Several reviewersalsoaskedforanopportunitytosubmittheir owncontributionstothismonograph.Wearegrateful tothoseanonymousreviewersofthebookproposalfor theirpositivecommentsandconstructivesuggestionsthat ledthisbooktobeinitiated.

Thismonographisorganizedintofourparts.PartI startswithprinciplesofDASmeasurementsandinstruments.DASinterrogationunitstransmitapulseoflaser lightintothefiber.Asthispulseoflighttravelsdown thefiber,interactionswithinthefiberresultinlightreflectionsknownasbackscatter(Rayleighscattering).Backscattersaredeterminedbytinystraineventswithinthe fiber,whichinturnarecausedbylocalizedacoustic energy.Thisbackscatteredlighttravelsbackupthefiber towardtheinterrogationunitwhereitissampled.PartII introducesvariousDASapplicationsintheoilandgas, geothermal,andminingindustries.PartIIIlooksat DASapplicationsinseismicmonitoring.DASmicroseismicmonitoringofhydraulicfracturingisanindustry applicationbutwithpassiveseismicsources.ThemicroseismicDASmethodhasbeenshowntohavesufficient sensitivitytorecordverysmallmagnitudemicroearthquakeswithDASdeployedinboreholes.Microseismic DASsystemscanbenaturallyextendedtomonitoringlargerearthquakeactivity,andslowdeformationofEarth’ s structurewithlarge-scalefiber-opticnetworks.PartIV discussesDASenvironmentalandshallowgeophysical applicationssuchasgeologicalcarbondioxidesequestration.Thefinalchapterpresentsareviewoffiberoptical sensingapplicationsingeophysicsincludinghistorical

developmentsandrecentadvances.Thelistofover900literaturereferencesofDASandrelatedtechnologieswill benefitreaders,especiallynewcomerswhohavejust steppedintothisfast-growingfield.

WewouldliketothanktheAGUBooksEditorial Boardforsupportingthismonograph.Withoutthe effortsfromcontributingauthorsitwouldnothave beenpossibletoaccomplishthisproject.Wewould alsoliketothankthemanyvolunteerreviewerswho spenttremendousamountsoftimeandefforttoensure thateachchapterisofthehighestquality.WeappreciateJonathanB.Ajo-Franklin,BiondoL.Biondi, MahmoudFarhadiroushan,AlbenaMateeva,and SiyuanYuanforprovidingtheirpicturesascandidates forthebookcoverdesign.Thanksarealsoextendedto theAGUBookseditorialteamatWiley,especiallyDr. RituparnaBose,LaylaHarden,NoelMcGlinchey, VaishaliRajasekar,SangaprabhaMohan,Bobby Kilshaw,NithyaSechin,andEmilyBae,fortheir organization,management,andcoverdesign.

ThismonographwillbethefirstcomprehensivehandbookforanyoneinterestedinlearningDASprinciples andapplications.Wehopethatthebookwillhaveawide spectrumofreaders – suchasgeophysicists,seismologists, geologists,andgeoscientists;environmentalscientists;and graduateandundergraduatestudentsingeophysicsand geoscience – withacommoninterestinDASgeophysical applications.Thisbookalsoprovidesacommonplatform tothescientificandindustrycommunitiestosharestate-ofthe-artDAStechnology.

YingpingLi BlueSkyDas(formerlyShell),USA

MartinKarrenbach OptaSenseInc.(ALUNACompany),USA

JonathanB.Ajo-Franklin RiceUniversityandLawrenceBerkeley NationalLaboratory,USA

Concept,Principle,and Measurements

HighDefinitionSeismicandMicroseismicDataAcquisitionUsing DistributedandEngineeredFiberOpticAcousticSensors

ABSTRACT

Thedistributedacousticsensor(DAS)offersanewversatiletoolforgeophysicalapplications.Thesystemallows seismicsignalstoberecordedalongtensofkilometersofopticalfiberandoverawidefrequencyrange.Inthis chapterweintroducetheconceptofDASandderiveanexpressionforthesystemresponsebymodelingthe superpositionofthecoherentbackscatterfieldsalongthefiber.Expressionsarederivedforconvertingtheoptical phasetostrainrateandequivalentparticlemotion.WediscussDASsignalprocessinganddenoisingmethodsto dealwiththerandomnatureoftheRayleighscattersignalandtofurtherimprovedynamicrangeandsensitivity. NextweconsiderDASparameterssuchasspatialresolution,gaugelengthanddirectionalityincomparisonwith geophones.WepresentsomefieldtrialresultsthatdemonstratethebenefitsoftheDASforverticalseismic profilingandmicroseismicdetection.FinallywediscussthefundamentalsensitivitylimitofDAS.Weconsider howthescatteringpropertiesofconventionalfibercanbeengineeredtodeliverastep-changeDASperformance, beyondthatofconventionalgeophonesandseismometers.Theoreticalfindingsareillustratedbythefielddata examples,includinglow-frequencystrainmonitoringandmicroseismicdetection.

1.1.DISTRIBUTEDACOUSTICSENSOR(DAS) PRINCIPLESANDMEASUREMENTS

Inthischapter,weconsidertheprinciplesandperformanceofdistributedandprecisionengineeredfiberoptic acousticsensorsforgeophysicalapplications(Hartog etal.,2013;Parkeretal.,2014).Inparticular,system paramete rs such asspatialresolution,dynamicrange,sensitivity,anddirectionalityareexaminedforseismicand microseismicmeasurements.

Inthisfirstsection,weconsiderthemeasurement principle ofDAS,whichusesnaturallyoccurring

randomscattercentersalongthefiber.Weusetheterm acoustics inabroadphysicalsensehere,likeany propagationofmechanical disturbances(Lewis, 1985 ).WereviewdifferentDASsystems,including direct-intensi ty-detection a ndphase-detectionschemes, wherewederiveamathematicalrelationshipfor opticalphaserecovery.Ouraimistoexplainthenature ofthedistributedacousticsignalanddescribethe naturallimitationsforDASmeasurements.SuchinformationisneededtooptimizeDASrecordingparametersforgeophysicalapplications.Examplesof DASparameteroptimizatio nforseismicapplications canbefoundinSection1.2.Wealsopresentsome examplesofactiveandpassiveseismicfielddatain Sections1.2and1.3.

DistributedAcousticSensinginGeophysics:MethodsandApplications,GeophysicalMonograph268,FirstEdition. EditedbyYingpingLi,MartinKarrenbach,andJonathanB.Ajo-Franklin. ©2022AmericanGeophysicalUnion.Published2022byJohnWiley&Sons,Inc. DOI:10.1002/9781119521808.ch01

1.1.1.DASConcept

Theprincipleofdistributedsensingisbasedon optical timedomainreflectometry (OTDR),asindicatedin Figure1.1.Whenalaserpulsetravelsdownanoptical fiber,atinyportionofthelightisnaturallyscattered throughRayleigh,Raman(Dakin&Culshaw,1989), andBrillouin(Parkeretal.,1998)interactionsandreturns totheoptoelectronicsensorunit.Themeasurementlocationcanbedeterminedfromthetimetakenforthelaser pulsetotraveldownthesensingfiber,andthebackscatter lighttoreturntotheoptoelectronicsensorunit.

Figure1.1 showsthebasicprincipleofDAS,wherethe sensingfiberisexcitedwithacoherentlaserpulseandthe Rayleighbackscatteredinterferencealongthefiberis detectedanddigitized.Anacousticwaveelongatesthe fiberandsochangestheopticalphaseshiftbetweenbackscattercomponentsfromtheleadingandtrailingpartsof theopticalpulse.Asaresultofinterference,theintensity ofthereturninglightchangesfrompulsetopulse.Itisalso possibletodeterminetheopticalphasetorecoveracoustic phasesotherearetwoclassesofDAS,basedonthedetectionof:(i)opticalintensityand(ii)opticalphase.Withthe intensityDAStechnique,alsoreferredtoas coherentopticaltimedomainreflectometry (COTDR),aperturbation alongthefiberisdetectedbymeasuringthechangesin thebackscatterintensityfrompulsetopulse,asindicated inFigure1.2.COTDRhasbeenusedforthedetectionof temperaturechanges(Rathodetal.,1994;Shatalinetal., 1991)andacousticvibration(Juškaitisetal.,1992;Posey

etal.,2000),alongmulti-kilometerfibercables(Juarez etal.,2005;Shatalinetal.,1998).

TheprincipleoftheCOTDRsystemcanbeunderstood byanalyzingtheradiationgeneratedbylocalizedscatter centers(Taylor&Lee,1993).Here,thecoherentscattered lightcanberepresentedastheresultoftworeflections withrandomamplitudeandphase.Whenthefiberis strained,thebackscatterintensityvariesinaccordance withthestrainrate(Figure1.2),butwithanunpredictable amplitudeandphase,whichchangesalongthefiber (Shatalinetal.,1998).Asaresult,thesignalcannotbe effectivelyaccumulatedformultipleseismicpulses:the fiberresponsetostrainishighlynonlinear,andtherefore thechangesinamplitudeandphasecannotbedirectly matchedtotheoriginalstrainaffectingthefiber.Thenext sectiondiscusseswaysofaddressingthis.Therefore, COTDRsystemsarenotthatusefulforseismic applications.

WiththephaseDAStechnique,themethodforoptical phaseanalysisisakeyfeatureofsystemdesign.Alltechniquesrelyonphasemodulationbetweenthebeginning andendofapulse,whichcanbeconsideredasadouble pulse.Suchmodulationcanbeperformedbeforeorafter lightpropagationoveropticalfiber,asindicatedin Figure1.3.Wehavelimitedourdiscussiontoschemas thathavebeenpatentedandimplementedinpractice. Inonescheme,whichissimilartothatusedformultiplexedinterferometersensors(Dakin,1990),twolaser pulseswithdifferentfrequenciesmaybesentdownthe fiber(Figure1.3a).Inthiscase,theacousticphaseshift

Light pulse propagating through the fiber
Acoustic field
Optical fiber
Optical phase shift between beginning and end of pulse
Backscattered light returning to DAS
Distributed Acoustic Sensor (DAS)
Figure1.1 Operationprincipleofdistributedacousticsensing.

Figure1.2 COTDR.

Two pulses with shifted frequencies and embedded delay

Interferometer with 3x3 coupler and embedded delay

Reference

Crickmore & Hill, 2010

Farhadiroushan et al., 2010

Hartog & Kader 2012

Farhadiroushan et al., 2010

Handerek, 2016

Crickmore & Ku, 2017

willbetransferredtoafrequencydifferenceandcanbe measuredinthephotocurrentradiofrequencydomain.

Othersolutions,suchasthatshowninFigure1.3b,containanembeddeddelaylinethatdefinesthespatialresolution.Wewillfocusouranalysisonthisclassofsystems. Anotherconfigurationusesopticalheterodyne,asshown inFigure1.3c,wherethebackscattersignaliscontinuouslymixedwithaslightlyfrequencyshiftedlocaloscillatorlaser.Inthiscase,theelongationalongthefiberis measuredbycomputingthedifferenceoftheaccumulated opticalphasebetweentwosectionsoffiber,andthemeasurementiscarriedoutatdifferentialfrequency f1 f2 Althoughthistechniqueoffersaflexiblespatialresolution,itrequiresalasersourcewithextremelyhighcoherencetoachievereasonablesignal-to-noiseratio(SNR) performanceoverseveraltensofkilometersoffiber. Thedetailsoftheheterodyneconceptarethoroughlycoveredelsewhere(Hartog,2017).Anothermethodinvolves sendingmultiplepulsesofdifferentfrequencies,eitherin seriesorfrompulsetopulse,andthencomputingthe phaseofthebackscattersignal,asindicatedin Figure1.3d.Thephasecalculationinthiscaseissimilar tofirstcase(Figure1.3a).

1.1.2.DASInterferometricOpticalResponse

ThetheoreticalconceptofDASisbasedontheassumptionthattheRayleighcentershavenomicroscopic motion,buttheyare “frozen” insideglassduringmanufacture.Inthiscase,thepositionsofthecentersdepend onthemacroscopicmotionoffiberandcancoincidewith thegroundspeedaroundaburiedfiber(v).Therearetwo timescalesofrelevancetoDAS:(1)asopticalpulsetravels withspeed c,significantlyfasterthangroundmotion,this dictatesthespatialresolution;(2)seismicmotionis responsibleforinterferencechangespulsetopulse,which canbeusedtorecovertheseismicsignal.Allparameters forbothfastandslowmotionsaresummarizedinthe tableofvariablesattheendofthechapter.

Letuscalculatehowtheintensityofbackscatteredlight changeswhenasectionoffiberismovingwithspeed v(z) underaseismicwave(Figure1.4).TheRayleighcenters willmovewiththefiber,sothefrequencyofthebackscatteredlightwillexperienceaDopplershift Ω(z)proportionaltoitsspeed,likeforBrillouinscattering(Hartog, 2017).TheaimofDAScanbeconsideredasthemeasurementofDopplershiftforRayleighscatteringderived fromthedetectedphotocurrent.Thephaseshiftcanbe measuredbetweentwoseparatepointsinspace,andthen theresultantDopplershiftcanberecoveredwithspatial integration,aswillbeshownlaterinthetext.Thefirststep istoanalyzechangesinintensitybetweendifferentoptical pulsestoderivethefiberspeedinformation,whichwillbe equaltothegroundspeedinaseismicwave.

Consideracoherentopticalpulse e(t )thatislaunched intoasingle-modeopticalfiber.Thebackscatteredoptical field E(t )attime t forlightreemergingfromthelaunch endcanbeexpressedasasuperimpositionofdelayedpartialfieldsbackscatteredwithareflectioncoefficient r0(z) alongthefiberaxis z (Shatalinetal.,1998).Thisamplitudecoefficientrepresentscouplingbetweentheforward andbackwardmodes.Foraspeedoflightinthefiber c ≈ 2108m/c,andwavepropagationconstant β ,we canusegroupandphasedelays2z/c and2 z 0 β x dx , respectively.So,theemergingfieldwilldependoninterferometeropticaldelay,orgaugelength, L0 as:

Foraregularfiber,thephaseshiftterminEquation1.1 canbeseparatedintoaconstantpartandapartchanging with “slow” time t,representingpulse-to-pulseparameter

Figure1.4 DASopticalsetup.Distanceisproportionaltoflytime.

variationwithDopplershiftfrequency Ω(z),whichisproportionaltoscatteringparticlevelocity v(z)andwavelengthfrequency ω

shift ΔΩ(z)= Ω(z) Ω(z L0)canberepresentedviavariationofintensity I(z, t)= E(z, t)E(z, t)∗ .Theexpressionin bracesinEquation1.6representsatwo-beaminterference,sotheintensitywillvaryharmonicallydepending onthephase.Asweareinterestedintheintensitychange, onlytheinterferencetermneedsbetakenintoconsideration,whichcanbereshapedusingtheintensityderivative:

Herethestraincoefficient Kε relatesthephysicaland opticallengthoffiber, neff isfibereffectiverefractive index,and λ isthelaserwavelength.Equations1.2–1.3 representawell-knowndualism,whenachangeininterferencecanbeconsiderednotonlyasaresultofachange inphase,butalsoasabeatingofafrequencyduetoa Dopplershift.TheconceptfindsapplicationinDoppler lidars,whereRayleighscatteringlightcontainswind speedinformation,sotheheightdistributionofthespeed canbedetectedusingOTDR(Garnier&Chanin,1992). TheDASconceptionissomewhatdifferent:wedonot measuretheabsolutevelocityofRayleighscatterers, butthedifferenceinsuchvelocityalongthegaugelength. AnotherdifferenceisthatRayleighcentersarefrozenina glassoffiberatameltingpointofabout800 .Theirmovementfollowsthemovementofthefiber,andhencevery lowDopplerfrequencies(downtomHz)canbemeasured. Forsimplicityoffurthercalculations,thereflective coefficient r0(z)canberedefinedastheeffectivereflective coefficient r(z):

Then,toextracttheDopplershiftfromtheintensity equation,weneedtocontrolthephaseshift ψ 0 between delayedopticalfieldsintheinterferometer.SoEquation1.1 canberearrangedusingEquations1.2–1.4to:

Thenusingconvolutionproperties

(

)/∂ t,wecanfindintensityvariationviaphaseshift Φ ofbackscatteredlightwherethereisargumentofbackscatteringcomplexfunction:

Heretheconvolutionsymbol isusedtosimplifythe expression,andtheOTDRscale z =2ct forthe “fast” time t isused.Theconvolutioncommuteswith translations(Goodman,2005),meaningthatEquation1.5 canbeconvertedusing a(z1 z2) b(z1)= a(z1) b(z1 z2) to:

TheCOTDRsignalcanbededucedfromEquation1.8 ifweset L0 =0 and ψ 0 =0.Evensuchasimplesetup candeliverinformationontheDopplershiftand hencethegroundspeed v(z)throughtheintensityvariation ∂ I/∂ t Δv inaccordancewithEquations1.3,1.8. Unfortunately,theproportionalityfactorcontainsan oscillationterm,sowecannotdistinguishpositivespeed fromnegative.

Letusconsiderfirstthesimplecaseofshortpulse e(z)= δ(z)when δ istheDiracdeltafunction.ThenconvolutioncanberemovedfromEquation1.5 because δ(z) a(z)= a(z),andthedistancevariationofDoppler

TheresultofcomputermodelingofaCOTDRresponse onadifferentialRickerwaveletforgroundspeed(Hartog, 2017)ispresentedinFigure1.5.Therightsideshows1D seismicwavemovinginthezdirection(inm)withareflectionfromaninterfacewithapositivereflectioncoefficient.Belowtheimageisatimeseriesofapparent velocity,whenunitsarenormalizedtotheexpectedopticalphaseshiftinradiansbetweenpointsseparatedby gaugelength10m.Theleftsideofthefigurecorresponds totherelativepulse-to-pulsevariationoftheCOTDRsignalcalculatedinaccordancewithEquations1.8–1.9.The signofresponsechangesrandomlyinaccordancewithan opticalpulsewidthof50nsor5m.Asaresult,thesignal cannotbeeffectivelyaccumulatedformultipleseismic pulselosityesbecauseofthetemperaturedriftbetween seismicshots.Temperaturedriftchangesthephaseconstantofthefiber β 0 and,inaccordancewithEquation1.4, theeffectivereflectioncoefficient r(z)alsochanges.Asa resultofsuchdrift,everyseismicshotwillhaveaunique, random,alternating,speckle-likesignaturethatcancels theaveragingsum.Fortunately,thisproblemcanbeovercomebyopticalphaserecovery,when,aftersimilaraveraging,averagevaluesappear.Thus,theactualDAS outputwillbeacombinationoffiberspeedinformation andtheunaveragedportionoftherandomCOTDR signal.

Figure1.5 COTDRresponse(Equation1.6)shownintheleftpanelofthesimulatedsignalofagroundvelocity waveletshownintherightpanel.Thesignals’ cross-sectionalongthewhitelineisshowninthebottompanels inradians. Source:BasedonCorreaetal.(2017).

1.1.3.DASOpticalPhaseRecovery

TherandomnessoftheCOTDRsignalcanbereduced throughpropercontroloftheexternalinterferometer phaseshift ψ 0,whichcanbeachievedinmanyways. AllthesemethodsarebasedonthefactthatCOTDR intensityisrandomindistancebutwillvaryharmonically dependingonthephase,asfollowsfromEquation1.1 (see Figure1.6).So,phasecontrolcanrevealphaseinformationregardlessoftherandomnatureofthesignal.

Wewillstartourphaseanalysiswithasimple,although notverypractical,approach,wherethephaseshift ψ 0 is lockedontoafringesin(ψ 0 + Φ) ≡ 1.Suchanapproach wasusedearliertoanalyzethespatialresolutioninphase microscopy(Reaetal.,1996).ThenEquations1.8and1.9 canbeaveragedoveranensembleofdeltacorrelated backscatteringcoefficients

)as:

Thesamedatacanbeextracteddirectlyfromphaseinformation,asisclearfromEquation1.11.

Sofar,wehaveanalyzedtheshortpulsecase,wherethe pulsewidthissignificantlysmallerthantheexternalinterferometerdelay.Inreality,suchpulsescannotdeliversignificantopticalpower,whichisnecessaryforprecise measurements.Fortunately,Equations1.10–1.11canbe generalizedforanonzerolengthopticalpulse e(z)directly fromEquation1.5inthesamewaythatanopticalincoherentimagewasobtainedinGoodman(2005)usingcorrelationaveraging (a r1)(a r2) = a 2 r1r2 .This expressionisvalidforanuncorrelatedfield,generatedby randomreflectionpoints r1(z1)r2(z2) = δ(z1 z2).This calculationconfirmsthatEquation1.11remainsthe same,asitrepresentsaveragingoverdifferentharmonic signals,butEquation1.10willbereshapedto:

Equation1.10 demonstratesthatthesignofDoppler shiftcanbemeasuredbyDASwithproperphasecontrol.

Equation1.11 givesusthepossibilitytointroducea dimensionlesssignalasaphasechangeoverarepetition orsamplingfrequency FS period A(z)= FS ∂Φ/∂ t,and sotheDASoutput A(z)canberepresentedforpulsewidth τ (z)= e(z)2 fromEquations1.3,1.10,and1.11as:

Z

InEquation1.14,theelongationcorresponding to ΔΦ =1 rad is A0 =115nm,calculatedfor λ =1550, neff =1.468and Kε =0.73,whichhasbeenmeasured forconventionalfiber(Kregeretal.,2006).TheDASsignalisaconvolutionofpulseshape(asistypicalfor OTDR-typedistributedsensors)withameasuredfield, whichisthespatialdifferenceinfiberelongationspeed ofpointsseparatedbyagaugelength.

Phasemeasurementscanbemadeinamorepractical waythanlockingtheinterferometerontoafringebyusing intensitytrace Ij(z, t) j =1,2,..P from P multipleinterferometerswithdifferentphaseshifts.Suchdatacanbecollectedconsequentiallyin P opticalpulses,butitreduces sensorbandwidthby P times.Alternatively,theinformationcanbecollectedforonepulseusingamulti-output opticalcomponent,suchasa3×3coupler.Inthegeneral case,thephaseshift Φ(z, t)canberepresented(Todd, 2011)viathearctangentfunctionATANoftheratioof imaginaryIm Z torealpartRe Z oflinearcombinations ofintensities:

3I 1 3I 3 andRe Z = I1 2I2 + I3.AnadditionalmodificationofEquation1.15 includingphase unwrappingwillbediscussedinthenextsection.Itis interestingtomentionthataheterodyneapproach (Hartogetal.,2013)canalsousequadraturemeasurementssimilartoEquation1.15,butinthatcasephase diversityisrealizedintheOTDRtime/distancescale, whichcanaffectspatialresolution.Also,wecanmention thattheinterferometerapproachdoesnotneedahighly coherentlaser,astheopticallengthsofinterferingrays arenearlycompensated(Poseyetal.,2000).

ThetheoreticalexpressionforDASresolution (Equation1.13)wasobtainedfromanalysisofaninterferometerlockedontoafringe,anditisnecessarytotesthow thisisapplicabletopracticalphasemeasurementalgorithms.Also,Equation1.13containsaveragingoverastatisticalensemble,anditisimportanttounderstandwhatit meansinarealapplication.Toanswerthequestions,we havecomparedtheoreticalvalueswithasimulationbased ona3×3couplersetupfor100differentrandomRayleigh scatteringpatternsforawidevarietyofparametersand foundgoodcomparisonafteraveraging.Toillustratethis analysis,threeopticalpulsewidthsettingswereusedfor interferometerdelay(gaugelength)of L0 =10m anda groundvelocityzoneof40m(Figure1.7a–c).

where V isthevisibilitygivenbytheratioofpeak-to-peak intensityvariationtoaverageintensityoftheinterference signal.Inparticular,forasymmetrical3×3coupler,

Alltraces(Figure1.7a–c)correspondtostrainmeasurementsratherthantogroundvelocityprofilemeasurements.Ifthepulsewidthissmall, τ =10ns,then averagingisnotimportant,andthecorrespondence betweendifferentphaserecoveryalgorithmsareclear (Figure1.7a).Forareasonablepulsewidth, τ =50ns,only averagedsimulationresultscorrespondtotheory (Figure1.7b).Ifpulsewidth τ =100ns becomesequalto L0 =10m intheOTDRscale,thenaveragingiscritical, butafterit100timesaveragingcorrespondenceisgood (Figure1.7c).Itisimportanttomentionthatthissimulationdidnotincludephotodetectornoise,andnoise-like performanceinFigure1.7ccanbeexplainedbythe

Im
=
Figure1.6 Intensitychangesareirregularalongdistancebutharmonicalongphaseshiftaxis.

COTDRsignal,whichwillbeoverlaidontheDASsignal withnonzeropulsewidth.Thisisanaturallimitfor increasingSNRbyextendingpulsewidth;wehaveacompromisebetweenSNRandsignalqualityataround L0 =2τ .Finally,wecanexpectthatthetheoreticalexpression(Equation1.13)canbeusedforspatialresolution analysisfordifferentphaserecoveryalgorithmsaftera properaveraging.

1.1.4.DASDynamicRangeAlgorithms

Anacousticalgorithm(Equation1.15)transformsthe DASintensitysignalintoaphaseshiftproportionalto fiberelongationvalue;aquestionthenishowlargecan thisphaseshiftbe?AnalgorithmbasedonsuchambiguousfunctionasATAN(x)cangivearesultonlyinsidea limitedregion.Theclassicapproachtorecoverlarge phasechangesisunwrapping:stitchingtogethertwoconsecutivepoints t and t + Δt fromdifferentbranchesofsignal(Itoh,1982):

Equation1.18givesanideaofthis.Ifthephaseisa smoothfunction,wecandifferentiateintime Φ(t)before unwrapping.Then,thefirstdifferentiallineartermis removed,andconditionbecomesmorerelaxed:

So,thesecondordertrackingalgorithmcanbe obtainedbydifferentiatingthesignalbeforeunwrapping:

Thisunwrapping,orphasetracking,conceptworks onlyifthephasedifferenceisinsidetwoquadrants:

Equation1.17 makesitpossibletomeasuresignificant fiberelongation,muchlongerthanthewavelength.Ifthe samplingrate FS =1/Δt ishigherthantheacousticfrequency F,alargeracousticamplitudecanbeintegrated A0FS/2F ≈ 68μ overtimefor F =50Hz and FS =50kHz Moreover,eventhisvaluehasimproved,and

Equation1.20 hasananaloginclassicaloptics,where, insteadofthewavefrontphasegradient,thewrappedcurvatureofthewavefrontcanbeunwrappedtoincreasethe dynamicrange(Servinetal.,2017).Acomparisonofthese algorithmsispresentedinFigure1.8usingmodelingfora harmonicsignalwithalinearlyincreasingamplitude.Itis visiblethatbothalgorithmscanrecoverasignificant phaserange,butthesecondordertrackingalgorithm candeliverinexcessofa10timeslargerdynamicrange.

Theoretically,evenhigherorderalgorithmscanbe designedbyrepeatingthisprocessusinghigherorderderivatives,buttheyarenoisierasmorepointsareinvolvedin thecalculation ascanbeseenbycomparingEquations1.18 and1.19.Fromapracticalpointofview,the proposed1D(intime)unwrappingalgorithmsareerrorfreeandsimpleenoughtobeimplementedinrealtime. Potentially,noiseimmunitycanbeimprovedbytransition to2D(intimeanddistance)unwrapping,similartothat usedinasyntheticapertureradarsystem(Ghiglia&Pritt, 1998).Thissolutioncanextractasmuchinformation aboutthephaseaspossible,butitisdifficulttoimplement withoutpost-processing.

Figure1.7 ComparisonofDAStheoreticalresponse(Equation1.13)withsimulationfora3×3coupler.

ComparisonoffirstandsecondordertrackingalgorithmsforDAS.

1.1.5.DASSignalProcessingandDenoising

Inallphase-detectionschemes,thechangeinoptical phasebetweenthelightscatteredintwofibersegments isdetermined,meaningwearemeasuringthedeterministicphasechangebetweentworandomsignals.Therandomnessoftheamplitudeofthescatteredradiation imposescertainlimitationsontheaccuracyofthesensor, throughtheintroductionofphaseflickernoise.The sourceofflickernoiseisanambiguity:whenthefiberis stretched,thescatteringcoefficientvaries,andcan becomezero.Inthiscase,thedifferentialphasedetector generatesanoiseburstregardlessofwhichopticalsetup isused.Theamplitudeofsuchnoiseincreaseswith decreasingfrequency(asisexpectedforflickernoise) whenthephasedifferenceisintegratedintothedisplacementsignal.

Fromaquantumpointofview,weneed,forsuccessive phasemeasurements,anumberofinterferingphoton pairsscatteredfrompointsseparatedbythegaugelength distance.Insome “bad” points,therearenosuchpairs,as onepointofscatteringisfaded.Anaturalwaytohandle thisproblemistoreject “bad” unpairedphotonsbycontrollingthevisibilityoftheinterferencepattern.Asa result,theshotnoisecanincreaseslightlyastheprice forthedramaticreductionofflickernoise.Therejection offadingpointscanbepracticallyimplementedbyassigningaweightingfactortoeachmeasurementresultand performingaweightedaveraging.

Thisaveragingcanbedoneoverwavelengthifamultiwavelengthsourceisused.Alternatively,wecanslightlysacrificespatialresolutionandsolvetheproblembydenoising

usingweightedspatialaveraging(Farhadiroushanetal., 2010).ThemaximumSNRisrealizedwhentheweighting factorofeachchannelischosentobeinverselyproportional tothemeansquarenoiseinthatchannel(Brennan,1959), meaningthesquaredinterferencevisibility, V2,canbeused fortheweightingfactoras:

Theaveragingfunction p(z)=5m shouldoptimallybe chosentobecompatiblewiththepulsewidth τ (z)=50ns, whichshouldbearoundhalftheinterferometerlength L0 =10m.Withthiswidthoftheaveragingfunction,it hasnosignificanteffectonthespatialresolutionofthe DAS.Modelingwithandwithoutweightedaveragingis presentedinFigure1.9,whichdemonstratesthatsignificantnoisereductioncanbeachieved.Itshouldbenoted thatthisnoisereductionisparticularlymarkedincomparisonwiththecoherentOTDRresponse,bycontrasting withFigure1.5.Nevertheless,weightedaveragingsuppressesratherthancompletelyremovestheeffectof flickernoise,andsomechannelsstilldemonstrateexcessivenoise(inadditiontoshotnoise).Hence,theresponse overalldepthsatagiventimeforFigure1.9willcontain spikesforfadedchannels.

AsisexploredinSection1.3,theproblemofflicker noisecanbeovercomebyintroducingengineeredbright scatterzonesalongthefiberwithconstantspatialseparationanduniformamplitude.Suchscatterzonesalso reflectmorephotons,andsoimprovetheshotnoisedetectionlimitation.Inaddition,theuseofsuchengineered

Az ≈ Az V 2 z pz V 2 z pz (1.21)
Figure1.8

Figure1.9 Theleft-handpanelshowsmodelingofrawDASacousticdata(Equation1.12);theright-handpanel showsthesameshotwithweightedaveragingdenoising(Equation1.13)applied.Thesignals’ cross-section alongthewhitelineisshowninthebottompanelsinradians.Themodeled sourceisshownintherightpanel ofFigure1.5.

fiberallowstheuseofphase-detectionalgorithmswith improvedsensitivityandextendeddynamicrange.

1.1.6.TimeIntegrationofDASSignal

ADASinterrogatormeasures,inaccordancewith Equation1.13,thespeeddifferencebetweentwosections offiberthatareseparatedbyinterferometerlength L0 (referredtoalsoasthe gaugelength),aspresentedin Figure1.10.Inpulse-to-pulseconsideration,theDAS responseislinearlyproportionaltothefiberelongation averagedoverthegaugelengthinthenanometerscale, orstrainrateinthenanostrainpersecondscale.Theconsiderationcanalsobeextendedtomultiplepulsesbytime integrationoftheDASsignal.So,iffiberrestsinitially andgrounddisplacementequalstozero u(z, t1)=0,then:

Figure1.10 Illustrationoftwotime-consecutivemeasurements whenDASoutputisproportionaltofiberelongationbetween twoprobepulses.

seismographthatcanmeasurechangesindistance betweentwopointsontheground(Benioff,1935).

meaningatimeintegratedDASsignalcanbeconsidered asanoutputofahugecaliperthatismeasuringfiberelongationbetweentwopointswithsub-nanometerprecision. Thismeasuringprincipleisdifferentfromthatofageophonebutissimilartoanelectromagneticlinearstrain

1.2.DASSYSTEMPARAMETERSAND COMPARISONWITHGEOPHONES

Inthissection,weconsiderhowDASparameters(such asspatialresolution),gaugelength,frequencyresponse,

andSNRenableDAStobecomeaneffectivetoolforseismicmeasurements.Fielddataarealsopresented,with DASoutputcomparedtogeophonedata.

1.2.1.DASOptimizationforSeismicApplications

Distributedfibersensorsmeasurephysicalparameters ofanexternalenvironmentcontinuouslythroughtheintegrationpropertiesoflighttravelingalongalengthyopticalpath.Thisisquitedifferentfrompointsensors,suchas geophones,whichmakeaninertialmeasurementof groundspeedatfixedpositions(SEAFOM,2018).The DASrecordsalocalstrainrate,whichcanbeconverted intoparticlevelocitytoallowdirectcomparisonwithgeophonedata.FollowingJoussetetal.(2018),wecan approximatelyrepresentDASsignal A(z, t)viaground displacement u(z, t),where FS istheDASsamplingfrequencyand L0 isthegaugelength.

isrepresented(Equation1.5)asaconvolutionofapoint spreadfunctionwith v(z).

Spatiallyintegratedsignal(Equation1.27)wasmodeledfor10mgaugelengthand50nspulsewidth,asshown inFigure1.5(rightpanel).Theresultsofmodeling (Equation1.25)arepresentedinFigure1.11(leftpanel), andtheresultisconvertedtogeophone-styledata (Equation1.26)intherightpanel.Fromapracticalpoint ofview,lowtemporalfrequencies,outoftherangeof interest,canbefilteredout,andalsospatialantialiasing filteringcanbeused.Itisworthmentioningthattheright panelofFigure1.11demonstratestherealchangein polarityofthereflectedseismicpulse.Also,spatialintegration(Equation1.26)actsasstatisticalaveraging, whicheliminatestherandomnessofthe “staircasing” in Figure1.5leftpanel.

If FS ∞, L0 0,thentheDASsignalcanbepresentedinadoubledifferentialform:

Themostvaluablegeophysicalinformationisdelivered bysoundwaveswithfrequenciesbelow FMAX =150Hz,as higherfrequenciesareattenuatedbytheground.Fora speedofsoundC =3000m/s,thiscorrespondstoanacousticwavelength C/FMAX =20m,soNyquist’slimitdictates that LG ≤ C/2FMAX =10m isthemaximumspacingof conventionalsensors.Formally,thelinearsplineapproximation G(z)ofconventionalantennavelocity v(z)output canberepresentedusingexpressionsfrom(Unser, 1999),as:

Thesesimplifiedexpressions(Equations1.23–1.24)give usaqualitativesenseoftheDASalgorithmoutput.Fora subsequentquantitativeanalysis,weshallneedthe detailedexpressionthatwasobtainedintheprevioussection.Namely,foranonzerointerferometergaugelength L0 andopticalpulsewidth τ ,averagedoverrandomscatteringDASoutput, A(z)canberepresentedbyEquation1.15inexpandedform:

Az = 1 A0 F S τ z δ z δ z L0 vz (1.25) where FS issamplingfrequencyand A0 =115nm isascale constant(Equation1.14).So,thevelocityfieldcanbe recoveredbyspatialintegrationstartingfromamotionlesspointas:

= z 0 Au du = Az θ z (1.26)

ThenDASsignal(Equation1.25)canbetransformed usingshiftinvariant a(z1) b(z1 + z2)= a(z1 + z2) b(z1)to:

= 1

where θ (z)istheHeavisidestepfunction,whosevalueis zeroforanegativeargument.Asexpected,theDASsignal

ThespatialspectralresponseofDASinacousticangularwavenumber Kz canberepresentedbyFouriertransform ℑ(Kz)followingGoodman(2005):

G K z =sinc K z LG 2 comb K z LG 2π ℑ K z (1.29)

Suchspectralresponsescanbenormalizedforaconstantsignal ℑ(K)=1(seeblacklineinFigure1.12). Thecombfunctionin(Equation1.29)isresponsiblefor therepeatingofthespatialspectrumwithashiftof2π / Λ,asisshownbythedottedline.Topreventaliasing, thesignalspectrumshouldbeinsideNyquist’slimit, whichisshownbythegrayverticalline.

Letuscomparetheconventionalvelocitysensorwith theDASspectrum,calculatedfromthespatialresolution expression(Equation1.25),byFouriertransformas:

A K z =sinc K z τ 2 sin K z L0 2 ℑ K z (1.30)

TwocasesarepresentedinFigure1.12:whentheopticalpulselengthisalmostequaltotheinterferometer gaugelength τ = L0,andwhenitishalftheinterferometer gaugelength τ = L0/2(seedashedandsolidbluelines, respectively).Theabsolutevalueispresentedinthefigure toaidcomparisonbetweencurves.Inthesecondcase,we

Figure1.11 AcousticmeasurementsusingDAS:Theleftpanelrepresentsstrainratemeasurementandtheright paneldisplaysgroundspeedmeasurement,thetransformtowhichcomprisesfilteringandintegration.The signals’ cross-sectionalongthewhitelineisshowninthebottompanelsinradians.Themodeledsourceis shownintherightpanelofFigure1.5.

wavenumber, K/2π, 1/m

DAS τ=5m Lo=10m

DAS τ=10m Lo=10m

Sensors array 10m

Sensors array aliasing

Figure1.12 ComparisonofDASspectralresponsewiththatfroma10msensorantennaarray.

haveagain,whichishighlightedbythebluefilling.This gaincanbeexplainedbysignalsmearingovera longpulse.

ItseemsfromFigure1.12 thatDASlowfrequencysensitivityissignificantlylowerthanthatofageophone.

Practically,however,thisisnotthecase,asthegeophone noiserisesatlowfrequencies,andthiscanbecharacterizedbysomehigh-pass(HP)filtersthatlimittherange tofrequenciesaround10Hz(seedottedlinein Figure1.13).However,DAShasthepotentialtoincrease

Acoustic

LowspatialfrequencygaininDASbyusinglonginterferometer.

thespectralresponseatlowfrequenciesbyincreasing interferometerlength forexample,from L0 =10m to L0 =30m (seeFigure1.13).So,potentially,theDAS responsecanbesynthesizedfromtwomeasurements:with ashortinterferometergaugelengthtodeliverhighspatial frequencybandwidth,andalongonetodeliverlowfrequency.Astheresult,full-frequencycoveragecanbeas goodasfromageophoneantenna,orpossiblyevenbetter, aswillbeshowninalaterSNRcomparison.Anadditionaladvantageovergeophonesisthelargedynamic rangeofDASatlowfrequencies,whichwillbediscussed later.

1.2.2.DASDirectionalityinSeismicMeasurements

Intheprevioussection,weanalyzedthecorrespondence betweenDASandgeophonesintheone-dimensionalcase andfoundthat “geophone-style” velocitydatacanbe extractedfromDASsignalsbyspatialintegration.However,in3Danalysis,weshouldconsiderthatDASisnota velocitysensorbutadifferentialstrainsensor.Thisisa fundamentaldifference:DAScanmeasureacomponent of3Dtensor(strain)butnot3Dvector(velocity).

DirectionalityoftheDASresponsedependsonthefiber opticcableconfigurationandthecabledesign,asthe deviceitselfissensitiveonlytofiberelongation.Wewill startourconsiderationwherethefiberisplacedlinearly insideacable,withnoslippagebetweenfiberandcable, norbetweenthecableandtheground.Inthiscase,fiber displacementwillfollowgrounddisplacement,andsensitivitywilldependontherelativepositionoffiberandseismicsource.Asimilarmechanicalprinciplewasusedfor theelectromagneticlinearstrainseismographtomeasure variationsinthedistancebetweentwopointsofthe ground(Benioff,1935).DASdirectionalresponsewith

respecttoincidentangle Γ canbefoundbytransformation ofthestraintensorcomponentswithrotationusinggeometricalconsideration.Foralongitudinal(P)apparent wave,itwillbecos2Γ,andfortransversal(S)wavesin Γ cos Γ,similartoBenioff(1935)(seeFigure1.14). DetailedanalysisanddiagramsforRayleighandLove wavescanbefoundinMartinetal.(2018).

Inverticalseismicprofiling(VSP),intheverticalpartof thewell,bothcableandseismicwavesareinthesame directionfornear-offsets,sotheDASismoresensitive toP-waves,inwhichtheacousticdisplacementvector coincideswiththefiberdirection.Inotherapplications, suchasfracking,themicroseismicsourceisusuallyona sideofthecable,soshearwavescanbeeffectively detected.

Cableorientationisresponsiblenotonlyforacoustic amplitudebutalsoforacousticspatialresolution,even forthesameacousticwavelength.Thecableactsasan acousticantennawherethesignalvariesrapidlyinspace iftheP-waveandcabledirectioncoincide,butthesignal remainsthesameoverdistanceiftheacousticwavefront isparalleltothecable.Totakethiseffectintoconsideration,weneedtoexpandtheexpressionforacousticwavelength Kz alongthecableforEquations1.29–1.30as:

Foraharmonicwave,directionalitywilldirectlyaffect notonlythespatialresolutionbutalsothetemporalfrequency.AfterFouriertransferinthetimedomain,Equation1.30,intheabsenceofaliasing,canbepresentedas:

Acoustic wavenumber, K/2π, 1/m
Figure1.13

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.